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Abstract

Background: Processing by c-secretase of many type-I membrane protein substrates triggers signaling cascades by
releasing intracellular domains (ICDs) that, following nuclear translocation, modulate the transcription of different genes
regulating a diverse array of cellular and biological processes. Because the list of c-secretase substrates is growing quickly
and this enzyme is a cancer and Alzheimer’s disease therapeutic target, the mapping of c-secretase activity susceptible gene
transcription is important for sharpening our view of specific affected genes, molecular functions and biological pathways.

Methodology/Principal Findings: To identify genes and molecular functions transcriptionally affected by c-secretase
activity, the cellular transcriptomes of Chinese hamster ovary (CHO) cells with enhanced and inhibited c-secretase activity
were analyzed and compared by cDNA microarray. The functional clustering by FatiGO of the 1,981 identified genes
revealed over- and under-represented groups with multiple activities and functions. Single genes with the most
pronounced transcriptional susceptibility to c-secretase activity were evaluated by real-time PCR. Among the 21 validated
genes, the strikingly decreased transcription of PTPRG and AMN1 and increased transcription of UPP1 potentially support
data on cell cycle disturbances relevant to cancer, stem cell and neurodegenerative diseases’ research. The mapping of
interactions of proteins encoded by the validated genes exclusively relied on evidence-based data and revealed broad
effects on Wnt pathway members, including WNT3A and DVL3. Intriguingly, the transcription of TERA, a gene of unknown
function, is affected by c-secretase activity and was significantly altered in the analyzed human Alzheimer’s disease brain
cortices.

Conclusions/Significance: Investigating the effects of c-secretase activity on gene transcription has revealed several
affected clusters of molecular functions and, more specifically, 21 genes that hold significant potential for a better
understanding of the biology of c-secretase and its roles in cancer and Alzheimer’s disease pathology.
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Introduction

c-Secretase is an unconventional aspartyl protease (composed of

PS1, NCT, Aph-1 and Pen2) with an intramembranous catalytic

site that is typical of the class of intramembrane-cleaving proteases

(I-CliPs) (for review, see [1,2]). Via the processing of its substrates

and freeing of their intracellular domains (ICDs), c-secretase

regulates a multitude of signaling pathways and biological processes

by influencing gene transcription. This is exemplified by the

processing of the Notch receptor and the Notch signaling pathway

(for a review, see [3]). After specific ectodomain shedding via tumor

necrosis factor a converting enzyme (TACE) (Fig. 1, step 1), Notch

is further cleaved intramembraneously by c-secretase (Fig. 1, step 2).

The intracellular domain of Notch (NICD) is freed to enter the

nucleus, where it interacts with the transcription factor CSL (Fig. 1,

step 3). With help from the coactivator Mastermind, CSL is

converted from a transcriptional repressor to a transcriptional

activator. CSL as an activator leads to the expression of Notch

target genes (Fig. 1, step 4), like the Hes or Hey family. Hes1, a

transcriptional repressor, inhibits the transcription of NC3C1 (Fig. 1,

step 5). Enhanced c-secretase activity, through its cleavage of Notch,

leads to increased transcription of specific genes (Fig. 1, step 4) that

repress the expression of other genes (Fig. 1, step 6) to influence a

multitude of biological processes. For example, the processing of

Notch by c-secretase is crucial for hepatoblast differentiation [4],

epidermis and hair follicle differentiation [5], alveolar differentia-

tion in mammary glands [6], maintenance of skin appendages [7],

intestinal stem cell specification [8], induction of satellite cells after

injury and maintenance [9] and neural specification of embryonic

stem cells [10].

The directions in which c-secretase activity can up- and down-

regulate gene transcription following its cleavage of a variety of

substrates is further exemplified by the processing of Amyloid-b
(Ab) precursor protein (APP), one of the better-known c-secretase

substrates. The successive processing of APP by BACE1 and c-

secretase indeed leads to the production of Ab peptides (a

causative agent in the pathogenesis of Alzheimer’s disease (AD)),

and APP-intracellular domains (AICDs) which, following associ-
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ation with the adaptor protein Fe65 and nuclear translocation, are

able to suppress the expression of the major Apolipoprotein e
(ApoE)/lipoprotein receptor LRP1 by binding directly to its

promoter [11]. Thus, APP processing is also involved in the

regulation of brain ApoE and cholesterol metabolism through

LRP1 [11]. As ApoE4 is the major known genetic risk factor for

late onset Alzheimer’s disease (LOAD) and since AICD produc-

tion depends on c-secretase, the latter is implicated in the sporadic

form as well. In contrast to LOAD, which correlates directly with

age, early onset familial Alzheimer’s disease (FAD) is genetic and is

mainly caused by mutations in presenilin1 or presenilin2 (PSEN1

or PSEN2), leading to loss of physiological or gain of toxic

functions. Murine specific loss of Psen1 in the forebrain has been

shown to affect certain aspects of memory [12,13]. However, it

remains difficult to correlate the loss of four murine PSEN alleles

with the mild single PSEN allele mutations in FAD [14,15]. c-

Secretase is thus directly or indirectly implicated in the

pathogenesis of both FAD and LOAD, making this protease an

attractive therapeutic target for the prevention and/or treatment

of AD. c-Secretase inhibitors/modulators have indeed reached

clinical phase III trials [16].

With an increasing number of reports about new c-secretase

substrates and the transcriptional effects of their ICDs being

potentially implicated in the pathogenesis of AD or several types of

cancer, we see a need for a basic overview of genes and molecular

functions that are transcriptionally affected by c-secretase activity.

Results

cDNA microarray analysis of genes differentially
transcribed in cells with enhanced c-secretase activity

In an effort to identify specific alterations of gene transcription

as a result of c-secretase activity, the transcriptomes of two CHO

cell lines (biological triplicates were used in each case) with

Figure 1. Microarray-based strategy for the identification of genes differentially transcribed in cells with enhanced c-secretase
activity. To identify genes whose transcription is affected by c-secretase activity, two starkly contrasting conditions were analyzed by cDNA
microarray: genetically engineered enhanced c-secretase (left panel) and pharmacologically inhibited c-secretase (right panel) in CHO cell lines. For a
schematic depiction of the strategy, the Notch-1 receptor signaling pathway is used as an example. After processing by the Furin protease and when
activated by binding to its ligands Notch-1 is cleaved at the S2 position by the TACE protease, generating a substrate for c-secretase (1, 7). Under
enhanced (left panel) or inhibited (right panel) c-secretase activity, the cleavage of the substrate controls the release of the Notch intracellular
domain (NICD) (2, 8). With enhanced c-secretase, increased numbers of NICDs enter the nucleus and interact with CSL (3), leading to the transcription
of target genes like Hes1 and Hey (4). The Hes1 transcription repressor inhibits transcription of target genes like NC3C1 (5), with the final
consequence being reduced production of NC3C1 mRNA (6). Thus, enhancing c-secretase leads simultaneously to gene-dependent increase (in the
case of Hes/Hey) or decrease (in the case of NC3C1) of mRNA copy numbers. With inhibited c-secretase, reduced numbers of NICDs (9) lead to the
transcription of less Hes1/Hey (10), to reduced inhibition of target genes like NC3C1 (11) and consequently to increased production of NC3C1 mRNA
(12). Inhibiting c-secretase thus leads to gene-dependent decrease (in the case of Hes/Hey genes) or increase (in the case of NC3C1) of mRNA copy
numbers. Following mouse cDNA microarray analysis of both transcriptomes, top scoring candidates were evaluated and validated by real time PCR
and further analyzed for changes of transcript levels between healthy and AD human brain cortices.
doi:10.1371/journal.pone.0006952.g001
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enhanced and inhibited c-secretase activity were analyzed and

