
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
SCHOOL OF LIFE SCIENCES

Master’s project in Life Sciences and Technology

Development Of An Interactive Genome Browser
To Visualize And Analyse Large Scale Genomic

Data

Done by

Lucas Sinclair

Under the direction of
Prof. Felix Naef

and the supervision of
Jacques Rougemont, Ph.D

In the Bioinformatics and Biostatistics Core Facility, EPFL

External expert
Marcel Geertz, Ph.D

LAUSANNE, EPFL 2010

Acknowledgments
Many thanks all the members of the core facility, and in particular to

Marion Leleu, Ph.D who guided the development and had the original idea of
gFeatMiner.

CONTENTS

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 2 of 55

CONTENTS

Contents
1 Abstract 6

2 Introduction 6
2.1 Context . 6
2.2 Motivation . 6
2.3 Problem description . 7
2.4 Application . 7

3 Background 7
3.1 Visualization . 7
3.2 Data processing/mining . 11
3.3 Formats . 12
3.4 Techniques . 14

4 Global context 16
4.1 Description . 16
4.2 JBrowse . 16
4.3 Interface . 18
4.4 Extension . 18
4.5 Expansion . 19

5 Contributions to the project 19
5.1 Description . 19
5.2 Interface . 19
5.3 Descriptive statistics . 20
5.4 Genomic data manipulation . 28
5.5 Technologies and Infrastructure . 30
5.6 Performance . 32
5.7 Future work . 33

6 Application with real data 34
6.1 Description . 34
6.2 Context . 34
6.3 Datasets . 34
6.4 Upstream regions . 37
6.5 Clustering . 39
6.6 Results . 41

7 Conclusion 41
7.1 Closing words . 41
7.2 Contact . 41

References 48

LIST OF FIGURES

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 3 of 55

LIST OF FIGURES

A Glossary 51
A.1 Biological . 51
A.2 Proteins . 51
A.3 File Formats . 51
A.4 Other . 52

B Code 52
B.1 Base coverage . 52
B.2 Pieces of overlap . 53
B.3 Overlap . 54

List of Figures
1 UCSC’s main interface, browsing the genome of S. cerviase, as rendered byWebKit

[8]. 8
2 AGB’s main interface displayed as a window inside a window, browsing the genome

of Ciona savignyi. 9
3 IGB’s main interface, browsing the genome of S. cerviase. 10
4 Galaxy’s main interface, computing the concatenation between two tracks, as ren-

dered by WebKit [8]. 11
5 A naive view of nucleotide numbering on a piece of double-stranded DNA. 13
6 UCSC’s standard for of numbering nucleotides on a piece of double-stranded DNA. 14
7 Schematic outline of the ChIP process followed by either array hybridization or

high-throughput sequencing. Image courtesy of Wikimedia Commons. 15
8 A schematic representing the different software pieces involved in BBCF’s project

interacting around GDV. Their relation types as well as their curators are specified. 17
9 GDV’s main interface, browsing a demonstration genome and after making a se-

lection, as rendered by WebKit [8]. 17
10 GDV’s interface for adding and displaying tracks, as rendered by WebKit [8]. . . 19
11 Mock-up interface showing how gFeatMiner’s commands could rest on the side of

the current genome browser. 20
12 Graph of type E comparing the total number of all S. cer. genes against the

number of genes involved in ribosomal protein and ribosome genesis. 22
13 gFeatMiner will produce one of the 8 different bar-graphs depending on the boolean

values of the two variables compare_parents and per_chromsoome as well as
depending on the quantity of tracks inputted. The last case H would create a
graph deemed too complex and is replaced by generating multiples other graphs.
The same workflow exists for box-plot based graphs. 23

14 Graph of type F displaying the quantity of genes located on the first 14 chro-
mosome of S. cer. among all genes (red), ribosomal protein genes (green) and
ribosome genesis genes (blue). 24

15 Graph of type B displaying the cumulative base coverage of all S. cer. genes by
individual chromosomes. Chromosome R stands for the 2-micron DNA. Chromo-
some M stands for the mitochondrial DNA. 25

16 Graph of type D displaying the distribution of feature lengths broken down by
chromosome on a discontinuous selection spanning regions of all S. cer. genes
against the same distribution computed on the complete chromosomes. 26

17 Graph of type C comparing the fraction of genes located on the mitochondrial
and 2-micron chromosomes against all other chromosomes. 27

LIST OF FIGURES

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 4 of 55

LIST OF FIGURES

18 Graph of type G displaying the distribution of feature lengths on three different
tracks. The distribution is first computed taking only the features contained in
the selection made by the user and secondly taking the whole genome. 27

19 A listing of possible operations that can be performed on genomic data with their
visual representations. Images courtesy of the Galaxy website. 28

20 gFeatMiner will compute the type of operation requested according to the number
of inputs the operation accepts and the presence or not of a selection. 30

21 A table comparing the execution speed of different tools computing the same
operation, namely the cumulative base coverage of a track. 33

22 A table comparing the execution speed of different tools computing the same
operation, namely the complement of a track. 33

23 Excerpt from the file "ribosome_proteins.wig". 35
24 Excerpt from the file "Rap1_chipseq.wig". 35
25 Excerpt from the file "PolII_peaks.wig". 36
26 Excerpt from the file "Rap1_invitro.wig". 36
27 Excerpt from the file "WT_nucleosome.wig". 37
28 Excerpt from the file "dna_footprints.png". 37
29 A region of interest defined as window spanning 500 [bp] downstream and 1000

[bp] upstream of a gene’s TTS lying on the plus strand of chromosome. 38
30 A region of interest defined as window spanning 500 [bp] downstream and 1000

[bp] upstream of a gene’s TTS lying on the minus strand of chromosome. 38
31 Two regions of interest interfere with each other. In a few cases, two ribosomal

genes lie in close proximity on opposite strands causing difficulties in the analysis
of transcription factors bound to their upstream regions. 38

32 Cumulative distribution of the distance from every ribosomal gene to the next
ribosomal TSS or TTS. 39

33 Cumulative distribution of the distance from every ribosomal gene to the next
TSS or TSS on the S. cer. genome. 39

34 Illustration of the K-means algorithm at step A. Image courtesy of Wikimedia
Commons. 40

35 Illustration of the K-means algorithm at step B. Image courtesy of Wikimedia
Commons. 40

36 Illustration of the K-means algorithm at step C. Image courtesy of Wikimedia
Commons. 40

37 Illustration of the K-means algorithm at step D. Image courtesy of Wikimedia
Commons. 40

38 Summary of the clustering process using only four windows and two categories.
In the first step, four upstream regions of interest are defined from the list of RP
genes and the values for Rap1 (in red) and Fhl1 (in blue) extracted. In the second
step, each window is evaluated by two different scoring functions: one computing
the strength of the Rap1 peak and the other computing the distance of the Rap1
peak from the TSS. In the third step, each original window is plotted as a point
in a two dimensional space according to the scores it receives. In the fourth step
the k-means algorithm is applied and two categories are formed. In the fifth step,
a profile is built for each category by averaging the values of the original windows
together. 42

LIST OF FIGURES

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 5 of 55

LIST OF FIGURES

39 The 131 windows of interest are clustered into 3 categories according to the intensity of the Rap1
signal and the distance from the TSS of the Rap1 peak. Strong intensities of Rap1 are correlated
with strong intensities of Fhl1 and Ifhl1, however the presence of Rap1 is not mandatory for the
presence of the two other transcription factors. The strength of the Rap1 signal cannot be used
as a predictor of the transcriptional activity, as the PolII signal is constant across categories.
The absence of Rap1 in the third category cannot be explained either by the mitomi track or
the nucleosome data. 43

40 The 131 windows of interest are clustered into 3 categories according to the intensity of the
Fhl1 signal and the distance from the TSS of the Fhl1 peak. The intensity of the Fhl1 signal is
strongly correlated with the intensity of the Ifh1 signal. This is not surprising as Ifh1 interacts
with a domain on Fhl1. The presence of Fhl1 can predict, to an extent, the presence of Rap1
but does not affect the level of transcription as the PolII signal is constant across categories. A
slight opening in nucleosome enrichment can be seen in categories 1 and 2 where Fhl1 is strongest. 44

41 The 131 windows of interest are clustered into 3 categories according to the intensity of the Ifh1
signal and the distance from the TSS of the Ifh1 peak. The strong correlation between the Ifh1
and Fhl1 signals appears once again along with a colocalization with the Rap1 transcription
factor. The mitomi and DNA footprints data do not seem to explain why binding is absent in
the third category. 45

42 The 131 windows of interest are clustered into 3 categories according to the intensity of the PolII
signal. The strength of the Rap1, Fhl1 and Ifhl1 signals don’t seem to noticeably affect the level
of transcription. However, the third category, where transcription is highest, seems to indicate
that when the three transcription factors are bound at precisely -180 or -320 base pairs from
the TSS, the polymerase activity is upregulated. Indeed, most of the windows where any of the
transpiration factors are bound further upstream are clustered in the first or second category
where the PolII signal is weakest. 46

43 The 131 windows of interest are clustered into 3 categories according to the intensity of the
nucleosome signal. As expected, the nucleosome enrichment data strongly predicts the level of
binding of the three transpiration factors. The first category where the integral of nucleosome
signal is lowest indicates a looser packing of DNA, and thus induces higher binding of Rap1,
Fhl1 and Ifh1. 47

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 6 of 55

2 INTRODUCTION

1 Abstract
Genomic bioinformatics is a growing and developing field. Indeed, data analysis is becoming
an integrative and essential part of any quantitative biological experiment as the technologies
evolve and the wet lab methods used generate larger and larger quantities of data. Yet few
standards have emerged and a plethora of analytical tools exist, none of which are established as
a standard. The difficulties arise early on, even before processing any genomic data, as one first
needs to visualize it. Several visualization methods exist, such as the UCSC genome browser
[17], IGB [29] or Argo [16], but none offer a satisfying interface or set of tools.

Stemming from a pre-existing project at the bioinformatics and biostatistics core facility, this
study presents a new solution to the multiple difficulties that at present beleaguer the field. A
novel genome visualization tool is proposed where the user interface remains simple and incorpo-
rates a set of common statistical analysis functions. The software produced, entitled gFeatMiner,
is capable of processing large scale genomic datasets for computing descriptive statistics and ma-
nipulate them in several ways. The program makes use of modern technologies and infrastructure
paving the way for its development into an advanced data mining tool.

In the second part of this study, a practical application is worked out. Examining the genes
coding for ribosomal proteins in the model organism yeast (Saccharomyces cerevisiae) and using
several available sets of data including multiple transcription factor binding profiles in vivo and
in vitro, RNA polymerase activity and nucleosome enrichment, we attempt to better understand
and reveal cellular mechanisms by clustering the numerous genes together using different criteria
and machine learning strategies.

2 Introduction

2.1 Context
This document is the written report following a four month internship in the Bioinformatics and
Biostatistics Core Facility of the Ecole Polytechnique Fédérale de Lausanne. The study ran from
the 22nd February to the 25th June (2010) in the context of the master project all students of
the Life Science and Technology curriculum must accomplish in their 10th semester.

2.2 Motivation
Every lab or biologist requiring the services of the core facility arrives with different data and
different scientific questions. Responding to them most often involves the production of custom-
tailored homemade scripts for every new task or problem. In an attempt to eliminate such
repetitive work, one of the present goals at the BBCF is to empower the biologist with a tool that
would enable him to analyze his own data, at least in superficial way to begin with. Developing
and offering a new-generation genomic data manipulation tool accommodated for use by scientists
with a low computer science background would be extremely valuable, both to the individual
scientists, and to the field as a whole.

To avoid asking the user to install any local software, and for maximum simplicity, the web
browser was chosen as the primary channel for the tool to be created. Instead of developing a
viewer system from the ground up, a promising open source project developed at Berkeley Uni-
versity entitled JBrowse [34] was adopted and modified by adding some essential functionalities
such as drag-and-drop selection creation and management. Next, a data management framework
into which the users can login and upload their data was wrapped around the genome browser.
Finally, in addition to this interactive genomic data viewer (referred to as GDV and presented

2.3 Problem description

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 7 of 55

3 BACKGROUND

in section 4 of this report), the aim was to provide a set of tools integrated inside the interface
of the browser that would allow the user to quickly compute simple descriptive statistics on the
data being viewed as well as operating common genomic feature manipulations. This brings us
to the part this project focuses on.

2.3 Problem description
The goal of this project is to design a set of algorithms to communicate with the pre-existing
genome browser containing various sets of genomic data (also known as tracks) so as to be able
to compute descriptive statistics as well as manipulate the data. Specification include that the
product must:

a) be able to receive input in several of the common genomic data formats, b) return the
information generated back to GDV in a format that can be displayed in the user interface, c)
maintain a rapid execution time when dealing with large datasets

This assortment of scripts – regrouped under the name of gFeatMiner – should produce graphs
describing number of features, cumulative base coverage, feature length distribution or feature
score distribution on a track or a subset of a track. In addition, gFeatMiner ’s functionality
should allow the creation of new tracks by operating on pre-existing tracks. These common
manipulations include computing, for example, the complement of a track, the overlap or union
between two tracks, the subtraction of one track from another as well as the merging of two or
more tracks together.

As detailed in section 5 of this report, the product should offer a coherent framework for
dealing with genomic data, making use of efficient file I/O and data processing algorithms, so
that in a near future, it can develop into a full-fledged data mining tool.

2.4 Application
Today, large quantities of data are produced by different laboratories studying quantitative biol-
ogy around the world. The number of open databases and freely accessible publications is quite
large, but data is often collected for a single purpose and subsequently stored when the scientific
question at hand is resolved. There is reason to believe there is a great potential in novel combi-
native analysis of different datasets. Indeed, much information regarding, for example, metabolic
pathways, gene regulation or cellular life cycle might be extracted by aggregating data from the
pre-existing experiments and applying intelligent statistical analysis and complex data mining.

To this end, as a second part of this study, a practical application involving the model
organism Saccharomyces cerevisiae is carried out. In section 6, correlations between several
datasets concerning the genes coding for ribosomal proteins of the yeast are explored using
clustering strategies and machine learning algorithms.

3 Background
Even though the field of genomic bioinformatics can be viewed as a novel and emerging, a plethora
of tools, databases, and file formats have already been created and are in common use. This
background section introduces and defines some of these developments and other concepts.

3.1 Visualization
Visualizing genomic data is not a new need, and several tools offering varying degrees of function-
ality and user-friendliness can be found online. Examining other similar products before starting

3.1 Visualization

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 8 of 55

3 BACKGROUND

a new project is always a good idea and an excellent opportunity to learn from the mistakes
of others, identify the missing functionalities and forge an opinion on what the state of the art
currently is. Below, we present a few of the major tools freely accessible on the web and compare
their usability.

3.1.1 UCSC genome browser

The UCSC genome [17] browser is one of the most popular genome browser around. Developed
by the University of Santa Cruz, it has been in service since the year 2000 and includes genomic
sequences for 46 species. A screenshot can be seen in figure 1.

It provides some very useful tools for aggregating data from various sources and carrying out
analysis on the data that is uploaded. Indeed, a diverse collection of annotation datasets can be
found, including gene predictions, gene-expression, mRNA alignments, etc. It is also capable of
more advanced processing. For example, using comparative alignments, it can produce graphs
representing the evolutionary relationships among species. It offers a few genome analysis tools
such as BLAT [25], liftOver and Gene Sorter, etc. as well.

Figure 1: UCSC’s main interface, browsing the genome of S. cerviase, as rendered by WebKit [8].

However, it is far from perfect. The wikipedia entry on the UCSC genome browsers states
“The browser is a graphical viewer optimized to support fast interactive performance” [6]. Un-
fortunately this is not so. The interface is far from responsive, as each change of scale or panning
requires a page reload. For the user accustomed to rich internet applications, navigation is most

3.1 Visualization

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 9 of 55

3 BACKGROUND

awkward and frustration is immediate. For a simple overview of some newly generated data and
some simple statistical information, UCSC is definitely not optimal. Sadly, many biologists and
bioinformaticians have learned to deal with UCSC and now visualize their data exclusively using
this browser.

