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Abstract

A well studied special case of bin packing is the 3-partition
problem, where n items of size >

1

4
have to be packed in

a minimum number of bins of capacity one. The famous
Karmarkar-Karp algorithm transforms a fractional solution
of a suitable LP relaxation for this problem into an integral
solution that requires at most O(log n) additional bins.

The three-permutations-conjecture of Beck is the follow-
ing. Given any 3 permutations on n symbols, one can color
the symbols red and blue, such that in any interval of any
of those permutations, the number of red and blue symbols
differs only by a constant. Beck’s conjecture is well known
in the field of discrepancy theory.

We establish a surprising connection between bin pack-

ing and Beck’s conjecture: If the latter holds true, then the

additive integrality gap of the 3-partition linear program-

ming relaxation is bounded by a constant.

1 Introduction

The bin packing problem is the following. Given n
items of size s1, . . . , sn ∈ [0, 1] respectively, the goal
is to pack these items in as few bins of capacity one
as possible. Bin packing is a fundamental problem in
Computer Science with numerous applications in theory
and practice.

The development of heuristics for bin packing with
better and better performance guarantee is an impor-
tant success story in the field of Approximation Algo-

rithms. Johnson [14, 15] has shown that the First Fit

algorithm requires at most 1.7 ·OPT + 1 bins and that
First Fit Decreasing yields a solution with 11

9 OPT + 4
bins (see [7] for a tight bound of 11

9 OPT + 6
9 ). An im-

portant step forward was made by Fernandez de la Vega
and Luecker [9] who provided an asymptotic polynomial
time approximation scheme for bin packing. The round-
ing technique that is introduced in their paper has been
very influential in the design of PTAS’s for many other
difficult combinatorial optimization problems.
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In 1982, Karmarkar and Karp [16] proposed an
approximation algorithm for bin packing that can be
analyzed to yield a solution using at most OPT +
O(log2 n) bins. This seminal procedure is based on the
Gilmore Gomory LP relaxation [11, 8]:

(LP)

min
∑

p∈P xp
∑

p∈P p · xp ≥ 1

xp ≥ 0 ∀p ∈ P
Here 1 = (1, . . . , 1)T denotes the all ones vector and
P = {p ∈ {0, 1}n : sT p ≤ 1} is the set of all feasible
patterns, i.e. every vector in P denotes a feasible way
to pack one bin. Let OPT and OPTf be the value
of the best integer and fractional solution respectively.
The linear program (LP) has an exponential number
of variables but still one can compute a basic solution
x with 1Tx ≤ OPTf + δ in time polynomial in n and
1/δ [16] using the Grötschel-Lovász-Schrijver variant of
the Ellipsoid method [12].

The procedure of Karmarkar and Karp [16] yields
an additive integrality gap of O(log2 n), i.e. OPT ≤
OPTf + O(log2 n), see also [24]. This corresponds to
an asymptotic FPTAS1 for bin packing. The authors
in [19] conjecture that even OPT ≤ ⌈OPTf⌉ + 1 holds
and this even if one replaces the right-hand-side 1 by
any other positive integral vector b. This Modified

Integer Round-up Conjecture was proven by Sebő and
Shmonin [20] if the number of different item sizes is at
most 7. We would like to mention that Jansen and Solis-
Oba [13] recently provided an OPT +1 approximation-
algorithm for bin packing if the number of item sizes is
fixed.

Much of the hardness of bin packing seems to
appear already in the special case of 3-partition, where
3n items of size 1

4 < si <
1
2 with

∑3n
i=1 si = n have to be

packed. It is strongly NP-hard to distinguish between
OPT ≤ n and OPT ≥ n+1 [10]. No stronger hardness
result is known for general bin packing. A closer look
into [16] reveals that, with the restriction si > 1

4 , the
Karmarkar-Karp algorithm uses OPTf+O(log n) bins2.

1An asymptotic fully polynomial time approximation scheme
(AFPTAS) is an approximation algorithm that produces solutions

of cost at most (1+ ε)OPT + p(1/ε) in time polynomial in n and
1/ε, where also p must be a polynomial.

