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Abstract: Spectral phase conjugation with short pump pulses in a
third-order nonlinear material is analyzed in depth. It is shown that if signal
amplification is considered, the conversion efficiency can be significantly
higher than previously considered, while the spectral phase conjugation op-
eration remains accurate. A novel method of compensating for cross-phase
modulation, the main parasitic effect, is also proposed. The validity of our
theory and the performance of the spectral phase conjugation scheme are
studied numerically.
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1. Introduction

Spectral phase conjugation (SPC) [1] is the phase conjugation of individual spectral compo-
nents of an optical waveform, which is equivalent to phase conjugation and time reversal of
the pulse envelope. Joubert et al. prove that midway SPC can compensate for all chromatic
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dispersion [2]. In a recent paper we prove that midway SPC can simultaneously compensate
for self-phase modulation (SPM), self-steepening and dispersion [3]. The physical implemen-
tation of SPC is first suggested by Miller using short-pump four-wave mixing (FWM) [1], and
later demonstrated using photon echo [4, 5], spectral hole burning [6, 7], temporal holography
[2], spectral holography [8] and spectral three-wave mixing (TWM) [9]. The FWM scheme is
especially appealing to real-world applications such as communications and ultrashort pulse
delivery due to its simple setup. However, low conversion efficiency and parasitic Kerr effects
make a practical implementation difficult.

In this paper we derive an accurate expression for the output idler when the conversion effi-
ciency, defined as the output idler energy divided by the input signal energy, is high. We prove
that if signal amplification is considered, the SPC process remains intact and the conversion
efficiency can grow exponentially with respect to the cross fluence of the two pump pulses,
compared with a quadratic growth predicted in Ref. [1].

As the theoretical conversion efficiency approaches 100%, which is required for the purpose
of nonlinearity compensation, parasitic effects begin to hamper the efficiency and accuracy
of SPC. The main parasitic effect is cross-phase modulation (XPM) due to the strong pump,
a problem that similarly plagues conventional temporal phase conjugation schemes [10]. We
suggest a novel method to compensate for XPM by adjusting the phases of the pump pulses
appropriately. We show that in theory, this method can fully compensate for the XPM effect.

Finally, numerical analysis is performed to confirm our predictions about the conversion
efficiency and XPM compensation. Pump depletion is also addressed by full three-dimensional
simulations.

2. Spectral phase conjugation by four-wave mixing

A  (t)i

A  (t)s

pA   (t)

qA   (t)

x

z

Lz = −L/2 z = L/2

dχ(3)

Fig. 1. Setup of SPC by four-wave mixing. As(t) is the signal pulse, Ap(t) and Aq(t) are the
pump pulses, and Ai(t) is the backward-propagating idler pulse (After Ref. [1]).

The configuration of spectral phase conjugation by four-wave mixing introduced in Ref. [1]
is drawn in Fig. 1. Ap and Aq are the envelopes of the pump pulses propagating downward and
upward respectively, As is the forward-propagating signal envelope, and Ai is the backward-
propagating idler envelope. The coupled-mode equations that govern Ap, Aq, As and Ai can be
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derived from the wave equation and are given by

−∂Ap

∂x
+

1
vx

∂Ap

∂ t
= jγ[2AsAiA

∗
q +(|Ap|2 +2|Aq|2 +2|As|2 +2|Ai |2)Ap], (1)

∂Aq

∂x
+

1
vx

∂Aq

∂ t
= jγ[2AsAiA

∗
p +(2|Ap|2 + |Aq|2 +2|As|2 +2|Ai |2)Aq], (2)

∂As

∂z
+

1
v

∂As

∂ t
= jγ[2ApAqA∗

i +(2|Ap|2 +2|Aq|2 + |As|2 +2|Ai |2)As], (3)

−∂Ai

∂z
+

1
v

∂Ai

∂ t
= jγ[2ApAqA∗

s +(2|Ap|2 +2|Aq|2 +2|As|2 + |Ai |2)Ai ], (4)

γ =
3ω0χ (3)

8cn0
, (5)

where vx and v are group velocities in the x direction and the z direction respectively and n0

is the refractive index. Diffraction and group-velocity dispersion are neglected. The spatial
dependence of Ap on zcan also be suppressed if the illumination is uniform in zand undepleted.
If we further assume that the thickness of the medium d is much smaller than the pump pulse
width, then the dependence on the x dimension can also be neglected.

