
CPG-Based Prostheses Control

Carried out in the 

Biomechatronics Laboratory

At the

Massachusetts Institute of Technology

Under the supervision of

Prof. Hugh Herr, PhD

Under the direction of 

Prof. Auke Ijspeert, PhD

In the 

Biorobotics Laboratory

At the 

Swiss Federal Institute of Technology, 

Lausanne

Master's project in Bioengineering and Biotechnology

Marc LOUIS

Department of Life Sciences & Technology

École Polytechnique Fédérale de Lausanne

Lausanne, EPFL 2010



To my loving parents.



Acknowledgements

First and above all I thank God from all my heart. I am deeply thank-

ful to my supervisor, Pr Auke Ijspeert for his support, guidance and

enthusiasm about this project. I owe a profound gratitude to Pr Hugh

Herr who granted me this unique opportunity and kindly welcomed

me within the Biomechatronics group. It is a pleasure to thank, from

the bottom of my heart, those who made this project possible Mr

O.E., Mrs G.G-L. and Mr R.O. by funding most of it through their

foundation. I would like to express my gratitude to Renaud Ronsse,

whose encouragement, in depth guidance and support from the initial

to the �nal level enabled me to develop a good understanding of the

subject. I am very grateful to Jesse van den Kieboom for his help with

the bipedal model. It is not only an honor for me to have worked with

Ernesto Martinez who was particularly dedicated, �exible and helpful.

It is also an invaluable blessing to have developed such a friendship

with a deeply positive and genuinely good personality. By the way,

Ernesto, I let you win our 2am ping-pong games on purpose.

I would like to thank all of my colleagues in the Biomechatronics group

at particular, Luke for your help with the AAAKP. Bruce, I want to

thank you for your in�nite wisdom. This is not sarcasm.

I thank my family, Michel, Saneia, Mathieu and Teta. They con-

stantly and steadily made their support available in a number of ways.

I love them. I would also like to thank the friends who supported me

during this project, in particular: Tamer El Kholy, Seymour De Pic-

ciotto and Damiano Genovese. Words can't express how much I owe

Jessica for being here. Lastly, I o�er my regards to all of those who

supported me in any respect during the completion of the project.



Abstract

In this thesis we describe a strategy to control robotic knees and an-

kles. A dynamical system is used to generate a position trajectory

to control a servo motor replacing the missing joint. The dynamical

system consists in a pool of coupled oscillators modeling a central

pattern generator (CPG).

As a �rst step, anthropometric trajectories of the knee and ankle

are learned by the system through the convergence of the oscillators

to the speci�c frequencies, corresponding amplitudes and phase rela-

tions. The same system is then used to play back these trajectories.

As a sensory feedback to trigger the playback we use one adaptive

frequency oscillator to synchronized with the acceleration from the

thigh. We use a bipedal model in a physics-based robot simulation

environment to test the proposed system. Finally we present a simple

hardware implementation of this system on the Agonist-Antagonist

Active Knee prototype.
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Chapter 1

Introduction

�You should go outside, take a walk�. That sounds like a good advice to give

to someone who needs to rest his mind. This illustrates how little we have to

think about placing one leg ahead of the other in order to achieve walking and go

forward. Yet, this is a di�erent story for an impaired person such as an amputee.

When a human undergoes a lower limb amputation he does not only lose a body

part. His integrity and in some cultures, his dignity are diminished as well1.

Naturally, attempts to restore body parts started very early in History. Pros-

thetic toes have been found as early as in the ancient Egyptian civilization [4].

Since then, a multitude of di�erent prosthesis designs attempting to restore

transtibial and transfemoral amputees mobility have been developed. Their va-

riety re�ects the one of amputation con�gurations, design considerations and

approaches. But yet, most of them have one common point: they do not re-

store the lost muscles net power generation. In that sense they are considered as

passive devices.

Indeed, because they do not bring back the ability of net work generation at

the impaired legs, passive prostheses are not able to fully restore normal locomo-

tive function during many locomotive activities, including level walking, walking

up stairs and along slopes [2, 5, 6]. This is particularly true for transfemoral

amputees, who cannot for instance walk upstairs in a step-over-step manner. Re-

garding transtibial amputees, depending on the general health of the patient, the

1Source: Discussion with a prosthetist from the Indian Jaipur Foot organization during the
Developing World Prosthesis class at MIT.
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biomechanical challenges are more subtle but still of great impact. They involve

increased energy expenditure during walking, slower self-selected speed and as-

symetric gait causing extra strain on the sound joints [7, 8]. A healthy ankle

produces the largest burst of torque among all joints during walking. Thus its

impairment following amputation causes an increased metabolic energy expendi-

ture by at least 20% [9] (bilateral amputee) as compared to a healthy subject.

This extra metabolic energy expenditure is comparable to constantly carrying a

15kg backpack while walking [10].

In the light of these results, a number of companies and research groups

focused on the development of active devices capable of providing the amputee

with net power from a battery. Section 1.2 of this introduction presents some of

these designs. When one develops a power generating device, the question that

emerges straight away is the control. One approach that is usually considered

is the locomotion model. When following that approach, researchers usually

develop models of human locomotion that drive the mechanical design in the �rst

place and the control strategy in the second place. As an example, this is the

research avenue used in the Biomechatronics group for the development of an

agonist-antagonist active knee [3].

However, understanding how human locomotion is achieved remains one of

the great challenges in the �led of neurosciences. The growing �eld of compu-

tational neuroscience intend to provide an understanding of locomotor theories

using computational model simulations. In particular, central pattern generators

(CPGs) are being modeled and studied extensively giving rise to a synergy be-

tween robotics and neuroscience as both �eld intend to understand, explore, and

address the locomotion control problem [11]. CPGs are neural circuits capable

of producing neural rhythmic activity. They are found in both vertebrate and

invertebrate animals [12, 13]. Several studies have shed light on neuro-locomotor

elements of simple animals by modeling CPGs with nonlinear oscillators [14, 15].

These studies not only provided insight of natural neural phenomenon by testing

hypothesis on the models but also suggested novel robot control techniques thus

contributing to the development of innovative control theories involving CPG

models [16]. Also, in terms of bipedal robot locomotion, CPG-based control

strategies arouse interest from a number of researchers [17�22]. Moreover, the

2



use of coupled adaptive oscillators used to model CPGs have recently shown

promising results in the �eld of exoskeleton rehabilitation [23, 24]. Yet, little

attention has however been paid to the direct application of a CPG model to a

prosthetic control strategy.

1.1 Research Scope and Summary

This being said, most of the works cited above provide promise that a CPG-

based control strategy constitute a novel and full of potential research avenue for

lower limb prosthetics control. One straightforward argument is that due to its

rhythmic character, the walking gait cycle is a good candidate to be controlled by

a rhythmic pattern generator. Besides, we will mention that one of the remaining

challenges of prosthesis control is speed modulations. Here too, a CPG-based

control strategy is an interesting candidate if one exploits the capability of CPGs

to synchronize with sensory feedbacks.

In this exploration project, we intend to investigate how a CPG model can be

used as a base for the control of a powered knee and ankle prosthesis. For that

purpose, we aim to implement a CPG model [1] that is capable of learning the

natural knee and ankle positions during the walking gait cycle. We then use the

same system to reproduce the learned patterns in a dynamical way. Trajectories

played back that way have a similar shape to the natural ones but are generated

out of a set of di�erential equations integrated numerically in real time. Hence

they are more suitable to be used as position control for a prosthesis since such

a system displays a limit-cycle behavior, which can handle perturbations.

Then we use a physics-based robot simulation software. In that environment

we run simulations on a bipedal model in which each joint is modeled by a rota-

tional servo motor. The hips are controlled simply by playing the anthropometric

pattern. The ankles and the knees however are controlled with the system de-

scribed above, with knee and ankle position patterns encoded within. In order

to help the CPG play the patterns at the frequency and phase corresponding to

the movement of the hips, we implement a sensory-feedback system. The latter

takes an acceleration signal from the hip to recognize the phase and frequency

of the gait. Its output is then used to trigger the patterns playback. We test
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speed modulation by making the hips move at three di�erent speed and observe

the quality of the gait tracking by the sensory-feedback system.

Finally, we play the knee trajectory describing two gait cycle from one CPG

simulation on the active knee prosthesis developed in the Biomechatronics group

using position control.

1.2 Lower Limb Prostheses: State-of-the-Art

Most of us take it for granted, but walking is not as simple as it looks. Dur-

ing a healthy human gait the ankle exerts an important torque to push o� the

ground. A typical prosthesis does not reproduce the force exerted by a living an-

kle, resulting in amputees spending much more energy in comparison to walking

naturally [7, 8]. In this section we describe some of the state-of-the-art prototypes

of prosthetic devices.

1.2.1 Design Consideration

There are a number of elements to consider when designing a lower-limb pros-

thesis. Manufacturers and researchers often have to make choices about their

priorities regarding these factors.

• Storage of the energy acquired through ground contact and using of that

stored energy for propulsion. In a number of passive devices this is achieved

by material elasticity. Carbon �ber is often used for that purpose.

• Energy absorption: minimizing the e�ect of high impact on the muscu-

loskeletal system especially at heel strike.

• Ground compliance: stability on uneven terrain and slopes.

• Weight: maximizing comfort, balance and speed.