2The geometric grouping procedure (Lemma 5 in [16]) discards



Discrepancy theory. Let [n] := {1, . . . , n} and con-
sider a set system S ⊆ 2[n] over the ground set [n]. A
coloring is a mapping χ : [n] → {±1}. In discrepancy

theory, one aims at finding colorings for which the differ-
ence of “red” and “blue” elements in all sets is as small
as possible. Formally, the discrepancy of a set system S
is defined as

disc(S) = min
χ:[n]→{±1}

max
S∈S

|χ(S)|.

where χ(S) =
∑

i∈S χ(i). A random coloring pro-

vides an easy bound of disc(S) ≤ O(
√

n log |S|)
[18]. The famous “Six Standard Deviations suffice”
result of Spencer [21] improves this to disc(S) ≤
O(

√

n log(2|S|/n)).
If every element appears in at most t sets, then

the Beck-Fiala Theorem [3] yields disc(S) < 2t. The
same authors conjecture that in fact disc(S) = O(

√
t).

Srinivasan [23] gave a O(
√
t log n) bound, which was

improved by Banaszczyk [1] to O(
√
t log n). Many such

discrepancy proofs are purely existential, for instance
due to the use of the pigeonhole principle. In a
very recent breakthrough Bansal [2] showed how to
obtain the desired colorings for the Spencer [21] and
Srinivasan [23] bounds by considering a random walk,
guided by the solution of a semidefinite program.

The following conjecture is coined three-

permutations-conjecture or simply Beck’s conjecture

(see Problem 1.9 in [4]):

Given any 3 permutations on n symbols, one
can color the symbols with red and blue,
such that in every interval of every of those
permutations, the number of red and blue
symbols differs by O(1).

A set of permutations π1, . . . , πk : [n] → [n] induces a
set-system3

S = {{πi(1), . . . , πi(j)} : j = 1, . . . , n; i = 1, . . . , k}.
If we denote the maximum discrepancy of such a set-
system induced by k permutations over n symbols as
Dperm

k (n), then Beck’s conjecture can be rephrased as
Dperm

3 (n) = O(1).
So far the best known bound on Dperm

3 (n) is
O(log n) and more generally Dperm

k (n) can be bounded

by O(k log n) [5] and by O(
√
k log n) [23, 22] using the

so-called entropy method.

items of size O(log 1

smin

), where smin denotes the size of the

smallest item. The geometric grouping is applied O(logn) times
in the Karmarkar-Karp algorithm. The claim follows by using

that smin > 1

4
for 3-partition.

3We only consider intervals of permutations that start from

the first element. Since any interval is the difference of two such
prefixes, this changes the discrepancy by a factor of at most 2.

Our contribution. The main result of this paper is a
proof of the following theorem.

Theorem 1.1. If Beck’s conjecture holds, then the in-

tegrality gap of the linear program (LP) restricted to 3-

partition instances is bounded by an additive constant.

This result is constructive in the following sense. If
one can find a constant discrepancy coloring for any
three permutations in polynomial time, then there is an
OPT + c approximation algorithm for 3-partition for a
constant c.

The proof of Theorem 1.1 itself is via two steps.

i) We show that the additive integrality gap of (LP)
is at most twice the maximum linear discrepancy

of a k-monotone matrix if all item sizes are larger
than 1/(k + 1) (Section 3). This step is based on
matching techniques and Hall’s theorem.

ii) We then show that the linear discrepancy of a k-
monotone matrix is at most k times the discrepancy
of k permutations (Section 4.1). This result uses a
theorem of Lovász, Spencer and Vesztergombi.

The theorem then follows by setting k equal to 3
in the above steps. Furthermore, we show that the
discrepancy of k permutations is at most 4 times the
linear discrepancy of a k-monotone matrix. And finally,
we provide a 5k · log2(2min{m,n}) upper bound on the
linear discrepancy of a k-monotone n×m-matrix.

2 Preliminaries

We first review some further necessary preliminaries on
discrepancy theory. We refer to [18] for further details.

If A is a matrix, then we denote the ith row of A
by Ai and the jth entry in the ith row by Aij . The
notation of discrepancy can be naturally extended to
real matrices A ∈ R

m×n as

disc(A) := min
x∈{0,1}n

‖A(x− 1/2 · 1)‖∞,

see, e.g. [18]. Note that if A is the incidence matrix
of a set system S (i.e. each row of A corresponds
to the characteristic vector of a set S ∈ S), then
disc(A) = 1

2disc(S), hence this notation is consistent
— apart from the 1

2 factor.
The linear discrepancy of a matrix A ∈ R

m×n is
defined as

lindisc(A) := max
y∈[0,1]n

min
x∈{0,1}n

‖Ax−Ay‖∞.

This value can be also described by a two player game.
The first player chooses a fractional vector y, then the



second player chooses a 0/1 vector x. The goal of the
first player is to maximize, of the second to minimize
‖Ax−Ay‖∞. The inequality disc(A) ≤ lindisc(A) holds
by choosing y := (1/2, . . . , 1/2). One more notion of
defining the “complexity” of a set system or a matrix is
that of the hereditary discrepancy :

herdisc(A) := max
B submatrix of A

disc(B).