compared (strategy depicted in Fig. 1 –exemplified by Notch

processing). The S-1 cell line overexpresses the four components of

c-secretase (NCT, Aph1a, PS1 and Pen2) and was characterized

by a marked increase in the level of PS1 heterodimers and an

associated 8-fold increase in c-secretase activity compared to

untransfected controls [17]. The other cell line consisted of the

original parental wild type CHO cells incubated with DAPT, a

well-known c-secretase inhibitor. We strategically chose those two

conditions, overexpression of c-secretase and inhibition of its

activity, to amplify the activity-dependent effects on gene

transcription levels (i.e., amplification of the signal from the

cDNA microarray). To reduce potential effects due to changes in

the protein levels of the c-secretase subunits as opposed to changes

in its activity that we are interested in, we used chemical inhibition

(DAPT) of c-secretase activity instead of gene silencing, which

ultimately leads to changes in protein levels [18]. Biological

functions have indeed been reported mainly for the c-secretase

subunit PS1, independently to the c-secretase activity. However,

because treatment of CHO cells with DAPT has been recently

reported to exacerbate the secretion of exosomes [19], we cannot

exclude at this stage that some detected genes may be exosome-

related in response to the DAPT treatment. The gene transcrip-

tion levels of the two cell lines were analyzed using a mouse cDNA

microarray (Fig. 1 and Material and Methods) [20] because of the

absence of a readily available DNA microarray based upon

hamster gene sequences or cDNA clones. This lack has been

noticed, and cross-species reactivity of a mouse microarray

hybridized with CHO-derived samples has been investigated

recently by De Leon Gatti et al. [21]. This group generated an

EST-based CHO microarray and compared it with results from a

mouse microarray and vice versa. They state that cross-species

hybridization yielded 89.6% overlap in their arrays, non-

contradicting results and led only to a decrease in sensitivity

resulting in detection of fewer differentially expressed genes.

Accordingly, we probably have not detected all differentially

expressed genes, but we have detected a significant amount,

including clusters of functional relevance. For example, Neprilysin,

an Ab-degrading enzyme of functional relevance to AD that has

been previously shown to be transcriptionally downregulated in

PSEN1/PSEN2 double knock out fibroblasts and to exhibit

reduced activity under chemical (DAPT) inhibition of c-secretase

in mouse neurons [22], was not detected in the current study.

Collectively, this supports the use of CHO cells with a mouse

microarray. The microarray data set discussed in this publication

has been deposited in the NCBI Gene Expression Omnibus

(GEO, http://www.ncbi.nlm.nih.gov/geo/) and is accessible

through GEO Series accession number GSE16379.

The mouse microarray consistently detected the four human c-

secretase subunits overexpressed in the S-1 cell line (Table 1). By

applying a cut-off based on the false discovery rate (FDR, i.e., the

probability to wrongly accept a difference between the two

conditions) with a p value of 0.005, we found 2658 EST clones

(1981 genes) to be differentially expressed, with 1241 EST clones

of increased and 1417 EST clones of decreased transcription upon

enhanced c-secretase activity (Supplemental Material, Dataset S1

and Dataset S2).

Functional clustering of genes differentially transcribed
in cells with enhanced c-secretase

Mapping clusters of genes of GO functions transcriptionally

susceptible to c-secretase activity levels resulted in a GO hierarchy-

dependent tree that will provide further orientation for c-secretase

research. Functional clustering of 2658 differentially expressed

sequences (1981 genes, Supplemental Material, Dataset S3) was

performed using the FatiGo tool [23]. Comparing the representa-

tion of functional groups of genes throughout the entire mouse

genome with their representation within the group of differentially

transcribed genes allowed us to see whether clusters of genes of a

specific functional group were enriched in the differentially

expressed set. Clusters of over- and underrepresented genes were

detected (Fig. 2). The gene functions ‘‘transcription regulator

activity’’, ‘‘kinase regulator activity’’, ‘‘catalytic activity’’ and

‘‘binding ’’ were found to be overrepresented among the 2658

sequences (1981 genes) that were differentially transcribed. The

cluster of ‘‘molecular transducer activity’’, through its subclusters in

the GO hierarchy: ‘‘receptor activity’’ GO0004872, ‘‘transmem-

brane receptor activity’’ GO 0004888 and ‘‘neurotransmitter

receptor activity’’ GO0030594, as well as the cluster of ‘‘transporter

activity’’, via its subcluster of ‘‘ion transporter activity’’

GO0015075, were underrepresented (Fig. 2, blue boxes). This is

significant since neurotransmitter activity and transmembrane

receptors are well within the focus of current AD research [24].

Supporting our hypothesis that c-secretase has a role in multiple

transcriptional regulatory activities, the GO cluster of ‘‘transcrip-

tion regulator activity’’ is overrepresented through both its

subclusters ‘‘transcriptional activator activity’’ GO0016563 and

‘‘transcriptional repressor activity’’ GO 0016564 (Fig. 2, red

boxes. Single member genes of each cluster are annotated in

Supplemental Material Dataset S3). A well-described gene within

the activator cluster is b-catenin (CTNNB1, FC = 3, p = 0.001),

whereas an example of a gene in the cluster of ‘‘transcriptional

repressor activity’’ is HES1. Hes1 (FC = 5.4, p = 7.69E-04) is a

transcription factor that has previously been reported as a

downstream target of the Notch signaling pathway [25] (Fig. 1).

Like the examples above, 56 other transcription-related genes

were found to be differentially transcribed with enhanced c-

secretase activity (Supplemental Material, Dataset S4). Consistent

with these findings, several known substrates of the enzyme were

detected on the microarray as well (Table 2). This suggests a

Table 1. Mouse microarray detection of c-secretase components overexpressed in CHO cells with enhanced c-secretase activity.

Gene Protein Probe ID FC adj.P.Val.