• Attachment: how the socket will join and �t to the limb.

The last two points are actually of high importance. Somewhat similarly to the

development of augmentation exoskeletons, one adds both net power generation
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and extra weight. It is then the role of the control to use the power e�ciently

enough to, at least, compensate the extra weight. For prosthetic devices, one

should keep in mind that the weight is situated at the farthest extremity of

the limb (in the case of ankle-feet) thus requiring a high torque from the joints

above to be ambulated when not actuated. Even if we assume good walking

performance, other activities might su�er from the extra weight. Wandering

around, walking upstairs and dancing for instance.

Also we will mention that the socket �tting is a crucial element of a satisfying

rehabilitation as it determines the amputee con�dence in the device. The most

ideally controlled device is useless if not well attached to the stump 1. The

amputee has the feeling he might lose the device in any minute, or undergoes

pains in the remaining limb every time he steps on it.

1.2.2 Microprocessor Controlled Prosthetic Knees

For trans-femoral amputees, one of the most critical components of the prosthe-

sis is the knee joint. Obviously, a prosthetic knee should provide stability and

safety to the patient in order to make him con�dent in the device and reach a

gait kinetics close to the natural one. However this must be achieved with chal-

lenging constraints such as weight and cost. The device weight is particularly

important as the size of the stump is shorter. Transfemoral amputees are very

sensitive to the device's weight as they have to lift it during swing phase to have

enough clearance between the toes and the ground. Hence, a heavy prosthe-

sis will increase gait asymmetry and increase stress on the back and the hips.

Also, production cost is a major constraint, whether the market spans over a

developing country as India, or a developed country such as the USA. In the

�rst case, cost should be low enough for people living with a per capita income of

1, 030USD/year 2 to pay for their prosthesis with their own money. In developed

countries, insurances usually cover most of the cost generated by the prosthesis.

Nevertheless, they sometime refuse to cover expensive devices such as the C-Leg

1residual limb
2http://www.imf.org
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(shown in Fig. 1.1(a)) depending on the patient situation 1. Moreover, although

the physiological advantages of microprocessor controlled knees are proved and

numerous, one should also mention that extra cost is not the only drawback.

Other practical issues should be taken into account: such devices are usually not

waterproof, forcing the amputee to be careful when raining. They also require a

battery that has to be charged regularly. That turns the prosthesis into a heavy

and awkward to use device in case of battery run out or trouble. Össur Power

Knee (Fig. 1.2(a)) for instance, has a battery life of 4 to 5 hours. Also, a device

such the Otto Bock C-leg requires that the prosthetist to be approved to cali-

brate it to the new patient and to perform the maintenance it requires, which is

obviously more important than for merely mechanical knees.

Fig. 1.2.2 shows the most popular microprocessor controlled knee prostheses.

These prototypes are sometimes called quasi-passive as the sti�ness (i.e. damping)

at the joint is actively controlled but they do not provide the user net work.

In the Rheo Knee from the Islandic company Össur shown in Fig. 1.1(c)

a microprocessor controls the strength of a magnetic �eld which in turn will

determine the viscosity of a magnetorheological �uid thus enabling a controlled

resistance of the joint during swing phase. The main advantage of this device

is that it can be tuned to be used as a free hinge joint, making some particular

activities such as biking easier.

The Otto Bock C-Leg have been one the most successful microprocessor

controlled knee prosthesis since it entered the US market in 1999. Like the Rheo

Knee, The C-leg does not provide the patient with net work during the gait.

However, it allows a variable damping of the prosthetic knee joint via the following

mechanism: angular position and velocity as well as forces are measured and are

used as input for the algorithm executed by the microprocessor. The latter will

then control the opening of small valves that will trigger the amount of hydraulic

�uid that can pass into and out of a hydraulic cylinder, thus regulating the

extension and compression of a piston connected to the upper section of the

1Source: Conversation with Bob Emerson, prosthetist regularly collaborating with the MIT
Biomechatronics group, transfemoral amputee himself and C-leg user
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(a) Otto Bock C-Leg (b) Endolite

Smart Adaptive
Knee

(c) Össur Rheo Knee (d) Freedom In-

novations Plié 2.0

Figure 1.1: Commercially available microprocessor controlled knee prosthe-
sis. Pictures from www.ottobock.com - www.endolite.com - www.ossur.com -
www.freedom-innovations.com (retrieved August 2010).
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knee.

Main advantages [25]:

• Improved stair descent function with C-Leg (p<.001).

• Fewer reported stumbles and falls with C-Leg (p<.05).

The Smart Adaptive Knee and the Plié 2.0 show behavior similar to the

C-leg. However, according to Bob Emerson, they are preferred by smaller number

of users.

Fig. 1.2.2 shows a selection of knee prosthesis that intend to provide net work to

restore a healthy walking gait.

The Össur Power Knee 1.2(a) is, to the author knowledge, the only powered

prosthetic knee commercially available to this day.

The device developed by Sup et. al at Vanderbilt University in Nashvill,

TE, USA 1.2(b) [26] is unique in the sense that it is a fully powered robotic

leg, including both a knee and an ankle-foot prosthesis.

The AAAKP: [3] In the Biomechatronics group, Cambridge, MA, USA, Hugh

Herr, PhD and Ernesto Martinez, PhD candidate are developing a control strat-

egy for the Active Agonist Antagonist Knee prosthesis prototype available in their

laboratory.

1.2.3 Prosthetic Ankle-Feet

This section presents some of the state-of-the-art ankle-feet prosthesis. Shown

in Fig. 1.3(a), Össur Proprio Foot does not generate net torque. However, it

intends to actively adapt the ankle angle depending on the terrain. SPARKy,

in Fig. 1.3(b) has an actuator. To the author knowledge, this project is not

commercialized neither still under development. The recycling enrgy foot shown

in 1.3(c) aims to recycle the energy lost at heel strike in spring to restore it at

toe-o�. The time release of the spring is microprocessor controlled. The MIT

Power-Ankle Foot is actuated by series-spring actuators. The control is achieved
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(a) Össur Power Knee (b) Sup et. al - Vander-
bilt Univ. [27]

(c) MIT AAAKP

Figure 1.2: Prototypes of knee prostheses intending to provide the user with net
power over the gait cycle.

by a �nite state machine [28]. Recent work in the Biomechatronics group shows

promising speed modulation results using a re�ex-based architecture.

�����������������������-
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(a) Össur Prorpio Foot (b) SPARKy - Hitt et. al [29]

(c) Recycling Foot - S.H. Collins
and A.D. Kuo [30]

(d) Power-Ankle Foot - Au et. al [28]
and iWalk inc. (Hugh Herr)

Figure 1.3: Prototypes of microprocessor controlled ankle-feet prostheses.
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Chapter 2

CPG Model

In this chapter we �rst describe the nonlinear dynamical system modeling a CPG

used to learn and playback joints positions (section 2.1). Secondly, section 2.2

reports the mathematical simulations of the corresponding system for the fol-

lowing two kinds of inputs: a simple signal made of a sum of four sines and the

anthropometric ankle and knee trajectoriy for three di�erent walking speeds. The

framework described here and used throughout this study is largely inspired by

the work of L. Righetti and A. Ijspeert from the Biorobotics Laboratory, EPFL,

Lausanne [31].

2.1 Methodology

Section 2.1.1 motivates the choice of the numerical integration method required

to simulate the dynamical systems proposed in this study. Then, the construction

of a generic CPG model is detailed step by step: �rst, the equations modeling a

basic Hopf oscillator as well as its main features are recalled in subsection 2.1.2.

Further, subsection 2.1.3 describes the addition of a general learning rule allowing

the oscillators to adapt its intrinsic frequency. Then, we explain the architecture

of a set of coupled adaptive frequency oscillators (AFOs) capable of learning any

periodic signal in subsection 2.1.4. Finally subsection 2.1.5 describes the two

con�gurations in which the system is actually used to �rst learn a periodic signal

and then play it back.
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2.1.1 Numerical Integration

In order to simulate the behavior of the dynamical systems used in this study,

one needs to integrate the corresponding ordinary di�erential equations (ODEs).

For that purpose, the forward Euler method is used in both the mathematical

simulations (Matlab and Simulink) and the physics-based simulations (Webots).

Although it is a �rst order numerical integration method, it provides an approx-

imation of the solution that is satisfying since the ODEs used in this study are

not particularly sti�, i.e. the integration remains numerically stable for the time

step used in this study: 0.01s.

Moreover, as shown in eq. 2.1, which describes the Euler method, it is easy

to implement and requires few computational resources. Let us assume we need

to numerically integrate the following generic ODE: θ̇ = F (t, θ(t)). Starting from

the value of the function to be integrated at the beginning of the integration time

t0 (initial condition), an approximation of the solution is given, step by step by

eq. 2.1. This method requires ∆T small enough and an initial condition.

θ(t+ ∆T ) = θ(t) + ∆T · (F (t, θ(t)) (2.1)

2.1.2 Hopf Oscillator

The building block of the proposed system is the so-called Hopf oscillator [31, 32]

de�ned by equations 2.2 and 2.3 in cartesian coordinates. This system of two

non-linear di�erential equations exhibit a limit cycle behavior: a circle when the

two state variables of the system (x, y) are plotted against each other in a phase

portrait.