3.1.2 Argo genome browser

The Argo genome browser [16] is another visualization tool in free access since 2007, and de-
veloped by the Broad Institute. It can read a certain number of formats, as long as they are
formatted exactly to the specifications of the software. It has some special advanced features
like comparative perspective for viewing dot plots of multiple aligned sequences.

Figure 2: AGB’s main interface displayed as a window inside a window, browsing the genome of Ciona
savignyi.

As it uses the java technology and does not run inside a web browser, AGB can provide
better interactivity and does zoom and pan dynamically. However, it does not respect many
of the standard interface paradigms. The user must learn the program thoroughly, and become
familiar with the frequent errors it produces and how to fix them.

The Argo website states: “Though other genome browsers with similar feature sets exist, we
believe Argo provides a more flexible and intuitive user interface” [15]. A noble goal – but once
again, in our opinion, not attained. A telling example is the fact that one of the most basic

3.1 Visualization

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 10 of 55

3 BACKGROUND

user interface guideline [1] is violated when AGB makes use of a window inside a window. A
screen-shot of this effect can be seen in figure 2.

3.1.3 Integrated genome browser

The integrated genome browser [29] is our third example of genomic visualization software. Its
development was funded largely by Affymetrix Inc. It was released to the community in 2005.
The technology driving this tool is similar to that of AGB, as the program must be downloaded
and subsequently executed inside a JVM [14].

The number of formats it reads is somewhat smaller than AGB, but it provides automatic
access to online resources using the DAS [27] or the QuickLoad [20] protocol, which is a very
welcome feature. Additionally, it is also good at handling data from tiling array results, as well
as viewing alignments data.

Unfortunately, once again, the biologist or bioinformatician will be repelled by the overwhelm-
ing number of interface elements like sliders, check-boxes, drop-down menus and tabs, all used
in the incorrect contexts. A screen-shot of the main interface can be seen in figure 3. Profuse
documentation is provided in a 100 page-long manual, but it is not an optional read. Without
studying this software thoroughly beforehand, it is definitely hard to use.

Figure 3: IGB’s main interface, browsing the genome of S. cerviase.

3.2 Data processing/mining

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 11 of 55

3 BACKGROUND

3.2 Data processing/mining
3.2.1 Galaxy

Galaxy [13] [21] distinguishes itself from the tools previously presented, as it is not, as such,
a genomic data browser. Nevertheless, it is very versatile in the functionality it provides and
is better described as a genomic data manipulation tool. Freely accessible for use on the web,
Galaxy is a project that began in 2006 at the Pennsylvania State University. A large part of the
genomic data processing in Galaxy is implemented using a library entitled bx-python [35] which
is part of the larger ESPERR [36] project.

It can accept input from a large number of sources and formats. You can load genomic features
of all kinds including sequence data. If the input format is not recognized, Galaxy provides some
easy ways to convert it on the spot. Once the data is loaded, it can be manipulated or analyzed
in a wide variety of ways. For example, one can sort, filter, aggregate, compute regression or
component analysis. Several datasets can be treated together or against each other. Common
operations include: concatenating, merging, clustering, intersecting or subtracting. A screen-
shot of the interface as the user is computing the concatenation between two tracks is given in
figure 4.

Figure 4: Galaxy’s main interface, computing the concatenation between two tracks, as rendered by
WebKit [8].

An interesting aspect of the Galaxy project is the effort made to increase reproducibility
of the analysis carried out. This is implemented by providing the user with a complete and
exhaustive history of every operation applied on the data, allowing the user to backtrack to any

3.3 Formats

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 12 of 55

3 BACKGROUND

stage of his manipulations, as well as branch an analysis at a given point. Moreover, the analysis
history information can be exported for sharing with other users and can be reapplied to different
inputs.

3.3 Formats
One of the problems of the daily life of a bioinformatician is the perpetual lack of standards in
the representation of information. The chaos created by the hundreds of tab-delimited text files
hinders the compatibility between tools and the exchange of data or results. Moreover, storing
numerical values in their string equivalent is inherently a poor idea. As a brief overview of the
problem, a few of the most common formats are described here. A complete guide to genomic
formats can be found at http://genome.ucsc.edu/FAQ/FAQformat.html

3.3.1 BED

The .bed tab-delimited format is commonly known as a classical annotation track. It is used
to describe genomic features of all kind (e.g. gene, introns, exons, etc.) and only specifies
the location (chromosome, start, end and strand) of the feature inside a genome without the
underlying nucleic sequence. Only the three first fields are required, but a few more optional
columns can be added to describe, for example, a name or an associated score with each feature.
An example of the first few lines of a typical BED file is shown below. It should be noted that
the header lines of all excerpts starting with “track” are not part of the file specifications.

1 track type=bed name="S. cer. RP genes" source ="SGD"
2 chr2 45975 46367 YBL092W 0.0 +
3 chr2 59818 60735 YBL087C 0.0 -
4 chr2 88521 89123 YBL072C 0.0 -
5 chr2 168426 169379 YBL027W 0.0 +

Listing 1: An excerpt from a typical BED file

3.3.2 GFF

The .gff tab-delimited format stands for general feature format and is used to represent very
much the same type of objects as the BED format. The main difference of this overlapping
format when compared to BED is that all nine fields are required to contain a value in order to
be accepted as a valid GFF file. For example, even when feature does not have an associated
score, all fields must be filled with a dot. This makes GFF one of the most rigorously defined
formats but at the same time limits its adoption because of the size of the files produced. Another
unique aspect of the GFF file format is the possibility of including cross-linking of features inside
a file. For example, one can define a set of exons as being assigned to a parent gene.

1 track type=gff name="S. cer. RP genes" source ="SGD"
2 chr2 SGD gene 45975 46367 . + . Name=YBL092W
3 chr2 SGD gene 59818 60735 . - . Name=YBL087C
4 chr2 SGD gene 88521 89123 . - . Name=YBL072C
5 chr2 SGD gene 168426 169379 . + . Name=YBL027W

Listing 2: An excerpt from a typical GFF file

http://genome.ucsc.edu/FAQ/FAQformat.html

3.3 Formats

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 13 of 55

3 BACKGROUND

3.3.3 WIG

The .wig tab-delimited format nicknamed wiggle format is quite different from BED as it is
used to represent continuous-valued data. The wiggle format permits the display of quantitative
tracks where each base pair of a given genome is associated with a floating-point number.

1 track type=wiggle_0 name=" Nucleosomes enrichment" source =" Hughes"
2 fixedStep chrom=chr2 start =45000 span=4
3 13 61.4781229508
4 17 60.1543606557
5 21 61.5923786885
6 25 62.0665704918

Listing 3: An excerpt from a typical WIG file

It should be noted that the GFF format can also be used to represent quantitative data, but
too often the file format is directly related to type of view produced. Taking for example the
UCSC genome browser, the input of GFF file will necessarily create a qualitative view, regardless
of the type information contained in the file.

3.3.4 Changing definitions

Adding to the problem of formats disparity is the fact that inside a set of files sharing the same
extension, the signification of each field is ill-defined and may vary. To illustrate a case in point,
let’s consider the following simple one line BED file.

1 chr2 4 8

Listing 4: A one line BED file representing one unnamed feature

One wonders: what is the length of the feature described here? A naive answer from an
experimentalist might be five base pairs as shown in figure 5.

T

C

T

C

A

G

A

G

G

A

C

T

T

C

A

G

5'

3'

C

T

G

A

1 2 3 4 5 6 7 8 9 10

Figure 5: A naive view of nucleotide numbering on a piece of double-stranded DNA.

However, according to UCSC, the correct answer is four base pairs since the last nucleotide is
never contained in the interval. This is equivalent to imagining the DNA sequence numbered on
its phosphate residues instead of its sugar residues. Furthermore, a numbering convention of this
kind creates ambiguity: does the count start at zero or one? Figure 6 illustrates the convention
used by UCSC for interpreting genomic features and is the one we will adopt to in this report.

3.4 Techniques

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 14 of 55

3 BACKGROUND

T

C

T

C

A

G

A

G

G

A

C

T

T

C

A

G

5'

3'

C

T

G

A

1 2 3 4 5 6 7 8 9 100

Figure 6: UCSC’s standard for of numbering nucleotides on a piece of double-stranded DNA.

3.4 Techniques
The development of genomic bioinformatics is driven in a large part by advances in quantitative
biology techniques. Most of the data analyzed by a bioinformatician is generated by these new
high-throughput or massively parallel technologies. Therefore, understanding which processes
were used to acquire the experimental data is crucial for extracting meaningful results. A few
important experiments and assay types are described here.

3.4.1 ChIP-PCR, ChIP-Chip and ChIP-Seq

ChIP standing for “Chromatin immunoprecipitation” is a wet lab technique to extract and purify
DNA fragments that are bound by a protein of interest in vivo. The protocol for performing
chromatin immunoprecipitation on a sample is the following:

• The chromatin of cells of interest is cross-linked (using for formaldehyde) and fragmented
(via sonication or digestion). This results in a solution containing millions of small DNA
sequences (between 200 and 400 base-pairs long) all of which have conserved any protein
links they previously had.

• Small antibody-bead complexes are added to the solution. The antibodies are designed to
bind only a specific protein of interest, for example a transcription factor.

• The solution is immuno-precipitated, hopefully pulling out only DNA fragments that were
bound by an antibody (and thus bound by the protein). Of course, at this stage, many
other DNA fragments are trapped and nonspecifically precipitated along with the actual
binding targets.

• The cross-linking is reversed by applying heat and DNA-protein links are broken.

• DNA is purified from the solution.

Once the DNA-fragment solution is obtained, it can be processed in various ways. The oldest
type of analysis consists in amplifying the fragments using PCR and subsequently running a
gel electrophoresis on the product. This type of experiment can only investigate a few genomic
regions at a time depending on the sets of primers chosen.

In the more recent ChIP-on-chip technique (also known as ChIP-chip), instead of running a
gel electrophoresis on the solution, the fragments are labeled with a fluorescent synthetic dye
and inserted into a DNA microarray. The microarray, or chip, is specifically set-up with probes
that cover the genomic region of interest. Once the DNA fragments have hybridized to their
complementary oligonucleotides, fluorescence is measured and converted using various statistical

3.4 Techniques

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 15 of 55

3 BACKGROUND

methods to relative intensity per probe. In this fashion, protein-DNA interactions on much larger
portion of genome can be analyzed.

Recently, a novel way of processing the DNA fragments has been developed. In the ChIP-
Seq [11] experiment (standing for “Chromatin immunoprecipitation followed by sequencing”),
the fragments are processed using the next-generation massively parallel sequencing technologies
from Illumina (formerly Solexa) and Life Technologies (formerly Applied Biosystems). These
machines are able to perform shorts reads typically on the range of 30 to 50 base pairs on each
end of every DNA fragment purified. The millions of short reads are then aligned to both strands
of the genome corresponding to the species studied. One can thus attribute to each nucleotide of
each strand of the reference genome a “tag count” expressed as an integer value. Inputting the tag
counts into one of the many “peak finder” algorithms helps to identify the enriched regions and
suppresses artifacts due to noise, background signal and repeated regions. The output consists
of a list of regions where the protein of interest was potentially bound to the DNA.

The recent development of ChIP-Seq has provided consequent advances in the identification
of DNA-protein interactions mechanisms and is a key technology to better grasp the structure
of complex gene regulation networks.

Figure 7: Schematic outline of the ChIP process followed by either array hybridization or high-
throughput sequencing. Image courtesy of Wikimedia Commons.

3.4.2 RNA-Seq

RNA-Seq, also called “Whole Transcriptome Shotgun Sequencing”, makes use of next generation
sequencing technology just like ChIP-Seq. The difference is that this technique is used for the
study of the transcriptome, not the genome. The RNA of the lysed cell is inserted into the
sequencer, following some purification such as the removal of ribosomal RNA that represents
about 90% of the RNA inside a given cell. The researcher can then quantify gene expression and
identify post-transcriptional mutations as well as discover new transcripts.

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 16 of 55

4 GLOBAL CONTEXT

3.4.3 Mitomi

Standing for “Mechanically Induced Trapping Of Molecular Interaction”, mitomi [28], is a fairly
novel strategy developed by Prof. Stephen Quake’s Group at Stanford University. It uses cutting-
edge “lab-on-a-chip”, microfluidic and photolithography technologies to detect low affinity binding
events in parallel. On a microarray a few milliliters square, 2400 individual chambers are created,
with each one capable of trapping a small quantity of the transcription factor of interest and
measuring its affinity with specific DNA sequences.

After quantifying the binding energy of a given transcription factor with a multitude of only
slightly varying DNA probes, one can build a full DNA binding energy landscape over a complete
genome of any eukaryote. This last step consists in building a position weight matrix based on
the measurements for use in the scoring function that will assign a value to every base pair in a
given genome.

4 Global context

4.1 Description
The work described in this section was essentially developed by Yohan Jaroz, Fabrice David
and Bernhard Sonderegger. It is important for understanding my project, described in the next
section.

The goal of BBCF’s project is to build a next-generation genomic data visualization and
manipulation tool that the biologist could easily use without any particular training, to view,
process and analyze his data in an interactive and intuitive interface. This section focuses on
the visualization part and the core interface (Genome Data Viewer or GDV). The manipulation
and analysis software being developed by myself (gFeatMiner) is presented later. To give a full
view of the different components and how they interact, a schematic is provided in figure 8.

Many tools for viewing and analyzing data exist, most have strengths in particular domains
but lack others. Galaxy, for example, is not bad at manipulating data, but offers no visualization.
UCSC has a summary viewer but doesn’t offer some simple analysis functionality. None of these
tools have yet produced a simple and user-friendly interface that follows standards and could be
easily picked up. Our aim is to create such a tool to browse chromosomes, one that would be
easier to use than UCSC, Argo or IGB. A tool that would not necessarily have many complex
features but that would nevertheless be suited for a wide range of common tasks in the area of
genomic studies. Ideally, intuitive, natural, hassle free, and rapid exploration of the data should
be made possible.

4.2 JBrowse
We decided that the web browser would be a requirement for the product since installing software
to the computer is not only tedious for the user but can add complexity to the development as
multiple platforms must then be supported. Our search for existing tools in the field of genomic
visualization was thus narrowed, and we chose a promising technology developed at the University
of Berkley entitled “JBrowse” [34] to be the underlying viewer.

JBrowse is placed under the LGPL [18] license and hence is fully open-source and free. It
offers an excellent user experience by exploiting the interactiveness of the web browser relying
on technology such as JavaScript and AJAX to create a rich internet application. It produces
an extremely smooth and fast scrolling of the genomic information. It accomplishes this in
part by preprocessing the genomic data to display and creating hundred of small images for all

4.2 JBrowse

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 17 of 55

4 GLOBAL CONTEXT

GDV
Yohan Jaroz

JBrowse
Berkley University

gFeatMiner
Lucas Sinclair

queries

queries

datafile

PNG/tracks
request

queries

GeneRep
Fabrice David

JBrowsoR
Fabrice David

Figure 8: A schematic representing the different software pieces involved in BBCF’s project interacting
around GDV. Their relation types as well as their curators are specified.

Figure 9: GDV’s main interface, browsing a demonstration genome and after making a selection, as
rendered by WebKit [8].

4.3 Interface

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 18 of 55

4 GLOBAL CONTEXT

different levels of zoom off-line. The pre-rendering is done by the server while the layout and
post-rendering is left to the client.

The browser can display several types of features such as qualitative data that represents
features of interest on a genome, like an exon, intron, or UTR, as well as quantitative data where
each base pair of a genomic region is associated with a score. At higher zoom levels, qualitative
features are masked and substituted by a histogram indicating the feature density.

JBrowse also has a few disadvantages such as its makefile-driven workflow. Every time some
new genomic data is added to a view, the data has to be prepared and processed using a set of
logical rules, similar to that of a complier makefile.

4.3 Interface
Interface design and the user experience it creates is an important part of any project, and
can seriously influence the usability and popularity of a product. Any software development
team should have stringent standards on what GUI paradigms are employed. Examples of such
guidelines are the famous HIG from Apple [1].

