Dark decay of holograms in photorefractive polymers

Reinhard Bittner and Klaus Meerholz
Chemistry Department, Physical Chemistry, University of Munich, Butenandtstr. 11, D-81377 Munich, Germany

Gregory Steckman and Demetri Psaltis
California Institute of Technology, 1200 E. California Boulevard, MS 136-93, Pasadena, California 91125

(Received 20 December 2001; accepted for publication 14 May 2002)

The decay of holograms stored in photorefractive polymer composites based on poly(N-vinyl-carbazole) with and without extrinsic deep traps is investigated. The photorefractive phase shift is identified as one of the key parameters determining the dark decay dynamics. This has important implications for all kinds of photorefractive imaging applications including holographic data storage. A trade off will be required between accepting a certain degree of hologram distortion due to two-beam coupling on the one hand and achieving high hologram stability during idle periods in the dark with the external field applied on the other. © 2002 American Institute of Physics. [DOI: 10.1063/1.1492848]

The photorefractive (PR) effect is one of the most promising reversible holographic storage mechanisms. Under nonuniform illumination, the refractive index of the photosensitive material is modulated due to the generation of mobile charge carriers in the bright regions, their subsequent redistribution, and eventual trapping in the dark areas. This gives rise to a space-charge field E_{SC}, which modulates the refractive index of the material through the linear electrooptic effect and orientational effects. Photorefractivity in amorphous polymers has been intensively investigated, and these systems have been widely recognized as potential active media in rewritable holographic optical memories for security applications, in associative memories, or in adaptive ultrasound sensors. Due to the rather low dielectric constants of polymers ($\varepsilon < 10$), oppositely charged carriers show a rather strong tendency to recombine. As a result, only rather short storage times are anticipated. However, so far, the dark decay (referred to as “dd” hereafter) of the holograms in periods when the system is idle, i.e., held in the dark with the external field still applied, has been mostly neglected in literature on organic PR materials, even though it is important for the aforementioned applications. In this letter, we present systematic investigations of the dd of PR gratings in PR polymers. Our results will give evidence that the phase shift between the interference pattern and the recorded index grating, the commonly accepted fingerprint of photorefractivity, is one of the key parameters, yielding slower dd for a larger phase shift.

The investigated materials contained the photoconductor poly(N-vinylcarbazole) (PVK, 39 wt%), the plasticizer N-ethylcarbazole (10 wt%), the eutectic mixture of two EO chromophores 2,5-dimethyl-4(p-nitrophenylazo)-anisole (25 wt%), and 3-methoxy-4(p-nitrophenylazo)-anisole (25 wt%), and finally the sensitizer 2,4,7-trinitro-fluorenone (TNF, 1 wt%). We also prepared a similar material doped with 0.82 wt% (replacing PVK) of the commonly used hole conductor N,N’-bis(3-tolyl)-N,N’-diphenyl-benzidine (TPD), whose highest occupied molecular orbital levels are situated about 0.5 eV below those of PVK. Thus, TPD moieties constitute deep traps within the carbazole transport manifold, and therefore a longer storage time was expected. We refer to the materials as “C” without and “CT” with extrinsic traps. The glass-transition temperature was $T_g = 14^\circ$C (differential scanning calorimetry, heating rate 20 K/min) for both composites. The devices were sandwich structures of the PR composites between two transparent indium-tin-oxide-coated glass slides. The active layer thickness was $d = 125 \mu$m.

To determine the performance of the investigated materials degenerate four-wave-mixing and two-beam-coupling experiments were carried out using a HeNe laser ($\lambda_0 = 633$ nm). Holograms were recorded in tilted configuration with s-polarized writing beams (external tilt angles $\alpha_1 = 50^\circ$ and $\alpha_2 = 70^\circ$, respectively, with respect to the sample normal). The internal intensities of the writing beams as determined from the half height width of their Gaussian profiles were similar ($I_1 = I_2$), yielding a grating contrast close to unity. Prior to the writing process an electric field E_0 was applied to the device, which was also preilluminated for 30 min by beam 2. Hereafter, beam 1 was switched on, and after writing the grating for a certain time t_{sec} both beams were switched off simultaneously.