ẋ = γ(µ− x2 − y2)x− ωy (2.2)

ẏ = γ(µ− x2 − y2)y + ωx (2.3)

Where x, y are the system state variables, γ is a constant that modulates the

strength of attraction to the limit cycle i.e. the speed with which the trajectory

evolves towards the limit cycle. The constant µ is the radius of the limit cycle.
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The constant ω represents the angular frequency at which the point (x(t), y(t))

rotates around the origin of the limit cycle. Hence, in this basic oscillatory system,

there is no way to adapt to any external frequency as the frequency is an intrinsic

property of the system.

2.1.3 Adaptive Frequency Oscillators

To develop a system capable of learning an external frequency requires to turn

the frequency ω into a state variable of the system. The idea is to assign to this

new state variable a general evolution rule to converge to the input frequency.

The input F (t) can be seen as a time-dependent force that perturbs the original

systems. It has been shown that if the intrinsic frequency ω(t0) of the oscillator

is close enough to the frequency of F (t), synchronization will occur [33]. This

phenomenon is also called entrainment.

ẋ = γ(µ− r2)x− ω(t)y + εF (t) (2.4)

ẏ = γ(µ− r2)y + ω(t)x (2.5)

ω̇ = −εF (t)
y

r
(2.6)

This way, the value of ω(t) will vary throughout the simulation until converg-

ing to one of the frequency components of the periodic signal F (t). The largest

di�erence between the intrinsic frequency of the oscillator and the periodic input

that still allow entrainment depends directly on the coupling strength (gain of

the oscillator). The stronger the gain the larger this di�erence [31].

2.1.4 Learning System: Generic CPG

For constructing a generic CPG several AFOs have to be coupled in order to

learn the di�erent frequency components of the teaching signal. Subsequently,

the learned frequencies can be played back to reproduce the learned signal [1, 31].

For this purpose two state variables per single AFO are added to the set of
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equations, corresponding to the variables : α(t) and φ(t). The �rst one, αi(t),

is the amplitude of the frequency ωi(t). The second one, φi(t), is the phase

relationship between the oscillator i 6= 0 and the oscillator 0.

One advantage of using Hopf oscillators to learn and reproduce signals is that

the state variable x(t) is sine-like for small values of coupling gain ε. Hence, the

output of the system, Qlearned, is de�ned as the sum of xi(t) weighted by the

corresponding amplitude αi(t) (last line 2.8).

Also, by taking as input signal F (t) = Pteach−Qlearned we have a system that

is able to converge to the di�erent frequency components of a periodic signal and

to provide the corresponding amplitudes and phase relationships between them.

The system can also be interpreted as a dynamic Fourier series representation of

the input which will allow to play it back from the same dynamical system with

all the advantages that this framework features. The architecture of the whole

system is shown in Fig. 2.1. The system of di�erential equations representing

each oscillator i in the network is shown in eq. 2.7.

ẋi = γ(µ− r2
i )xi − ωiyi + εF (t) + τsin(

ωi

ω0

θ0 − θi − φi)

ẏi = γ(µ− r2
i )yi + ωixi

ω̇i = −εF (t)yi

ri

α̇i = ηxiF (t)

φ̇i = sin(
ωi

ω0

θ0 − θi − φi)

(2.7)

with,

i = 0, 1, .., N

ri =
√
x2

i + y2
i

θi = sign(xi)cos
−1(−yi

ri

)

F (t) = Pteach −Qlearned

Qlearned(t) =
i=N∑
i=0

αixi

(2.8)

If the input signal to be learned (Pteach) is not centered around 0 we add to
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the system a simple integrator α̇offset = ηF (t) in order to learn the o�set.

Figure 2.1: Structure of the network of adaptative Hopf oscillators. Refer to [1]
for more details.

2.1.5 Playback Systems: Phase Oscillators

The system presented in section 2.1.4 is based on adaptive frequency oscillators

and is thus capable of learning a given periodic signal. However, it is also of

interest for this study to reproduce (i.e. playback) a learned pattern using a similar

system. The playback system presented here is a simpli�cation of the learning

system in the sense that it does not contain any of the adaptation mechanisms.

Also, to make it simpler the system is written in terms of phase oscillators,

that is in polar coordinates, de�ned by equation 2.9. In the playback case, the

oscillator frequencies ωi are not state variables anymore but constants equal to

the parameters learned during the learning step.

θ̇i(t) = ωi + τsin(
ωi

ω1

θ1(t)− θi(t)− φi), i = 1, .., N.

θ̇i(t) = i · ω1 + τsin(i · θ1(t)− θi(t)− φi), i = 1, .., N.

Γ(t) =
N∑

i=1

αisin(θi) + αoffset.

(2.9)
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As the teaching signals we use are periodic, we assume that the frequency

components are harmonics, that is ωi = iω0. In that way the equation can be

written in a simpler way as shown in the second line of eq. 2.9.

2.2 Mathematical Simulations

2.2.1 Four Components as Input

This subsection reports the results of an implementation of the programmable

CPG described in section 2.1.4. The implementation described here is merely

a reproduction of the results described in [1]. This was implemented as a �rst

�rst step in this project to allow a fair understanding of the system that is used

throughout this research.

The system takes a sum of four sine functions each of them having a di�erent

frequency ωi, amplitude αi and phase φi (i = 1, .., 4). The simulation is run - the

di�erential equations are numerically integrated - until each oscillator converges

to one of the four frequency components composing the input signal Pteach:

Pteach = 0.8sin(15t) + cos(30t)− 1.4sin(45t)− 0.5cos(60t) (2.10)

= 0.8sin(15t) + sin(30t+
3π

2
) + 1.4sin(45t+ π) + 0.5sin(60t+

π

2
) (2.11)

The parameters and initial conditions are the same as in the aforementioned

article (see table 2.2.1). In Fig. 2.2 we observe that after enough simulation time

(150s) the learned signal is identical to the teaching signal input as expected.

Another interesting observation can be made on the error plot (Fig.2.3), where

the absolute value of the error between Pteach and Qlearned decreases with steps

each time an oscillator synchronizes to one of the four frequency components of

the teaching signal.

In Fig.2.3 we also observe the state variables ωi and αi converging to the

values expected which are the frequencies and amplitudes of each of the sines
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Parameter Value Variable Initial condition(t0)
ε 0.9 (xi, yi) (1,0) ∀i = 1..4
η 0.5 ωi ∈ [6, 70] uniformly
γ 8.0 αi 0.0 ∀i
τ 2 φi 0.0 ∀i

Table 2.1: Left: Set of parameters used in eq. 2.7 for the learning of the four
components signal given in eq. 2.10. Right: Initial conditions.

composing Pteach.

(a) Teaching signal (b) Learned signal

Figure 2.2: Teaching and learned signal are identical after each oscillator conver-
gence to one of the four frequency components of the teaching signal.

This result is important as it validates the implementation of the programmable

CPG when learning a periodic signal replicating the results from [1].

2.2.2 Anthropometric Data Description

The reference signals that are going to be used to actuate the prostheses in this

project come from anthropomorphic patterns found in the literature [2]. Like the

simple signal investigated above, these periodic signals can also be decomposed

in a sum of sine waves, whose amount is unknown a priori.

This section �rst presents some features of the anthropometric data [2] used

throughout this study. Then we explain the calculation to transform the data,

normalized with respect to stride percentage, into a continuous and time-dependant

signal. The anthropometric trajectories presented here consist of lower limb joint

position (�exion/extension): hips, knees and ankles as shown in Fig. 2.4. The
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Figure 2.3: Evolution of the state variables of the system when learning the four
signal components de�ned by eq. 2.10. Evolution of the state variables ωi (top
left - rad/s), αi (top right), φi (bottom left) and the error between the teaching
signal Pteach and the learned signal Qlearned de�ned as abs(Pteach−Qlearned). x-axis
is simulation time (s).
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sign convention used in [2] is shown in Fig. 2.5(a) and Fig. 2.5(b) shows the

convention for the bipedal model used in this study, which is presented in more

details in section 3.1.1. The data were collected and processed by DA Winter

et. al [2].

(a) Slow walking (b) Normal walking (c) Fast walking

Figure 2.4: Anthropometric data: joint angles during normal, slow and fast walk-
ing (19,19 and 17 subjects respectively.)

(a) Anthropometric data [2] (b) Webots bipedal model

Figure 2.5: Angles convention used in the anthropometric data from [2] 2.5(a)
and in Webots 2.5(b).
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The data from [2] being obtained from a number of di�erent subjects, the

authors have normalized it as a function of the gait cycle, not time. In order

to compute the average time duration of one cycle (stride interval or si), we

�rst compute the �rst derivative of the positions which gives us the (normalized)

angular velocity

v̂(t) = v(t) · si

As the data available also provides the moment of force τ around each joint and

the net power around the joint, we can compute the normalized version of the

power p:

p̂(t) = τ(t) · v̂(t)

Then we use the least squares method to �t the computed normalized power

p̂(t) = τ(t) · v̂(t) to the power curve provided by the data p(t) = τ(t) · v(t) to

�nd the value of the stride interval in terms of least squares. The results of this

calculation are listed in 2.2. These results seem acceptable as it is commonly

accepted that the stride interval of normal walking (self-selected speed) is around

1.2s 1

Walking speed Stride interval (s) Gait freq. (Hz) Gait freq. (rad/s)
slow 1.55 0.65 4.08
normal 1.30 0.77 4.84
fast 1.14 0.87 5.47

Table 2.2: Computed stride intervals and corresponding gait frequencies.

