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Holography in artificial neural networks
Demetri Psaltis, David Brady, Xiang-Guang Gu & Steven Lin

The dense interconnections that characterize neural networks are most readily implemented using optical
signal processing. Optoelectronic ‘neurons’ fabricated from semiconducting materials can be connected
by holographic images recorded in photorefractive crystals. Processes such as learning can be demon-

strated using holographic optical neural networks.

IN recent years there has been a marked resurgence of interest
in artificial neural networks'. The structure and the principles
of operation of such ‘neural’ computers are to a large extent
biologically motivated. The reason for attempting to derive clues
from neurobiology to build computers is the sharp distinction
that exists between the types of problems for which modern
digital computers are useful and the tasks at which humans and
other animals excel. The classic example is the distinction
between pattern recognition and arithmetic: humans do arith-
metic poorly, but easily outperform computers in the simplest
recognition tasks. Research in neural computing is based on the
premise that this difference in capabilities is due to basic
differences in the hardware and the ways in which the hardware
is programmed. Although in some instances, particularly in the
case of sensory systems that are relatively well understood, it
may be possible to construct circuits that are reasonably accurate
replicas of biological systems, more often one extracts only the
basic properties evident in the nervous system and uses this
information to guide the design of the computer. The hope is
that if one is successful in identifying truly relevant properties,
then the neural analogy should provide a valuable contribution
to the design process even though the circuitry of the nervous
system is not understood in detail.

The rapid progress in modern computer design is owed in
part to the separation of algorithmic and architectural issues
from the physics of the devices used to implement the algorithm;
in this way, a programmer may develop algorithms without
detailed knowledge of the physics of the semiconductor hard-
ware. Unfortunately, this separation is difficult to maintain in
highly parallel architectures, such as neural networks. One of
the main issues in parallel computing is the relationship between
the properties of a parallel architecture and the efficiency with
which it solves problems. The physics of the hardware is a
central consideration in this debate. The efficiency of communi-
cation between nodes of the network is a major limiting factor
in hardware design. In parallel electronic circuitry most of the
system area must be devoted to interconnecting wires®. This
imposes limitations on the hardware architecture and there-
fore solutions have been sought that go beyond the traditional
silicon technology. We will discuss one such solution, holo-
graphic optical interconnections®, in the context of the most
highly interconnected parallel architecture, artificial neural
networks*™'".

Basic principles

The principles that are most commonly used in the design of
neural computers are as follows.

Massive parallelism. If we think of an individual neuron as a
computational element, then the human brain consists of 10"'-
10'? such elements. For the execution of a task that involves the
visual pathway, a large portion of these units are active. This is
in sharp contrast to a conventional digital computer, where
perhaps a few thousand out of more than 10° transistors are
active at any one time during a typical computation.

Dense interconnections. A neuron in the brain typically receives
inputs from several hundred to several thousand other units to
produce its own output, which is broadcast to roughly the same
number of units. It is widely believed that the synaptic strengths
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serve as part of the memory of the system. This connectionist
view has been adopted almost universally in the design of
artificial neural networks. Connectionist networks achieve high
computation speed through specialization by encoding general
knowledge about the computational problem in the structure of
the network.

Learning. The ability of the nervous system to perform desirable
computations accurately is acquired through the genetic code
and adaptation. The ability of a conventional digital computer
to perform useful tasks derives from the design of its circuit
architecture (the hardware) and its programming (the software).
We can think of the hardware design as being analogous to the
role of genetics and the software to adaptation. There is,
however, a sharp distinction between programming and adapta-
tion. A programmer explicitly designs every step of the computa-
tion as a sequence of precise mathematical statements. The
neural approach to computation develops the required software
for tackling a particular problem through a sequence of trials
during which the parameters of the system are adapted to achieve
a desired goal. The success of such learning procedures is
critically dependent on the learning algorithm and the hardware
architecture. The system designer must make both of these
choices a priori. Even though these choices are typically very
difficult to make, they are relatively few. In practical terms, for
certain problems the learning approach can provide a method
for transferring some of the burden of programming the com-
puter from the user to the computer.