The recorded hologram was probed by a p-polarized beam counterpropagating to beam 1. Due to the erasure of the PR grating upon uniform illumination, we took the following precautions to reasonably approximate “real” dd: First, the reading beam had more than 3 (at lowest recording intensity) up to more than 5 (at highest recording intensity) orders of magnitude lower time-averaged intensity (~ 250 nW/cm2) than the recording beams. Second, the read beam was only applied from time to time using a fast magnetical shutter. Between the readouts, the sample was held in the dark. Overall, the read beam was on for less than 8% of the total time the grating decay was monitored. The read beam

aNew address: Physical Chemistry Department, University Cologne, Luxemburgerstr. 116, 50939 Cologne, Germany.
bElectronic mail: klaus.meerholz@uni-koeln.de

DOI: 10.1063/1.1492848
was chopped, and the internal diffraction efficiency η_{int} was determined utilizing lock-in amplifiers. η_{int} was calculated according to:

$$\eta_{int}=I_D/(I_D+I_T).$$

with I_D as the power of the diffracted and I_T as the power of the transmitted reading beam. From the η_{int}, we calculated the refractive index modulation Δn_p according to

$$\Delta n_p=(\sin \sqrt{\eta_{int}} \cdot (\cos \alpha_1 + \cos \alpha_2) \cdot \lambda_0^\prime)/(2 \cdot \pi \cdot d).$$

The PR gain coefficient Γ_s was calculated according to

$$\Gamma_s=d^{-1}[-\ln(I_1/I_{10})\cos \alpha_1 - \ln(I_2/I_{20})\cos \alpha_2].$$

Here $I_{1,2}$ are the intensities of the recording beams 1 and 2 after passing the device, and $I_{1,0}$ are the corresponding values without grating. Estimates of the phase shift ϕ were obtained by substituting Δn_s and Γ in

$$\phi=\sin(\Gamma_s, \lambda_0)/(2 \pi \Delta n_s),$$

accounting for the polarization anisotropy of the chromophores $(\Delta n_p/\Delta n_s=-2.2)$. The experimental data were normalized to the index modulation achieved at the end of recording and fitted by bi- or triexponential decay functions. In order to obtain a unified measure for the general decay dynamics, we calculated the combined logarithmic averages of the relaxation times $\langle \tau \rangle$ according to

$$\langle \tau \rangle=\exp \left(\sum_i A_i \cdot \ln \tau_i \right); \sum_i A_i=1.$$}

The dd kinetics was found to be at least two orders of magnitude slower than the relaxation of the orientational order of the dipoles in the material. The latter was similar in both materials as determined by independent transmission ellipsometric experiments. This proves that the grating decay is governed exclusively by the decay of the PR space-charge field, i.e., essentially by the recombination of oppositely charged carriers. The decay curves exhibit multieponential behavior in contrast to earlier results on a low-molecular-weight glass, where a simple monoexponential behavior was observed. However, these latter results are somewhat questionable, since the read beam was rather strong and applied at all times. Therefore, low intensity erase was performed rather than a reasonable approximation of dark decay.

According to a theoretical framework proposed by Cui et al. covering the erase process in PVK-based PR polymers, the (thermal) detrapping coefficient α_T determines the PR grating decay kinetics for the case of vanishing zero-order hole density, which also applies to the dd. Presuming charged sensitizers as the dominant PR trap species, Poole-Frenkel behavior is implied for the field dependence of α_T leading to accelerated dd as a function of increasing external field E_0. Our findings agree with these considerations, however, the dependence is much more pronounced in material CT as compared to C [Fig. 1(a)].

Surprisingly, the dd is faster in material CT than in C, whereas the recording process is much slower (about a factor of 5–6) in CT. The latter is in general agreement with earlier results reported by Malliara et al. This finding may indicate, that even though the TPD content is small (about 10^{21} cm$^{-1}$, one extrinsic trap per 100 transporting sites) it may contribute to charge transport in the dark. By contrast, the photoconductivity proceeds through the cabazole manifold and is hindered by the trapping in TPD, and therefore the recording in CT is slower than in C.