2.2.3 Anthropometric Ankle and Knee Patterns as Input

Here, the results of the learning system presented in Section 2.1.4 with the an-

thropomorphic data described above are reported.

The human data used in this study (see section 2.2.2) describe one gait cycle

so the input trajectory to be learned is a continuous version of these patterns.

1Source: Discussions with Micheal Eilenberg and Jared Markowitz, both PhD candidates in
the Biomechatronics laboratory and regularly conducting gait capture experiments. Moreover,
[34] reports a stride interval of 1.24s with 0.04 of SD.
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Assessment of the number of AFOs to be used: The former section estab-

lished that a signal made up of four sine waves can be learned with four oscillators.

If each has an initial condition close to a frequency component of the signal, each

will converge to one of the signal component. However, when learning a signal

that has many or an undetermined number of frequency components the ques-

tion is how many oscillators are required to learn and play back the signal with

a satisfying �delity.

In order to assess the appropriate number of oscillators to generate an out-

put signal close to the input, we tested learning and playback with 3,4,5 and 6

oscillators keeping every other parameter unchanged. It is important to compare

the playback pattern and not the learning output as in the latter case the output

might be biased (shape closer to the teaching signal because of a high learning

gain ε). Fig. 2.2.3 shows the comparison between the playback using di�erent

numbers of oscillators with the same system.

(a) 3 oscillators (b) 4 oscillators

(c) 5 oscillators (d) 6 oscillators

Figure 2.6: Playback with 3,4,5 and 6 oscillators composing the system. Anthro-
pometric ankle pattern (blue) and oscillators playback (red). x-axis: simulation
time (s) ; y-axis: ankle angle (deg)

Fig. 2.6(a) and 2.6(b) show the output of the system when it learns the three
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Parameter Value Variable Initial condition(t0)
ε 20 xi 1.0 ∀i
η 5 yi 0.0 ∀i
γ 8.0 ωi

1
n.s.i.
· [1, .., Nosc]

τ 5 αi 0.0 ∀i
Nosc 3, 4, 5, 6 φi 0.0 ∀i

Table 2.3: Left: Set of parameters used in eq. 2.7 for the comparison of the
output with respect to the number of oscillators. Nosc is the number of
oscillators used to learn and to playback. Right: Initial conditions. n.s.i. stands
for normal speed stride interval time in (s).

and four most important frequency components of the ankle pattern (fundamen-

tal frequency and two harmonic frequencies). It is visible that the learned pattern

is not close enough to the anthropometric pattern. It is interesting to compare

Fig. 2.6(c) and 2.6(d) as there is not much improvement by adding a sixth fre-

quency component in the playback signal. Thus, as �ve oscillators (not including

the o�set integrator) seem to reproduce the patterns of interest with a good

accuracy. This number will be �xed for the rest of this project.

Subsequently, the ankle patterns at the three di�erent walking speeds must

be learned by the system.

2.2.4 Learning of the Anthropometric Trajectories

This subsection reports the results of the system in the same con�guration as in

subsection 2.1.4 for learning the knee trajectory at normal walking speed. All the

results of the learning for ankle and knee patterns for all three walking speed are

listed in Appendix A.

The parameters de�ning each pattern are the fundamental frequency, the

corresponding amplitudes and phases relationships between the fundamental fre-

quency and the harmonic. These are reported in table 2.
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Parameter Value Variable Initial condition(t0)
ε 20 (xi, yi) (1.0,0.0) ∀i = 1..5
η 10 ωi i · ff

γ 8.0 αi 0.0 ∀i
τ 5 φi 0.0 ∀i

Table 2.4: Left: Set of parameters used in eq. 2.7 for the learning of the an-
thropometric knee patter at normal speed. Nosc is the number of oscillators
used to learn and to playback. Right: Initial conditions. ff is the fundamental
frequency of the pattern.

Figure 2.7: Convergence of the state variables ωi, αi and φi (plots left to right)
during the learning of the normal walking speed knee trajectory. x-axis is learning
(i.e. simulation) time in (s). y-axis of the left plot is the frequency in (Hz). Other
y-axis are dimensionless.

Oscillator# 1 2 3 4 5
Learned frequencies (rad/s) 9.50 19.01 28.52 38.02 47.53
Corresponding amplitudes (rad) 0.35 0.31 0.08 0.01 0.01
Corresponding phases (dimensionless) 0 1.49 3.96 1.99 4.37

Table 2.5: Learning of the oscillators for normal walking speed - knee trajectory.
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Figure 2.8: First seconds of the learning process for the normal walking speed
knee pattern. The blue line is the teaching signal i.e. Pteach and the red line is
the learned signal i.e. Qlearned. x-axis are simulation time in (s). y-axis are knee
angle in (deg).

Figure 2.9: Evolution of the error between the teaching signal and the learned
signal during the learning of the normal walking speed knee trajectory. x-axis is
learning (i.e. simulation) time in (s). y-axis is abs(Pteach −Qlearned)
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(a) Teaching signal (b) Playback signal

Figure 2.10: Teaching signal (left) and oscillators playback (right) for normal
walking speed knee trajectory. x-axis are simulation time in (s). y-axis are knee
angle in (deg).
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Chapter 3

Physics-Based Simulations

In this chapter, we describe the simulation of a bipedal model in Webots, a

physics-based robot simulator.

First, in section 3.1, we describe the bipedal model, how it is actuated and

what sensory feedback is used. Secondly, section 3.2 describes the results of the

bipedal model walking, with simple anthropometric joints trajectory as well as

with the CPG-based actuation strategy derived in the previous chapter for knees

and ankles. Results of the gait tracking using an AFO as sensory feedback to

trigger the CPG-based actuation are also presented in section 3.2. Finally, the

results of the physics-based simulations are discussed in section 3.3.

3.1 Methodology

3.1.1 Bipedal Model

The simulations presented in this section were done using a bipedal model sim-

ulated in Webots. This model was developed and kindly provided by Jesse van

den Kieboom 1, PhD Candidate at the Biorobotics laboratory, EPFL.

As shown in Fig. 3.1 the virtual biped is a model of a nominal male human

lower body, accurate in terms of limb length, mass and inertia tensor.

The model consists on a rectangular homogeneous block for the trunk and

two legs with four actuated hinge-like DOFs modeling each joint: hip, knee,

1jesse.vandenkieboom@ep�.ch
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ankle and toe. Each DOF can be controlled given position, torque or velocity.

In this work however, we only use position control in order to actuate the hips,

knees and ankles. Toes are passive in the sense that their dynamic is modeled by

a spring-damper system.

The architecture of the model is purposely kept simple. Indeed, as this study

intends to investigate the use of a CPG model to generate joint trajectories using

simple sensory feedback, the model does not include any muscle dynamic such as

muscle synergies, re�exes or energy storage properties provided by tendons. Also

there is no balance control in that model. So in order to prevent falling down

during walking this model is supported by a roller cage constraining some of the

degrees of freedom of the modeled robot.

This `security device' causes some unwanted interaction artifacts between the

robot and the cage. This decreases the accuracy of the model to a level that is

nevertheless still acceptable for the pilot investigations conducted in this thesis.

As a �rst step, the aim is to control the DOFs of the hip, knee and ankle

to follow the anthropometric positions. This way we have a model to assess the

performance of a CPG-based controller.

The servo motors used in this model are a simulation of real rotational servo

motors and are implemented as prede�ned nodes in Webots. In this study we

use them in the position control using standard proportional feedback with gain

P. This P-controller also requires an upper bound for the provided torque. The

maximum velocity is also a parameter of the servos. Table 3.1 summarizes the

values for the maximum torque available, the maximum velocity and the servo

P-gain for each actuated DOF. The P-gain has a default value of 10 which we

did not change in this study as the details of the electromechanics are not meant

to be investigated. The maximum velocity is chosen large enough not to hinder

the joints movements. Similarly the maximum torques are chosen to be large

enough to allow the bipedal to go forward. In Fig. 3.2 shows a scheme of the

implementation of servos in Webots, displaying only the functions that we use

in this work, namely servo set postion as well as the �xed parameters listed in

table 3.1
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(a) Normal (b) Front

(c) Side (d) Top

Figure 3.1: Views of the bipedal model with eight DOFs and roller cage in Webots.

Figure 3.2: Servo control in Webots. Source: Webots Reference Manual release
6.2.4 page 106.
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DOF max torque (N ·m) max velocity (rad/s) P-gain
Hips 500 50 10
Knees 500 50 10
Ankles 500 15 10

Table 3.1: Important parameters of the servos model in Webots.

3.1.2 Sensory Feedback

This subsection focus on the sensory feedback that will be used to control the �nal

prototype presented in this study. We explain how the gait tracking is achieved

using this sensory feedback and the pool of playback oscillators. In Fig. 3.3 we

show an overview of the proposed system including the gait tracking subsystem

constituting the sensory feedback.

3.1.2.1 Acceleration measurements

Among the sensors available in Webots, the gyroscope and the accelerometer

seemed to be the most relevant choices to get a signal encoding the gait periodic-

ity. The touch sensor, also available in Webots, was considered but would provide

a binary information that would likely decrease the quality of the tracking during

varying walking speed.