As we have demonstrated, the leading genomic visualizer today, UCSC, does not possess
these qualities. A similar situation existed in the past with online map services. Most services
had highly detailed maps, but there was no way to navigate them easily. Once Google Maps
came along with their simple drag to move and double click to zoom, they captured almost the
whole user base in a few months. This demonstrates once again that one of the key aspects
for a new product after its functionality, is its the ease of use. Happily, one of the ambitions
of the JBrowse project is to “extend the Google Maps experience to the genome browser”. And
indeed, the browser does provide a clean interface with drag to move and double click to zoom
functionality, along with other simple interface paradigms.

The interface isn’t everything of course, a tool can be intuitive but if doesn’t solve a problem
the users has or doesn’t apply to the user’s need, it will not be used. However, viewing genomic
information is, without a doubt, an important need for many scientists around the world.

4.4 Extension
4.4.1 Selection

Some required functionality was missing from the current state of the JBrowse project, in particu-
lar the ability to make drag and drop selections on regions of interest. We added this functionality
by modifying the underlying code. Multiple and discontinuous selections can be made quickly
using the lasso tool. A screenshot of GDV can be seen in figure 9.

4.4.2 Data Management

JBrowse does not provide an interface to add and manage different views. This is also a require-
ment if one hopes that biologists and bioinformaticians will one day come to use it. JBrowse is
relatively modular and can be used in a <plug-in> fashion with other services. Hence, a wrapper
around the makefile process was written, also designed to be accessed from a web-browser. A
screen shot of GDV’s management interface can be seen in figure 10.

4.4.3 Intercompatibility

The management interface is still being developed and could in the future include options like
intercompatiblity with other services. For instance, a module enabling the importation and
exportation of track to and from Galaxy could be written.

4.5 Expansion

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 19 of 55

5 CONTRIBUTIONS TO THE PROJECT

Figure 10: GDV’s interface for adding and displaying tracks, as rendered by WebKit [8].

4.5 Expansion
A genome viewer is valuable but without some extra functionality bundled-in, its potential is
limited. The idea is to integrate alongside GDV a set of tools that can compute descriptive
statistics and manipulating the data that is being visualized. The aim is to provide something
resembling the functionality that Galaxy has. This brings us to the software developed by myself
under the name of genomic feature miner or gFeatMiner and is described in the next section.

5 Contributions to the project

5.1 Description
Abbreviated gFeatMiner, this tool will be bundled with the existing GDV genomic browser to
enable the user to smoothly analyze and manipulate his data in different ways.

It should be composed of three modules. The first, discussed in section 5.3, must implement
the computation and display of descriptive statistics. The second, discussed in section 5.4, must
implement the manipulation of genomic data. The third, discussed in the future work section,
remains to be done but should implement advanced analysis operations.

It should be written using modern and scalable technologies in order for it grow and be able
to tackle problems like data mining in a near future.

5.2 Interface
gFeatMiner doesn’t have an interface yet, but it will have to be integrated to GDV’s interface in
some way. To illustrate how this could be done, a naive schematic can be seen in figure 11.

5.3 Descriptive statistics

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 20 of 55

5 CONTRIBUTIONS TO THE PROJECT

!"#$%&'()

+,%(-#+.(%/0)1)

2!"#$%&'()*

2."$+$!,#&#&%

3.41/5#$

3.6(5#$)#-&'(

3.7(1'(

3.89''5:

3.;'9"/#9#(5

3.<

=#)-$1"&,#.85%5)

3.<

!"#$%&'(#)

3.>?#%5@$#).
3.-',#$%A#
!.<.

*+,

mercredi, 9 juin 2010

Figure 11: Mock-up interface showing how gFeatMiner’s commands could rest on the side of the current
genome browser.

However, once integration is carried out, it should be fairly straightforward. The gFeatMiner
module is wrapped around a simple server script that listens for incoming TCP/IP connections
on a given port, and returns its answer through the same channel. If another program wishes to
include services from gFeatMiner, there are no special libraries that need to be compiled against.
Any other programming language can interact with gMeatMiner in a simple way as long as the
language supports network sockets.

Once the socket is opened, gFeatMiner expects a correctly formatted request. The format
itself is loosely defined in the form of a de facto standard INI configuration file with a number
of mandatory options and a list of optional fields.

5.3 Descriptive statistics
The first goal is to provide some simple descriptive statistics over complete tracks or over a
selection made by the user. Specifically, gFeatMiner should compute and graph answers to
question such as the following:

• How many features are there in this track?

• What is the length distribution of the features inside the selection I made?

• What is the score distribution of the features inside these three tracks?

• What is the cumulative base coverage of these 2 tracks broken down by chromosome?

5.3 Descriptive statistics

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 21 of 55

5 CONTRIBUTIONS TO THE PROJECT

5.3.1 Request format

To understand the extent of the type of graphs gFeatMiner can produce, a good way to proceed
is by describing the type of requests it accepts. The request is formulated in a text format with
pairs of variables and values separated by an “=” sign and known as an INI file. This request is
passed to the server script thru a network socket. An example request is provided below along
with a detailed explanation of each field.

1 [gFeatMiner]
2 version =1.0
3 operation_type=make_plot
4 characteristic=number_of_features
5 graph_type=bar_plot
6 per_chromosome=True
7 compare_parents=False
8 wanted_chromosomes=chr1;chr2;chr5;chr6;chr7;chr8;chr9;chr10;chr11;
9 chr12;chr13;chr14;chr15;chr16;chr17;chr18;chr19;chr20;chr21;chr22;

10 chrX;chrY
11 selected_regions=chr2 :0:300000; chr5 :0:200000
12 track1 =/home/sinclair/gFeatMiner/data/yeast/all_yeast_genes.bed
13 track1_name ="hg19 refSeq genome -wide from UCSC"
14 track2 =/home/sinclair/gFeatMiner/data/yeast/ribosome_proteins.bed
15 track2_name ="hg19 HIV integration sites from liftOver"

Listing 5: An example request sent to gFeatMiner ordering it to compute the number of features on a
subset of two different tracks while breaking them down by chromosome.

[gFeatMiner]: This is required as being the first line of the file, to make a request valid. This is
a safeguard to reduce the probability of processing a request that was in fact not intended
for gFeatMiner.

version: This field is required. The value inserted here will be compared against the current
running version of gFeatMiner. If a mismatch is found, the request is not processed. This
helps to avoid potential crashes due to deprecated or new features.

operation_type: This field can take the following values “make_plot” for generating descrip-
tive statistics or “return_track” for manipulation genomic data. In this part the first
option is described.

characteristic: Can take the following values: “number_of_features” or “base_coverage” or
“length” or “score”. Does not default to something, this is a required field. It decides
what type of statistic is going to be computed.

graph_type: Can take the following values: “bar_plot” or “box_plot” or absent/false. It will
default to the graph type best suited for the type of statistic requested.

per_chromosome: Can take the following values: “True” or “False”. It will default to false
if not specified. When enabled, this option will break down every chromosome inside a
selection or a track and treat them as separate data.

selected_regions: Can be empty if no selection was made. Otherwise a list of locations and
chromosomes is expected using colons and semicolons as separators. In such a case, the

5.3 Descriptive statistics

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 22 of 55

5 CONTRIBUTIONS TO THE PROJECT

statistic will then only be computed on the selection which may be discontinuous and span
several chromosomes. A path to a local or distant BED file can also be used here.

compare_parents: This option can take the following values: “True” or “False”. However, it
is ignored if no selection was specified. In the case a selection was made and this option
is enabled, gFeatMiner will compute the statistic on the selection as well as on the mother
track as a whole and compare both statistics.

track1: This specifies the location, local or distant, of the first track. At least one genomic
feature file must be inputted to compute a statistic. Of course, an undefined number of
supplementary tracks can be specified. The order in which they are given does not influence
the output. If gFeatMiner has previously processed this file, is it possible to substitute the
file path by its MD5 hash.

track1_name: This field is optional but highly recommended. Without a name, the resulting
graph will not have a comprehensive legend associated.

track2: Following tracks are specified according to this standard.

track2_name: Following tracks should also have a name associated.

5.3.2 Workflow

Once the request is received, it is processed in a workflow depicted in figure 13. Without going into
the detail of the underlying code, this procedure parses the input files, organizes and partitions
the data, computes the statistics, sets up the axes of the graph in the appropriate fashion and
finally plots the results. The graph is then exported as a PDF or PNG file to be displayed by
GDV.

5.3.3 Results

Here are provided, on the next pages, six different graphs produced by gFeatMiner giving a good
overview of the different possible combinations. All of the examples are performed with genomic
data coming from SGD [5].

0 1000 2000 3000 4000 5000 6000 7000

All S. cer. genes (from
SGD)

S. cer. genes involved in
ribosome proteins

S. cer. genes involved in
ribosome genesis

6'717

139

248

Bar plot of number of features

Figure 12: Graph of type E comparing the total number of all S. cer. genes against the number of
genes involved in ribosomal protein and ribosome genesis.

5.3 Descriptive statistics

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 23 of 55

5 CONTRIBUTIONS TO THE PROJECT

Start
compare_parents

False True

per_chromosome per_chromosome

False True False True

A B C D

E F H

• F-type: 1 time
• D-type: N times

Doesn't exist.
replace with:

chr1

chr2

chr3

chr1

chr2

chr3

42

31

19

42

One
track

Many
tracks

5

3

4

25%

25%

70%

12%
G

chr1

chr2

chr3

47%

89%

20%

Figure 13: gFeatMiner will produce one of the 8 different bar-graphs depending on the boolean values
of the two variables compare_parents and per_chromsoome as well as depending on the
quantity of tracks inputted. The last case H would create a graph deemed too complex and
is replaced by generating multiples other graphs. The same workflow exists for box-plot
based graphs.

5.3 Descriptive statistics

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 24 of 55

5 CONTRIBUTIONS TO THE PROJECT

0 100 200 300 400 500 600

Chromosome chr1

Chromosome chr2

Chromosome chr5

Chromosome chr6

Chromosome chr7

Chromosome chr8

Chromosome chr9

Chromosome chr10

Chromosome chr11

Chromosome chr12

Chromosome chr13

Chromosome chr14

121
0
2

462
10
15

328
6
8

143
3
1

593
14
19

325
8
15

251
5
7

404
8

16

348
5

17

588
19

27

513
10
13

439
7

23

Bar plot of number of features

All S. cer. genes (from SGD)
S. cer. genes involved in ribosome proteins
S. cer. genes involved in ribosome genesis

Figure 14: Graph of type F displaying the quantity of genes located on the first 14 chromosome of
S. cer. among all genes (red), ribosomal protein genes (green) and ribosome genesis genes
(blue).

5.3 Descriptive statistics

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 25 of 55

5 CONTRIBUTIONS TO THE PROJECT

0 200000 400000 600000 800000 1000000 1200000

Chromsome 1

Chromsome 2

Chromsome 3

Chromsome 4

Chromsome 5

Chromsome 6

Chromsome 7

Chromsome 8

Chromsome 9

Chromsome 10

Chromsome 11

Chromsome 12

Chromsome 13

Chromsome 14

Chromsome 15

Chromsome 16

Chromsome M

Chromsome R

148'258

615'192

223'169

1'145'627

400'581

187'796

794'294

412'363

323'577

563'935

488'460

802'467

703'225

590'169

796'337

700'648

28'192

3'827

Bar plot of base coverage

All S. cer. genes (from SGD)

Figure 15: Graph of type B displaying the cumulative base coverage of all S. cer. genes by individual
chromosomes. Chromosome R stands for the 2-micron DNA. Chromosome M stands for
the mitochondrial DNA.

5.3 Descriptive statistics

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 26 of 55

5 CONTRIBUTIONS TO THE PROJECT

0 1000 2000 3000 4000 5000 6000 7000 8000

Chromsome 1

Chromsome 2

Chromsome 3

Selection on All S. cer. genes (from SGD)

Box plot of feature lengths

Selection
Whole track

Figure 16: Graph of type D displaying the distribution of feature lengths broken down by chromo-
some on a discontinuous selection spanning regions of all S. cer. genes against the same
distribution computed on the complete chromosomes.

5.3 Descriptive statistics

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 27 of 55

5 CONTRIBUTIONS TO THE PROJECT

0 20 40 60 80 100 120

All S. cer. genes (from
SGD) 100%6%

Bar plot of number of features

Figure 17: Graph of type C comparing the fraction of genes located on the mitochondrial and 2-micron
chromosomes against all other chromosomes.

0 500 1000 1500 2000 2500 3000 3500 4000

All S. cer. genes (from
SGD)

S. cer. genes involved in
ribosome proteins

S. cer. genes involved in
ribosome genesis

Box plot of feature lengths

Selection
Whole track

Figure 18: Graph of type G displaying the distribution of feature lengths on three different tracks.
The distribution is first computed taking only the features contained in the selection made
by the user and secondly taking the whole genome.

5.4 Genomic data manipulation

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 28 of 55

5 CONTRIBUTIONS TO THE PROJECT

5.4 Genomic data manipulation
As a second goal, gFeatMiner should also be able to manipulate the genomic data in various
simple ways. For example, it should be capable of answering the following demands:

• Provide a new track built by merging two other tracks.

• View the overlapping intervals of two tracks.

• Create a track that is the complement of another track.

A more exhaustive list of operations can be seen in figure 19. These types of data trans-
formations can be useful for exploring relationships between different tracks and for revealing
non-obvious correlations. This, in turn, can lead to the creation of new hypotheses on the un-
derlying genomic processes. For example, computing the complement of a track describing genes
will yield the intra-genenic locations. Similarly, computing the overlap between a list of genes
and a list of protein binding locations can rapidly reveal the promotor sites of the genes bound
by the given protein.

Complement
Input: 1 track

Output: 1 track

Intersect
Input: 2 tracks

Output: 1 track

Overlap
Input: 2 tracks

Output: 1 track

Merge
Input: 1 track

Output: 1 track

Concatenate
Input: N tracks

Output: 1 track

Subtract
Input: 2 tracks

Output: 1 track

Figure 19: A listing of possible operations that can be performed on genomic data with their visual
representations. Images courtesy of the Galaxy website.

5.4 Genomic data manipulation

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 29 of 55

5 CONTRIBUTIONS TO THE PROJECT

5.4.1 Request format

The request method uses the same procedure as the descriptive statistics module expect for
a few fields that specify the type of operation to perform. An example request with detailed
explanations on the new variables is shown below.

1 [gFeatMiner]
2 version =1.0
3 operation_type=return_track
4 manipulation=overlap
5 output_format=bed
6 selected_regions=chr1 :10000:50000
7 track1 =/home/sinclair/gFeatMiner/data/hg19/refseq_ucsc.bed
8 track1_name ="hg19 refSeq genome -wide from UCSC"
9 track2 =/home/sinclair/gFeatMiner/data/hg19/hiv_bushman.bed

10 track2_name ="hg19 HIV integration sites from liftOver"

Listing 6: An example request sent to gFeatMiner ordering it to compute and return the overlap be-
tween two tracks.

operation_type: This field can take the following values “make_plot” for generating descrip-
tive statistics or “return_track” for manipulation genomic data. In this the second option
is described.

manipulation: Can take the following values: “complement” or “overlap” or “overlap_pieces”
or “merge” or “internal_merge”. Does not default to something, this is a required field.
It decides what type of operation is going to be carried out.

output_format: Can take the following values: “bed” or “gff” or “wig” or absent/false. It
describes how the newly created track should be formatted at the output. It will default
to BED.

selected_regions: Can be empty if no selection was made. Otherwise a list of locations and
chromosomes is expected using colons and semicolons as separators. In such a case, the
operation will then only be computed on the selection which may be discontinuous and
span several chromosomes. A path to a local or distant BED file can also be used here.

5.4.2 Workflow

The workflow is relatively straightforward - forking the execution depending on the number of
inputs the operation takes as show in figure 20. For example, a complement operation will take
only one track as an input, while an overlap will take exactly two. Finally, a merge operation
may take an arbitrary number of inputs.