Notice that one can assume that B is formed by
choosing a subset of the columns of A. This parameter
is obviously at least disc(A) since we can choose B := A
and in [17] even an upper bound for lindisc(A) is proved
(see again [18] for a recent description).

Theorem 2.1. (Lovász, Spencer, Vesztergombi)
For A ∈ R

m×n one has

lindisc(A) ≤ 2 · herdisc(A).

3 Bounding the gap via the discrepancy of

monotone matrices

Amatrix A is called k-monotone if all its column vectors
have non-decreasing entries from 0, . . . , k. In other
words A ∈ {0, . . . , k}m×n and A1j ≤ . . . ≤ Amj for any
column j. We denote the maximum linear discrepancy
of such matrices by

Dmon
k (n) := max

A∈Z
m×n

k-monotone

lindisc(A).

The next theorem establishes step i) mentioned in the
introduction.

Theorem 3.1. Consider the linear program (LP) and

suppose that the item sizes satisfy s1, . . . , sn > 1
k+1 .

Then

OPT ≤ OPTf +

(

1 +
1

k

)

Dmon

k (n).

Proof. Assume that the item sizes are sorted such that
s1 ≥ . . . ≥ sn. Let y be any optimum basic solution of
(LP) and let p1, . . . , pm be the list of patterns. Since y is
a basic solution, its support satisfies |{i : yi > 0}| ≤ n.
Hence by deleting unused patterns, we may assume 4

that m = n.
We define B = (p1, . . . , pn) ∈ {0, 1}n×n as the

matrix composed of the patterns as column vectors.
Clearly By = 1. Let A be the matrix that is defined
by Ai :=

∑i
j=1 Bj , again Ai denotes the ith row of

A. In other words, Aij denotes the number of items

4In case that there are less than n patterns, we add empty
patterns.

of types 1, . . . , i in pattern pj . Since By = 1 we have
Ay = (1, 2, 3, . . . , n)T . Each column of A is monotone.
Furthermore, since no pattern contains more than k
items one has Aij ∈ {0, . . . , k}, thus A is k-monotone.

We attach a row An+1 := (k, . . . , k) as the new last
row of A. Clearly A remains k-monotone. There exists
a vector x ∈ {0, 1}n with

‖Ax−Ay‖∞ ≤ lindisc(A) ≤ Dmon
k (n).

We buy xi times pattern pi and Dmon
k (n) times the

pattern that only contains the largest item of size s1.
It remains to show: (1) this yields a feasible

solution; (2) the number of patterns does not exceed
the claimed bound of OPTf + (1 + 1

k ) ·Dmon
k (n).

For the latter claim, recall that the constraint
emerging from row An+1 = (k, . . . , k) together with
∑n

i=1 yi = OPTf provides

k

n∑

i=1

xi ≤ k ·
n∑

i=1

yi +Dmon
k (n) = k ·OPTf +Dmon

k (n).

We use this to upper bound the number of opened bins
by

n∑

i=1

xi +Dmon
k (n) ≤ OPTf +

(

1 +
1

k

)

·Dmon
k (n).

It remains to prove that our integral solution is feasible.
To be more precise, we need to show that any item i
can be assigned to a space reserved for an item of size
si or larger.

N(V ′)

v1

v2

vi

vn

...

...

V ′

u1 b1 = B1x+Dmon
k (n)

u2 b2 = B2x

ui bi = Bix

un bn = Bnx

...

...

V U

Figure 1: The bipartite graph in the proof of Theo-
rem 3.1

To this end, consider a bipartite graph with nodes
V = {v1, . . . , vn} on the left, representing the items.
The nodes on the right are the set U = {u1, . . . , un},
where each ui is attributed with a multiplicity bi repre-
senting the number of times that we reserve space for



items of size si in our solution, see Figure 1. Recall that

bi =

{

Bix+Dmon
k (n) if i = 1

Bix otherwise
.

We insert an edge (vi, uj) for all i ≥ j. The meaning
of this edge is the following. One can assign item i into
the space which is reserved for item j since si ≤ sj . We
claim that there exists a V -perfect matching, respecting
the multiplicities of U . By Hall’s Theorem, see, e.g. [6],
it suffices to show for any subset V ′ ⊆ V that the
multiplicities of the nodes in N(V ′) (the neighborhood
of V ′) are at least |V ′|. Observe that N(vi) ⊆ N(vi+1),
hence it suffices to prove the claim for sets of the form
V ′ = {1, . . . , i}. For such a V ′ one has

∑

uj∈N(V ′)

bj = Dmon
k (n) +

i∑

j=1

Bjx

= Dmon
k (n) +Aix ≥ Aiy = i

and the claim follows.