The accelerometer node provided by Webots models an accelerometer device

such as those commonly found in mobile electronics, robots and games devices 1.

It returns acceleration values in a three dimension vector expressed in m/s2 and

simulates the noise usually found on such devices 2. The accelerometer provides

the acceleration along each of the three axis x-y-z in the coordinate system of the

accelerometer node, relative to its parent node (the hip servo node).

The gait features we intend to extract out of the acceleration signal are the

fundamental frequency and the phase. These variables will then be used as input

to a pool of playback oscillators in order to play the patterns at both knees and

ankles. Therefore, the phasing of the acceleration within the gait cycle must be

determined. In this study the extraction of the instantaneous gait frequency and

1Webots Reference Manual, release 6.2.4.
2Conversation with Jesse van den Kieboom.

29



AFOacc

θaccx(t)

Gait 

tracking

provides

x(t)

ω
acc

(0);ε 

θaccx(t)

y(t)

ω(t)

Playback 

oscillators

φi

αi
A3KP

Or

Bipedal

model

Z-axis acc.

provides

phase and 

freq.
ω

acc

Knee and ankle pattern

IMU

Figure 3.3: Block diagram of the overall system with the gait tracking subsystem
in the blue box. IMU stands for Inertia Measurement Unit, a device containing
accelerometer and gyroscope providing the input for the gait tracking AFO. A3KP
stands for Agonist-Antagonist Active Knee presented in chapter 4.1.
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phase is done by the synchronization of one AFO with the acceleration signal.

We found that the acceleration signal providing the cleanest periodic pattern is

from the z-axis (intersection between sagittal and transverse plane when at rest).

Hence, from the rest of this report, the term acceleration will refer to z-axis

acceleration unless speci�ed.

The placement of the accelerometer on the hip: In the conducted sim-

ulations the best results are obtained when the acceleration is measured on the

thigh. It is likely because the movements on that segment have a more stable pace

since the hips servos play the anthropometric pattern regardless of the knees and

ankle positions. Therefore the accelerometers on the hip measure a clean motion

which is equal to the anthropomorphic data.

3.1.2.2 Gait tracking using one AFO

In section 2.1.4, we presented how coupled oscillators within a negative feedback

loop can learn a speci�c periodic pattern. This was based on a generic learning

rule for the state variable ωi of each oscillator (section 2.6, equation 2.6). Similarly

we would like to take advantage of the adaptive frequency feature of the oscillators

presented in this study in order to track the frequency and phase of the gait from

the acceleration signal. The acceleration signal is used as input of an AFO that

synchronizes with it thus extracts the gait frequency and phase. These variables

are then used to trigger the pool of AFOs after learning. The equations modeling

this gait tracking AFO are shown in 3.1-3.4.

ẋacc = γ(µ− r2
acc)xacc − ωaccyacc + εaccaz (3.1)

ẏacc = γ(µ− r2
acc)yacc + ωaccxacc (3.2)

ẇacc = −εaccaz(−yacc

racc

) (3.3)

θ̇acc = sign(xacc)(−acos(−
yacc

racc

)) (3.4)
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These equations are a simpli�ed version of the CPG model presented in chap-

ter 2. The parameteres γ and µ are kept the same. The signal that this AFO

intend to track, az is the output of the z-axis acceleration from the thigh. It

replaces F (t) in the CPG model equations. Important parameters of this system

are the gain εacc and the initial condition on ωacc. The former is chosen by trial

and error and the latter is chosen to match the normal walking speed. Also,

depending on the parameters chosen, we observe that ωacc can sometimes lose

its synchronization and converge to zero. In order to overcome that problem, a

resetting is implemented. This is achieved by putting two conditions on ωacc: if it

is close to zero AND the acceleration is not equal to zero (i.e. the subject wants

to walk) then ωacc is reset to its initial condition.

Subsequently, the gait variables ωacc and θacc are used to trigger the frequency

and phase of the playback oscillators as shown in eq. 3.5. The constant δ is a

�xed phase shift that is manually chosen to match the dynamic obtained from

xacc with the desired joint position.

θ̇i(t) = i · ωacc + τsin(i · θacc(t)− θi(t)− φi), i = 1, .., N.

Γ(t) =
N∑

i=1

αisin(θi + i · ωacc · δ) + αoffset.
(3.5)

3.2 Results

3.2.1 Walking with the Anthropometric Trajectories

In order to validate the bipedal model, we �rst feed the servo motors at the hips,

knees and ankles with the anthropometric trajectories from [2] at normal speed.

The positions of the knees and the ankles are multiplied by −1 in order to be

coherent with the angle convention of the bipedal model as explained in Fig. 2.5.

As the data describe a gait cycle starting from heel strike 1 we just play it as it

is for one leg and half cycle lagged for the other.

The result of this simulation is qualitatively very close to a human gait though it

is slightly more jerky. Fig. 3.4 shows a set of snapshots of the bipedal model over

1In the literature, heel strike is commonly accepted as a convention for the starting point
of a gait cycle.
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approximately one gait cycle. In videos 1# and #2 we observe that each heel

strike is more of like collision between the foot and the ground than a smooth

weight transfer. This is most probably due to the rigid nature of the model that

obviously does not take into account any of the human tissue properties (soft

tissues and cartilages tendons; or energy storage). All these act to make the

interaction of the human with the ground gentler than displayed by the model.

Fig. 3.5 shows the result of the actual measured positions of the joints compared

to the anthropometric positions commanded to the P-controller. As expected

there is a delay between the desired trajectory and the actual position as the

amount of torque available and the maximum velocity of the servo motors are

limited. Since the delay does not vary much throughout the gait cycle (between

0.05s and 0.1s) it does not a�ect the quality of the gait.

The hip trajectory is the one tracked with most �delity as it displays the

smallest variations. The knee pattern is also tracked with a satisfying �delity

though neither the anthropometric full extension nor �exion are reached. The

ankle pattern is tracked with slightly less �delity. However its important features

are preserved: small plantar�exion at heel strike, dorsi�exion during early stance

to go forward and plantarfexion during swing to have enough clearance between

the toes and the ground.

Link for the videos that shows the bipedal walking in

the con�guration described in section 3.2.1: video #1

(normal view) and video#2 (side view).

3.2.2 Walking with the CPG Position Control

In this section we report the results of the bipedal model walking using both the

CPG-based playback dynamical system (eq. 2.7), and the thigh accelerometers

to specify the fundamental frequency and phase of the main oscillator. Four in-

dependent pools of oscillators were used, for both ankles and both knees. The

hips servos however play the anthropometric trajectories as in section 3.2.1. In

Webots we implemented one gait tracking system per leg. That means one ac-

celerometer at each hip synchronizes to one gait tracking AFO that triggers the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.4: Snapshots of one gait cycle of the bipedal model simulation in Webots.
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Figure 3.5: Trajectories of right hip, knee and ankle of the bipedal model when
walking at normal speed unsing the anthropometric data as input of the controller.
Measured positions in dashed black and anthropometric commanded positions in
solid blue. x-axis is simulation time (s). y-axis is joint positions according to the
anthropometric data convention (see 2.5) (rad)
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frequency and phase of the knee and ankle dynamical system pattern playback

for each leg as explained in section 3.1.2.2.

In order to test the robustness of the gait tracking system, we implemented a

simulation in which the hips start by playing the anthropometric pattern at slow

walking speed (t = 0s), then abruptly switches to fast walking speed (t = 30s)

and �nally slow down from fast to normal walking speed (t = 60s). Section 3.2.2.1

reports the results of the gait tracking system state variables xacc and ωacc. Sec-

tion 3.2.2.2 shows the results of the trajectories of the three joints. The gain of

the gait tracking AFO is εacc = 0.7 and the initial condition on the frequency is

ωacc = 3.5.

3.2.2.1 Gait Tracking

In Fig. 3.6 we observe that it takes 10 seconds for the system to stabilize. Then the

transition to fast is handled in approximately 10 seconds whereas the transition

from fast to normal is done in 5 seconds.

Figure 3.6: Evolution of the state variable ωacc of each gait tracking AFO (rad/s)
in red.

3.2.2.2 CPG trajectories playback
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Figure 3.7: Synchronization of the gait tracking AFO during a 90s simulation.
z-axis acceleration (m/s2) in blue. State variable xacc(t) is in red. (dimensionless,
not in scale).

Figure 3.8: Synchronization of the gait tracking AFO from t = 10s to t = 50s of
the same simulation. z-axis acceleration (m/s2) in blue. State variable xacc(t) is
in red. (dimensionless, not in scale).
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Figure 3.9: Overall simulation. From top to bottom: trajectories of right hip,
knee and ankle (rad). Blue is the anthropometric trajectory as reference. Red is
the CPG playback. Dashed black is the measured position.

Figure 3.10: First 20 seconds of the simulation: slow walking speed. From top
to bottom: trajectories of right hip, knee and ankle (rad). Blue is the anthropo-
metric trajectory as reference. Red is the CPG playback. Dashed black is the
measured position.
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Figure 3.11: Transition from slow to normal. From top to bottom: trajectories
of right hip, knee and ankle (rad). Blue is the anthropometric trajectory as
reference. Red is the CPG playback. Dashed black is the measured position.