The zeroth-order solution is the linear propagation of the incoming waves. Let the zeroth-
order solution be

A(0)
p (x, t) = Ap(t), (6)

A(0)
q (x, t) = Aq(t), (7)

A(0)
s (z, t) = F(t − z

v
), (8)

A(0)
i (z, t) = 0. (9)

The first-order solution can then be obtained by substituting the zeroth-order solution into the
right-hand side of Eqs. (3) and (4). Each of Eqs. (1)-(4) has a single wave mixing term (first
term on the right-hand side) and four phase modulation terms, which generally distort the
pulses. With the subsitutions only Eq. (4) has a non-zero wave mixing term, and the output
idler Ai(−L

2 , t) in the first order is shown to be the SPC of the input signal [1],

A(1)
i (−L

2
, t) = jF ∗(−t +

L
2v

)
∫ ∞

−∞
2γvAp(t ′)Aq(t ′)dt′, (10)

and the conversion efficiency is

η (1) ≡
∫ ∞
−∞ |A(1)

i (−L
2 , t ′)|2dt′∫ ∞

−∞ |A(1)
s (−L

2 , t ′)|2dt′
= [

∫ ∞

−∞
|2γvAp(t ′)Aq(t ′)|dt′]2, (11)

assuming that either of the pump pulses Ap and Aq is much shorter than the input signal F and
the medium is long enough to contain the signal. Conceptually, the short pump pulses take a
“snapshot” of the signal spatial profile, which is reproduced as the idler. Since the idler has the
same spatial profile as the signal but propagates backwards, the time profile is reversed.

To summarize, in order to perform accurate SPC, the following conditions should be satis-
fied:

L
v

>> Ts >> (Tp or Tq) >>
d
vx

, (12)

where Ts is the signal pulse width, and Tp and Tq are the pulse widths of the two pumps.
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3. High conversion efficiency with signal amplification

When the conversion efficiency is high, mixing of the pump and the generated idler can also
amplify the signal, as in the case of parametric amplification. In this section we derive accurate
expressions for the output idler and the conversion efficiency in such a case. Assuming that the
pump pulses are short, unchirped and undepleted, and phase modulation terms are neglected,
we can derive a closed-form solution for the conversion efficiency. Eqs. (3) and (4) then become

v
∂As(z, t)

∂z
+

∂As(z, t)
∂ t

= jg(t)A∗
i (z, t), (13)

−v
∂Ai(z, t)

∂z
+

∂Ai(z, t)
∂ t

= jg(t)A∗
s(z, t), (14)

where g(t) = 2γvAp(t)Aq(t). (15)

We first take the complex conjugate of Eq. (14),

−v
∂A∗

i (z, t)
∂z

+
∂A∗

i (z, t)
∂ t

= − jg∗(t)As(z, t), (16)

and let Ãs and Ãi be the Fourier transforms of As and A∗
i with respect to z respectively,

Ãs(κ , t) =
∫ ∞

−∞
As(z, t)exp(− jκz)dz, (17)

Ãi(κ , t) =
∫ ∞

−∞
A∗

i (z, t)exp(− jκz)dz. (18)

Note that Ãi is the Fourier transform of the complex conjugate of Ai . Eqs. (13) and (16) become

jκvÃs+
∂ Ãs

∂ t
= jg(t)Ãi , (19)

− jκvÃi +
∂ Ãi

∂ t
= − jg∗(t)Ãs. (20)

We multiply both sides of Eq. (19) by exp( jκvt) and both sides of Eq. (20) by exp(− jκvt),

exp( jκvt)( jκvÃs+
∂ Ãs

∂ t
) = jg(t)exp( jκvt)Ãi , (21)

exp(− jκvt)(− jκvÃi +
∂ Ãi

∂ t
) = − jg∗(t)exp(− jκvt)Ãs, (22)

or equivalently,

∂
∂ t

[exp( jκvt)Ãs] = jg(t)exp( jκvt)Ãi , (23)