The architecture of optical neural networks

Figure la is a schematic diagram showing the various com-
ponents of a pair of neurons and the way in which they are
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FIG. 1 Conceptual structure of a a neural system and b, its optical analogue.
See text for details.
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connected. Each neuron receives inputs through the synapses
on its dendrites, it processes these inputs in some fashion, and
then it broadcasts the result on the axon where it is picked up
by the dendrites of other neurons. This description is somewhat
simplified (for example, dendrites can be two-way channels'?),
but it is a view that has been adopted almost universally in
neural-network models. The diagram in Fig. 1b shows the holo-
graphic analogue of the two neurons in Fig. 1a. The output of
each neuron is a light beam, and the activity of the neuron is
coded in the amplitude or intensity of the optical signal. The
input of each neuron is a light detector which senses the amount
of light that is directed towards it. A holographic grating is
placed in the path of the output beam of neuron B, which
diffracts the incident light. The direction of the diffracted beam
is determined by the period and the orientation of the grating.
With an appropriate holographic grating, light from neuron B
illuminates the detector of neuron A. In this way a signal is
generated in A as a result of the activity in B, and we say that
the hologram connects the two neurons. The strength of the
connection can be modified by adjusting the modulation strength
of the holographic grating. There are some direct analogies
between the component structure of a neuron and its optical
simulation. The output light beam has the role of the axon,
broadcasting the signal from each neuron. The holographic
grating plays the part of the synapse, directing the signal from
one neuron to the next, and the optical pathways along which
light is transferred from the hologram to the detector area of
the neuron are analogous to the dendrites. The device consisting
of the optical beam generator, the detector and the circuits that
process the detected signal is reminiscent of the soma of the
neuron. In real neurons some processing tasks can take place
on the branches of the dendritic tree, but in the optical simula-
tion all integration and computation tasks are concentrated on
this integrated unit, which we refer to from now on as the
‘neuron’.

Having established the basic structure of the optical analogue
of a single neuron, the next issue is the way in which we may
connect many such units together to form optical neural
networks. Suppose that the third neuron is to be connected to
neuron A as well. This can be optically simulated by superimpos-
ing a second holographic grating in the same crystal that was
used to store the interconnection pattern between the first two
neurons. This second grating has a distinct spatial orientation
and period and it is tuned to redirect light from the third neuron
onto the same input (the detector) of neuron A. This is a second
difference between the real neuron and its holographic realiz-
ation: the synapses are not localized at the intersection between
axon and dendrite, but are implemented instead in a distributed
manner, each sharing the entire volume of the holographic
medium.

Distributed connections have advantages and disadvan-
tages—the disadvantage compared to the localized implementa-
tion is the reduced control of individual synapses. The adjust-
ment of the strength of one synapse may inadvertently affect
other synapses as well. Accommodating this limitation is perhaps
the most crucial research issue in this field and we discuss this
further below. The advantages of the distributed holographic
synapses are high storage density and ease of fabrication. The
number of distinct synapses that can be packed in a hologram
of volume V is V/A>, where A is the wavelength of the light?.
This corresponds to 10'? synapses per cm® for the typical operat-
ing wavelength A =1 pum. There are other factors, primarily
relating to the physical properties of the material used, that can
prevent us from realizing this upper limit. In practice it is
possible to realize 10°-10™ interconnections per cm®. The dis-
tributed holographic storage of the weights is also the ultimate
in simplicity in terms of device fabrication: it involves only
crystal growth.

Although holograms can simulate the function of the synap-
ses, the axons and the structure of the dendritic tree, optoelec-
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tronics are used to perform the nonlinear computations of the
neuron and to provide the optical energy needed to incorporate
such devices into large networks. Typically, the neuron has a
‘soft threshold’, which is to say that the relationship between
the summed post-synaptic signals into a particular unit and the
output of this unit is an S-shaped curve. To implement this
nonlinearity we must provide a mechanism by which the incom-
ing signals can interact. Optical signals do not interact in free
space, so a material is introduced at the location of the neuron
that senses the presence of the light and, in response, changes
its electronic state. This modifies the optical properties of the
material and an optical beam travelling through this medium
can therefore be affected by the presence of another beam.
Various potentially appropriate devices based on optical non-
linearities are under development'*'®, but at present the most
effective method for achieving such nonlinear optical effects
involves detection of the optical signals, followed by nonlinear
processing of the electronic signals and subsequent regeneration
of optical signals through a light modulator or source. Semicon-
ductor materials are particularly well suited for this purpose
because it is possible to fabricate monolithic devices that incor-
porate all three functions. The unit shown in Fig. 2 is an example
of a 10 X 10 array of optoelectronic neurons fabricated in gallium
arsenide'’. Each unit consists of a pair of transistors, a photo-
detector and a light-emitting diode (LED). An incident signal
above threshold is sensed by the photodetector amplified by the
transistors and rebroadcast by the LED. It is possible to construct
devices with ~10" neurons per cm?® that can be switched in
parallel at rates of over 10,000 Hz. Such a capability, although
not readily available at present, can be obtained by rather
straightforward advances.