5.4.3 Algorithms

Keeping in mind that gFeatMiner should be able to process large quantities of data rapidly, every
component must be written in an optimized fashion. To make an illustrative example, let’s take
a closer look at the algorithm that computes the overlap between a track A and a track B. A
naive way of solving this problem might be to use two nested loops comparing every entry in the
track A to every entry in track B. This method would work with small files, but produces an

5.5 Technologies and Infrastructure

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 30 of 55

5 CONTRIBUTIONS TO THE PROJECT

loop over
regions

Operation type
number of inputs

1 track N tracks

Selection

On Off

2 tracks

Selection

On Off

Selection

On Off

loop over
chromosomes

loop over
shared
regions

loop over
shared

chromosomes

loop over
regions and

loop over
tracks

loop over
chromosomes
and loop over

tracks

Figure 20: gFeatMiner will compute the type of operation requested according to the number of inputs
the operation accepts and the presence or not of a selection.

O(n2) algorithm if one accepts that the number of feature are on the same order of magnitude
in both tracks. Happily, there is a better way to compute the overlap between two tracks and
avoid making most of the comparisons that the first algorithm would. If both tracks are sorted
at the input and read in linear fashion it is easy to identify points where one can assert that no
features in track B will ever overlap with any of the features to come in track A.

An algorithm that solves this problem in a O(n) fashion or O(n · log(n)) if the inputs are
not sorted was published in 2006 under the name of fjoin [32]. This idea was recoded and
implemented in gFeatMiner. A code snippet is provided in appendix section B.2.

5.5 Technologies and Infrastructure
Just as important as the functionality of gFeatMiner are the technologies on which it is built and
the infrastructure it provides. gFeatMiner was coded to remain comprehensible and extensible
by any other programmer. It is also built to remain computationally fast as it grows and is easy
to debug.

5.5.1 Interpreted language

The first design decision taken was to write all of gFeatMiner’s code in Python [38]. This language
appeared in 1991 and has become a widely popular language with an enormous user base. Python
is a general-purpose high-level programming language whose design philosophy emphasizes code
readability. It is well documented and the large community has written hundreds of packages
extending the functionality of the language.

5.5.2 Graphic library

To generate all of the graphs regarding the descriptive statistics part, an excellent python package
entitled matplotlib [23] was used. Specifically designed for representing scientific data, it produces

5.5 Technologies and Infrastructure

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 31 of 55

5 CONTRIBUTIONS TO THE PROJECT

publication quality figures. Matplotlib also strives to keep a simple syntax and copies the object-
oriented standards borrowed from the Matlab language, making it easy to adopt for newcomers.

5.5.3 Mathematical packages

The Numpy [9] and Scipy [24] packages for python provide methods and functions covering
numerous domains of scientific computing from statistical methods to modulable data containers.
Moreover, most of the underlying code in these packages is written in C and will optimize the
execution of common mathematical tasks. These packages are used throughout gFeatMiner, the
python language itself being inherently high-level and ill-suited for heavy number crunching.

5.5.4 Optimized file access

As described in section 3.3, one of the problems plaguing the field of bioinformatics is the lack of
standards in file formats and the fact that storing numerical values in their string representation
is fundamentally a bad idea. This is why gFeatMiner, while taking several different formats as
input, will first convert any track it sees to a rapid and efficient data storage before processing
it. This file is then stored in the file system and can be reloaded instantly if the user requests a
second manipulation on the same track.

The fast and efficient data storing format is the well-known HDF5 [3] standard. In essence,
the HDF5 architecture permits the representation of any type of hierarchical datasets in an
optimized manner from the viewpoint of disk space and access time. All read and writes from
an HDF5 file are heavily cached and processed in batch. To implement this technology inside
the python framework of gFeatMiner, the excellent pytables [7] package is used.

HDF5 is not to be confused with a database system like MySQL. There is no special request
language to pull data out of the storage and every original BED or GFF file has an equivalent
stand-alone HDF5 file representing the same information. Creating a data structure to represent
genomic features is quite straightforward as shown in the code snippet below and data retrieval
is accelerated by executing most requests via “in-kernel queries”.

1 class Feature(IsDescription):
2 start = Int64Col(pos=1)
3 end = Int64Col(pos=2)
4 score = Float32Col(pos=3)
5 strand = StringCol(pos=4,itemsize =1)
6 name = StringCol(pos=5,itemsize =64)

Listing 7: An example of a small class describing an HDF5 table to store genomic features which have
a start an end a score and a name.

Several other additions could be made to the HDF5 data storage system. The first, netCDF
[19], is useful when the files containing the data are located on a different machine than the one
running gFeatMiner. This python package will optimize the access and sharing of HDF5 files
over the network. The second is the SZIP [33] library which can compress and inflate the data
stored in an HDF5 file on the fly and in a lossless manner.

File I/O is major issue when dealing with large sets of genomic information. Indeed, the
speed of algorithm is heavily dependent on information retrieval and caching. Most of the other
tools that process genomic data in various ways almost always parse the original text file at every
execution. gFeatMiner parses every file only once.

5.6 Performance

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 32 of 55

5 CONTRIBUTIONS TO THE PROJECT

5.5.5 Inline machine code

Often in the processing on genomic data, one needs to iterate over large chunks of data and
operate a few calculations, but no optimized function for the particular task exists in the standard
mathematical packages, and coding the iteration in python would result in unacceptable slow-
downs. This is when inline machine code comes to use. Using the weave package (included in
scipy), one is easily able to write small functions in C++ code that can rest inside a python file
as a multi-line string. These machine code functions are able to share and take control of python
variable using on-the-fly converters. A code example demonstrating this is provided in appendix
section B.1.

However, sometimes python is perfectly suited for the job and adding inline machine code
doesn’t add much speed. An example of an optimized python function is provided in appendix
section B.3.

5.5.6 Streamlined tests

Another useful python package that helps build a project in a consistent and scalable fashion
is the doctest module (included in the standard python library). This extension allows the
programmer to write prototypical tests alongside his code. In practice, this consists in specifying
the expected output of a function given a statically defined input. An undefined number of tests
can be assigned to each function in a project to enable the frequent execution of a series of
automated test on subparts of a program. The code is thus easily controlled and notifications
appear if a part of an algorithm breaks due to badly thought out modifications. Naturally, as
the code base grows, previous parts of the software rely on consistent behavior of individual
functions which must remain unchanged.

5.5.7 Revision control

Finally, as is common with software projects, the entire code base is placed under a revision
control system, in this case the popular SVN [30] solution. This creates a repository for every
file involved in a project and will automatically back-up every script while tracking modifications
in a reversible manner. This type of technology can also be extremely useful when several
programmers want to contribute to the same project. This is not the case for gFeatMiner at the
moment, but could be one day.

5.6 Performance
It order to compare the speed of execution of other tools providing similar functionality. The
table below presents results obtained by timing manipulations of genomic data using gFeatMiner,
bedtools [31] and bx-python [35].

All the tests were executed on a Dell computer equipped with four x86_64 intel processors
clocked at 2.4 [Ghz], 24 [Gb] of RAM and running Fedora release 12. Input files were all randomly
generated BED files containing a million features. An excerpt of such a file is shown below.

1 chr1 54 139
2 chr1 57 121
3 chr1 140 233
4 chr1 247 299

Listing 8: An excerpt from a randomly generated BED file.

5.7 Future work

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 33 of 55

5 CONTRIBUTIONS TO THE PROJECT

Base coverage
Number of features Size of file

106 21.5 MB
Algorithm Time [sec]
gFeatMiner parsing 12.87
gFeatMiner run 1.94
bx-python 42.10
bedtools 4.34

Figure 21: A table comparing the execution speed
of different tools computing the same
operation, namely the cumulative base
coverage of a track.

Complement
Number of features Size of file

106 21.5 MB
Algorithm Time [sec]
gFeatMiner parsing 13.02
gFeatMiner run 5.23
bx-python 55.61
bedtools 2.93

Figure 22: A table comparing the execution speed
of different tools computing the same
operation, namely the complement of a
track.

Examining figure 21 and 22 one may note that gFeatMiner gives excellent results even outper-
forming bedtools (a set of tools coded entirely in C++) on some tasks. gFeatMiner’s execution
time is separated into two distinct phases. The first, “parsing”, accounts for the creation of the
HDF5 entry in the file system corresponding the BED file. This operation only needs to be
done once for every new file presented and any subsequent operation on the same input will skip
directly to the second “run” phase.

One must also keep in mind that while bedtools is very fast, its versatility is severely limited.
The bedtools set of programs are restricted to computing 17 types of manipulations on a single
type of file format. Bx-python, which regroups the algorithms that power Galaxy, compute
results in times of an order of magnitude slower than the other tools.

5.7 Future work
The gFeatMiner project is in a functional state, however more work is needed in order to reach
a fully working state. The integration on GDV’s side and the development of the data mining
aspect of the project remain outstanding tasks. An other useful addition discussed here is
parallelism.

5.7.1 Parallelism

Parallelism could be an interesting extension to attain increased execution speed. As of today
such services typically run on octa-core servers (i.e. computers equipped with eight central
processing units), but most code that is executed is only able to take advantage of one processor
at a time. One must note that not all computational operations can be divided in a such
way, and some problems are proven to be unparallelizable. However, in the domain of genomic
information processing, most of the operations are embarrassingly parallelizable. For example,
when computing the overlap between two tracks, there is no restriction on dividing the number
of features found on a genome into an arbitrary amount of subgroups and computing the overlap
individually on the subgroups. Indeed, once the outputs are reassembled, the result is exactly
the same as that of a function that would compute the overlap in one go.

Once again there are some excellent python packages that will provide such functionality to a
pre-existing code base, requiring only minor code refactoring. A common implementation is the
multiengine interface provided in ipython [4]. Using such technologies, an eight-fold increase in
execution time could be achieved at a low cost. Furthermore, once algorithms have been recoded

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 34 of 55

6 APPLICATION WITH REAL DATA

in such a way, they can also be parallelized between multiple machines and use an arbitrarily
large number of processors at the same time.

5.7.2 Data mining

One of the goals for the gFeatMiner project is to attack the complex problems of data mining
and advanced analysis.

The objective is to identify regions and/or groups of genomic feature that will maximize one
or several measurements using clustering and decision trees. These measurements might include:
preference scores, GO-terms, SNP families, motifs, density of genes, conservation levels, etc.

A simple example using a preference score function on a set of genomic tracks and a list
of peaks extracted from a Chip-Seq experiment could be the following: what combination of
genomic tracks maximizes the proximity of my peaks to the upstream regions of the genes
involved? This would be a good area for automatization since it is impossible for the user to test
every combination manually.

With the infrastructure and technologies used, gFeatMiner should be up to the challenge.

6 Application with real data

6.1 Description
For the second part of this project, we turn to a practical application in which I will be combining
and analyzing genomic data collected by different laboratories working on the model organism
yeast, Saccharomyces cerevisiae. Also known as the Brewer’s yeast, S. cer. is a type of budding
yeast intensively studied in molecular and cell biology; it has become one of the better understood
examples of eukaryotic cells. S. cer is also of interest for the study of the cell biology of higher-
level eukaryotes. For instance, many human proteins were first discovered by homology in the
budding yeast.

6.2 Context
The project focusses on the ribosomal proteins of S. cer. and more specifically on the genes
coding for these proteins. Using various quantitative datasets on a few of the known transcription
factors involved in ribosome genes production, in combination with information concerning the
nucleosome enrichment of the yeast genome, as well as the transcription level of these genes, we
will attempt to extract statistical correlations. This part of the project performs an example of
the type of advanced analysis that will, one day, be automatic in gFeatMiner.

All the data from the different experiments were collected under similar conditions. The yeast
cells are in normal growth phase and no special conditions or environmental stress were applied
to the colonies.

Ribosomal proteins are a crucial part of any cell’s life. In the growth phase of S. cer., it is
assumed that approximately half of the RNA polymerase transcription activity is devoted to RP
genes [40].

6.3 Datasets
Six different genomic datasets from diverse sources were used – some available in the public
domain, others coming from as yet published research.

6.3 Datasets

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 35 of 55

6 APPLICATION WITH REAL DATA

6.3.1 Ribosomal genes

The first essential dataset is, of course, the complete list of gene coding for ribosomal proteins in
S. cer. In total, 139 genes scattered across every chromosome have been annotated to code for
ribosomal proteins in S. cer. The promoter regions of these genes are going to be of particular
interest to us.

Figure 23: Excerpt from the file "ribosome_proteins.wig".

6.3.2 ChIP-Seq for Rap1, Fhl1 and Ifh1

This data was obtained through ChIP-Seq using antibodies designed to bind a c-Myc tagged
protein. Mutated strains expressing such fusion proteins for Rap1, Fhl1 and Ifhl1 were used. A
control experiment where no specific tag is included is also provided. The ChIP-Seq laboratory
technique is described in section 3.4.1.

These three transcription factors are known to regulate the transcription of most of the 139
ribosomal genes [39]. Rap1 binds many of the RP gene promoters but also functions as a repressor
in other cases and is thus not the specific regulator of transcription. However, Fhl1 and Ifhl1
bind in an almost exclusive fashion to RP gene promoters, the latter being recruited by the
former. The level of association of Ifhl1 is the best predictor of transcriptional activity.

This data is yet to be published and is treated as private information provided by the Shore
Lab at University of Geneva.

Figure 24: Excerpt from the file "Rap1_chipseq.wig".

6.3.3 RNA Polymearse

This data is also produced by a ChIP-Seq experiment using antibodies against RNA polymerase
II. One can thus use this information as a good indicator of the level of transcriptional activity
of any given gene found in the yeast genome under normal conditions.

This data was obtained by the Snyder lab at Yale University and is in the public domain [26].
The raw data is provided in the form of two files containing a score for every nucleotide along

the forward and reverse strands of every chromosome of the yeast genome. Instead of extracting
peaks in the usual way with software like Quest [37] or MACS [41], I used a simple method
that consists in averaging the forward and reverse strands at every base. Using such a strategy
is reasonable in this case, as peak detection algorithms are commonly implemented to identify
regions of binding and define zones of interest using no a priori information except the tag counts

6.3 Datasets

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 36 of 55

6 APPLICATION WITH REAL DATA

generated by the alignment of the ChIP-Seq reads. However, in the context of this experiment
the zones of interest along the genome are predefined and they need not be extrapolated. interest
along the genome are predefined and they need not be extrapolated. Suppressing a further step
of treatment and remaining closer to the raw data is actually a benefit.

Figure 25: Excerpt from the file "PolII_peaks.wig".

6.3.4 Mitomi for Rap1 and Fhl1

Two extra tracks describing the in-vitro binding affinity of Rap1 and Fhl1 are provided from
another laboratory. These results are unpublished at present and are considered private data
owned by the Maerkl Lab at EPFL.

The data was obtained using the mitomi laboratory technique as described in section 3.4.3.
As a result one obtains binding predictions for two transcription factors based only on the DNA
sequence of the genome while ignoring the chromatin structure.

Ifh1 is not present in the dataset for the simple reason that it does not bind directly to the
DNA interacting instead with a domain on Fhl1.

Figure 26: Excerpt from the file "Rap1_invitro.wig".

6.3.5 Nucleosome enrichment

This data was gathered by Hughes lab at the University of Toronto, and was published as
supplementary data in 2008 [10]. The laboratory technique used consists in digesting the free
DNA of yeast cell with micrococcal nuclease and subsequently hybridizing the fragments to a
tiling array. MNase is special kind of exonuclease that is able to digest double-stranded DNA
around nucleosome linker regions, but only induces single strands nicks inside in the nucleosome
itself [2]. These fragments of DNA can be purified and analyzed using microarrays to determine
the genomic positions of nucleosomes.

Two tracks are provided, one WT where the yeast’s genome was not modified and one for a
knock-out of Rap1. The knock-out is taken from the collection of temperature-sensitive mutant
repository of the essential genes of Saccharomyces cerevisiae [12]. Since ribosomal proteins are
essential for the cell’s life, a classic knock-out is not possible.

6.4 Upstream regions

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 37 of 55

6 APPLICATION WITH REAL DATA

Figure 27: Excerpt from the file "WT_nucleosome.wig".

6.3.6 Binding site footprints

This data was collected by a lab at the University of Washington, and published in a paper in
2009 [22]. The strategy used to profile regulatory protein occupancy on genomic DNA consists in
mapping DNase I cleavages using massively parallel sequencing. This technique called digital ge-
nomic footprinting essentially counts the frequency of DNAse cleavage and uses this information
to predict protected regulatory protein footprints where cis-regulatory factors are highly likely
to bind.