∂
∂ t

[exp(− jκvt)Ãi ] = − jg∗(t)exp(− jκvt)Ãs. (24)

Then we make another set of substitutions,

A(κ , t) = exp( jκvt)Ãs = exp( jκvt)
∫ ∞

−∞
As(z, t)exp(− jκz)dz, (25)

B(κ , t) = exp(− jκvt)Ãi = exp(− jκvt)
∫ ∞

−∞
A∗

i (z, t)exp(− jκz)dz, (26)
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Eqs. (23) and (24) become

∂A
∂ t

= jg(t)exp(2 jκvt)B, (27)

∂B
∂ t

= − jg∗(t)exp(−2 jκvt)A. (28)

The exponential terms on the right-hand side have a frequency 2κv. To estimate the magni-
tude of this frequency, it is best to first consider the linear propagation of the signal and idler
envelopes, before wave mixing occurs,

v
∂As

∂z
+

∂As

∂ t
= 0, (29)

−v
∂Ai

∂z
+

∂Ai

∂ t
= 0. (30)

Fourier transforms in z as well as t give the dispersion relation for the envelopes,

|κv| = |Ω|, (31)

which is consistent with the definition of group velocity, v = dω
dk . Ω is the frequency variable

in taking the temporal Fourier transform of the signal and idler envelopes, and has a maximum
magnitude ∼ 1/Ts. From Eqs. (27) and (28) it can be observed that wave mixing does not alter
the spatial bandwidth of the envelopes, therefore κ has the same order of magnitude through-
out, and κv ∼ 1/Ts << (1/Tp or 1/Tq). g(t) has a duration shorter than both Tp and Tq, so
exp(2 jκvt) oscillates relatively slowly compared to g(t). Say g(t) is centered at t = 0, we can
then make the assumption,

g(t)exp(2 jκvt) ≈ g(t). (32)

The coupled-mode equations (27) and (28) become

∂A
∂ t

= jg(t)B, (33)

∂B
∂ t

= − jg∗(t)A. (34)

The initial condition is

As(z,− L
2v

) = F(− L
2v

− z
v
), (35)

Ai(z,− L
2v

) = 0. (36)

The initial condition for A and B can then be obtained from the substitutions, Eqs. (25) and
(26). Define g(t) = |g(t)|exp jθ(t), and assume that θ(t) is a constant. Eqs. (33) and (34) can
now be solved to give

A(κ , t) = A(κ ,− L
2v

)cosh[
∫ t

− L
2v

|g(t ′)|dt′], (37)

B(κ , t) = − jA(κ ,− L
2v

)exp(− jθ)sinh[
∫ t

− L
2v

|g(t ′)|dt′]. (38)
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The final solution for As and Ai is

As(z, t) = F(t − z
v
)cosh[

∫ t

− L
2v

|g(t ′)|dt′], (39)

Ai(z, t) = jF ∗(−t − z
v
)exp( jθ)sinh[

∫ t

− L
2v

|g(t ′)|dt′]. (40)

As the idler exits the medium at z= −L
2 and t = L

2v , the pump pulses have long gone, hence
the upper integral limit can be effectively replaced by ∞. The lower limit can also be replaced
by −∞, since the pump pulses have not arrived when the signal enters the medium at t = − L

2v .
Hence

Ai(−L
2
, t) = jF ∗(−t +

L
2v

)exp( jθ)sinh[
∫ ∞

−∞
|g(t ′)|dt′]. (41)

This solution is consistent with Eq. (10), the first-order approximation in the limit of small gain.
The conversion efficiency is

η ≡
∫ ∞
−∞ |Ai(−L

2 , t ′)|2dt′∫ ∞
−∞ |As(−L

2 , t ′)|2dt′
= sinh2[

∫ ∞

−∞
|2γvAp(t ′)Aq(t ′)|dt′]. (42)

This result shows the exponential dependence of the conversion efficiency on the cross fluence
of the two pump pulses.