The common feature of the various types of optical and
optoelectronic neuron arrays is planar layout. This is a con-
sequence of the techniques used in fabrication, namely epitaxial
growth or deposition of a sequence of thin layers on a two-
dimensional substrate. As a result, we obtain two-dimensional
arrays of neurons or neural planes. This technological con-
straint leads to an optical neural network that consists of
planes of neurons separated by a space in which reflection
holograms specify the connection between units in a single
layer and transmission holograms interconnect neurons in two
different layers. Although this structure of layers of neurons
separated by interconnections emerges from technological
constraints of the optical implementation, it is nevertheless
similar to the structures used in almost all neural-network
models.

The three-dimensional structure of the optical architecture
has a potential advantage over electronic implementations. In
electronics, the neurons (simulated by transistors) and the inter-
connections (implemented with wires, resistors and transistors)
are both fabricated on the same planar surface'®. Typically, the
area devoted to the interconnections is the largest fraction of
the available area and this severely limits the size of the network
that can fit on a single chip. In the optical implementation, the
active planes can be populated with neurons alone because the
interconnections are realized holographically using the third
dimension. As a result, the number of neurons that can fit on
a plane of a given area is at least C times larger for the optical
implementation, where C is the average number of connections
per neuron. To make the comparison another way, the electronic
implementation requires at least C times more chips to form a
network with a given number of neurons. C can be well over
100, so optical connections provide a large savings in the number
of semiconductor devices needed. The relative disadvantage of
optics is that, with only a few exceptions, the technology is at
an early stage. Two basic components are needed: the neural
planes and the holographic interconnections. We have discussed
briefly how optoelectronics can provide the answer for fabricat-
ing the neurons and hereafter we focus on the holographic
interconnections.
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Holographic interconnections

Figure 3 shows a particular realization of a holographic neural-
network architecture'®. Each resolution element (or pixel) at
the first neural plane can be a location for a neuron. The light
from a pixel is collimated and diffracted by a holographic
grating. The diffracted light is focused by a lens onto a pixel at
the output neural plane. We now discuss how, given the location
of two neurons at the input and output planes, the appropriate
grating can be formed. As shown in Fig. 3, the portion of the
light from the input neuron that is not diffracted by the hologram
is reflected by a phase-conjugate mirror (PCM). A PCM, unlike
a conventional mirror, reflects a collimated beam back along its
original path. A PCM is a nonlinear crystal that forms a
hologram of the incident beam. The recorded hologram is then
illuminated from the opposite direction, resulting in a recon-
structed beam that precisely retraces the path of the beam
incident on the PCM. Light from the output neuron propagates
towards the left in Fig. 3 and is collimated by the lens. This
beam and the beam that is reflected by the PCM form a
sinusoidal interference pattern at the hologram. The interference
pattern exposes the hologram and a sinusoidal grating is
recorded. This arrangement ensures that the grating will inter-
connect the input and output pixels or neurons that were used
to record it. The strength of the connection is controlled by
varying the exposure during recording. The connection is
stronger when the light is brighter or the exposure time longer.
If x; and x; are the amplitudes of the light from the input and
output neurons, respectively, then the change in the strength or
the weight of the connection formed by the grating is Aw;; o€ x,x;.
x; and x; can be, in general, bipolar signals. When the sign of
x; matches the sign of x; then ; increases; otherwise it
decreases. Alternatively, the system can be designed with x; and
x; being positive only. In this case Aw,; can be only positive,
and separate excitation and inhibition channels are constructed.
Because the algorithm causes only positive changes in the