Since this experiment is done in-vivo it is sensitive to the chromatin structure of the DNA.
One can therefore expect that it will not predict potential protein binding sites that are hidden
by histones. Indeed, if the DNA in question is only favorable in sequence to protein interactions
but is not exposed sufficiently in-vivo, it will not be identified.

Figure 28: Excerpt from the file "dna_footprints.png".

6.4 Upstream regions
6.4.1 Regions of interest

In order to characterize the patterns in which the three transcriptions factors of interest modulate
the expression of S. cer. ribosomal genes, we specifically focus on the upstream regions of the 139
RP genes. Using an unvarying region of interest defined as 500 [bp] downstream and 1000 [bp]
upstream of a gene’s TTS, we will extract the quantitative values of all our datasets within this
window. Since every RP gene is associated with precisely one region of interest, this results in
the creation of 139 windows or miniature tracks made up of only 1500 base pairs. Two examples
of these windows, for a gene lying on the positive strand of a piece of double-stranded DNA,
and for a gene lying on a negative strand, are provided in figures 30 and 29. Windows that
are extracted from a negative strand are flipped so that every track follows the transcription
direction.

6.4.2 Interference

A problem that may arise when using fixed windows in the upstream regions of genes is the
interference from promoters of neighboring genes. If a given part of a chromosome is shared
between two windows belonging to different RP genes, there is no way of telling which of the

6.4 Upstream regions

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 38 of 55

6 APPLICATION WITH REAL DATA

3'
5'

5'
3'

TSS
gene on + strand

-2000 -1500 -1000 -500 0 500 1000 1500 2000 [bp]

Figure 29: A region of interest defined as window spanning 500 [bp] downstream and 1000 [bp] upstream
of a gene’s TTS lying on the plus strand of chromosome.

3'
5'

5'
3'

TSS

gene on - strand

2000 1500 1000 500 0 -500 -1000 -1500 -2000 [bp]

Figure 30: A region of interest defined as window spanning 500 [bp] downstream and 1000 [bp] upstream
of a gene’s TTS lying on the minus strand of chromosome.

two genes the transcription factors are enhancing. An example of a such a situation is shown in
figure 31.

3'
5'

5'
3'

TSS
gene on + strand

-2000 -1500 -1000 -500 0 500 1000 1500 2000 [bp]

TSS
gene on - strand

2500 3000 3500 4000

Figure 31: Two regions of interest interfere with each other. In a few cases, two ribosomal genes lie
in close proximity on opposite strands causing difficulties in the analysis of transcription
factors bound to their upstream regions.

To assess the frequency of such events, two graphs quantifying the number of RP genes subject
to interference according to the distance from their TSS are shown in figures 32 and 33. The
cumulative distributions are computed for all RP genes against all RP genes themselves and,
subsequently, against all S. cer. genes.

The result shows that only four pairs of RP genes interfere with each other within the regions
of interest defined. Considered to be outliers, these eight genes are removed from further analysis.
The exact references to these genes are given below.

1 YDL083C on chr4 - at 307789 with YDL082W on chr4+ at 308424
2 YJL190C on chr10 - at 75301 with YJL189W on chr10+ at 75932
3 YMR142C on chr13 - at 551206 with YMR143W on chr13+ at 551927
4 YOL040C on chr15 - at 253576 with YOL039W on chr15+ at 254296

Listing 9: Exact names of the eight RP genes suffering from interference from an other RP gene start
inside their upstream regions.

6.5 Clustering

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 39 of 55

6 APPLICATION WITH REAL DATA

0 2000 4000 6000 8000 10000

Upstream distance from a TTS in 'Ribosome genes' to hitting
a gene start or end in 'Ribosome genes' [base pairs]

10

20

30

40

50

60

70

N
u
m

b
e
r

o
f

in
te

rf
e
ra

n
ce

s
[g

e
n
e
s]

Cumulative distribution of upstream region interferance

An other gene's start is in the way
An other gene's end is in the way

Figure 32: Cumulative distribution of the distance
from every ribosomal gene to the next
ribosomal TSS or TTS.

500 0 500 1000 1500 2000 2500 3000

Upstream distance from a TTS in 'Ribosome genes' to hitting
a gene start or end in 'All S. cer genes' [base pairs]

0

10

20

30

40

50

60

70

80

N
u
m

b
e
r

o
f

in
te

rf
e
ra

n
ce

s
[g

e
n
e
s]

Cumulative distribution of upstream region interferance

An other gene's start is in the way
An other gene's end is in the way

Figure 33: Cumulative distribution of the distance
from every ribosomal gene to the next
TSS or TSS on the S. cer. genome.

6.5 Clustering
6.5.1 Criteria

Once every region of interest is established and the relevant values from the six different dataset
extracted, our goal is to regroup similar kinds of windows into clusters. Inside such a category, the
continuous values of each window are averaged together and compared to all the other categories.
Two questions arise at this step:

1. Which criteria are used for comparing windows among each other and judging on their
similarity ?

2. Which criteria are chosen to assign a window to a specific category rather than another ?

6.5.2 Scoring

The first question can be handled by establishing a function that reads the data from a window
and assigns a score to it. Once every window has a unique value associated to it, one can decide
into which category the window must fall. Clustering data points placed in a one dimensional
space is then a simple matter.

Scoring a window can be done in various way. Most of the time the scoring function will
only examine one of the datasets inside the region of interest, e.g. the Rap1 values. One might,
for example, decide to regroup all windows with a high level of Rap1 together and, in another
category, cluster those with an absent or low level of Rap1. In such a situation, the scoring
function can simply return the integral under the curve of the Rap1 signal as a score for each
window.

Or, one might want to combine multiple scoring functions and attribute several scores to
each window. For instance, a window might be tagged with two scores: the strength of its Rap1
signal and the distance of the Rap1 peak from the TSS.

6.5 Clustering

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 40 of 55

6 APPLICATION WITH REAL DATA

6.5.3 K-means

The second question is dealt with by establishing a function that, given one or more scores per
window, classifies them into a fixed number of categories. An excellent candidate for this function
is the K-means machine-learning method. This clustering strategy will partitions n observations
into k groups by trying to minimize the following cost function:

k∑
i=1

∑
xj∈Si

‖xj − µi‖2 (1)

The first constraint it that the number of categories be necessarily smaller than the number
of observations: k < n. Next, every observation xj ⊂ (x1, x2, ..., xn) is a vector in d-dimensional
space. In our case, an observation corresponds to a list of d scores associated to one upstream
window. Every observation is assigned to a particular category Si ⊂ {S1, S2, ..., Sk}. Finally,
µi represents the mean of points included in Si. The K-means algorithm thus clusters the
observations so as to minimize the sum of squares within each category.

To better understand the functioning of the algorithm, an example using n = 15 observations
in a two-dimensional space and k = 3 groups is provided in figures 34, 35, 36 and 37.

Figure 34: Illustration of the K-means algorithm
at step A. Image courtesy of Wikimedia
Commons.

Figure 35: Illustration of the K-means algorithm
at step B. Image courtesy of Wikimedia
Commons.

Figure 36: Illustration of the K-means algorithm
at step C. Image courtesy of Wikimedia
Commons.

Figure 37: Illustration of the K-means algorithm
at step D. Image courtesy of Wikimedia
Commons.

• At step A, every gray square represents an observation in an undefined space. In our case,
the x-axis might represent the strength of the Rap1 signal and the y-axis the distance

6.6 Results

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 41 of 55

7 CONCLUSION

from the Rap1 peak to the TSS. Next, k initial centers are created by selecting k arbitrary
observations from the dataset.

• At step B, every observation is assigned to the nearest of the k centers. This step separates
the data space into k surfaces.

• At step C, each of the centers are moved from their original location to the centroid created
by the observations that were assigned to it at the previous step.

• Steps B and C are repeated until convergence.

6.5.4 Summary

A schematic summary of the clustering process is provided in figure 38.

6.6 Results
With the set of scripts developed it is possible to explore and combine the data in many different
ways. One is able to perform one or two dimensional clustering on any of the tracks in the six
datasets. Figures 39 to 43 present different situations and describe the potential implications
concerning the biological processes that govern the binding of the three transcription factors of
interest on the promoter regions of RP genes in S. cer.

In every cluster configuration the number of categories was set to 3 and a graph summarizing
which windows are assigned to which category is included.

7 Conclusion

7.1 Closing words
As the age of computational biology approaches, tools like gFeatMiner will become increasingly
important as petabytes of data overwhelm the field. The ability to aggregate and analyze data
from diverse sources will be valuable to generating new hypotheses and discovering new biological
processes.

The tools constructed were designed and implemented to facilitate their integration, main-
tenance and future development. Particularly attention was paid to the choice of language and
libraries used, as well as the documentation of the code.

Given the short time span of the project, I feel I have come a long way and reached the
projected goal. I found the internship highly interesting and engaging, and was pleased to be
confronted with some real-world problems in the field of genomic bioinformatics.

7.2 Contact
The author of this document can be contacted at the following address:

7.2 Contact

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 42 of 55

7 CONCLUSION

TS
S

w
in

do
w

 B

TS
S

w
in

do
w

 A

TS
S

w
in

do
w

 C

TS
S

w
in

do
w

 D

1 2

x)
 S

tre
ng

th
 o

f R
ap

1
?

y)
 D

is
ta

nc
e

fro
m

 T
SS

 ?

y
=

5.
1

x
=

2.
1

y
=

4.
2

x
=

2.
5

y
=

11
.0

x
=

4.
9

y
=

10
.8

x
=

4.
3

3

A

Distance from TSS

St
re

ng
th

 o
f R

ap
1

B

C
D

4
5

TS
S

Pr
ofi

le
 φ

TS
S

Pr
ofi

le
 θ

Distance from TSS
St

re
ng

th
 o

f R
ap

1C
D

A
B

gr
ou

p
θ

gr
ou

p
φ

F
ig

u
re

38
:
Su

m
m
ar
y
of

th
e
cl
us
te
ri
ng

pr
oc
es
s
us
in
g
on

ly
fo
ur

w
in
do

w
s
an

d
tw

o
ca
te
go
ri
es
.
In

th
e
fir
st

st
ep

,f
ou

r
up

st
re
am

re
gi
on

s
of

in
te
re
st

ar
e

de
fin

ed
fr
om

th
e
lis
t
of

R
P

ge
ne

s
an

d
th
e
va
lu
es

fo
r
R
ap

1
(i
n
re
d)

an
d
F
hl
1
(i
n
bl
ue

)
ex
tr
ac
te
d.

In
th
e
se
co
nd

st
ep

,
ea
ch

w
in
do

w
is

ev
al
ua

te
d
by

tw
o
di
ffe

re
nt

sc
or
in
g
fu
nc
ti
on

s:
on

e
co
m
pu

ti
ng

th
e
st
re
ng

th
of

th
e
R
ap

1
pe

ak
an

d
th
e
ot
he

r
co
m
pu

ti
ng

th
e
di
st
an

ce
of

th
e
R
ap

1
pe

ak
fr
om

th
e
T
SS

.
In

th
e
th
ir
d
st
ep

,
ea
ch

or
ig
in
al

w
in
do

w
is

pl
ot
te
d
as

a
po

in
t
in

a
tw

o
di
m
en

si
on

al
sp
ac
e
ac
co
rd
in
g
to

th
e
sc
or
es

it
re
ce
iv
es
.
In

th
e
fo
ur
th

st
ep

th
e
k-
m
ea
ns

al
go
ri
th
m

is
ap

pl
ie
d
an

d
tw

o
ca
te
go
ri
es

ar
e
fo
rm

ed
.
In

th
e
fif
th

st
ep

,a
pr
ofi

le
is

bu
ilt

fo
r
ea
ch

ca
te
go
ry

by
av
er
ag
in
g
th
e
va
lu
es

of
th
e
or
ig
in
al

w
in
do

w
s
to
ge
th
er
.

7.2 Contact

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 43 of 55

7 CONCLUSION

1
0

0
0

9
0

0
8

0
0

7
0

0
6

0
0

5
0

0
4

0
0

3
0

0
2

0
0

1
0

0
D

is
ta

n
ce

 f
ro

m
 T

S
S
 [

b
a
se

 p
a
ir

s]

0

5
0

0
0

1
0

0
0

0

1
5

0
0

0

2
0

0
0

0

2
5

0
0

0

3
0

0
0

0

Integral of signal [arbitraty units]

G
ra

p
h
 o

f
sc

o
re

s
a
n
d
 c

a
te

g
o
ri

e
s

C
a
te

g
o
ry

 1
C

a
te

g
o
ry

 2
C

a
te

g
o
ry

 3

R
a
p
1

 C
h
ip

-s
e
q

G
e
n
e
 g

ro
u
p
 g

ra
p
h
 o

n
 "

Y
e
a
st

 R
P
 g

e
n
e
s"

R
a
p
1
 C

h
ip

-s
e
q

R
a
p
1
 i
n
 v

it
ro

Fh
l1

 C
h
ip

-s
e
q

Fh
l1

 i
n
 v

it
ro

Relative score [mixed units]

N
u
cl

e
o
so

m
e
s

in
 W

T
If

h
1
 C

h
ip

-s
e
q

U
p
st

re
a
m

D
o
w

n
st

re
a
m

S
co

ri
n
g
 t

ra
ck

In
te

g
ra

l
T
S
S
 d

is
ta

n
ce

v
a
l

1
0

0
0

 [
b
p
]

5
0

0
 [

b
p
]

R
a
p
1

 C
h
ip

-s
e
q

T
ru

e
T
ru

e

1
0

0
0

8
0

0
6

0
0

4
0

0
2

0
0

0
2

0
0

4
0

0
D

is
ta

n
ce

 f
ro

m
 T

S
S
 [

b
a
se

 p
a
ir

s]

R
N

A
 P

o
l2

 C
h
ip

-s
e
c

D
N

A
 f

o
o
tp

ri
n
ts

C
a
te

g
o
ry

 1
 o

u
t

o
f

3
 -

 R
a
p
1

 C
h
ip

-s
e
q
 (

p
e
a
k

in
te

g
ra

l
a
n
d
 t

ss
 d

is
ta

n
ce

)
-

S
co

re
s

a
re

 m
e
a
n
e
d
 o

v
e
r

1
8

 w
in

d
o
w

s
W

e
d
 J
u
n
 2

3
 1

1
:5

6
:1

8
 2

0
1

0

G
e
n
e
 g

ro
u
p
 g

ra
p
h
 o

n
 "

Y
e
a
st

 R
P
 g

e
n
e
s"

R
a
p
1
 C

h
ip

-s
e
q

R
a
p
1
 i
n
 v

it
ro

Fh
l1

 C
h
ip

-s
e
q

Fh
l1

 i
n
 v

it
ro

Relative score [mixed units]

N
u
cl

e
o
so

m
e
s

in
 W

T
If

h
1
 C

h
ip

-s
e
q

U
p
st

re
a
m

D
o
w

n
st

re
a
m

S
co

ri
n
g
 t

ra
ck

In
te

g
ra

l
T
S
S
 d

is
ta

n
ce

v
a
l

1
0

0
0

 [
b
p
]

5
0

0
 [

b
p
]

R
a
p
1

 C
h
ip

-s
e
q

T
ru

e
T
ru

e

1
0

0
0

8
0

0
6

0
0

4
0

0
2

0
0

0
2

0
0

4
0

0
D

is
ta

n
ce

 f
ro

m
 T

S
S
 [

b
a
se

 p
a
ir

s]

R
N

A
 P

o
l2

 C
h
ip

-s
e
c

D
N

A
 f

o
o
tp

ri
n
ts

C
a
te

g
o
ry

 2
 o

u
t

o
f

3
 -

 R
a
p
1

 C
h
ip

-s
e
q
 (

p
e
a
k

in
te

g
ra

l
a
n
d
 t

ss
 d

is
ta

n
ce

)
-

S
co

re
s

a
re

 m
e
a
n
e
d
 o

v
e
r

4
4

 w
in

d
o
w

s
W

e
d
 J
u
n
 2

3
 1

1
:5

6
:1

8
 2

0
1

0

G
e
n
e
 g

ro
u
p
 g

ra
p
h
 o

n
 "

Y
e
a
st

 R
P
 g

e
n
e
s"