4. Cross-phase modulation compensation

With the undepleted pump approximation, the main nonlinear effect besides wave mixing is the
cross-phase modulation on the signal and the idler imposed by the strong pump. Mathematically
this can be observed from Eq. (3) and Eq. (4), where the XPM terms are the largest apart from
the wave mixing terms. These effects are previously neglected in deriving Eq. (42).

With XPM terms included, the coupled-mode equations become

v
∂As(z, t)

∂z
+

∂As(z, t)
∂ t

= jg(t)A∗
i (z, t)+ jc(t)As(z, t), (43)

−v
∂Ai(z, t)

∂z
+

∂Ai(z, t)
∂ t

= jg(t)A∗
s(z, t)+ jc(t)Ai(z, t), (44)

where g(t) = 2γvAp(t)Aq(t), (45)

c(t) = 2γv
[|Ap(t)|2 + |Aq(t)|2

]
. (46)

XPM effects are detrimental to the SPC efficiency and accuracy if a high conversion efficiency
is desired, as it introduces a time-dependent detuning factor to the wave mixing process.

To solve Eqs. (43) and (44), we follow similar procedures as in the previous section by
performing Fourier transform with respect to z and making the following substitutions,

A(κ , t) = exp[ jκvt− j
∫ t

−∞
c(t ′)dt′]

∫ ∞

−∞
As(z, t)exp(− jκz)dz, (47)

B(κ , t) = exp[− jκvt+ j
∫ t

−∞
c(t ′)dt′]

∫ ∞

−∞
A∗

i (z, t)exp(− jκz)dz. (48)

We obtain the following,

∂A
∂ t

= jg(t)exp[−2 j
∫ t

−∞
c(t ′)dt′]B, (49)

∂B
∂ t

= − jg∗(t)exp[2 j
∫ t

−∞
c(t ′)dt′]A. (50)
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Eqs. (49) and (50) are difficult to solve analytically, but a special case exists when the phase of
g(t) exactly cancels the XPM term,

θ(t) = θ0 +2
∫ t

−∞
c(t ′)dt′. (51)

Eqs. (49) and (50) are then reduced to

∂A
∂ t

= j|g(t)|exp( jθ0)B, (52)

∂B
∂ t

= − j|g(t)|exp(− jθ0)A. (53)

The general solution is

As(z, t) = F(t − z
v
)exp[ j

∫ t

−∞
c(t ′)dt′]cosh[

∫ t

−∞
|g(t ′)|dt′], (54)

Ai(z, t) = jF ∗(−t − z
v
)exp[ jθ0 + j

∫ t

−∞
c(t ′)dt′]sinh[

∫ t

−∞
|g(t ′)|dt′], (55)

and the output idler is

Ai(−L
2
, t) = jF ∗(−t +

L
2v

)exp[ jθ0 + j
∫ ∞

−∞
c(t ′)dt′]sinh[

∫ ∞

−∞
|g(t ′)|dt′]. (56)

This solution is the same as Eq. (41), the output idler without considering XPM, apart from
a constant phase term exp[

∫ ∞
−∞ c(t ′)dt′], which does not affect the pulse waveform. If we let

Ap(t) = |Ap(t)|exp[ jθp(t)] and Aq(t) = |Aq(t)|exp[ jθq(t)], then from Eq. (51) the actual phase
adjustments to the pump pulses are given by

θp(t)+θq(t) = θ0 +4γv
∫ t

−∞
|Ap(t ′)|2 + |Aq(t ′)|2dt′. (57)

Qualitatively, by adjusting the phases of the pump pulses according to Eq. (57), we can utilize
the wave mixing process to introduce phase variations to the signal and the idler, so that the
cross-phase modulation can be exactly canceled. In practice, the phase variation of the pump
pulses can be introduced by various pulse shaping methods, for example, using a 4f pulse shaper
[12]. The phase correction can be introduced to either or both of the pump pulses as long as the
condition in Eq. (57) is satisfied.