FIG. 3 Holographic neural-network architecture. The light amplitude at each
pixel on the input plane corresponds to the output of a neuron. The signal
detected at each pixel on the output plane corresponds to the summed
inputs to a neuron. The phase-conjugating mirror reflects the input exactly
back on itself. Light propagating back towards the input interferes with
control signals generated at the output plane to adaptively update the
interconnection pattern stored in the volume hologram.
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FIG. 2 Photograph of an optoelectronic implementation of a 10 X10 array
of neurons in gallium arsenide. The area of the array is 5 x5 mm.

weights, they will eventually exceed the operating range of the
holographic medium and the medium will be saturated. This
can be avoided by introducing a weight decay mechanism. Both
modes of operation are possible, but here we consider only the
case of bipolar neurons.

We now consider connections between multiple neurons at
the input and output planes. If N is the number of pixels in
one dimension for both input and output planes, there are N>
pixels in each plane. If we use each of these pixels as a site for
a neuron, and we want to interconnect independently each of
the input neurons to all the output neurons, we need N* inter-
connections, which implies that N* weights or gratings must be
stored in the hologram. This poses the question of the maximum
number of gratings that can be distinguished in a hologram of
volume V. Assuming that the resolution of the holographic
medium in any direction is 8 > A, the total number of resolution
cells or distinct samples in the volume of the holographic crystal
is V/8%. From the sampling theorem, the number of distinct
sinusoids, or gratings, that can be recorded in this medium is
equal to the number of samples, so the maximum number of
independent interconnections that can be supported by a
hologram of volume V is V/8>. This guides the design of specific
architectures. As an example, we consider a network in which
neurons in two adjacent layers are arbitrarily interconnected.
The product of the number of units in the first plane, Nl N?,
and the number of units in the second plane, N, < N?, cannot
exceed the available holographic interconnections in the crystal:

14
N1N2S§ (1

If this relationship is violated then an attempt to establish the
interconnection between one pair of input and output neurons
automatically specifies the interconnections for other pairs as
well. To avoid this we can either increase the volume of the
crystal or decrease the density with which the neural planes are

Phase conjugating mirror
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populated (that is, decrease N; and N,). Here we will use the
second strategy. In particular, we assume that the hologram is
a cube, with edges of length L, and L/8 = N. In other words,
the number of resolvable points in any one dimension is the
same for both the neural planes and the hologram. This is a
special case, but it is also the most sensible way to design such
optical systems. In this canonical system the total number of
gratings available in the hologram is V/8° = =(L/8)*= N> If the
density of neurons remains constant from layer to layer (N, =
N,), then from equation (1) the maximum number of neurons
per plane is N*% The remaining task is the selection of the
correct N2 pixels from the N? available sites at each plane
for the placement of neurons.

Figure 4 shows three examples of patterns that appropriately
sample N*? points out of N? for N =16 (refs 19, 20). In each
case the larger circles represent neuron locations on the regular
two-dimensional grid of dots. The number of neurons in each
case is 16*%=64. We derive these patterns using a process of
elimination. Each time we attempt to add a new neuron to the
input (output) sampling grid, we check to see whether this new
neuron is already connected to one of the neurons selected
previously at the output (input) by an existing grating. If it is,