PSENEN presenilin enhancer 2 homolog (Pen2) H3153E12 17.1 2.01E-0.4

APH1A anterior pharynx defective 1 homolog A (Aph1a) H3009H07 8.1 2.29E-04

PSEN1 presenilin 1 (PS1) H3150D02 4.3 5.07E-04

NCSTN nicastrin (NCT) H3012F08 2.6 3.48E-02

Gene and Protein names are displayed in first and second column from the left; Probe IDs, fold change (FC) and adjusted P Value (for false discovery rate) follow in
columns 3, 4 and 5.
doi:10.1371/journal.pone.0006952.t001

c-Secretase Gene Transcription

PLoS ONE | www.plosone.org 3 September 2009 | Volume 4 | Issue 9 | e6952



possible feedback mechanism by which the augmented processing

of these substrates by c-secretase might lead to their altered

transcription. The overrepresentation of genes in the clusters of

enzymatic activity, such as ‘‘kinase regulator activity’’ GO0019207

and ‘‘catalytic activity’’, through four distinct GO subclusters

(‘‘isomerase activity’’ GO 0016853, ‘‘ligase activity’’ GO0016874,

‘‘hydrolase activity’’ GO0016787 and ‘‘transferase activity’’ GO

00167740–Fig. 2, red boxes), is broad in terms of the type of

enzymatic activity and further shows the diversification of the

downstream effects of enhanced c-secretase activity.

The most complex cluster of molecular function that is

overrepresented among the differentially transcribed genes identified

in our microarray analysis is the GO function termed ‘‘Binding’’.

This cluster is overrepresented through six subclusters and several

subclusters of these (Fig. 2, lower part). Consistent with transcription

regulation, the binding subclusters of ‘‘nucleic acid binding’’

GO0003676 and ‘‘nucleotide binding’’ GO0000166 are overrepre-

sented. The cluster of ‘‘ion binding’’ GO0043167 is overrepresented

as well as the cluster of ‘‘protein binding’’ GO0005515. A

consistently overrepresented subcluster of the latter is ‘‘cytoskeletal

protein binding’’ GO0008092 (Fig. 2). Cytoskeletal proteins have

long been known to play a role in AD and Tauopathies. They are

targets of the cell polarity Wnt pathway, and their dynamics have

recently been shown to be affected by AICD [26].

‘‘Receptor binding’’ GO0005102 also includes the Notch ligand

and known c-secretase substrate Jagged 2 [27,28], as well as the a-

secretase ADAM 10 [29], four members of the Wnt family (Wnt6,

7a, 9b and 10a) and, the aforementioned b-catenin. Indeed, the

translocation of b-catenin is mediated by ADAM 10, which is of

the same functional cluster [30].

By clustering transcriptionally affected genes, we demonstrate

that neurotransmitter, transcription regulator and enzymatic

activities, transmembrane receptor and cytoskeletal proteins

functional groups are affected by c-secretase activity in their

mRNA copy numbers.

Validation of differential gene transcription by
quantitative real-time PCR

For specific analysis of single genes, the fifty most prominently

transcriptionally altered genes were evaluated by real time PCR.

Mouse code based primers worked reproducibly and specifically for

35 genes. Among them, 21 genes were found to be differentially

transcribed with enhanced c-secretase activity (Fig. 3 upper panel,

annotations lower panel). The highest increase in transcription

Figure 2. Functional clustering of differentially transcribed genes in cells with enhanced c-secretase activity. Categories within the
Molecular Function GO hierarchy that were over- and under- represented among the genes that were differentially transcribed in cells with enhanced
c-secretase activity. Red boxes display GO terms that were overrepresented; blue boxes indicate GO terms that were under-represented. Black boxes
represent main molecular functional clusters and arrows point toward according subclusters. The clustering of 1981 differentially transcribed genes
was performed with DAVID and the FatiGo tool [23].
doi:10.1371/journal.pone.0006952.g002
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levels was detected for UPP1, a gene encoding an enzyme (Uridine

phosphorylase, UPase) directly implicated in the processing of

uridine. UPP1 was confirmed by real time PCR to have a 39.2-fold

increase in transcription levels (Fig. 3 upper panel). Uridine is a

strong sleep-promoter and is crucial for RNA, DNA and membrane

biosynthesis [31]. Because of the latter, a lack of uridine (caused by

increased UPase) would thus first damage cells with a large

membrane to cytoplasm ratio, one of the most extreme ratios being

found in neurons due to their axon and dendrite structure [32].

Interestingly oral administration of uridine has improved AD

phenotypes [33,34]. The protein Upp1 also interacts with Vimentin

[35], the distribution of which is characteristically altered in FAD

fibroblasts [36].

The Notch-dependent transcriptional repressor Hes1 was also

confirmed by real time PCR with a 7-fold increase in mRNA levels

under enhanced c-secretase activity (Fig. 3).

Importantly, we found several key players of the three Wnt

pathways to be transcriptionally altered in response to enhanced c-

secretase. We confirmed one of these, Wnt3a, to be increased by

2.8-fold in S-1 cells (Fig. 3). Aoyama et al. have reported that

Wnt3a can influence Notch protein levels and increase Notch1

activation [37], which increases the effect of enhanced c-secretase

even further through substrate enhancement. Thus, enhanced c-

secretase activity may lead to increased WNT3A transcription,

which in turn can increase the protein levels of the NICD-carrying

c-secretase substrate. This proposed enhancement of the canonical

Wnt pathway is further supported by the recent observation that

b-catenin (the central protein that also ties PS1 to the pathway)

modulates the level and transcriptional activity of Notch1/NICD

through their direct interaction [38]. Several proteins, including

Frizzled and Disheveled (Dvl), relay the Wnt signal along the

canonical pathway between Wnt and b-catenin. We found that

they both show increased gene transcription in our microarray

analysis. DVL3 was confirmed by qPCR to increase in mRNA

copy numbers by 3-fold (Fig. 3). Taken together with the

microarray data showing differential transcription of PROC,

DKK, LRP5/6, GBP, AXIN, b-catenin, C-JUN and CYC D (all

part of the canonical Wnt pathway–for further details see

‘Discussion’), our data suggest a strong transcriptional effect on

this pathway by c-secretase activity and resulting alterations in

gene expression. CYC D has also been reported to be

downregulated by Protein tyrosine phosphatase receptor type G

(PTPRG) [39]. We confirmed by real time PCR that PTPRG

transcript level is reduced by 515-fold (Fig. 3). AMN1 (levels down

978-fold) has also been connected with cell cycle regulation in

yeast, but its role in mammals is not well known. TERA, a gene of

unknown function (levels down 24-fold), has also been associated

with Wnt antagonism (see Fig. 3 and results of human cortex

analysis). b-actin served as housekeeping gene.

Protein interaction data suggest Wnt pathways as a
major target of c-secretase susceptible gene
transcription

In order to see whether c-secretase affects the transcription of

genes encoding interacting proteins, an interaction map of

encoded proteins was generated with the string 8.0 data bank

exclusively relying on evidence-based data. Clusters of protein

interactions suggest the Wnt signaling pathways as a major focus of

c-secretase-affected candidates (Fig. 4, highlighted in grey).