Figure 3.12: Transition from fast walking to normal. From top to bottom: tra-
jectories of right hip, knee and ankle (rad). Blue is the anthropometric trajectory
as reference. Red is the CPG playback. Dashed black is the measured position.
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Corresponding videos

Link for the videos that shows the bipedal walking in

the con�guration described in section 3.2.2:

video #3 (10 �rst seconds)

video #4 (slow to fast walking speed transition)

video #5 (fast to normal walking speed transition)

3.3 Discussion

In this chapter we presented the bipedal model, the gait tracking system and

the results of the bipedal walking �rst playing the anthropometric positions at

all joints and second with CPG-actuated knees and ankles using acceleration as

sensory-feedback.

3.3.1 Walking with the anthropometric trajectories

A very close to human walking gait is achieved simply by feeding the servos

with anthropometric values. The measured trajectories are very satisfying for

the hip in particular. Regarding the knee and the ankle, some features of the

pattern are lost, and extrema are not reached. However that does not seem to

prevent the bipedal model to achieve walking. This being said, one should keep

in mind that such a gait requires that the rotational servo motors are able to

deliver approximately ten times the estimated human torque. This is probably

because a too large p-gain. Another reason for that is probably because of the

sti�ness of the control especially during stance where the p-controller tries to

impose desired positions that are not in phase with the kinetics of the bipedal

model while walking. Also, the bipedal model itself might have some inaccuracies

regarding the weights of the limbs. We also mention the roller cage might be a

cause of increased torque requirement as it absorbs energy in springs to maintain

the bipedal model in the appropriate position.

40

http://www.youtube.com/watch?v=Y53Blolc9Ow
http://www.youtube.com/watch?v=bF2I3cS3f8k
http://www.youtube.com/watch?v=ouuQiGfzjnw


3.3.2 Gait tracking

The results of the gait tracking are very satisfying. The challenge that is over-

come here is the stabilization of a closed-loop system, especially at the starting

of the gait. This is made possible in part because of the placement of the ac-

celerometers on the hip that move regardless of the movements at the knee or

ankle. The transition from slow to fast is achieved but takes approximately 10

seconds in which an unstable gait is involved. That is more than enough to make

an amputee stumble and fall. However, one should keep in mind that the speed

transition display by the hips motion is an abrupt switch that cannot happen

with human, especially carefully walking amputees. Moreover, due to the way

it is implemented, the frequency transition implies an abrupt phase shift in the

hips movement, which makes the gait tracking task even more challenging for the

tracking AFO. The quality of the transition from fast to normal is more remark-

able. It is achieved without ωacc resetting or even an unstable gait. The AFO

just adapts to the speed decrease in a smooth and stable way within less than 4

seconds. We will recall that this is achieved using only one simple AFO, without

�ltering the acceleration signal.

3.3.3 CPG position control

The plots showing the trajectories, revealed a distortion of the output of the

playback CPG. This is likely the e�ect of the gait phase θacc as it is computed

from (x, y)acc(t). When using one AFO to synchronize with a signal having a

lot of harmonics, like the acceleration used here, the gain εacc of the AFO must

be carefully tuned. If too small, no synchronization will occur; if too large, the

pattern of the state variables x and y will not look like a simple sine wave. For

the value we picked up, namely εacc = 0.7 there is still some bumps appearing on

the trajectory of (x, y)acc(t) as shown in Fig. 3.7. We believe that they caused

the small distortions in the playback patterns. However, as seen on the movies,

an acceptable gait is achieved.
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Chapter 4

Hardware Testing on the AAAKP

4.1 Agonist-Antagonist Active Knee Prosthesis De-

scription

This section presents the prosthetic knee device available in the Biomechatronics

group: the Agonist-Antagonist Active Knee Prosthesis (AAAKP). It was devel-

oped mainly by Ernesto C. Martinez-Villalpando PhD candidate and Hugh Herr

PhD, within the Biomechatronics group 1.

First, the design considerations and the model that motivated the design are

brie�y explained. Then the main characteristics of the design are presented. This

includes the overall mechanical architecture, the electromechanics and sensors.

For further details about the model optimization, control design architecture and

corresponding results the reader is invited to refer to [3]. Most of the explanations

and all of the plots in this section are either inspired or reproduced from [3] and

from direct discussion with one of the author, Ernesto Martinez-Villalpando.

4.1.1 Assumptions, Hypothesis and Knee Model

The knee prosthesis design presented here derives from the prosthetic knee model [35]

shown on the right of Fig. 4.1. The model comprises a variable damper and two

series-elastic clutch units to span the knee joint in an agonist-antagonist manner.

1MIT Media Laboratory, Cambridge, MA, USA.
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It is biomimetic and reproduces human-like knee mechanics when controlled by

a variable-impedance control design.

The parameters of the model are the two spring constants (kE, kF ) that deter-

mines the extension and �exion spring sti�ness, and the knee �exion and extension

angles at which the extension and �exion springs are engaged. The result of the

optimization to �t anthropometric torque provided the basis for the controller

proposed in [3].

Figure 4.1: Variable-impedance prosthetic knee model. Scheme of the model
shown on the right comprises two series-elastic clutches and one variable-damping
element. (a) Net torque output by the model (red) compared to sound human
knee joint (1 subject, 10 trials, self-selected speed = 1.31 m/s, mean is solid
blue line and ±SD is dashed blue line). (b) Torque contribution from extension
(red) and �exion (blue) springs of series-elastic clutch elements as well as variable
damping (green). Image copied and text inspired from [3].

4.1.2 The AAAKP Prosthesis Design

Based on the model described above, the AAAKP was built with two series-

elastic actuators as shown in Fig. 4.2. Each motor can act independently to

engage/disengage the �exion and extension springs by holding or releasing them.

However, for the study presented in this report, we use a position control encoder
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that commands input current given to both DC motors in order to allow a direct

position, i.e. knee �exion angle, control.

Figure 4.2: AAAKP design. (a) Simpli�ed of the agonist-antagonist mechan-
ical architecture. (b) Mechanical CAD design. (c) Photography of the knee
prosthesis prototype.

4.2 AAKP Testing Methodology

The actual power knee prosthesis prototype will be used to validate the approach

developed in this thesis. However, due to the architecture of the motors en-

coders, the electronic board embedded in the prototype and the corresponding

controller, it is not straightforward to implement numerical integration in the

AAAKP controller. Indeed, the current low-level controller of the device is based

on a �nite-state machine and each state has only a very limited number of op-

erations allowed to be handled in (four �oating-point multiplications seemed to

be already beyond this limit) as well as a very limited time to stay in (less than

10ms). Indeed, when the same state is required for the next step by the higher

level control, the encoder exits and re-enters the same state again. Thus, the

bottleneck limitation of this system is the limited number of operations allowed

in each time step. Because of these limitations the implementation of a set of

di�erential equations cannot be integrated within the device itself.

Moreover, the current AAAKP controller does not handle multi-threading

(performing several operations or tasks at the same time). That would have

allowed to achieve all the computations required for the generation of the desired

44



trajectory in an ad hoc parallel code execution while executing the position control

in the �nite state machine. Also, the possibility of performing all the required

computations in a completely external software such as Matlab and streaming the

output data in the controller was considered but such an implementation required

way more time and expertise than available within the scope of this project.

Nevertheless, it is still of great interest to get a grasp of the challenges inher-

ent to the hardware. It is also interesting to observe how the AAAKP tracks a

desired trajectory when controlled in position, given a limited source of current

for the DC motors i.e. a limited amount of torque available at the prosthetic

knee joint. For these reasons and given the limitation aforementioned, the follow-

ing compromise was implemented: A mathematical simulation is run on Matlab

and the knee trajectory output generated by the playback pool of oscillator is

extracted in a csv �le. Then an array of two cycles is generated by interpolation

(the integration frequency used on Matlab is 100Hz and the AAAKP controller

runs at 400Hz). The values in the array are then transformed from (rad) to the

corresponding number of motor clicks, where 12566.93 clicks correspond to a full

motor revolution.

The position controller computes the amount of input current required for

each DC motor in order to track the desired trajectory hence playing back -

o�ine - the output of the system presented in this study.

4.2.1 Position Controller

The AAAKP encoders and low level controller are not designed to achieve position

control.

One rotation of the pulley corresponds to one rotation of the knee. The circum-

ference of pulley is 15.96cm. That means that 1 knee rotation equals 15.96cm of

carriage linear travel, so the linear to rotational coe�cient is:

15.96
cm of carriage linear travel

rotationknee

The linear encoder clicks/distance relation is:
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2000
linear encoder clicks

in
· 1in

2.54cm
= 787.4

linear encoder clicks
cm

Hence, the relation linear encoder clicks to knee rotation is:

787.4
linear encoder clicks

cm
·15.96

cm of carriage linear travel
rotationknee

= 12566.93
linear encoder clicks

rotationknee

Now regarding the DC rotational motors (M): 2 rotations of the motor corre-

sponds to one rotation of the ballscrew (BS) that connects to the pulley. It also

has a characteristic of 2000 motor clicks per motor rotation and 1 rotation of the

ballscrew corresponds to 0.3cm of carriage linear travel:

2000clicksM

rotationM

· 2rotationM

rotationBS

· 1rotationBS

0.3cmof linear travel
· 15.96cm

rotationknee

=
212800clicksM

rotationknee

Finally that gives the following motor clicks to knee �exion relation:

212800clicksM

rotationknee

· 360deg

1rotationknee

=
591clicksM

degflexion

Which is the same for both the �exion and extension motor. When the target

position requires a �exion the �exion motor pushes on the carriage while the

extensor one tracks it on the other side and vice versa.