5. Numerical analysis

To verify our derivations, we obtain numerical solutions of Eqs. (43) and (44) by a multi-scale
approach. In this approach successively higher-order solutions are obtained by substituting
lower-order solutions into the right-hand side of the equations, until convergence is reached.
For the following simulations, the pump and the input signal are assumed to be

Ap(t) = Aq(t) = exp
(− t2

2T2
p

)
, (58)

F(τ ) = As0

{
exp

[− 1+ j
2

(
τ +2Ts

Ts
)2]+

1
2

exp
[− 1

2
(
τ −2Ts

Ts
)2]}. (59)

To confirm that the SPC process is still accurate when the conversion efficiency is high,
we first consider the case in which XPM is neglected. Figure 2 shows a plot of the amplitude
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and the phase of the output idler pulse envelope Ai(−L
2 , t) compared with the input signal

As(−L
2 , t), using parameters similar to Ref. [9] and polydiacetylene, a material with the highest

off-resonant third-order nonlinearity reported [11], as the wave mixing medium. The conversion
efficiency is 100% with a total pump energy of only 12.8 nJ from the numerical analysis. From
Fig. 2 it is clear that the output idler is an exact, time-reversed and phase-conjugated replica of
the input signal.
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Fig. 2. (a) Amplitude and (b) phase of output idler (solid lines) Ai(− L
2 , t) compared with

input signal (dash lines) As(− L
2 , t). XPM is neglected in this example. As predicted, the

output idler is time-reversed and phase-conjugated with respect to the input signal. Param-
eters used are n2 = 1×10−11 cm2/W, n0 = 1.7, λ0 = 800 nm, L = 2 mm, d = 5 µm, Ts =
1 ps, Tp = 100 fs, Ep = 12.8 nJ, pump fluence = Ep

Ld . Conversion efficiency is 100%.

5.1. Conversion efficiency

Figure 3 is a plot of conversion efficiencies against total pump energy obtained from theory
and simulations, using the same parameters as for the previous numerical example. The dotted
curve is a plot of Eq. (11), the result from Ref. [1]. The solid curve is a plot of Eq. (42),
the conversion efficiency obtained by including signal amplification but neglecting XPM. The
crosses are results from a numerical simulation of Eqs. (13) and (14), validating the closed-form
solution we derive. The triangles are results from a numerical simulation of Eqs. (3) and (4),
which also include phase modulation terms. It clearly shows that XPM becomes detrimental
to the conversion efficiency as the pump energy increases. Finally, the circles are a numerical
simulation that includes all nonlinear terms and XPM compensation according to Eq. (57). The
numerical results confirm the accuracy of our conversion efficiency derivation, demonstrates
the detrimental XPM effect on conversion efficiency, and proves that our compensation method
can indeed undo the XPM effect.
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Fig. 3. Conversion efficiencies from simulations compared with predictions from first-order
analysis and coupled-mode theory. Simulation results agree well with coupled-mode the-
ory. See caption of Fig. 2 for parameters used.

5.2. Demonstration of cross-phase modulation compensation

Figure 4(a) and (b) plot the output idler Ai(−L
2 , t) compared with the SPC of the input signal

A∗
s(−L

2 ,−t), with XPM included, using the same parameters as before. The efficiency is re-
duced from 100% to 34% and the accuracy of the SPC operation suffers due to the XPM effect.
Figure 4(c) and (d) plots the same data, but with the phase of the pump pulses adjusted accord-
ing to Eq. (57) and plotted in Fig. 5. The accuracy of the SPC operation is restored by the XPM
compensation, and the efficiency is back to 100%.

6. Beyond the basic assumptions

6.1. Pump depletion

All of our derivations so far assume that the pump is undepleted. If the signal becomes com-
parable to the pump, then the pump can no longer sustain a fixed gain, which begins to depend
on the signal field across z. Mathematically this means that the right-hand sides of Eqs. (1) and
(2) become comparable to the left-hand sides. In this case the pump would be depleted, and we
can no longer expect the SPC operation to be accurate. To avoid pump depletion we therefore
require the right-hand sides of Eqs. (1) and (2) to be much smaller than the left-hand sides, or
roughly speaking,

|Ap| >> 2γ|As||Ai ||Aq|d (60)