Indeed, we found several members of the canonical Wnt pathway,

but also some interactors of the planar cell polarity (PCP) pathway

and the Wnt/Ca2+ pathway, to have c-secretase activity

susceptible gene transcription (Fig. 4). Some of these genes have

been confirmed by real time PCR as well as DIGE experiments

(Egger et al., unpublished). The largest decrease in gene transcription

occurred for the gene encoding the protein Ptprg. This single-pass

type I membrane protein dephosphorylates protein tyrosine

phosphate and was recently suggested as a candidate tumor

suppressor gene in nasopharyngeal carcinoma [39]. The same

group reported functional evidence for a critical interaction of

Ptprg with the extracellular matrix, which induces cell arrest,

changes in cell cycle status and downregulation of cyclin D1 [39].

The latter is strongly affected by the canonical Wnt pathway.

Ptprzeta and beta, structurally similar to Ptprg, interact with Psd95

[40], which directly interacts with Wnt3a [41]. We could confirm

that WNT3A transcripts show an increase of 2.8-fold (Fig. 3).

Further, Wnt3a has also been reported to interact directly with

LRP1 (Fig. 4, lower right), a stimulator of the Wnt5a signaling

pathway [42] and a known c-secretase substrate tying c-secretase

to a major AD risk factor, ApoE [43]. Porcn, another protein that

interacts with Wnt3a [44], shows a three-fold increase in tran-

script level by the microarray experiment. Porcn also interacts

with Wnt 6 (4-fold increase in microarray) as reported by the same

group and is the first player of the canonical Wnt pathway as

displayed by the Kegg database (mmu04310, http://www.

genome.jp/dbget-bin/show_pathway?mmu04310). Wnt3a inter-

acts with Frizzled 1 [45], which showed a 5-fold increase in

mRNA levels by our microarray. Following the canonical Wnt

pathway, the first intracellular protein of the Wnt signaling

cascade is ‘‘Disheveled’’. As confirmed by real time PCR, DVL3

mRNA is increased by 3-fold with enhanced c-secretase activity.

Next, with the help of Gbp (microarray reports a 4-fold increase of

Gbp2), Gsk-3b is inhibited, which in turn inhibits b-catenin. As

made apparent by the graphical overview of interacting proteins

encoded by genes we found to be transcriptionally susceptible to c-

secretase activity, b-catenin plays a central role, linking different

proteins involved in different Wnt pathways (Fig. 4). Furthermore,

b-catenin has been found to function as a major node connecting

PS1 and several proteins that are encoded by genes that we found

to be differentially transcribed (Fig. 4). b-catenin transcription was

shown by the microarray to be 3-fold decreased. It interacts

directly with cdh15 (which showed a 2.4-fold increase in transcript

levels as confirmed by real time PCR, Fig. 3), with Cdh1 (a known

c-secretase substrate [46]), with PS1 (the c-secretase catalytic

subunit) and other proteins encoded by candidate genes reported

by the microarray. In the context of the canonical Wnt pathway,

Table 2. c-Secretase substrates as reported for differential
expression by microarray.

Gene ProbeID FC adj.P.Val.

LRP2 P869 8 7.48E-04

JAG2 N734 7 4.30E-03

APP* H3132G02 7 1.11E-03

NOTCH3 N732 5 2.78E-03

CDH1 H3050H02 23 4.26E-03

CD44 H3012H07 23 1.33E-03

EPHA4 H3122H01 23 4.82E-03

APLP2 H3154H04 24 2.22E-03

LRP1 H3105A05 25 2.75E-04

Lrp2, Jag2, App, Notch, Cdh1, CD44, Aplp2 and Lrp1 are known c-secretase
substrates and were found to have altered gene expression with enhanced
c-secretase activity.
*overexpressed in S-1 cells.
doi:10.1371/journal.pone.0006952.t002
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Figure 3. Real time PCR validation of differentially transcribed genes in cells with enhanced c-secretase activity. Fifty of the top
scoring genes identified by microarray analysis to be differentially transcribed with enhanced c-secretase activity were analyzed by real time PCR with
primers based on mouse gene sequences. These primers showed specific and reproducible amplification for 35 genes and a total of 21 genes were
validated to be differentially transcribed with enhanced c-secretase activity. Relative quantification is expressed as fold change of transcript levels
compared to inhibited c-secretase conditions. Fold difference is displayed on the Y-axis and in table below X-axis. Error bars reflect standard
deviations of biological triplicates.
doi:10.1371/journal.pone.0006952.g003
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b-catenin affects c-myc (CMYBP 3-fold increased on the

microarray), c-jun (3-fold decreased on the microarray) and cyclin

D (4-fold decreased on the microarray) - the latter, as mentioned,

is also downregulated by Ptprg. Dvl3 however also interacts with

other proteins encoded by candidate genes, among which Nkd1 is

of special interest since it links the canonical with the planar cell

polarity pathway where it has a different effect on Dvl. The Planar

cell polarity pathway through several players, among them Rac (3-

fold decreased on the microarray) affects gene transcription, as we

hypothesize for c-secretase activity changes. Through a chain of

different mediators, the planar cell polarity Wnt pathway affects

the cytoskeleton. Our microarray has reported some of these

mediators to be differentially transcribed as c-secretase activity is

enhanced; RhoA transcript levels for example are 3-fold

decreased. Rock, which is known to directly interact with the c-

secretase substrate CD44 (CD44/Rho Family GTPase/ROCK2)

[47,48], is transcriptionally affected too. Our top candidate UPP1

has only one interaction partner that was also reported to be

differentially expressed by the microarray, the cytoskeleton protein

vimentin (Vim) [35]. Vimentin itself is not new to AD research, as

altered Vim distribution patterns were observed in FAD fibroblasts

[36]. Also, UPP1 transcription is regulated by the transcription

factor Oct3/4, as is the transcription of another candidate, called

SPP1 [49]. Spp1 is a direct interaction partner of the

aforementioned c-secretase substrate CD44 and strongly affects

Ca2+ levels [50]. It directly interacts with several proteins encoded

by candidate genes, including PKCA, which itself directly interacts

with Aplp2, a well-known c-secretase substrate, and Csnk2b,

which directly interacts with b-catenin, thus closing the circle.

Csnk2b also directly interacts with Shmt1, which has enhanced

transcription of 3.5-fold (Fig. 3), and has been further confirmed in

DIGE experiments (Egger et al., unpublished). The third Wnt

pathway mentioned is the Wnt/Ca2+ pathway which includes,

among others, Plc (Plcb1 5-fold increase on the microarray),

CaMKII (4-fold decrease on the microarray) and Calpain (3-fold

decrease on the microarray).