we eliminate the position of the new neuron from the sampling
grid; if it is not, we select this position for a new neuron, which
implies that gratings are established to connect this new neuron
to all the neurons now selected at the output (input). In addition,
we eliminate all the positions at the output (input) to which this
new neuron is connected by existing gratings. We arrive at the
complete sampling grids by systematically iterating this pro-
cedure. The patterns that result are not unique. Different patterns
emerge by adopting different methods for selecting the next
available location. The most systematically derived and regular
patterns are shown in Fig. 4a. We created the pattern in Fig. 4¢
by borrowing a concept from fractals. These sampling patterns
can be thought of as fractals with dimension 2. If we replace
each neuron in any of the patterns in Fig. 4 with the entire
pattern itself, we end up with a larger pattern of the same fractal
dimension. We created the patterns in Fig. 4c¢ by starting with
the patterns of Fig. 4b, drawn for N =4, and then following the
above procedure. Interestingly, new patterns created in this
manner have the property that each holographic grating inter-
connecting an input and output pair on these samplings grids
is distinct if the seed pattern from which it was generated satisfies
this same property.
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The necessity of using the fractal sampling grids becomes
apparent whep we use the architecture of Fig. 3 as an associate
memory. The goal is to record the appropriate holographic
gratings in the crystal such that for a particular pair of images,
the light at the output neural plane is image B if the illuminating
pattern at the input is image A. We attempt to record the
hologram by setting the state of the input neural plane to be
the image A and the state of the output, image B (ref. 21). The
input neural plane emits light towards the right in Fig. 3 and
the output emits light towards the left. The light from the input
is back-reflected by the PCM and interferes with the light from
the output to form the hologram. The recorded hologram is
reconstructed by placing pattern A at the input and the recon-
struction forms at the output. The photographs in Fig. 5a show
the result that was obtained when this procedure was performed
in the laboratory. We recorded the holograms in a photorefrac-
tive lithium niobate crystal using an argon-ion laser. The two
patterns used in the experiment were the capital letters A and
B. The reconstruction obtained when the A was placed at the
input is a smeared B. We can think of the holographic associative
memory described above as an interconnection of each point
on the letter A to all the points on the letter B. If this interconnec-

a

FIG. 5 a Photographs of the letters B and A carried on an Ar™ laser beam
and the reconstruction of the hologram made by the interference of these
two patterns. The hologram is reconstructed with A and yields a smeared
version of B. The smearing is due to degeneracies in the hologram. b,
Photographs of a pair of nondegenerate sampling grids, the letters B and
A as sampled by these grids, and a reconstruction of a hologram made with
the sampled patterns. The hologram is reconstructed with the letter A and
yields a high-fidelity image of the sampled letter B.
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tion pattern is in fact recorded in the hologram, then when the
A is present at the input, all the neurons that make up the letter
A will produce the same reconstruction of B at the output. The
result is a strong reconstruction of the letter B. In general, the
output will not respond unless the activation at the input plane
is sufficiently similar to the pattern used for recording the
hologram. In the experiment the letters A and B were drawn
on a regular rectangular grid. As a result, the establishment of
interconnections of input and output points on the letters A and
B inadvertently forms connections between points on the letter
A at the input and points on the letter B at the output, thus
giving the smeared reconstruction of B in Fig. Sa. When we
repeated the same experiment but sampled the patterns on the
fractal grids of Fig. 4b, we obtained the sampled patterns shown
at the top of Fig. 5b. The reconstruction sampled by the fractal
grid at the output, shown at the bottom of Fig. 5b, is now perfect.

This experiment vividly demonstrates how the sampling grids
permit us to use each of the gratings recorded in a volume
hologram to establish a distinct interconnection between two
neurons. The high density with which gratings can be stored
makes it possible to construct very large, densely connected
networks. The capability to build large networks is useful,
however, only if it is accompanied by the capability to fully
load information in the connections of the network. In this
experiment only a single association was stored in the hologram.
In theory, this holographic associative memory has the storage
capacity to support a number of associations between pairs of
images equal to the number of neurons at each plane. We discuss
the procedures for achieving this capacity next.

Learning in photorefractive holograms

The recording mechanism described in the previous section for
establishing a connection between a single pair of neurons is
very similar to hebbian learning, in which the strength of the
connection between two neurons is reinforced if their activation
patterns are correlated. The holographic associative memory is
an extension of this basic learning mechanism, with the connec-
tion between sets of input and output neurons reinforced simul-
taneously and in parallel. Almost all of the learning algorithms
that have been developed for neural-network models make use
of this basic mechanism at the synapse level. The algorithms
differ primarily in the procedures used to establish the activation
of the neurons during training, but the modification of each
weight during a training cycle is almost universally a simple
product of activations of the two neurons that are connected
by the weight. Therefore, at least in principle, holographic
interconnections can be used for all such learning algorithms.
Most learning algorithms require a very large number of training
cycles. Here we describe how photorefractive crystals can be
used to form holograms recorded by an arbitrarily long sequence
of exposures, thereby extending the applicability of holographic
interconnections to a broad class of learning algorithms.

