Krieger, Joachim
Schlag, W.
Tataru, D.
Renormalization and blow up for charge one equivariant critical wave maps
Inventiones Mathematicae
Inventiones Mathematicae
Inventiones Mathematicae
Inventiones Mathematicae
171
Nonlinear Schrodinger-Equation
Harmonic Maps
Global Regularity
Minkowski Space
Small Energy
Singularities
Dimensions
Manifolds
2008
2008
We prove the existence of equivariant finite time blow-up solutions for the wave map problem from R2+ 1 -> S-2 of the form u( t, r) = Q(lambda( t) r) + R(t, r) where u is the polar angle on the sphere, Q(r) = 2 arctan r is the ground state harmonic map, lambda(t) = t(-1-nu), and R(t, r) is a radiative error with local energy going to zero as t -> 0. The number nu > 1/2 can be prescribed arbitrarily. This is accomplished by first "renormalizing" the blow-up profile, followed by a perturbative analysis.
Springer Verlag
0020-9910
Inventiones Mathematicae
Journal Articles
10.1007/s00222-007-0089-3