Figure 4. Protein-protein interaction network of proteins encoded by genes differentially transcribed in cells with enhanced c-
secretase activity. All interaction partners as reported by experiment based evidence in the string 8.0 database are shown in black and indicated by
two headed arrows. Proteins encoded by PCR-validated genes are represented in circles (blue circles for genes of decreased transcription, red circles
for genes of increased transcription). Interaction partners encoded by genes identified in our microarray, but having not yet been validated are
displayed in quadrangles (blue quadrangles for genes of decreased transcription, red quadrangles for genes of increased transcription). Proteins with
blue background are known c-secretase substrates. The central grey box indicates c-secretase subunits. Proteins acting directly or indirectly on, or
interacting with Wnt pathways are highlighted by a light purple background figure.
doi:10.1371/journal.pone.0006952.g004
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Our mapping of genes differentially transcribed with c-secretase

activity shows that they encode proteins that directly interact with

each other, with many of them being members of Wnt pathways.

TERA gene transcription is significantly altered in
Alzheimer’s disease cortices

Our modeling of extreme levels of c-secretase activity in CHO

cells has revealed c-secretase-dependent differences in transcript

levels of specific genes. One of the major known risk factors for

developing Alzheimer’s disease is carrying the ApoE4 allele.

Recently it was shown that ApoE through LRP1 regulation is

connected with c-secretase [43], which supports the hypothesis of

a potential role of c-secretase in sporadic AD. c-Secretase is also

directly implicated in the inheritable familial early onset forms of

AD (FAD), as most cases are caused by mutations in PSEN1, the

gene encoding for PS1, the catalytic center of this enzyme.

To investigate whether changes in gene transcription that

coincide with alterations of c-secretase activity levels also differ

between sporadic Alzheimer’s and healthy human brain tissue, we

evaluated our top scoring c-secretase affected genes in human AD

and healthy cortices. Based on b-actin as housekeeping gene, we

found one c-secretase affected gene, TERA, to be significantly

differentially transcribed in the AD brain relative to the normal

brain. Real-time PCR results showed an average two-fold

increased TERA transcript levels (P2 = 0.04) in human AD

cortices compared to healthy controls (Fig. 5).

Altogether, the Wnt antagonism gene TERA represents a new

candidate for differential expression with c-secretase activity as

well as in AD brain cortex tissue. Whether it is implicated in the

pathogenesis of AD requires further investigation.

Discussion

Since the discovery of the roles for NICDs and AICDs in gene

transcription, the notion of c-secretase as a major player in

pathologically altered gene transcription patterns has been steadily

gaining ground with new substrates and their transcriptionally

active ICDs being identified regularly. To investigate the impact of

c-secretase activity on gene transcription, we compared two starkly

contrasting situations: genetically engineered enhanced human c-

secretase activity and pharmacologically inhibited c-secretase

activity in CHO cell lines. By investigating the effects of enhanced

c-secretase activity on gene transcription using cDNA microarray

analysis, we could show that the canonical, the planar cell polarity

(PCP) and the Ca2+/Wnt pathways are transcriptionally affected

through more than a dozen of Wnt signaling players (summarized

in Fig. 6). From Proc and Wnt outside the membrane, through

Frizzled and Dvl, to b-catenin and down to cell cycle regulating

genes, the canonical Wnt pathway is the most affected of Wnt

pathways. Several genes of the PCP Wnt pathway as well as Ca2+/

Wnt pathways were found to be differentially expressed too (Fig. 6).

One of the cell cycle regulating genes is CYC-D, which itself is

Figure 5. Selected relative gene transcript levels in AD cortices. Real time PCR validated genes differentially transcribed in cells with
enhanced c-secretase activity were selected and their gene transcript levels analyzed in ten to twelve AD and healthy human cortical brain tissue
samples. Only the transcript levels of TERA, a gene of unknown function, is significantly altered with a two-fold increase in AD cortices. Note that
TERA transcript levels were significantly reduced in cells with enhanced c-secretase activity (Fig. 3). Relative quantification of gene transcription in
CHO cells as well as in brain tissue used b-actin as housekeeping gene. Healthy control levels are displayed on the left part of each diagram, AD
transcript levels on the right. Dashed lines indicate mean values for healthy controls (green) and AD cases (red). Double-headed arrows indicate
tendencies of differences between groups. P2 values obtained from t-test are indicated in black boxes of the upper part of each diagram.
doi:10.1371/journal.pone.0006952.g005
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regulated by one of the most c-secretase-dependently altered genes

reported by us, PTPRG.

Functional clustering of the microarray data revealed the

overrepresentation of the ‘‘receptor binding’’ cluster, which

includes four different Wnt signaling molecules and b-catenin. b-

Catenin also finds itself in the center of interactions of proteins

encoded by strongly differentially expressed genes. Components

downstream of the canonical Wnt pathway, like c-myc, c-jun and

cycD, influence the cell cycle, the latter as mentioned is down-

regulated by protein tyrosine phosphatase receptor type c (Ptprg).

Interestingly, we found PTPRG transcription to be strongly

decreased in cells with enhanced c-secretase. Barnea et al. [51]

identified a subfamily of PTPRs, defined by the carbonic

anhydrase-like domain in the extracellular region of PTPRG,

and described its expression during hippocampal formation, and

in septal and midline thalamic nuclei in the cortex of newborn rats

(in contrast to the expression pattern in adult rats, which is

reduced to the hippocampal formation). Several groups have

shown a connection between alterations in receptor tyrosine

phosphatases’ expression levels and c-secretase [52,53]. However,

we report here for the first time, to our knowledge, the

transcriptional connection between the receptor tyrosine phos-

phatase type gamma and c-secretase.