4.3 Results
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Figure 4.3: Trajectory playback on the AAAKP. In blue is the desired trajectory
from the playback oscillators system. The red curve is the measured trajectory
on the AAAKP. y-axis is the knee �exion (deg) - x-axis is real time (s).

Figure 4.4: Contribution of the two DC motors: �exor and extensor resulting
in the overall knee �exion angle given by the knee encoder. y-axis are motor
positions (clicks) - x-axis is real time (s).
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Chapter 5

General Discussion and Conclusion

In this conclusion chapter, we �rst brie�y recall the aim of this study and summa-

rize the main steps of the work presented in this document. Then we discuss the

results, raise some of the limitations of the proposed strategy and mention the

major contributions. Finally we discuss the di�erent research perspectives raised

by this work , both for the Webots model simulations and for control strategies

in a wider sense.

5.1 Summary

5.1.1 System overview

In this study we intended to investigate the very challenging problem of lower

limb robotic prosthesis control using central pattern generators. The CPG-based

control architecture presented in this research is mainly made of two elements:

The �rst element is an adaptive frequency oscillator (AFOs) that intends to de-

code the intention of the amputee by synchronizing to the acceleration signal from

the hip. By providing this sensory feedback, this element constitutes the inter-

face between the subject motion and the joint trajectory generator, which is the

second system. This element receives from the �rst AFO the information of gait

frequency and phase and uses it to trigger the online generation of trajectories

for a prosthetic ankle, or knee, or both.
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5.1.2 Research process and corresponding results

Adaptive CPG design As a �rst step in this investigation we implement a

CPG model capable of learning and playing back a periodic signal. The system

architecture is widely inspired by previous work done within the Biorobotics Lab-

oratory, EPFL [1]. It consists of a set of coupled AFOs within a negative feedback

loop. We run a simulation with a four sines signal as input to be learned and

played back which successful results allow the validation of the implementation.

Note that the same kind of dynamical system was recently used with humans in

the loop to provide movement assistance using an elbow exoskeleton [23, 24].

Number of oscillators required Then we assess the number of oscillators

allowing the playback signal to be close enough to the original signal. We �nd that

�ve is a good number of oscillator: less makes the generated signal not accurate in

term of �delity to the anthropometric trajectory. Also we �nd that having more

does not signi�cantly improve the �delity to justify the extra computational cost.

Learning of anthropometric joint trajectories Once the number of oscil-

lators required is assessed we input to the adaptive CPG the anthropometric

patterns of the knee and ankle at slow normal and fast walking. We test the

CPG playback for each speed and joint and �nd that the reproduction is qualita-

tively satisfying, that is it is very close to the anthropometric teaching patterns.

From the learning process we extract the amplitudes and phases of each frequency

components for each speed of the knee and ankle trajectory.

Physics-based simulations Further we implemented the system described in

section 5.1.1 in Webots, a physics-based robot simulation software. We use a

bipedal model having one degree of freedom at each joint actuated by a rotational

servo. First, we achieve a human-like gait by feeding anthropometric positions to

the motors. Then we use the proposed system to actuate the knees and ankles of

both legs, simulating prosthesis control. We achieve human like gait at each of

the three walking speeds using accelerations from the hips as sensory feedback.

Indeed, we �nd that the gait tracking using an AFO is satisfying as it allows
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speed modulation. However, this requires a lot of hand tuning mostly for the

gain of the frequency adaptation and the initial condition on the AFO frequency.

Powered knee testing In order to have an idea of how the system performs

when implemented in an actual prosthetic knee, we extract the knee trajectory

from a simulation of the system and play it on the Agonist Antagonist Active

Knee prototype available in the Biomechatronics group, on a vertical test-bench

setup. We found that it is able to track the desired position in a qualitatively

satisfying way.

5.2 Discussion

The results observed for the CGP-based control of both knees and ankles are

very encouraging as a human-like gait is achieved after less than 15 seconds of

simulation. This is the time that is required for the system to stabilize. The

reason is that the gait tracking relies on the motion of the legs which knees and

ankles are controlled by the playback subsystem. The latter is in turn triggered

by the the gait tracking AFO thus closing the loop of the control architecture.

Moreover, when the hips abruptly switch from slow to fast walking, the system

adapts in approximately 10 to 15s.

However, one should keep in mind some important limitations of the model:

The acceleration measured in Webots might be di�erent from the one we

would get in real world. It is likely that it will not be as periodic as in the simu-

lations because in real world an amputee adapts his or her hip motion according

to the response he gets from the prosthesis whereas in the simulations, the hips

play a perfectly rhythmic and perfectly shaped pattern, regardless of what is

happening below.

The chaotic behavior during the adaptation time is an intrinsic property

of the proposed system. In simulations that does not a�ect much the movements

of the hips but an amputee would completely lose the con�dence in a device that
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behaves in an unpredictable way for 10s before stabilizing. Actually, the amputee

would likely fall down or stumble and stop walking before the system stabilizes.

The signal from the gait tracking AFO does not stop when the hips stop

moving, potentially indicating the amputee's intention to stop walking thus keep-

ing the knees and ankles moving. This is due to the system's intrinsic inertia,

as mentioned earlier. However, it is likely that if the system was used to control

only one ankle, for instance, this e�ect would be attenuated.

The rotational servos used in the Webots simulations provide satisfying

tracking of the desired trajectories but in real world such a direct-drive con-

trol might be too sti�. A system using series elastic actuators as in the AAAKP

would probably allow more �exibility in the control thus giving the amputee more

con�dence. A system that overreacts to perturbations could be dangerous for the

patient.

5.2.1 Position control

This last point raises the interesting question of the relevance of a position control

for knee and ankle prosthesis. In the case of the power ankle-foot developed in

the Biomechatronics lab, it is commonly accepted among the community that

position control is too di�cult to achieve because of the very large amount of

torque required at toe-o�. Actually, most of the net power provided by the ankle

is delivered at this precise time (right before toe-o�) for the push-o�. That makes

it very challenging to time a position control in order to get the torque at this

precise instant of the gait cycle. For that reason, impedance control1 is largely

preferred.

Moreover, it is known that human walking is a highly optimal process in which

legs passive dynamics is largely used [36]. A simple position controller however

tends to override this dynamic, not leverage it.

1in that context impedance control means that the motor is torque controlled depending
on the position
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For the knee, it is commonly accepted that, during stance, it should be locked

or at least have a very constraint freedom of motion to support the amputee

weight transfer. Then during swing the knee has to extend to prepare for the

next heel strike. This extension has to be damped as a free knee would extend

to fast because of the movement of the hips. This is precisely where a position

control would be acceptable and useful. Indeed, it is of high importance that

the knee angle be close to 4deg1 at heel strike. More �exion will tend to make

the amputee buckle and more extension will display an unnatural gait where the

amputee reaches full knee extension too early.

In that sense, the results reported in this study are very encouraging for a

control of knee damping as the proposed system provides a good estimation of

the position the knee should follow giving the gait speed of the amputee.

5.3 Research Perspectives

5.3.1 Webots simulations

There are a some interesting questions to be raised and answered using the bipedal

model on Webots. First it would be of great interest to test the ability of the con-

trol system to handle perturbations. For instance, one can implement ascending

and descending slopes to observe how the system reacts and modulates parame-

ters such as the gait tracking AFO gain. Also, investigating a coupling between

each leg's gait tracking system could be of high relevance. This might shorten the

stabilization time mentioned above but how should the coupling strength should

be chosen? Should it be constant or vary with speed?

5.3.2 Hardware implementation

We mentioned that position control is likely to be too sti� to control a knee

and ankle prosthesis at all gait phases. However, it would be of high interest to

1We believe there is no absolute correct value for the knee �exion at heelstrike. It depends
on the gait style and speed, variable among trials and subjects. However, it must feel like it is
the perfect angle for the amputee in order to ensure his con�dence in the device.

52



implement the proposed control system on either a knee or a powered ankle-foot.

That would allow to observe one important parameter: how does a human react

and adapt with the system? Moreover, it would validate the approach using

the acceleration signal to synchronize the gait tracking AFO with user's gait.

Obviously, giving the position control, important security mechanisms should be

implemented in order to avoid extreme behaviors caused by large errors between

the actual position and the position desired by the control system. One possible

mechanism is to chose the gain γ very small to allow more errors tolerance. We

recall that γ determines the limit-cycle recovery speed.