4 Bounding the discrepancy of monotone

matrices by the discrepancy of permutations

In this section, we show that the linear discrepancy of
k-monotone matrices is essentially bounded by the dis-
crepancy of k permutations. This corresponds to step ii)
in the proof of the main theorem. By Theorem 2.1 it suf-
fices to bound the discrepancy of k-monotone matrices
by the discrepancy of k permutations times a suitable
factor.

We first explain how one can associate a permu-
tation to a 1-monotone matrix. Suppose that B ∈
{0, 1}m×n is a 1-monotone matrix. If Bj denotes the
j-th column of B, then the permutation π that we asso-
ciate with B is the (not necessarily unique) permutation
that satisfies Bπ(1) ≥ Bπ(2) ≥ · · · ≥ Bπ(n) where u ≥ v
for vectors u, v ∈ R

m if ui ≥ vi for all 1 ≤ i ≤ m.
On the other hand the matrix B (potentially plus some
extra rows and after merging identical rows) gives the
incidence matrix of the set-system induced by π.

A k-monotone matrix B can be decomposed into
a sum of 1-monotone matrices B1, . . . , Bk. Then any
Bℓ naturally corresponds to a permutation πℓ of the
columns as we explained above. A low-discrepancy
coloring of these permutations yields a coloring that has
low discrepancy for any Bℓ and hence also for B, as we
show now in detail.

Theorem 4.1. For any k, n ∈ N, one has Dmon

k (n) ≤
k ·Dperm

k (n).

Proof. Consider any k-monotone matrix A ∈ Z
m×n. By

virtue of Theorem 2.1, there is a m× n′ submatrix, B,

of A such that lindisc(A) ≤ 2 · disc(B), thus it suffices
to show that disc(B) ≤ k

2 ·D
perm
k (n). Of course, B itself

is again k-monotone.
Let Bℓ also be a m× n′ matrix, defined by

Bℓ
ij :=

{

1 if Bij ≥ ℓ

0, otherwise.

The matrices Bℓ are 1-monotone, and the matrix B
decomposes into B = B1 + . . . + Bk. As mentioned
above, for any ℓ, there is a (not necessarily unique)
permutation πℓ on [n′] such that Bℓ,πℓ(1) ≥ Bℓ,πℓ(2) ≥
. . . ≥ Bℓ,πℓ(n

′), where Bℓ,j denotes the jth column of
Bℓ. Observe that the row vector Bℓ

i is the characteristic
vector of the set {πℓ(1), . . . , πℓ(j)}, where j denotes the
number of ones in Bℓ

i .
Let χ : [n′] → {±1} be the coloring that has dis-

crepancy at most Dperm
k (n) with respect to all permuta-

tions π1, . . . , πk. In particular |Bℓ
iχ| ≤ Dperm

k (n), when
interpreting χ as a ±1 vector. Then by the triangle
inequality

disc(B) ≤ 1

2
‖Bχ‖∞ ≤ 1

2

k∑

ℓ=1

‖Bℓχ‖∞ ≤ k

2
Dperm

k (n).

Combining Theorem 3.1 and Theorem 4.1, we con-
clude

Corollary 4.1. Given any bin packing instance with

n items of size bigger than 1
k+1 one has

OPT ≤ OPTf + 2k ·Dperm

k (n).

In particular, this proves Theorem 1.1, our main
result.

Bounding the discrepancy of permutations in

terms of the discrepancy of monotone matrices.

In addition we would like to note that the discrepancy
of permutations can be also bounded by the discrepancy
of k-monotone matrices as follows.

Theorem 4.2. For any k, n ∈ N, one has Dperm

k (n) ≤
4 ·Dmon

k (n).

Proof. We will show that for any permutations
π1, . . . , πk on [n], there is a kn × n k-monotone ma-
trix C with disc(π1, . . . , πk) ≤ 4 · disc(C). Let Σ ∈
{1, . . . , n}kn be the string which we obtain by con-
catenating the k permutations. That means Σ =
(π1(1), . . . , π1(n), . . . , πk(1), . . . , πk(n)). Let C the ma-
trix where Cij is the number of appearances of j ∈
{1, . . . , n} among the first i ∈ {1, . . . , kn} entries of Σ.
By definition, C is k-monotone, in fact it is the “same”
k-monotone matrix as in the previous proof.