R
a
p
1
 C

h
ip

-s
e
q

R
a
p
1
 i
n
 v

it
ro

Fh
l1

 C
h
ip

-s
e
q

Fh
l1

 i
n
 v

it
ro

Relative score [mixed units]

N
u
cl

e
o
so

m
e
s

in
 W

T
If

h
1
 C

h
ip

-s
e
q

U
p
st

re
a
m

D
o
w

n
st

re
a
m

S
co

ri
n
g
 t

ra
ck

In
te

g
ra

l
T
S
S
 d

is
ta

n
ce

v
a
l

1
0

0
0

 [
b
p
]

5
0

0
 [

b
p
]

R
a
p
1

 C
h
ip

-s
e
q

T
ru

e
T
ru

e

1
0

0
0

8
0

0
6

0
0

4
0

0
2

0
0

0
2

0
0

4
0

0
D

is
ta

n
ce

 f
ro

m
 T

S
S
 [

b
a
se

 p
a
ir

s]

R
N

A
 P

o
l2

 C
h
ip

-s
e
c

D
N

A
 f

o
o
tp

ri
n
ts

C
a
te

g
o
ry

 3
 o

u
t

o
f

3
 -

 R
a
p
1

 C
h
ip

-s
e
q
 (

p
e
a
k

in
te

g
ra

l
a
n
d
 t

ss
 d

is
ta

n
ce

)
-

S
co

re
s

a
re

 m
e
a
n
e
d
 o

v
e
r

6
9

 w
in

d
o
w

s
W

e
d
 J
u
n
 2

3
 1

1
:5

6
:1

9
 2

0
1

0

F
ig

u
re

39
:
T
he

13
1
w
in
do

w
s
of

in
te
re
st

ar
e
cl
us
te
re
d
in
to

3
ca
te
go
ri
es

ac
co
rd
in
g
to

th
e
in
te
ns
it
y
of

th
e
R
ap

1
si
gn

al
an

d
th
e
di
st
an

ce
fr
om

th
e
T
SS

of
th
e

R
ap

1
pe

ak
.
St
ro
ng

in
te
ns
it
ie
s
of

R
ap

1
ar
e
co
rr
el
at
ed

w
it
h
st
ro
ng

in
te
ns
it
ie
s
of

F
hl
1
an

d
If
hl
1,

ho
w
ev
er

th
e
pr
es
en
ce

of
R
ap

1
is
no

t
m
an

da
to
ry

fo
r

th
e
pr
es
en
ce

of
th
e
tw

o
ot
he
r
tr
an

sc
ri
pt
io
n
fa
ct
or
s.

T
he

st
re
ng

th
of

th
e
R
ap

1
si
gn

al
ca
nn

ot
be

us
ed

as
a
pr
ed
ic
to
r
of

th
e
tr
an

sc
ri
pt
io
na

l
ac
ti
vi
ty
,

as
th
e
P
ol
II

si
gn

al
is
co
ns
ta
nt

ac
ro
ss

ca
te
go
ri
es
.
T
he

ab
se
nc
e
of

R
ap

1
in

th
e
th
ir
d
ca
te
go
ry

ca
nn

ot
be

ex
pl
ai
ne
d
ei
th
er

by
th
e
m
it
om

i
tr
ac
k
or

th
e

nu
cl
eo
so
m
e
da

ta
.

7.2 Contact

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 44 of 55

7 CONCLUSION

1
0

0
0

8
0

0
6

0
0

4
0

0
2

0
0

0
2

0
0

4
0

0
6

0
0

D
is

ta
n
ce

 f
ro

m
 T

S
S
 [

b
a
se

 p
a
ir

s]

0

1
0

0
0

0

2
0

0
0

0

3
0

0
0

0

4
0

0
0

0

5
0

0
0

0

6
0

0
0

0

Integral of signal [arbitraty units]

G
ra

p
h
 o

f
sc

o
re

s
a
n
d
 c

a
te

g
o
ri

e
s

C
a
te

g
o
ry

 1
C

a
te

g
o
ry

 2
C

a
te

g
o
ry

 3

Fh
l1

 C
h
ip

-s
e
q

G
e
n
e
 g

ro
u
p
 g

ra
p
h
 o

n
 "

Y
e
a
st

 R
P
 g

e
n
e
s"

R
a
p
1
 C

h
ip

-s
e
q

R
a
p
1
 i
n
 v

it
ro

Fh
l1

 C
h
ip

-s
e
q

Fh
l1

 i
n
 v

it
ro

Relative score [mixed units]

N
u
cl

e
o
so

m
e
s

in
 W

T
If

h
1
 C

h
ip

-s
e
q

U
p
st

re
a
m

D
o
w

n
st

re
a
m

S
co

ri
n
g
 t

ra
ck

In
te

g
ra

l
T
S
S
 d

is
ta

n
ce

v
a
l

1
0

0
0

 [
b
p
]

5
0

0
 [

b
p
]

Fh
l1

 C
h
ip

-s
e
q

T
ru

e
T
ru

e

1
0

0
0

8
0

0
6

0
0

4
0

0
2

0
0

0
2

0
0

4
0

0
D

is
ta

n
ce

 f
ro

m
 T

S
S
 [

b
a
se

 p
a
ir

s]

R
N

A
 P

o
l2

 C
h
ip

-s
e
c

D
N

A
 f

o
o
tp

ri
n
ts

C
a
te

g
o
ry

 1
 o

u
t

o
f

3
 -

 F
h
l1

 C
h
ip

-s
e
q
 (

p
e
a
k

in
te

g
ra

l
a
n
d
 t

ss
 d

is
ta

n
ce

)
-

S
co

re
s

a
re

 m
e
a
n
e
d
 o

v
e
r

3
1

 w
in

d
o
w

s
W

e
d
 J
u
n
 2

3
 1

1
:5

7
:2

5
 2

0
1

0

G
e
n
e
 g

ro
u
p
 g

ra
p
h
 o

n
 "

Y
e
a
st

 R
P
 g

e
n
e
s"

R
a
p
1
 C

h
ip

-s
e
q

R
a
p
1
 i
n
 v

it
ro

Fh
l1

 C
h
ip

-s
e
q

Fh
l1

 i
n
 v

it
ro

Relative score [mixed units]

N
u
cl

e
o
so

m
e
s

in
 W

T
If

h
1
 C

h
ip

-s
e
q

U
p
st

re
a
m

D
o
w

n
st

re
a
m

S
co

ri
n
g
 t

ra
ck

In
te

g
ra

l
T
S
S
 d

is
ta

n
ce

v
a
l

1
0

0
0

 [
b
p
]

5
0

0
 [

b
p
]

Fh
l1

 C
h
ip

-s
e
q

T
ru

e
T
ru

e

1
0

0
0

8
0

0
6

0
0

4
0

0
2

0
0

0
2

0
0

4
0

0
D

is
ta

n
ce

 f
ro

m
 T

S
S
 [

b
a
se

 p
a
ir

s]

R
N

A
 P

o
l2

 C
h
ip

-s
e
c

D
N

A
 f

o
o
tp

ri
n
ts

C
a
te

g
o
ry

 2
 o

u
t

o
f

3
 -

 F
h
l1

 C
h
ip

-s
e
q
 (

p
e
a
k

in
te

g
ra

l
a
n
d
 t

ss
 d

is
ta

n
ce

)
-

S
co

re
s

a
re

 m
e
a
n
e
d
 o

v
e
r

5
8

 w
in

d
o
w

s
W

e
d
 J
u
n
 2

3
 1

1
:5

7
:2

5
 2

0
1

0

G
e
n
e
 g

ro
u
p
 g

ra
p
h
 o

n
 "

Y
e
a
st

 R
P
 g

e
n
e
s"

R
a
p
1
 C

h
ip

-s
e
q

R
a
p
1
 i
n
 v

it
ro

Fh
l1

 C
h
ip

-s
e
q

Fh
l1

 i
n
 v

it
ro

Relative score [mixed units]

N
u
cl

e
o
so

m
e
s

in
 W

T
If

h
1
 C

h
ip

-s
e
q

U
p
st

re
a
m

D
o
w

n
st

re
a
m

S
co

ri
n
g
 t

ra
ck

In
te

g
ra

l
T
S
S
 d

is
ta

n
ce

v
a
l

1
0

0
0

 [
b
p
]

5
0

0
 [

b
p
]

Fh
l1

 C
h
ip

-s
e
q

T
ru

e
T
ru

e

1
0

0
0

8
0

0
6

0
0

4
0

0
2

0
0

0
2

0
0

4
0

0
D

is
ta

n
ce

 f
ro

m
 T

S
S
 [

b
a
se

 p
a
ir

s]

R
N

A
 P

o
l2

 C
h
ip

-s
e
c

D
N

A
 f

o
o
tp

ri
n
ts

C
a
te

g
o
ry

 3
 o

u
t

o
f

3
 -

 F
h
l1

 C
h
ip

-s
e
q
 (

p
e
a
k

in
te

g
ra

l
a
n
d
 t

ss
 d

is
ta

n
ce

)
-

S
co

re
s

a
re

 m
e
a
n
e
d
 o

v
e
r

4
2

 w
in

d
o
w

s
W

e
d
 J
u
n
 2

3
 1

1
:5

7
:2

6
 2

0
1

0

F
ig

u
re

40
:
T
he

13
1
w
in
do

w
s
of

in
te
re
st

ar
e
cl
us
te
re
d
in
to

3
ca
te
go
ri
es

ac
co
rd
in
g
to

th
e
in
te
ns
it
y
of

th
e
F
hl
1
si
gn

al
an

d
th
e
di
st
an

ce
fr
om

th
e
T
SS

of
th
e
F
hl
1

pe
ak

.
T
he

in
te
ns
it
y
of

th
e
F
hl
1
si
gn

al
is

st
ro
ng

ly
co
rr
el
at
ed

w
it
h
th
e
in
te
ns
it
y
of

th
e
If
h1

si
gn

al
.
T
hi
s
is

no
t
su
rp
ri
si
ng

as
If
h1

in
te
ra
ct
s
w
it
h
a

do
m
ai
n
on

F
hl
1.

T
he

pr
es
en
ce

of
F
hl
1
ca
n
pr
ed

ic
t,

to
an

ex
te
nt
,
th
e
pr
es
en
ce

of
R
ap

1
bu

t
do

es
no

t
aff

ec
t
th
e
le
ve
l
of

tr
an

sc
ri
pt
io
n
as

th
e
P
ol
II

si
gn

al
is

co
ns
ta
nt

ac
ro
ss

ca
te
go
ri
es
.
A

sl
ig
ht

op
en
in
g
in

nu
cl
eo
so
m
e
en
ri
ch
m
en
t
ca
n
be

se
en

in
ca
te
go
ri
es

1
an

d
2
w
he
re

F
hl
1
is

st
ro
ng

es
t.

7.2 Contact

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 45 of 55

7 CONCLUSION

1
0

0
0

8
0

0
6

0
0

4
0

0
2

0
0

0
2

0
0

4
0

0
6

0
0

D
is

ta
n
ce

 f
ro

m
 T

S
S
 [

b
a
se

 p
a
ir

s]

0

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

1
2

0
0

0

1
4

0
0

0

Integral of signal [arbitraty units]

G
ra

p
h
 o

f
sc

o
re

s
a
n
d
 c

a
te

g
o
ri

e
s

C
a
te

g
o
ry

 1
C

a
te

g
o
ry

 2
C

a
te

g
o
ry

 3

If
h
1

 C
h
ip

-s
e
q

G
e
n
e
 g

ro
u
p
 g

ra
p
h
 o

n
 "

Y
e
a
st

 R
P
 g

e
n
e
s"

R
a
p
1
 C

h
ip

-s
e
q

R
a
p
1
 i
n
 v

it
ro

Fh
l1

 C
h
ip

-s
e
q

Fh
l1

 i
n
 v

it
ro

Relative score [mixed units]

N
u
cl

e
o
so

m
e
s

in
 W

T
If

h
1
 C

h
ip

-s
e
q

U
p
st

re
a
m

D
o
w

n
st

re
a
m

S
co

ri
n
g
 t

ra
ck

In
te

g
ra

l
T
S
S
 d

is
ta

n
ce

v
a
l

1
0

0
0

 [
b
p
]

5
0

0
 [

b
p
]

If
h
1

 C
h
ip

-s
e
q

T
ru

e
T
ru

e

1
0

0
0

8
0

0
6

0
0

4
0

0
2

0
0

0
2

0
0

4
0

0
D

is
ta

n
ce

 f
ro

m
 T

S
S
 [

b
a
se

 p
a
ir

s]

R
N

A
 P

o
l2

 C
h
ip

-s
e
c

D
N

A
 f

o
o
tp

ri
n
ts

C
a
te

g
o
ry

 1
 o

u
t

o
f

3
 -

 I
fh

1
 C

h
ip

-s
e
q
 (

p
e
a
k

in
te

g
ra

l
a
n
d
 t

ss
 d

is
ta

n
ce

)
-

S
co

re
s

a
re

 m
e
a
n
e
d
 o

v
e
r

2
2

 w
in

d
o
w

s
W

e
d
 J
u
n
 2

3
 1

1
:5

6
:4

8
 2

0
1

0

G
e
n
e
 g

ro
u
p
 g

ra
p
h
 o

n
 "

Y
e
a
st

 R
P
 g

e
n
e
s"

R
a
p
1
 C

h
ip

-s
e
q

R
a
p
1
 i
n
 v

it
ro

Fh
l1

 C
h
ip

-s
e
q

Fh
l1

 i
n
 v

it
ro

Relative score [mixed units]

N
u
cl

e
o
so

m
e
s

in
 W

T
If

h
1
 C

h
ip

-s
e
q

U
p
st

re
a
m

D
o
w

n
st

re
a
m

S
co

ri
n
g
 t

ra
ck

In
te

g
ra

l
T
S
S
 d

is
ta

n
ce

v
a
l

1
0

0
0

 [
b
p
]

5
0

0
 [

b
p
]

If
h
1

 C
h
ip

-s
e
q

T
ru

e
T
ru

e

1
0

0
0

8
0

0
6

0
0

4
0

0
2

0
0

0
2

0
0

4
0

0
D

is
ta

n
ce

 f
ro

m
 T

S
S
 [

b
a
se

 p
a
ir

s]

R
N

A
 P

o
l2

 C
h
ip

-s
e
c

D
N

A
 f

o
o
tp

ri
n
ts

C
a
te

g
o
ry

 2
 o

u
t

o
f

3
 -

 I
fh

1
 C

h
ip

-s
e
q
 (

p
e
a
k

in
te

g
ra

l
a
n
d
 t

ss
 d

is
ta

n
ce

)
-

S
co

re
s

a
re

 m
e
a
n
e
d
 o

v
e
r

5
2

 w
in

d
o
w

s
W

e
d
 J
u
n
 2

3
 1

1
:5

6
:4

9
 2

0
1

0

G
e
n
e
 g

ro
u
p
 g

ra
p
h
 o

n
 "

Y
e
a
st

 R
P
 g

e
n
e
s"

R
a
p
1
 C

h
ip

-s
e
q

R
a
p
1
 i
n
 v

it
ro

Fh
l1

 C
h
ip

-s
e
q

Fh
l1

 i
n
 v

it
ro

Relative score [mixed units]

N
u
cl

e
o
so

m
e
s

in
 W

T
If

h
1
 C

h
ip

-s
e
q

U
p
st

re
a
m

D
o
w

n
st

re
a
m

S
co

ri
n
g
 t

ra
ck

In
te

g
ra

l
T
S
S
 d

is
ta

n
ce

v
a
l

1
0

0
0

 [
b
p
]

5
0

0
 [

b
p
]

If
h
1

 C
h
ip

-s
e
q

T
ru

e
T
ru

e

1
0

0
0

8
0

0
6

0
0

4
0

0
2

0
0

0
2

0
0

4
0

0
D

is
ta

n
ce

 f
ro

m
 T

S
S
 [

b
a
se

 p
a
ir

s]

R
N

A
 P

o
l2

 C
h
ip

-s
e
c

D
N

A
 f

o
o
tp

ri
n
ts

C
a
te

g
o
ry

 3
 o

u
t

o
f

3
 -

 I
fh

1
 C

h
ip

-s
e
q
 (

p
e
a
k

in
te

g
ra

l
a
n
d
 t

ss
 d

is
ta

n
ce

)
-

S
co

re
s

a
re

 m
e
a
n
e
d
 o

v
e
r

5
7

 w
in

d
o
w

s
W

e
d
 J
u
n
 2

3
 1

1
:5

6
:4

9
 2

0
1

0

F
ig

u
re

41
:
T
he

13
1
w
in
do

w
s
of

in
te
re
st

ar
e
cl
us
te
re
d
in
to

3
ca
te
go
ri
es

ac
co
rd
in
g
to

th
e
in
te
ns
it
y
of

th
e
If
h1

si
gn

al
an

d
th
e
di
st
an

ce
fr
om

th
e
T
SS

of
th
e
If
h1

pe
ak

.
T
he

st
ro
ng

co
rr
el
at
io
n
be

tw
ee
n
th
e
If
h1

an
d
F
hl
1
si
gn

al
s
ap

pe
ar
s
on

ce
ag
ai
n
al
on

g
w
it
h
a
co
lo
ca
liz

at
io
n
w
it
h
th
e
R
ap

1
tr
an

sc
ri
pt
io
n
fa
ct
or
.