Photorefractive crystals are a class of nonlinear optical
materials that combine three properties: they are photoconduc-
tive (light causes current to flow), electro-optic (the presence of
an electric field modifies the index of refraction), and they have
defects (or ‘traps’) in their lattice that can be opticaily ionized®>.
Holograms are recorded in these crystals by exposing them to
light with a photon energy that is matched to the energy required
to ionize a trap. The recorded hologram is stored in the spatial
distribution of the ionized traps in the crystal. When we make
a sequence of exposures, the distribution is continuously
rearranged but the material imposes no limitation on the number
of exposures. This is in contrast to photographic film, for inst-
ance, where each exposure causes an irreversible chemical
change and ultimately the material saturates. Although there is
no limit in the number of exposures for a photorefractive crystal,
we must still design a sequence of exposures that can load the
appropriate weight values in the finite pool of trap sites that are
available.
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We will describe the extension of the holographic associative
memory to multiple associations, as a simple example. We use
again the basic arrangement of Fig. 3 with a photorefractive
crystal used as the holographic recording medium. To establish
the holographic connections that will associate M input and
output image pairs, we superimpose a sequence of holograms.
Each association is recorded in precisely the same way as before
but the length of each exposure is different for each association.
The first association is exposed for a long enough time to use
all the available traps in the crystal for recording this one
hologram. When the crystal is exposed to the second association,
the resulting redistribution of the charge among the traps causes
the first hologram to be partially erased as the second is recorded.
We choose the length of the second exposure so that the two
recorded holograms have equal strength. The subsequent
exposure records the third association until all three have equal
amplitude, and so on. At the end of M exposures, the hologram
contains M associations, all with equal strength. This exposure
schedule results, however, in an average diffraction efficiency
for each association proportional to M 2 (ref. 11) rather than
the ideal M ' which would be obtained if the M holograms
fully occupied the available dynamic range.

We can demonstrate the storage of multiple associations in a
single hologram using a simple experiment. The patterns we
associated were the first names of people affiliated with our
research group and random dot patterns. Using the set-up in
Fig. 3, the sampling grids in Fig. 4a and the exposure schedule
above, 20 exposures were made in a strontium barium niobate
photorefractive crystal. Once the holograms were recorded, each
of the random dot patterns could be used to retrieve its associated
name (or vice versa). We used a liquid-crystal spatial light
modulator™ to simulate the neural planes. The logarithm of the
diffraction efficiency of each hologram is plotted as a function
of the logarithm of the number of exposures in Fig. 6. The
predicted M 2 relationship agrees well with the experimental
results.

The reduction in efficiency that accompanies the increase in
the number of exposures, ultimately limits the number of associ-
ations that can be superimposed on a single hologram. The limit
is reached when the strength of the reconstruction of an
individual association becomes comparable to the noise in the

FIG. 6 Relative diffraction efficiency against the number of holograms stored
for the fifth association stored between a name and a code. The slope of
the least-squares fitted line is —1.95.

system. Mok et al. recently recorded 500 holograms of visual
scenes on a single crystal using this technique®. This is probably
close to the practical limit of the method. The number of training
cycles required for the implementation of error-driven
algorithms, such as error back-propagation, is not known a priori
and it can easily be more than a thousand. As each training
cycle corresponds to a holographic exposure, the present method
must be extended so that a sequence of exposures of arbitrary
length can be done. We are now experimenting with a method
that involves two photorefractive crystals, serving as the short-
term and long-term memory of the system®’. Holographic
exposures are accumulated in the short-term memory and its
contents are periodically copied to the long-term memory. The
long-term memory is also periodically rejuvenated by copying
its contents into the short-term memory and back again. Our
initial experiments confirm that this continuous exchange of
information between the short-term-memory and long-term-
memory crystals results in a non-decaying hologram for
arbitrarily long training sequences.

Conclusion

There are remarkable analogies between the basic properties
of neural-network models and simple holography. These
similarities make it possible to construct, in the laboratory, very
large densely connected multilayer networks with relative ease.
At present, two obstacles prevent the practical use of such
systems. The first obstacle is the lack of practical devices for
the simulation of the neural planes; several candidate devices
are, however, being investigated. The second obstacle may be
more serious: we do not yet have sufficient knowledge, either
from observation of the nervous system or from theoretical
models, of the operation of large complex networks. Although
recent progress has engendered a great deal of optimism for
short-term practical benefits, we are, most probably, only at the
beginning of a long journey. Ul
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