Choose y := ( 12 , . . . ,
1
2 ) to have Cy = ( 12 , 1, . . . ,

kn
2 ).

Let x ∈ {0, 1}n be a vector with ‖Cx−Cy‖∞ ≤ disc(C).
Consider the coloring χ : [n] → {±1} with χ(j) := 1
if xj = 1 and χ(j) := −1 if xj = 0. We claim
that the discrepancy of this coloring is bounded by
4 · disc(C) for all k permutations. Consider any prefix
S := {πi(1), . . . , πi(ℓ)}. Let r = C(i−1)n+ℓ ∈ {i − 1, i}n
be the row of C that corresponds to this prefix. With
these notations we have

|χ(S)| ≤ |(r − (i− 1)1) · (2x− 2y)|
≤ 2 ·

(
|r(x− y)|
︸ ︷︷ ︸

≤disc(C)

+ |k · 1(x− y)|
︸ ︷︷ ︸

≤disc(C)

)

≤ 4 · disc(C).

Here the inequality |(k · 1) · (x − y)| ≤ disc(C) comes
from the fact that k ·1 = (k, . . . , k) is the last row of C.

From Theorem 4.1 and Theorem 4.2, we obtain
that the following conjecture is equivalent to the Three-
Permutations-Conjecture.

Conjecture 4.1. There exists a constant c > 0, such
that for any 3-monotone matrix A ∈ Z

m×n one has

lindisc(A) ≤ c.

5 A bound on the discrepancy of monotone

matrices

Finally, we want to provide a non-trivial upper bound
on the linear discrepancy of k-monotone matrices. The
result of Spencer, Srinivasan and Tetali [22, 23] to-
gether with Theorem 4.1 yields a bound of Dmon

k (n) =
O(k3/2 log n). This bound can be reduced by a direct
proof that shares some similarities with that of Bo-
hus [5]. Note that Dmon

k (n) ≥ k/2, as the k-monotone
1 × 1 matrix A = (k) together with target vector
y = (1/2) witnesses.

Theorem 5.1. Consider any k-monotone matrix A ∈
Z
n×m. Then

lindisc(A) ≤ 5k · log2(2min{n,m}).

Proof. If n = m = 1, lindisc(A) ≤ k
2 , hence the claim

is true. Let y ∈ [0, 1]m by any vector. We can remove
all columns i with yi = 0 or yi = 1 and then apply
induction (on the size of the matrix). Next, if m > n,
i.e. the number of columns is bigger then the number of
constraints, then y is not a basic solution of the system

Ay = b

0 ≤ yi ≤ 1 ∀i = 1, . . . ,m.

We replace y by a basic solution y′ and apply induction
(since y′ has some integer entries and Ay = Ay′).

Finally it remains to consider the case m ≤ n. Let
a1, . . . , an be the rows of A and let d(j) := ‖aj+1−aj‖1
for j = 1, . . . , n − 1, i.e. d(j) gives the cumulated
differences between the jth and the (j+1)th row. Since
the columns are k-monotone, each column contributes
at most k to the sum

∑n−1
j=1 d(j). Thus

n−1∑

j=1

d(j) ≤ mk ≤ nk.

By the pigeonhole principle at least n/2 many rows j
have d(j) ≤ 2k. Take any second of these rows and
we obtain a set J ⊆ {1, . . . , n − 1} of size |J | ≥ n/4
such that for every j ∈ J one has d(j) ≤ 2k and
(j + 1) /∈ J . Let A′y = b′ be the subsystem of n′ ≤ 3

4n
many equations, which we obtain by deleting the rows
in J from Ay = b. We apply induction to this system
and obtain an x ∈ {0, 1}m with

‖A′x−A′y‖∞ ≤ 5k · log2(2n′)

≤ 5k log2

(

2 · 3
4
n
)

≤ 5k log2(2n)− 5k log2

(4

3

)

≤ 5k log2(2n)− 2k.

Now consider any j ∈ {1, . . . , n}. If j /∈ J , then row
j still appeared in A′y = b′, hence |aTj x − aTj y| ≤
5k log2(2n) − 2k. Now suppose j ∈ J . We remember
that j + 1 /∈ J , thus |aTj+1(x − y)| ≤ 5k log2(2n) − 2k.
But then using the triangle inequality

|aTj x− aTj y| ≤ |(aj+1 − aj)
T (x− y)|

︸ ︷︷ ︸

≤d(j)≤2k

+ |aTj+1(x− y)|
︸ ︷︷ ︸

≤5k log
2
(2n)−2k

≤ 5k · log(2n).
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