It was even more striking that in both materials, the dd depended strongly on the intensity of the recording (!) beams $I_{rec}=I_1+I_2$ [Fig. 1(b)]. Since at a given E_0, the thermal detrapping coefficient is a characteristic material constant, we propose that the recombination of charge carriers might depend on the displacement Δ between the positive and negative carrier distributions. Assuming that the negative carriers were immobile and would remain on the TNF sites where they were initially generated, in zero-order approximation (i.e., neglecting recombination effects), the PR phase shift ϕ would correspond to half of the displacement Δ and could, therefore, serve as a qualitative measure for Δ. Accordingly, a larger ϕ would reflect a larger Δ with reduced mutual overlap between of the positive and negative carrier clouds and, thus, a reduced number of potential recombination sites available near a mobile charge carrier. As a result, the average number of recombination events should be reduced, and the dd would take longer. We estimated ϕ from concomitant gain measurements during recording using Eq. (4). Indeed, ϕ increases strongly with decreasing I_{rec} [Fig. 1(c)].
dependence on the estimated phase shifts. We may estimate that the longest
materials indicates that the PR phase shift represents a dominant
observed trend is consistent even for both investigated mate-
materials. 7, 17 Therefore, we expected a similar influence on
maximum phase shift of 90°.

mostly remarkably—depended on the phase shift of the PR
grating. This is particularly important for the application of
PR polymers. In order to store distortion-free images, the
energy transfer between the write beams (two-beam-coupling “gain”) is undesired, because it leads to fringe bending and
contrast loss of the hologram. 1 To avoid this, small gain co-
efficients 1 are required, which are (simultaneously assum-
ing large index modulation amplitudes) correlated with small
PR phase shifts. The latter, however, yield a fast dd of the
recorded information as the results in this letter clearly dem-
strate. Thus, a trade off between these counteracting trends is
necessary. The phase-shift effects may even vary in differ-
ent areas of an image (e.g., due to different intensities, fringe
visibility m, etc.), leading to time-dependent contrast and dis-
tortion of images subjected to idle periods during processing,
where dd can take place.

This work was supported by the Volkswagen Foundation
(Germany), the European Space Agency (ESA), the Fonds
der Chemischen Industrie (Germany), the Bavarian–
California Technology Center (BaCaTec, Germany), and the
Deutscher Akademischer Austauschdienst (DAAD, Ger-
many). The authors acknowledge fruitful discussions with E.
Mecher and F. GallegoGomez (both of the University of Mu-
nich).

1 Photorefractive Materials and Their Applications, edited by P. Guenther,
and G. T. Sincerbox, Holographic Data Storage, Springer Series in
3 R. Wortmann, C. Poga, R. J. Twieg, C. Geletneky, C. R. Moylan, P. M.
Lundquist, R. G. DeVoe, P. M. Cotts, H. Horn, J. E. Rice, and D. M.
6 B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambar-
7 G. Steckman, R. Bittner, K. Meerholz, and D. Psaltis, Opt. Commun. 185,
13 (2000).
10 K. Meerholz, B. Kippelen, and N. Peyghambarian, in Electrical and Optical
Polymer Systems, edited by D. L. Wise, G. E. Wnek, D. J. Trantolo,
J. D. Gresser, and T. M. Cooper (World Scientific, Singapore, 1998),
p. 571.
11 B. Kippelen, Sandalphon, K. Meerholz, and N. Peyghambarian, Appl.
(1999).
15 A. Grunet-Jepsen, D. Wright, B. Smith, M. S. Bratcher, M. S. DeClue, S.
16 G. G. Malliaras, V. V. Krasnikov, H. J. Bolink, and G. Hadzioannou,
Appl. Phys. Lett. 66, 1038 (1995); G. G. Malliaras, V. V. Krasnikov, H. J.

FIG. 2. Averaged dd time constants \(\tau_{dd} \) of material C (open symbols) and
material CT (solid symbols) as a function of the corresponding PR phase
shifts \(\phi \). Details of the particular experimental parameters are explained in
the captions of Fig. 1. The lines are to guide the eye.