T
he

m
it
om

i
an

d
D
N
A

fo
ot
pr
in
ts

da
ta

do
no

t
se
em

to
ex
pl
ai
n
w
hy

bi
nd

in
g
is

ab
se
nt

in
th
e
th
ir
d
ca
te
go
ry
.

7.2 Contact

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 46 of 55

7 CONCLUSION

0
2

0
0

0
0

4
0

0
0

0
6

0
0

0
0

8
0

0
0

0
1

0
0

0
0

0
1

2
0

0
0

0
1

4
0

0
0

0
1

6
0

0
0

0
1

8
0

0
0

0
In

te
g
ra

l
o
f

si
g
n
a
l
[a

rb
it

ra
ty

 u
n
it

s]

012345678 Count of occurance [windows]

G
ra

p
h
 o

f
sc

o
re

s
a
n
d
 c

a
te

g
o
ri

e
s

C
a
te

g
o
ry

 1
C

a
te

g
o
ry

 2
C

a
te

g
o
ry

 3

R
N

A
 P

o
l2

 C
h
ip

-s
e
c

G
e
n
e
 g

ro
u
p
 g

ra
p
h
 o

n
 "

Y
e
a
st

 R
P
 g

e
n
e
s"

R
a
p
1
 C

h
ip

-s
e
q

R
a
p
1
 i
n
 v

it
ro

Fh
l1

 C
h
ip

-s
e
q

Fh
l1

 i
n
 v

it
ro

Relative score [mixed units]

N
u
cl

e
o
so

m
e
s

in
 W

T
If

h
1
 C

h
ip

-s
e
q

U
p
st

re
a
m

D
o
w

n
st

re
a
m

S
co

ri
n
g
 t

ra
ck

In
te

g
ra

l
T
S
S
 d

is
ta

n
ce

v
a
l

1
0

0
0

 [
b
p
]

5
0

0
 [

b
p
]

R
N

A
 P

o
l2

 C
h
ip

-s
e
c

T
ru

e
Fa

ls
e

1
0

0
0

8
0

0
6

0
0

4
0

0
2

0
0

0
2

0
0

4
0

0
D

is
ta

n
ce

 f
ro

m
 T

S
S
 [

b
a
se

 p
a
ir

s]

R
N

A
 P

o
l2

 C
h
ip

-s
e
c

D
N

A
 f

o
o
tp

ri
n
ts

C
a
te

g
o
ry

 1
 o

u
t

o
f

3
 -

 R
N

A
 P

o
l2

 C
h
ip

-s
e
c

(p
e
a
k

in
te

g
ra

l)
 -

 S
co

re
s

a
re

 m
e
a
n
e
d
 o

v
e
r

5
6

 w
in

d
o
w

s
W

e
d
 J
u
n
 2

3
 1

2
:0

8
:0

4
 2

0
1

0

G
e
n
e
 g

ro
u
p
 g

ra
p
h
 o

n
 "

Y
e
a
st

 R
P
 g

e
n
e
s"

R
a
p
1
 C

h
ip

-s
e
q

R
a
p
1
 i
n
 v

it
ro

Fh
l1

 C
h
ip

-s
e
q

Fh
l1

 i
n
 v

it
ro

Relative score [mixed units]

N
u
cl

e
o
so

m
e
s

in
 W

T
If

h
1
 C

h
ip

-s
e
q

U
p
st

re
a
m

D
o
w

n
st

re
a
m

S
co

ri
n
g
 t

ra
ck

In
te

g
ra

l
T
S
S
 d

is
ta

n
ce

v
a
l

1
0

0
0

 [
b
p
]

5
0

0
 [

b
p
]

R
N

A
 P

o
l2

 C
h
ip

-s
e
c

T
ru

e
Fa

ls
e

1
0

0
0

8
0

0
6

0
0

4
0

0
2

0
0

0
2

0
0

4
0

0
D

is
ta

n
ce

 f
ro

m
 T

S
S
 [

b
a
se

 p
a
ir

s]

R
N

A
 P

o
l2

 C
h
ip

-s
e
c

D
N

A
 f

o
o
tp

ri
n
ts

C
a
te

g
o
ry

 2
 o

u
t

o
f

3
 -

 R
N

A
 P

o
l2

 C
h
ip

-s
e
c

(p
e
a
k

in
te

g
ra

l)
 -

 S
co

re
s

a
re

 m
e
a
n
e
d
 o

v
e
r

4
9

 w
in

d
o
w

s
W

e
d
 J
u
n
 2

3
 1

2
:0

8
:0

5
 2

0
1

0

G
e
n
e
 g

ro
u
p
 g

ra
p
h
 o

n
 "

Y
e
a
st

 R
P
 g

e
n
e
s"

R
a
p
1
 C

h
ip

-s
e
q

R
a
p
1
 i
n
 v

it
ro

Fh
l1

 C
h
ip

-s
e
q

Fh
l1

 i
n
 v

it
ro

Relative score [mixed units]

N
u
cl

e
o
so

m
e
s

in
 W

T
If

h
1
 C

h
ip

-s
e
q

U
p
st

re
a
m

D
o
w

n
st

re
a
m

S
co

ri
n
g
 t

ra
ck

In
te

g
ra

l
T
S
S
 d

is
ta

n
ce

v
a
l

1
0

0
0

 [
b
p
]

5
0

0
 [

b
p
]

R
N

A
 P

o
l2

 C
h
ip

-s
e
c

T
ru

e
Fa

ls
e

1
0

0
0

8
0

0
6

0
0

4
0

0
2

0
0

0
2

0
0

4
0

0
D

is
ta

n
ce

 f
ro

m
 T

S
S
 [

b
a
se

 p
a
ir

s]

R
N

A
 P

o
l2

 C
h
ip

-s
e
c

D
N

A
 f

o
o
tp

ri
n
ts

C
a
te

g
o
ry

 3
 o

u
t

o
f

3
 -

 R
N

A
 P

o
l2

 C
h
ip

-s
e
c

(p
e
a
k

in
te

g
ra

l)
 -

 S
co

re
s

a
re

 m
e
a
n
e
d
 o

v
e
r

2
6

 w
in

d
o
w

s
W

e
d
 J
u
n
 2

3
 1

2
:0

8
:0

6
 2

0
1

0

F
ig

u
re

42
:
T
he

13
1
w
in
do

w
s
of

in
te
re
st

ar
e
cl
us
te
re
d
in
to

3
ca
te
go
ri
es

ac
co
rd
in
g
to

th
e
in
te
ns
it
y
of

th
e
P
ol
II

si
gn

al
.
T
he

st
re
ng

th
of

th
e
R
ap

1,
F
hl
1
an

d
If
hl
1

si
gn

al
s
do

n’
t
se
em

to
no

ti
ce
ab

ly
aff

ec
t
th
e
le
ve
l
of

tr
an

sc
ri
pt
io
n.

H
ow

ev
er
,
th
e
th
ir
d
ca
te
go
ry
,
w
he
re

tr
an

sc
ri
pt
io
n
is

hi
gh

es
t,

se
em

s
to

in
di
ca
te

th
at

w
he
n
th
e
th
re
e
tr
an

sc
ri
pt
io
n
fa
ct
or
s
ar
e
bo

un
d
at

pr
ec
is
el
y
-1
80

or
-3
20

ba
se

pa
ir
s
fr
om

th
e
T
SS

,
th
e
po

ly
m
er
as
e
ac
ti
vi
ty

is
up

re
gu

la
te
d.

In
de
ed
,m

os
t
of

th
e
w
in
do

w
s
w
he
re

an
y
of

th
e
tr
an

sp
ir
at
io
n
fa
ct
or
s
ar
e
bo

un
d
fu
rt
he
r
up

st
re
am

ar
e
cl
us
te
re
d
in

th
e
fir
st

or
se
co
nd

ca
te
go
ry

w
he
re

th
e
P
ol
II

si
gn

al
is

w
ea
ke
st
.

7.2 Contact

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 47 of 55

7 CONCLUSION

7
0

0
0

0
7

5
0

0
0

8
0

0
0

0
8

5
0

0
0

9
0

0
0

0
9

5
0

0
0

1
0

0
0

0
0

In
te

g
ra

l
o
f

si
g
n
a
l
[a

rb
it

ra
ty

 u
n
it

s]

01234567

Count of occurance [windows]

G
ra

p
h
 o

f
sc

o
re

s
a
n
d
 c

a
te

g
o
ri

e
s

C
a
te

g
o
ry

 1
C

a
te

g
o
ry

 2
C

a
te

g
o
ry

 3

N
u
cl

e
o
so

m
e
s

in
 W

T
G

e
n
e
 g

ro
u
p
 g

ra
p
h
 o

n
 "

Y
e
a
st

 R
P
 g

e
n
e
s"

R
a
p
1
 C

h
ip

-s
e
q

R
a
p
1
 i
n
 v

it
ro

Fh
l1

 C
h
ip

-s
e
q

Fh
l1

 i
n
 v

it
ro

Relative score [mixed units]

N
u
cl

e
o
so

m
e
s

in
 W

T
If

h
1
 C

h
ip

-s
e
q

U
p
st

re
a
m

D
o
w

n
st

re
a
m

S
co

ri
n
g
 t

ra
ck

In
te

g
ra

l
T
S
S
 d

is
ta

n
ce

v
a
l

1
0
0
0
 [

b
p
]

5
0
0
 [

b
p
]

N
u
cl

e
o
so

m
e
s

in
 W

T
T
ru

e
Fa

ls
e

1
0

0
0

8
0

0
6

0
0

4
0

0
2

0
0

0
2

0
0

4
0

0
D

is
ta

n
ce

 f
ro

m
 T

S
S
 [

b
a
se

 p
a
ir

s]

R
N

A
 P

o
l2

 C
h
ip

-s
e
c

D
N

A
 f

o
o
tp

ri
n
ts

C
a
te

g
o
ry

 1
 o

u
t

o
f

3
 -

 N
u
cl

e
o
so

m
e
s

in
 W

T
 (

p
e
a
k

in
te

g
ra

l)
 -

 S
co

re
s

a
re

 m
e
a
n
e
d
 o

v
e
r

5
6

 w
in

d
o
w

s
W

e
d
 J
u
n
 2

3
 1

2
:0

7
:5

8
 2

0
1

0

G
e
n
e
 g

ro
u
p
 g

ra
p
h
 o

n
 "

Y
e
a
st

 R
P
 g

e
n
e
s"

R
a
p
1
 C

h
ip

-s
e
q

R
a
p
1
 i
n
 v

it
ro

Fh
l1

 C
h
ip

-s
e
q

Fh
l1

 i
n
 v

it
ro

Relative score [mixed units]

N
u
cl

e
o
so

m
e
s

in
 W

T
If

h
1
 C

h
ip

-s
e
q

U
p
st

re
a
m

D
o
w

n
st

re
a
m

S
co

ri
n
g
 t

ra
ck

In
te

g
ra

l
T
S
S
 d

is
ta

n
ce

v
a
l

1
0
0
0
 [

b
p
]

5
0
0
 [

b
p
]

N
u
cl

e
o
so

m
e
s

in
 W

T
T
ru

e
Fa

ls
e

1
0

0
0

8
0

0
6

0
0

4
0

0
2

0
0

0
2

0
0

4
0

0
D

is
ta

n
ce

 f
ro

m
 T

S
S
 [

b
a
se

 p
a
ir

s]

R
N

A
 P

o
l2

 C
h
ip

-s
e
c

D
N

A
 f

o
o
tp

ri
n
ts

C
a
te

g
o
ry

 2
 o

u
t

o
f

3
 -

 N
u
cl

e
o
so

m
e
s

in
 W

T
 (

p
e
a
k

in
te

g
ra

l)
 -

 S
co

re
s

a
re

 m
e
a
n
e
d
 o

v
e
r

5
0

 w
in

d
o
w

s
W

e
d
 J
u
n
 2

3
 1

2
:0

7
:5

9
 2

0
1

0

G
e
n
e
 g

ro
u
p
 g

ra
p
h
 o

n
 "

Y
e
a
st

 R
P
 g

e
n
e
s"

R
a
p
1
 C

h
ip

-s
e
q

R
a
p
1
 i
n
 v

it
ro

Fh
l1

 C
h
ip

-s
e
q

Fh
l1

 i
n
 v

it
ro

Relative score [mixed units]

N
u
cl

e
o
so

m
e
s

in
 W

T
If

h
1
 C

h
ip

-s
e
q

U
p
st

re
a
m

D
o
w

n
st

re
a
m

S
co

ri
n
g
 t

ra
ck

In
te

g
ra

l
T
S
S
 d

is
ta

n
ce

v
a
l

1
0
0
0
 [

b
p
]

5
0
0
 [

b
p
]

N
u
cl

e
o
so

m
e
s

in
 W

T
T
ru

e
Fa

ls
e

1
0

0
0

8
0

0
6

0
0

4
0

0
2

0
0

0
2

0
0

4
0

0
D

is
ta

n
ce

 f
ro

m
 T

S
S
 [

b
a
se

 p
a
ir

s]

R
N

A
 P

o
l2

 C
h
ip

-s
e
c

D
N

A
 f

o
o
tp

ri
n
ts

C
a
te

g
o
ry

 3
 o

u
t

o
f

3
 -

 N
u
cl

e
o
so

m
e
s

in
 W

T
 (

p
e
a
k

in
te

g
ra

l)
 -

 S
co

re
s

a
re

 m
e
a
n
e
d
 o

v
e
r

2
5

 w
in

d
o
w

s
W

e
d
 J
u
n
 2

3
 1

2
:0

8
:0

0
 2

0
1

0

F
ig

u
re

43
:
T
he

13
1
w
in
do

w
s
of

in
te
re
st

ar
e
cl
us
te
re
d
in
to

3
ca
te
go
ri
es

ac
co
rd
in
g
to

th
e
in
te
ns
it
y
of

th
e
nu

cl
eo
so
m
e
si
gn

al
.
A
s
ex
pe

ct
ed

,
th
e
nu

cl
eo
so
m
e

en
ri
ch
m
en
t
da

ta
st
ro
ng

ly
pr
ed
ic
ts

th
e
le
ve
lo

f
bi
nd

in
g
of

th
e
th
re
e
tr
an

sp
ir
at
io
n
fa
ct
or
s.

T
he

fir
st

ca
te
go
ry

w
he
re

th
e
in
te
gr
al

of
nu

cl
eo
so
m
e
si
gn

al
is

lo
w
es
t
in
di
ca
te
s
a
lo
os
er

pa
ck
in
g
of

D
N
A
,
an

d
th
us

in
du

ce
s
hi
gh

er
bi
nd

in
g
of

R
ap

1,
F
hl
1
an

d
If
h1

.

REFERENCES

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 48 of 55

REFERENCES

References
[1] Apple Human Interface Guidelines: The Apple Desktop Interface. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1993.

[2] Nat meth; micrococcal nuclease-southern blot assay. 2(9):719–720, 2005.