TERA, a gene that we found to be decreased in transcription

(down by 23.5-fold), has been connected to brain development and

Wnt antagonism as well. TERA is decreased to minimal transcript

levels with enhanced c-secretase activity (Fig. 3). This gene,

encoding a phosphoprotein of unknown function, is upregulated in

squamous cell carcinoma (SCC), adenocarcinoma (AC), and

colon, ovary, rectum and stomach tumors [54] (suggesting

associations with Notch?). It has also been reported that TERA

gene expression is increased in day 13 embryonic (E13) and

decreased in E17 cortex and maintains low, but consistent

expression levels in the subventricular zone (SVZ) [55]. The

expression pattern in earlier rather than later stages of brain

development and in the location of neuronal stem cell niches, like

the SVZ, suggest possible roles for Tera in regenerative processes

and raise questions about its function if the gene is being shut

down in degenerative disorders like AD [55]. Tera expression has

further been found to be maintained in neural progenitors and

downregulated during non-neural differentiation, and was shown

to have appreciable expression in embryonic stem cells in a screen

Figure 6. Involvement of c-secretase-dependently transcribed genes in Wnt pathways. Several key players of the canonical Wnt pathway
(green panel) were reported by our microarray to increase (red quadrangles) or decrease (blue quadrangles) in transcript levels under conditions of
enhanced c-secretase activity compared to inhibited activity. b-Catenin is a central node connecting Wnt–Frizzled–Dishevelled to a downstream
effect influencing the cell cycle (see also Fig. 4 and interactions of encoded proteins). For better understanding, selected genes that were not
detected by the microarray are displayed as well (dashed lines black quadrangles). CycD was reported to be regulated by PTPRG, one of the top
scoring candidates for c-secretase affected gene transcription. Nkd, which we found to be increased in transcript levels, connects the canonical Wnt
pathway with the planar cell polarity pathway (blue panel). CD44, a well-known c-secretase substrate, interacts with SPP1. SPP1 and UPP1, two strong
candidates are both under the control of the same transcription factor Oct3/4, as has been suggested for TERA [92]. UPP1 directly interacts with
Vimentin (see also Fig. 4), a known player in AD and a cytoskeletal protein. Crucial genes of the Wnt/Ca2+ pathway (grey panel) were also found to be
differentially expressed in our array. All together, c-secretase activity influences the transcript levels of genes of the canonical, the planar cell polarity
and Ca2+ Wnt pathways.
doi:10.1371/journal.pone.0006952.g006
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for functional genes in ES cells that implicated Wnt antagonism in

neural differentiation [56].

TERA and the anti-mitotic exit network antagonist 1 (AMN1)

map to chromosome 12p11, which is interesting when considering

the fact that chromosome 12 has been discussed to contain an

unknown LOAD locus for over a decade, and in a recent study

including 492 LOAD cases [57–59]. In our study, AMN1

transcription is decreased by 978-fold with enhanced c-secretase

activity. The function of AMN1 is not known. However, several

expression pattern based studies suggest it functions as a cilia gene

in sensory neurons [60]. Another typical cilia gene is intraflagellar

transport protein 81 (IFT81) which, among a dozen of known cilia

genes, was also shown by the microarray to be differentially

expressed with altered c-secretase activity (see also Fig. 3). More

and more evidence has been emerging over the last years that

primary cilia, in parallel to their well-established functions in sight,

smell and mechanosensation, are key participants in intercellular

signaling [61]. The importance of monocilia for the regeneration

of olfactory neurons has only been better understood recently [62].

Subventricular zone (SVZ) astrocytes, providing glia as well as

neurons for the mammalian olfactory bulb, have primary cilia

[63]. They give rise to type C cells, which in turn generate

neuroblasts [64] that migrate in the adult brain from the SVZ to

the olfactory bulb along the cerebrospinal fluid (CSF) flow. The

CSF flow depends on the beating of the ependymal cilia [65]. Cilia

genes are not only relevant to the maintenance of adult

regeneration in the brain since they uphold the constant flow of

the CSF, but also because they are directly implicated in cell cycle

control. Polycystins, for example, control the cell cycle through

three major pathways with one depending directly on b-catenin

[66]. A study of inversin has further shown that flow shear stress as

sensed through cilia may regulate the Wnt signaling pathway

through b-catenin [67,68]. Given that fluid flow is crucial for the

transport of neuroblasts in the SVZ, one could expect that b-

catenin and the Wnt signaling pathway that connects our

candidates are also functionally relevant to the cilia genes found

in this study. We found both genes of unknown function TERA

and AMN1 to be decreased in transcription with enhanced c-

secretase activity. TERA and AMN1 can be connected to neural

stem cells through several types of cancer, neural differentiation (in

the case of TERA) and through the role of monocilia for

neurogenesis (in the case of AMN1). All in all, we have

demonstrated that AMN1 and TERA are genes of basically

unknown function that are worthy of further investigation to

understand their roles in neurogenesis, cancer and c-secretase

biology.

We further report here that UPP1 transcript levels are increased

with enhanced c-secretase activity (by 39.2-fold). UPP1 encodes

for uridine phosphorylase (UPase), an enzyme that catalyzes the

reversible phosphorylytic cleavage of uridine and deoxyuridine to

uracil and ribose- or deoxyribose-1-phosphate [69]. UPP1

expression has been extensively connected to cancer, stem cells

and inflammation such as multiple sclerosis [70–77]. UPase is

induced by vitamin D3 and a mixture of inflammatory cytokines,

Interferon gamma, TNF-alpha and IL-1, with the latter two being

upregulators of Ptprg [78]. Increased UPP1 transcript levels,

associated with enhanced UPase activity cleaving uridine, would

potentially have inhibitory effects on several pathways downstream

of uridine, like RNA/DNA and membrane synthesis, as well as

protein glycosylation, which would in turn trigger long-term

neurodegeneration. Particularly, decreased membrane synthesis,

in the case of synaptic membranes, would also reduce synaptic

activity and plasticity. In support of that, TNF-a and IL-1,

inducers of UPP1, alter lipid metabolism and stimulate production

of eicosanoids, ceramide and reactive oxygen species that

potentiate CNS injuries and certain neurological disorders [33].

Interestingly, this hypothesis offers an explanation for the

multitude of beneficial effects of orally administered DHA and

uridine on memory, neuronal health, regeneration and membrane

synthesis in traumatic and chronic neuropathological conditions

[33,34].

The presented work demonstrates that c-secretase is capable of

influencing single gene transcription. However strong the impact

will prove to be on the protein level of each single gene, we have

further observed transcriptional effects spanning several genes

throughout clearly defined pathways. This puts forth the possibility

of much stronger effects on the target functions of these pathways

than the small impact on the individual genes transcriptional or

translational levels might indicate. In support of this hypothesis, we

have observed that the proteins encoded by those genes interact

with each other and are part of the Wnt pathways. Evaluation of

the impact of these pathway-specific accumulative effects needs

further investigation. This should include physiological and

pathological in vivo experiments on both the transcript as well as

protein levels. For c-secretase to serve as a therapeutic target, it is

indeed crucial to sharpen our view of its role and influence over

gene transcription and biological functions.

Materials and Methods

Cell culture
The S-1 cell line overexpressing Flag-Pen2, Aph1-a2-HA, PS1

and NCT-GST [17,79] was derived from the Chinese Hamster

Ovary (CHO) c-30 cell line [80] generated from the parental

untransfected CHO cell line used in this study. All CHO cells were

cultured in 10 cm dishes as biological triplicates in Dulbecco’s

modified Eagle’s medium (DMEM) containing 10% Fetal Bovine

Serum (FBS) and Penicillin/Streptomycin. The parental CHO cell

line was treated with 10 mM of N-[(3,5-Difluorophenyl)acetyl]-L-

alanyl-2-phenyl]glycine -1,1-dimethylethyl ester (DAPT) for

24 hrs. The S-1 cell line was supplemented with 200 mg/ml

G418, 25 mg/ml puromycin, 250 mg/ml zeocin, 250 mg/ml

hygromycin and 10 mg/mL blasticidin.

RNA amplification and microarray analysis
CHO parental cell line triplicates were exposed for 24 hrs to the

c-secretase inhibitor DAPT (10 mM) in DMSO (0.05%), and S-1

cells were treated for the same time with DMSO (0.05%). Cells

were next washed twice with PBS and total RNA was extracted,

amplified, reversely-transcribed, labeled and hybridized to a 17 k

mouse cDNA microarray chip produced by the DNA array facility

of Lausanne (DAFL, see below).