5.3.3 Coupling with other control strategies

In the control strategy proposed here, the joint trajectories are prede�ned and

embedded in the system. Though it integrates a sensory- feedback, such a design

is still a widely feedforward one. We believe that a synergy with a more feedback

oriented control system is an exciting perspective. For instance, in [37] a control

based on neuromuscular re�ex model is proposed. We believe that the position

control of the system proposed in this system could be used in parallel with such

a re�ex based system. For instance, a weight function attributing more or less

importance to one system with respect to the other (e.g based on gait speed)

could make the controller more robust at all speeds. For instance the position

control system could be useful for low speed gaits where few torque and reactivity

is required whereas a more re�ex-based control, being more responsive, would be

more relevant for higher gait speeds. Moreover, the gait tracking subsystem can

be helpful to modulate the re�ex gains.
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Appendix A: Results of CPG

Anthropometric Patterns Learning

.1 Ankle Pattern

This section reports the results of the learning of the system in the same con-

�guration as in subsection 2.1.4 for the ankle patterns at slow .1.1, normal .1.2

and fast .1.3 walking speed. The parameters speci�c to each pattern are the

fundamental frequency, the corresponding amplitudes and phases relationships

between the fundamental frequency and the harmonics and they are reported in

tables 1, 2 and 3 for slow, normal and fast walking speed respectively.

.1.1 Slow walking speed

Oscillator# 1 2 3 4 5
Learned frequencies (rad/s) 7.95 15.90 23.86 31.81 39.77
Corresponding amplitudes (dimesionless) 0.10 0.11 0.06 0.03 0.02
Corresponding phases (dimensionless) 0 2.81 0.76 3.94 2.35

Table 1: Learning of the oscillators for slow walking speed - ankle trajectory.
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Figure 1: Convergence of the state variables ωi, αi and φi (plots left to right)
during the learning of the slow walking speed ankle trajectory. x-axis is learning
(i.e. simulation) time in (s). y-axis of the left plot is the frequency in (Hz). Other
y-axis are dimensionless.

Figure 2: First seconds of the learning process for the slow walking speed ankle
pattern. The blue line is the teaching signal i.e. Pteach and the red line is the
learned signal i.e. Qlearned. x-axis are simulation time in (s). y-axis are ankle
angle in (deg).
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Figure 3: Evolution of the error between the teaching signal and the learned
signal during the learning of the slow walking speed ankle trajectory. x-axis is
learning (i.e. simulation) time in (s). y-axis is abs(Pteach −Qlearned)

(a) Teaching signal (b) Playback signal

Figure 4: Teaching signal 4(a) and oscillators playback 4(b) for slow walking speed
ankle trajectory. x-axis are simulation time in (s). y-axis are ankle angle in (deg).
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.1.2 Normal walking speed

Figure 5: Convergence of the state variables ωi, αi and φi (plots left to right)
during the learning of the normal walking speed ankle trajectory. x-axis is learning
(i.e. simulation) time in (s). y-axis of the left plot is the frequency in (Hz). Other
y-axis are dimensionless.

Oscillator# 1 2 3 4 5
Learned frequencies (rad/s) 9.50 19.01 28.52 38.02 47.53
Corresponding amplitudes (dimesionless) 0.13 0.12 0.06 0.04 0.01
Corresponding phases (dimensionless) 0 3.21 1.21 4.40 3.02

Table 2: Learning of the oscillators for normal walking speed - ankle trajectory.
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Figure 6: First seconds of the learning process for the normal walking speed ankle
pattern. The blue line is the teaching signal i.e. Pteach and the red line is the
learned signal i.e. Qlearned. x-axis are simulation time in (s). y-axis are ankle
angle in (deg).

Figure 7: Evolution of the error between the teaching signal and the learned
signal during the learning of the normal walking speed ankle trajectory. x-axis is
learning (i.e. simulation) time in (s). y-axis is abs(Pteach −Qlearned)
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(a) Teaching signal (b) Playback signal

Figure 8: Teaching signal 8(a) and oscillators playback 8(b) for normal walking
speed ankle trajectory. x-axis are simulation time in (s). y-axis are ankle angle in
(deg).
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.1.3 Fast walking speed

Figure 9: Convergence of the state variables ωi, αi and φi (plots left to right)
during the learning of the fast walking speed ankle trajectory. x-axis is learning
(i.e. simulation) time in (s). y-axis of the left plot is the frequency in (Hz). Other
y-axis are dimensionless.

Oscillator# 1 2 3 4 5
Learned frequencies (rad/s) 10.81 21.63 32.44 43.26 54.07
Corresponding amplitudes (dimesionless) 0.14 0.12 0.05 0.04 0.01
Corresponding phases (dimensionless) 0 3.63 1.92 5.24 4.13

Table 3: Learning of the oscillators for fast walking speed - ankle trajectory.

.2 Knee Pattern

This section reports the results of the learning of the system in the same con�g-

uration as in subsection 2.1.4 for the three ankle patters i.e. slow, normal and

fast walking speed. The parameters speci�c to each pattern are the fundamental

frequency, the corresponding amplitudes and phases relationships between the

fundamental frequency and the harmonics.
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Figure 10: First seconds of the learning process for the fast walking speed ankle
pattern. The blue line is the teaching signal i.e. Pteach and the red line is the
learned signal i.e. Qlearned. x-axis are simulation time in (s). y-axis are ankle
angle in (deg).

Figure 11: Evolution of the error between the teaching signal and the learned
signal during the learning of the fast walking speed ankle trajectory. x-axis is
learning (i.e. simulation) time in (s). y-axis is abs(Pteach −Qlearned)
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(a) Teaching signal (b) Playback signal

Figure 12: Teaching signal 12(a) and oscillators playback 12(b) for fast walking
speed ankle trajectory. x-axis are simulation time in (s). y-axis are ankle angle in
(deg).
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.2.1 Slow walking speed

Figure 13: Convergence of the state variables ωi, αi and φi (plots left to right)
during the learning of the slow walking speed knee trajectory. x-axis is learning
(i.e. simulation) time in (s). y-axis of the left plot is the frequency in (Hz). Other
y-axis are dimensionless.

Oscillator# 1 2 3 4 5
Learned frequencies (rad/s) 7.95 15.90 23.86 31.81 39.77
Corresponding amplitudes (dimesionless) 0.36 0.28 0.09 0.06 0.01
Corresponding phases (dimensionless) 0 1.59 3.84 2.55 4.54

Table 4: Learning of the oscillators for slow walking speed - knee trajectory.
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Figure 14: First seconds of the learning process for the slow walking speed knee
pattern. The blue line is the teaching signal i.e. Pteach and the red line is the
learned signal i.e. Qlearned. x-axis are simulation time in (s). y-axis are knee
angle in (deg).

Figure 15: Evolution of the error between the teaching signal and the learned
signal during the learning of the slow walking speed knee trajectory. x-axis is
learning (i.e. simulation) time in (s). y-axis is abs(Pteach −Qlearned)
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(a) Teaching signal (b) Playback signal

Figure 16: Teaching signal 16(a) and oscillators playback 16(b) for slow walking
speed knee trajectory. x-axis are simulation time in (s). y-axis are knee angle in
(deg).
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.2.2 Normal walking speed

Figure 17: Convergence of the state variables ωi, αi and φi (plots left to right)
during the learning of the normal walking speed knee trajectory. x-axis is learning
(i.e. simulation) time in (s). y-axis of the left plot is the frequency in (Hz). Other
y-axis are dimensionless.

Oscillator# 1 2 3 4 5
Learned frequencies (rad/s) 9.50 19.01 28.52 38.02 47.53
Corresponding amplitudes (dimesionless) 0.35 0.31 0.08 0.01 0.01
Corresponding phases (dimensionless) 0 1.49 3.96 1.99 4.37

Table 5: Learning of the oscillators for normal walking speed - knee trajectory.
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Figure 18: First seconds of the learning process for the normal walking speed knee
pattern. The blue line is the teaching signal i.e. Pteach and the red line is the
learned signal i.e. Qlearned. x-axis are simulation time in (s). y-axis are knee
angle in (deg).

Figure 19: Evolution of the error between the teaching signal and the learned
signal during the learning of the normal walking speed knee trajectory. x-axis is
learning (i.e. simulation) time in (s). y-axis is abs(Pteach −Qlearned)
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(a) Teaching signal (b) Playback signal

Figure 20: Teaching signal 20(a) and oscillators playback 20(b) for normal walking
speed knee trajectory. x-axis are simulation time in (s). y-axis are knee angle in
(deg).
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.2.3 Fast walking speed

Figure 21: Convergence of the state variables ωi, αi and φi (plots left to right)
during the learning of the fast walking speed knee trajectory. x-axis is learning
(i.e. simulation) time in (s). y-axis of the left plot is the frequency in (Hz). Other
y-axis are dimensionless.

Oscillator# 1 2 3 4 5
Learned frequencies (rad/s) 10.81 21.63 32.44 43.26 54.07
Corresponding amplitudes (dimesionless) 0.35 0.33 0.07 0.02 0.01
Corresponding phases (dimensionless) 0 1.38 3.91 2.13 3.99

Table 6: Learning of the oscillators for fast walking speed - knee trajectory.
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Figure 22: First seconds of the learning process for the fast walking speed knee
pattern. The blue line is the teaching signal i.e. Pteach and the red line is the
learned signal i.e. Qlearned. x-axis are simulation time in (s). y-axis are knee
angle in (deg).

Figure 23: Evolution of the error between the teaching signal and the learned
signal during the learning of the fast walking speed knee trajectory. x-axis is
learning (i.e. simulation) time in (s). y-axis is abs(Pteach −Qlearned)
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(a) Teaching signal (b) Playback signal

Figure 24: Teaching signal 24(a) and oscillators playback 24(b) for fast walking
speed knee trajectory. x-axis are simulation time in (s). y-axis are knee angle in
(deg).
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