[3] Hdf5 is a data model, library, and file format for storing and managing data. http://www.
hdfgroup.org/HDF5/, 2009.

[4] IPython’s multiengine interface. http://ipython.scipy.org/doc/manual/html/
parallel/parallel_multiengine.html, 2010.

[5] SGD project - Saccharomyces Genome Database. http://www.yeastgenome.org/, 2010.

[6] Wikipedia, the free encyclopedia. Jul 2010.

[7] Francesc Alted, Ivan Vilata, et al. PyTables: Hierarchical datasets in Python. http:
//www.pytables.org/, 2002–.

[8] Apple. Open source - WebKit. http://developer.apple.com/opensource/internet/
webkit.html, 2010.

[9] David Ascher, Paul F. Dubois, Konrad Hinsen, James Hugunin, and Travis Oliphant. Nu-
merical Python. Lawrence Livermore National Laboratory, Livermore, CA, ucrl-ma-128569
edition, 1999.

[10] Gwenael Badis, Esther T Chan, Harm van Bakel, Lourdes Pena-Castillo, Desiree Tillo, Kyle
Tsui, Clayton D Carlson, Andrea J Gossett, Michael J Hasinoff, Christopher L Warren,
Marinella Gebbia, Shaheynoor Talukder, Ally Yang, Sanie Mnaimneh, Dimitri Terterov,
David Coburn, Ai Li Yeo, Zhen Xuan Yeo, Neil D Clarke, Jason D Lieb, Aseem Z Ansari,
Corey Nislow, and Timothy R Hughes. A library of yeast transcription factor motifs reveals
a widespread function for rsc3 in targeting nucleosome exclusion at promoters. Mol Cell,
32(6):878–87, Dec 2008.

[11] Artem Barski and Keji Zhao. Genomic location analysis by chip-seq. J Cell Biochem,
107(1):11–8, May 2009.

[12] Shay Ben-Aroya, Candice Coombes, Teresa Kwok, Kathryn A O’Donnell, Jef D Boeke,
and Philip Hieter. Toward a comprehensive temperature-sensitive mutant repository of the
essential genes of saccharomyces cerevisiae. Mol Cell, 30(2):248–58, Apr 2008.

[13] Daniel Blankenberg, Gregory Von Kuster, Nathaniel Coraor, Guruprasad Ananda, Ross
Lazarus, Mary Mangan, Anton Nekrutenko, and James Taylor. Galaxy: a web-based genome
analysis tool for experimentalists. Curr Protoc Mol Biol, Chapter 19:Unit 19.10.1–21, Jan
2010.

[14] Egon Börger and Wolfram Schulte. Defining the java virtual machine as platform for prov-
ably correct java compilation. pages 17–35, 1998.

[15] Reinhard Engels. Argo Genome Browser website. http://www.broadinstitute.org/
annotation/argo/, 2010.

http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
http://ipython.scipy.org/doc/manual/html/parallel/parallel_multiengine.html
http://ipython.scipy.org/doc/manual/html/parallel/parallel_multiengine.html
http://www.yeastgenome.org/
http://www.pytables.org/
http://www.pytables.org/
http://developer.apple.com/opensource/internet/webkit.html
http://developer.apple.com/opensource/internet/webkit.html
http://www.broadinstitute.org/annotation/argo/
http://www.broadinstitute.org/annotation/argo/

REFERENCES

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 49 of 55

REFERENCES

[16] Reinhard Engels, Tamara Yu, Chris Burge, Jill P Mesirov, David DeCaprio, and James E
Galagan. Combo: a whole genome comparative browser. Bioinformatics, 22(14):1782–3, Jul
2006.

[17] Rhead et al. The UCSC genome browser database: update 2010. Nucleic Acids Res,
38(Database issue):D613–9, Jan 2010.

[18] Free Software Foundation. GNU Lesser General Public License. http://www.gnu.org/
licenses/lgpl.html.

[19] Vicente Galiano, Héctor Migallón, Violeta Migallón, and Jose Penadés. Pypnetcdf: A high
level framework for parallel access to netcdf files. Advances in Engineering Software, July
2009.

[20] genoviz. Creating a quickload directory. http://sourceforge.net/apps/trac/genoviz/
wiki/Creating%20a%20QuickLoad%20Directory.

[21] Belinda Giardine, Cathy Riemer, Ross C Hardison, Richard Burhans, Laura Elnitski, Prachi
Shah, Yi Zhang, Daniel Blankenberg, Istvan Albert, James Taylor, Webb Miller, W James
Kent, and Anton Nekrutenko. Galaxy: a platform for interactive large-scale genome analysis.
Genome Res, 15(10):1451–5, Oct 2005.

[22] Jay R Hesselberth, Xiaoyu Chen, Zhihong Zhang, Peter J Sabo, Richard Sandstrom, Alex P
Reynolds, Robert E Thurman, Shane Neph, Michael S Kuehn, William S Noble, Stanley
Fields, and John A Stamatoyannopoulos. Global mapping of protein-dna interactions in
vivo by digital genomic footprinting. Nat Methods, 6(4):283–9, Apr 2009.

[23] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering,
9(3):90–95, 2007.

[24] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for
Python, 2001–.

[25] W James Kent. Blat–the blast-like alignment tool. Genome Res, 12(4):656–64, Apr 2002.

[26] Philippe Lefrançois, Ghia M Euskirchen, Raymond K Auerbach, Joel Rozowsky, Theodore
Gibson, Christopher M Yellman, Mark Gerstein, and Michael Snyder. Efficient yeast chip-
seq using multiplex short-read dna sequencing. BMC Genomics, 10:37, 2009.

[27] Robin Dowell Lincoln D. Stein, Sean Eddy. Distributed sequence annotation system (DAS).
http://www.biodas.org/documents/spec-1.53.html, March 2002.

[28] Sebastian J Maerkl and Stephen R Quake. A systems approach to measuring the binding
energy landscapes of transcription factors. Science, 315(5809):233–7, Jan 2007.

[29] John W Nicol, Gregg A Helt, Steven G Blanchard, Jr, Archana Raja, and Ann E Loraine.
The integrated genome browser: free software for distribution and exploration of genome-
scale datasets. Bioinformatics, 25(20):2730–1, Oct 2009.

[30] C. Pilato, Ben Collins-Sussman, and Brian Fitzpatrick. Version Control with Subversion.
O’Reilly Media, Inc., 2008.

[31] Aaron R Quinlan and Ira M Hall. Bedtools: a flexible suite of utilities for comparing genomic
features. Bioinformatics, 26(6):841–2, Mar 2010.

http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://sourceforge.net/apps/trac/genoviz/wiki/Creating%20a%20QuickLoad%20Directory
http://sourceforge.net/apps/trac/genoviz/wiki/Creating%20a%20QuickLoad%20Directory
http://www.biodas.org/documents/spec-1.53.html

REFERENCES

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 50 of 55

REFERENCES

[32] Joel E Richardson. fjoin: simple and efficient computation of feature overlaps. J Comput
Biol, 13(8):1457–64, Oct 2006.

[33] Michael Schindler. Szip is a freeware portable general purpose lossless compression program.
http://www.compressconsult.com/szip/, 2010.

[34] Mitchell E Skinner, Andrew V Uzilov, Lincoln D Stein, Christopher J Mungall, and Ian H
Holmes. Jbrowse: a next-generation genome browser. Genome Res, 19(9):1630–8, Sep 2009.

[35] James Taylor. bx-python. http://bitbucket.org/james_taylor/bx-python/wiki/Home,
2010.

[36] James Taylor, Svitlana Tyekucheva, David C King, Ross C Hardison, Webb Miller, and
Francesca Chiaromonte. Esperr: learning strong and weak signals in genomic sequence
alignments to identify functional elements. Genome Res, 16(12):1596–604, Dec 2006.

[37] Anton Valouev, David S Johnson, Andreas Sundquist, Catherine Medina, Elizabeth An-
ton, Serafim Batzoglou, Richard M Myers, and Arend Sidow. Genome-wide analysis of
transcription factor binding sites based on chip-seq data. Nat Methods, 5(9):829–34, Sep
2008.

[38] G. van Rossum et al. Python Language Website. http://www.python.org/, 2010.

[39] Joseph T Wade, Daniel B Hall, and Kevin Struhl. The transcription factor ifh1 is a key
regulator of yeast ribosomal protein genes. Nature, 432(7020):1054–8, Dec 2004.

[40] J R Warner. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci,
24(11):437–40, Nov 1999.

[41] Yong Zhang, Tao Liu, Clifford A Meyer, Jérôme Eeckhoute, David S Johnson, Bradley E
Bernstein, Chad Nussbaum, Richard M Myers, Myles Brown, Wei Li, and X Shirley Liu.
Model-based analysis of chip-seq (macs). Genome Biol, 9(9):R137, 2008.

http://www.compressconsult.com/szip/
http://bitbucket.org/james_taylor/bx-python/wiki/Home
http://www.python.org/

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 51 of 55

A GLOSSARY

A Glossary
Standard abbreviations found in the biologist’s lexicon as well as the computer scientist jargon
will be used in this report. A non-exhaustive list of this vocabulary is provided here.

A.1 Biological
TF: Transcription factor.
RP: Ribosomal proteins.
BP: Base pair.
GO: Gene ontology.
TSS: Transcription start site (a location on a chromosome).
TTS: Transcriptional termination site (a location on a chromosome).
UTR: Untranslated region (located on an mRNA).
ORF: Open reading frame (potentially encodes a protein).
WT: Wild-type (non-mutated strain).
KO: Knock-out (muted or special strain, one or several genes silenced).

S. cer: Saccharomyces Cerevisiae (standard budding yeast model organism).
MNase: Micrococcal nuclease (special DNA digestion enzyme).

A.2 Proteins
Rap1: Ras-proximate (repressor-activator) one.
Fhl1: Fork-head like one.
Ifh1: Interacts with fork-head like one.

Hom1: High mobility group/box one.

A.2.1 Informatics

Track: One genomic data set organized in a linear fashion covering one or several chromosomes.
I/O: Input and output.
SVN: Subversion (revision control system).
JVM: Java Virtual Machine.
DAS: Distributed Annotation System.
MD5: Message Digest algorithm, version 5 (cryptographic hash function).

UCSC: University of Santa Cruz’s genome browser.
AGB: Argo genome browser (Broad Institute).
IGB: Integrated genome browser (Bioviz).
GDV: Genomic data viewer (BBCF’s project).
SGD: Saccharomyces Genome Database.

PWM: Position weight matrix.

A.3 File Formats
BED: RegionMiner Genomic Regions File (Genomatix Software GmbH).
GFF: General Feature Format.
WIG: Wiggle format.

FASTA: Nucleotide sequences (a.k.a. Pearson format).

A.4 Other

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 52 of 55

B CODE

HDF5: Hierarchical data format, version 5.
INI: De facto standard for configuration files.

PDF: Portable document format.
PNG: Portable network graphics.

A.4 Other
BBCF: Bioinformatics and Biostatistics Core Facility (PTBB in French).

B Code
In this appendix section, a few snippets of relevant python code are provided.

B.1 Base coverage
This function takes a list with n rows and 2 columns. Column one is the feature start, column two is
the feature end. It returns the base coverage calculated in C.

1 def get_base_coverage_in_c(f):
2 ’’’This will contain the result’’’
3 res = [0]
4
5 ’’’Declare C++ function’’’
6 code = """
7 int dist = 0;
8 int me = −1;
9

10 for (int i=0; i<f.length(); i++) {
11 if (int(f[i][1]) <= me) {}
12 else {
13 if (int(f[i][0]) < me) {
14 dist += int(f[i][1]) − me;
15 me = int(f[i][1]);
16 } else {
17 dist += int(f[i][1]) − int(f[i][0]);
18 me = int(f[i][1]);
19 }
20 }
21 }
22
23 res[0] = dist;
24 """
25
26 ’’’Execute it’’’
27 err = weave.inline(code, [’f’, ’res’], type_converters=weave.converters.

blitz)
28
29 ’’’Return results’’’
30 return res[0]

B.2 Pieces of overlap

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 53 of 55

B CODE

B.2 Pieces of overlap
Takes two tracks and computes the overlap by pieces using a modified version of fjoin.

1 def make_overlap_pieces(track1, track2, chr):
2 def go():
3 """fjoin’s main loop. On each iteration, advance
4 the lagging stream, and scan the opposite window.
5 Returns the overlapping features."""
6 Wx = []
7 Wy = []
8 X = SentinelIterator(track1)
9 Y = SentinelIterator(track2)

10 x = X.next()
11 y = Y.next()
12 while x[0] is not sys.maxint or y[0] is not sys.maxint:
13 if x[0] < y[0]:
14 scan(x, Wx, y, Wy, 0)
15 x = X.next()
16 else:
17 scan(y, Wy, x, Wx, 1)
18 y = Y.next()
19 def scan(f, Wf, g, Wg, lastPick):
20 """Scans window Wg for features overlapping f.
21 May remove features from Wg. May add f to Wf."""
22 g_index = 0
23 while g_index < len(Wg):
24 g_current = Wg[g_index]
25 if leftOf(g_current, f):
26 Wg.pop(g_index)
27 else:
28 g_index = g_index + 1
29 if overlaps(g_current, f):
30 output.append([chr, max(f[0],g_current[0]), min(f[1],

g_current[1]), f[2] + " with " + g_current[2], 0.0, "
."])

31 if not leftOf(f, g):
32 Wf.append(f)
33
34 def leftOf(a, b):
35 """Returns true iff a is left of position b"""
36 return (a[1] < b[0])
37
38 def overlaps(a, b):
39 """If a and b overlap returns. Otherwise, returns None."""
40 return min(a[1],b[1]) − max(a[0],b[0]) > 0
41
42 class SentinelIterator:
43 def __init__(self, obj):
44 self.custom_iterator=obj.__iter__()
45 def next(self):
46 try:
47 return self.custom_iterator.next()
48 except StopIteration:

B.3 Overlap

Student: Lucas Sinclair
Supervisor: Jacques Rougemont
Bioinformatics & Biostatistics Core Facility

Master project report
June 24, 2010
Page 54 of 55

B CODE

49 return [sys.maxint, sys.maxint]
50
51 ’’’This will contain the result’’’
52 output = []
53
54 ’’’Call fjoin function’’’
55 go()
56
57 ’’’Return results’’’
58 return output

B.3 Overlap
Takes two tracks and computes the uncommutable overlap.

1 def make_overlap(track1, track2, chr):
2 ’’’This will contain the result’’’
3 output = []
4
5 ’’’Prepare variables’’’
6 continue_loop = True
7 X = SentinelIterator(track1)
8 Y = SentinelIterator(track2)
9

10 ’’’Read first features’’’
11 y = Y.next()
12 if y == [sys.maxint, sys.maxint]: continue_loop = False
13 x = X.next()
14 if x == [sys.maxint, sys.maxint]: continue_loop = False
15
16 ’’’Main loop’’’
17 while continue_loop:
18 open_window = y[0]
19 close_window = y[1]
20
21 ’’’Extend the y window as long as possible’’’
22 while True:
23 if y == [sys.maxint, sys.maxint]: break
24 y = Y.next()
25 if y[0] > close_window: break
26 if y[1] > close_window: close_window = y[1]
27
28 ’’’Read features from x until overshooting the y window’’’
29 while True:
30 if x[0] >= close_window: break
31 if x[1] > open_window: output.append([chr, x[0], x[1], x[2], x

[3], x[4]])
32 x = X.next()
33 if x == [sys.maxint, sys.maxint]:
34 continue_loop = False
35 break
36
37 ’’’Return results’’’
38 return output

	Abstract
	Introduction
	Context
	Motivation
	Problem description
	Application

	Background
	Visualization
	Data processing/mining
	Formats
	Techniques

	Global context
	Description
	JBrowse
	Interface
	Extension
	Expansion

	Contributions to the project
	Description
	Interface
	Descriptive statistics
	Genomic data manipulation
	Technologies and Infrastructure
	Performance
	Future work

	Application with real data
	Description
	Context
	Datasets
	Upstream regions
	Clustering
	Results

	Conclusion
	Closing words
	Contact

	References
	Glossary
	Biological
	Proteins
	File Formats
	Other

	Code
	Base coverage
	Pieces of overlap
	Overlap