Total RNA extraction: was performed using the RNeasy Mini Kit

(Qiagen, Basel, Switzerland), in the absence of DNAse treatment.

RNA quality was assessed using the RNA 6000 Nanochip assay

(Agilent Technologies, Meno Park, USA) and RNA concentration

was determined using the ND-1000 spectrophotometer (Nanodrop

Technologies, Wilmington, USA). Three independent experi-

ments were performed.

RNA amplification: a single round of amplification was performed

with 3 mg of total RNA using the MessageAmp RNA Amplifica-

tion Kit (Ambion, Austin, USA) and following the protocol

provided with the kit. Next, 5 mg of amplified RNA was mixed

with 9 mg random primers (Cat. No. 4819001; Invitrogen,

Carlsbad, USA) in 19 ml of water, heated for 5 minutes at 70uC
and then immediately transferred to ice.

Reversed transcription and labeling: was performed for 2 hrs at 42uC
in a final reaction volume of 40 ml containing 1X SuperScript II
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buffer (Invitrogen), 40 units RNasin (Promega, Madison, USA),

10 mM DTT, 0.5 mM dATP, dGTP, dTTP, 0.2 mM dCTP,

0.1 mM of either Cy3-dCTP or Cy5-dCTP (GE Healthcare,

Uppsala, Sweden) and 400 units of SuperScript II reverse

transcriptase (Invitrogen). The RNA strand was hydrolyzed by

adding 2 ml 500 mM EDTA and 4.5 ml 1 M NaOH and heating

at 65uC for 15 minutes; the solution was then neutralized by

adding 2.5 ml 1 M Tris (pH 6.8) and 4.5 ml 1 M HCl. The labeled

cDNA was purified using the Qiagen MiniElute PCR Purification

Kit (Cologne, Germany), eluting in 50 ml of EB buffer according to

the manufacturer’s instructions. The Cy3 and Cy5 labeled targets

were combined and mixed with 400 ml of TE, 20 mg Cot 1 DNA

(Invitrogen), 10 mg polyadenylic acid (Sigma, St. Louis, USA) and

10 mg yeast tRNA (Sigma). This mixture was concentrated to a

final volume of 19.4 ml using a Microcon YM-30 filter (Millipore,

Billerica, USA) according to the manufacturer’s instructions. 20X

SSC and 10% SDS were added to final concentrations of 3X and

0.4%, respectively, in a final volume of 24 ml. This mixture was

heated for 2 minutes at 98uC, pipetted immediately onto the

cDNA microarray and, after covering with a glass cover slip (Erie

Scientific, Portsmouth, USA), placed in a humidified chamber

(Telechem, Sunnyvale, USA) and allowed to hybridize at 64uC for

20 hrs. Slides were then washed at room temperature twice for 5

minutes in 2X SSC, 0.1% SDS, twice for 1 minute in 0.2X SSC,

once for 1 minute in 0.1X SSC and once for 5 minutes in 0.1X

SSC, 0.1% Triton X-100. After drying, slides were scanned on a

microarray scanner (Agilent Technologies) and the resulting TIFF

images were analyzed using the GenePix Pro 6.0 software

(Molecular Devices, Sunnyvale, USA). The mouse cDNA micro-

arrays used in this study consisted of approximately 17,000 PCR

products generated from cDNA clones and control DNAs spotted

onto Nexterion AL slides (Schott, Mainz, Germany). A complete

description of the slides and their content can be obtained from the

Lausanne DNA Array Facility (http://www.unil.ch/dafl). The

microarray data set discussed in this publication has been

deposited in the NCBI Gene Expression Omnibus (GEO,

http://www.ncbi.nlm.nih.gov/geo/) and is accessible through

GEO Series accession number GSE16379. Note that Hamster

genomic sequence information is not yet sufficiently available to

the research community. Consequently no commercial hamster-

specific microarrays were available at the time of the experiment.

However, the strategy to use a microarray from a closely related

species is not new and has proven successful before [81].

Statistical analysis of microarray results
The analysis was performed with open source R software packages

(http://www.r-project.org/ and http://www.BioConductor.org/).

Gene expression was quantified with the array package using print

tip group lowess normalization without background subtraction. The

resulting measures of expression for each array are the log2 ratios (M

values) and the average log2 intensities (A value) of Cy3 and Cy5

signals. Statistics of differential expression between the different

groups of samples were calculated with a linear model fitted by the

limma package.

RNA isolation for evaluation of microarray results
Total RNA was isolated with the RNeasy mini kit following the

manufacturer’s protocol for adherent cells in the case of CHO cell

cultures. For the isolation of total RNA from brain tissue, the

TRIzol reagent was used as described in the human samples

section. RNA was dissolved in water, which was followed by ND-

1000 spectrophotometer (Nanodrop Technologies, Wilmington,

USA) quantification and pico chip quality control analysis (6000

Nanochip assay Agilent Technologies, Meno Park, USA).

Reverse Transcription
Total RNA was reverse transcribed with our standard

laboratory protocol. 1 mg of total RNA was dissolved in 4 ml of

RNase-free water (Ultrapure DNase/RNase free water, Invitrogen

Carlsbad, USA)) and premixed with 0.5 mg of oligo dT primer

(synthesized by Eurogentec Seraing, Belgium) dissolved in 1 ml

RNase-free water. The RNA/oligo dT premix was heated to 70uC
for 5 minutes in a standard PCR machine (TProfessional Basic

Gradient, Whatman Biometra Goettingen, Germany). The

machine was paused to add 4 ml of 5X Buffer (ImProm-II

M28A, Promega Madison USA), 4 ml of MgCl2 (25 mM)

(Promega Madison USA), 1 ml dNTP Mix (10 mM U151B,

Promega Madison USA), 1 ml RNase inhibitor (RNasin Plus

N261A 40 u/ul Promega Madison USA), 1 ml of ImProm-II

Reverse Transcriptase (Promega Madison, USA) and 4 ml RNase-

free water. The PCR machine program was continued after

pausing at 25uC for completion of reaction mixes with 60 min at

42uC and 15 min at 70uC. cDNA was kept at 4uC on wet ice for

short-term or at 280uC for long-term storage.

Real time PCR
Reverse transcription products were used without purification for

real time PCR at equivalent of 0.5 ng/ml RNA in 384 well plates.