Es <<
n0dTs

η0γ√η
. (61)

where Es is the signal energy and η0 is the free-space impedance. The signal energies should
be much smaller than the rough signal energy upper limits established by Eq. (61) in order to
avoid pump depletion. A low signal energy also avoids distortion due to SPM.
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(c) Intensity at z = −L/2
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Fig. 4. (a) and (b) plot the normalizedamplitude and phase of the output idler Ai(− L
2 , t)

compared to the SPC of the input signal A∗
s(− L

2 ,−t) respectively when XPM is present.
The amplitude plots are normalized with respect to their peaks. The output idler is distorted
and the conversion efficiency is only 34%, much lower than the theoretical efficiency 100%.
(c) and (d) plot the same data, but with XPM compensation. The efficiency is back to 100%
and the accuracy is restored.
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Fig. 5. Plots of amplitude and phase of one pump pulse with ideal phase adjustment accord-
ing to Eq. (57) in time and frequency domain. Top-left: temporal envelope; Bottom-left:
temporal phase; Top-right: envelope spectrum; Bottom-right: spectral phase. The simple
pulse shape should be easily produced by many pulse shaping methods.

(C) 2004 OSA 17 May 2004 / Vol. 12,  No. 10 / OPTICS EXPRESS  2216
#4248 - $15.00 US Received 22 April 2004; revised 3 May 2004; accepted 4 May 2004



To investigate the effect of pump depletion, we perform three-dimensional simulations in x,
z, t by numerically solving Eqs. (1), (2), (3) and (4) simultaneously.

The first example assumes the same parameters as before, with a signal energy of 1 pJ, much
below the pump depletion limit, calculated to be 1 nJ from Eq. (61). XPM is included along
with XPM compensation. Figure 6 is a movie that shows the evolution of the wave mixing
process. The conversion efficiency from the simulation drops slightly to 92% due to a finite
medium thickness. However, the SPC process still remains accurate with the inclusion of the x
dimension.

Fig. 6. A movie that shows the evolution of the two pumps, signal and idler, with a signal
energy below the pump depletion limit. See caption of Fig. 2 for parameters used. The
signal energy is 1 pJ.

Figure 7 is another movie of the same example but with a signal energy of 5 nJ, much above
the pump depletion limit 1 nJ, and Fig. 8 plots the output idler from the same simulation. As
can be seen from the movie, the pump pulses are highly depleted, and from Fig. 8 it can be seen
that the top of the idler is flattened due to gain saturation. The conversion efficiency is reduced
to 32%.

6.2. Other non-ideal conditions

Besides pump depletion, other non-ideal conditions also affect the accuracy of the SPC process.
If the pump pulses are not short enough, then from the first-order solution in Ref. [1] it can be
seen that the output pulse becomes the convolution of the pump and the signal. The medium
also needs to be long enough to contain the whole signal pulse, otherwise the output idler will
be truncated.

If the medium is thick, the x dimension can no longer be ignored. Ap(t) and Aq(t) should
be replaced by Ap(t + x/vx) and Aq(t − x/vx) respectively, which do not directly affect the
generated idler temporal pulse shape. However, the idler beam will acquire additional transverse
patterns in x, which will distort the pulse shape if diffraction or waveguiding is also taken into
account. Another problem with a thick medium is that SPM will chirp the pump pulses and
reduce the SPC efficiency and accuracy. That said, since SPM is not directly involved with the
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Fig. 7. Similar to Fig. 6, but with a signal energy of 5 nJ, much above the pump depletion
limit.
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Fig. 8. Amplitude and phase of output idler and input signal for the wave mixing process
shown in Fig. 7 to demonstrate the effect of pump depletion.
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wave mixing process, it can be precompensated by pulse shaping if it becomes a problem.

7. Summary

In summary, we have derived new solutions for the spectral phase conjugation process by four-
wave mixing. When signal amplification is significant, the SPC process has been shown to
remain accurate and achieve higher efficiency. We have also proposed a method to compensate
for XPM, which severely reduces the efficiency and accuracy of SPC, by adjusting the phases
of the pump pulses accordingly. Numerical analysis confirms our theoretical predictions, and
experimental verification will be the focus of our future research. With a higher predicted con-
version efficiency and an effective method to compensate for XPM without sacrificing accuracy,
we are hopeful that SPC by four-wave mixing can finally be experimentally implemented and
utilized for real-world applications.
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