Samples were used as biological triplicates and each one was

additionally pipetted as a triplicate. Reaction volumes were 10 ml

consisting of 5.02 ml SYBR Green (Power SYBR Green Master Mix

#4367660 Applied Biosystems, Cheshire UK), 1.49 ml RT-PCR

product at 0.5 ng/ml input RNA equivalent (0.75 ng/rxn) and 3.49 ml

of 3 mM Forward and Reverse primer mix. 384 well plates were

prepared with a liquid handling robot (Freedom EVOware Tecan

Trading AG, Switzerland) and read for relative quantification with

Applied Biosystems 7900HT Real-Time PCR System (Applied

Biosystems, Cheshire UK). Primers (synthesized by Eurogentec

Seraing, Belgium) for CHO cDNA were based on mouse code,

which was aligned with rat and human code, preference was given to

aligning sequences (Table 3). Sequence specificity was determined via

nBlast. b-actin was used as housekeeping gene [82–89] for CHO as

well as human cortex templates with the forward sequence:

CCTTCAACACCCCAGCCATGTACG and the reverse sequence:

CCTTCAACACCCCAGCCATGTACG.

Statistical analysis of real time PCR results
Results were analyzed by the DDCt method [90] and

significance was calculated via students t-test. b-actin was used a

normalizer to determine DCts. DDCts were calculated against the

mean of DAPT treated WT-CHO DCts or the mean of healthy

human brain cortex DCts. Results were expressed as relative

quantification by 2ˆ-(DDCt) [90].

Human samples
Human brain tissue was kindly provided by the Joseph and

Kathleen Bryan Alzheimer’s Disease Research Center, Duke

University Medical Center. The Autopsy and Brain Donation

procedures have been approved by the Duke University

Institutional Review Board (IRB) and cortical brain tissue was

obtained as described by [91]. 12 AD post-mortem confirmed

cortical samples as well as 12 healthy cortical samples were

obtained in dry ice. Cortical samples were of both genders,

different ages, ApoE stati and Brack stages.

Isolation of total RNA: ,50 ug of total cortex tissue were

scraped off on dry ice three times for biological triplicates of each

sample. TRIzol reagent (Invitrogen Carlsbad, USA) was used

according to manufacturer’s protocol for total RNA isolation.
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RNA was dissolved in water, which was followed by ND-1000

spectrophotometer (Nanodrop Technologies, Wilmington, USA)

quantification and pico chip quality control analysis (6000

Nanochip assay Agilent Technologies, Meno Park, USA).

Supporting Information

Dataset S1 EST clones with increased transcription under

enhanced c-scretase activity compared to inhibited c-secretase

activity. By applying a cut-off with a p value of 0.005 based on the

false discovery rate (FDR, i.e. the probability to wrongly accept a

difference between the two conditions), we found 2658 EST clones

to be differentially expressed, with 1241 EST clones of increased

with enhanced c-secretase activity compared to inhibited c-

secretase activity. FC = Fold change; adj,P,Val = adjusted P-value

Found at: doi:10.1371/journal.pone.0006952.s001 (0.20 MB

XLS)

Dataset S2 EST clones with decreased transcription under

enhanced c-secretase compared to inhibited c-secretase activity.

By applying a cut-off with a p value of 0.005 based on the false

discovery rate (FDR, i.e. the probability to wrongly accept a

difference between the two conditions), we found 2658 EST clones

to be differentially expressed, with 1417 EST clones of decreased

transcription with enhanced c-secretase activity compared to

inhibited c-secretase activity. FC = Fold change; adj,P,Val = ad-

justed P-value

Found at: doi:10.1371/journal.pone.0006952.s002 (0.22 MB

XLS)

Dataset S3 Molecular functional clusters of differentially

transcribed genes as classified in the GO hierarchy. Lists of genes

detected for differential transcription by the microarray, grouped

in clusters of molecular function as defined by the GO hierarchy.

Clusters are over- or underrepresented and do not indicate in- or

decrease of the genes transcription levels.

Found at: doi:10.1371/journal.pone.0006952.s003 (0.09 MB

DOC)

Dataset S4 EST clones of transcriptional relevance differentially

transcribed under enhanced c-secretase compared to inhibited c-

secretase activity. By applying a cut-off with a p value of 0.005 based on

the false discovery rate (FDR, i.e. the probability to wrongly accept a

difference between the two conditions), we found 2658 EST clones to

be differentially expressed with enhanced c-secretase activity compared

to inhibited c-secretase activity. Among them 56 imply transcriptional

relevance. FC = Fold change; adj,P,Val = adjusted P-value.

Found at: doi:10.1371/journal.pone.0006952.s004 (0.03 MB

XLS)
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Table 3. Sequences of primers used for real time PCR analysis with SYBR Green based on mouse code.

Gene Forward Reverse

UPP1 TCTACCATTTCAACCTCAGCACTAGCA CCATGGCTCACAGACAGCACG

CLCN5 ATGGACTTCTTGGAGGAGCCA GAGTTGAAGAGAATGGAATCAGGA

HES1 AAATGACTGTGAAGCACCTCCGG GTCATGCAGTTGGCCAGGTGG

HHEX CCGCTGTATGCGCCCACG GCGTGCGTGTAGTCGTTCACC

SHMT1 TCTTGCTTAAATAACAAATACTCTGAGGG GGCAGAGATTTTCTTCTTGTCTGTCAT

DVL3 GCTTCAATGGCCGGGTGG CACTGCTCTGTTCTGTGGAGCTGC

WNT3A CGAGGCCGGCGTTGGA GACTGGCGATGGCCTGGC

CHRD GGAGAGGGCTGCTATTTTGATGG TCTGATTCTCTGGGAACCACTGCC

CDH15 CGCGTGCGGAGGGCC GAAGCGATCAGTCTTCTCGCGG

MMP7 TAGGTGTGGAGTGCCAGATGTTGC CATGACCTAGAGTGTTCCCTGGCC

GLP1R ATAAGGACAACTCCAGCCTGCCC TGCTGGGCAGCCGTGCTATAC

PNLIPRP GCATCTGGGCGGGAACCC TATCAGCATAGTGACCCATCTGTGGG

FGF20 CCTGCACGGCATCCTGCG GTGCCCTGCACGCTGCC

PA2G4 CCAATAGAAGGTATGCTGTCACACCA AAGGGACCACTGGTTATCCGCATGG

NTSR1 GACGGCGTTCACGCTGGC AAGTTGTACAGCTCCACGGGCAT

SCT CCCAGGGCCCGGCG TCTGCGTCCTGCTCGCTGC

ITGBV CCTGTGCCGGGAGGCAGA GGCATTTGCATTCTCCACAGTGAC

IFT81 TGAGTTCAAGCGATACGTCA GTTGATGCTGAATGGTTTCC

TERA CAACCAGATCAGCAAACTGCAGAAG AGCCATCTCTGTATCTGAGCCCTCA

PTPRG TCTGGAGGATGATCTGGGAACAAAA CACCCATGTCAGGCCACTGTGT

AMN1 GACAATGGTGTGGTTGCACTTGTTAGT TGTTATCAGGGGGCAGCCATG

Primers were created for Tanneal of ,58–59uC and nBlast was used to check for gene specificity.
doi:10.1371/journal.pone.0006952.t003
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