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Abstract. We consider Wave Maps with smooth compactly supported initial

data of small Ḣ3/2-norm from R3+1 to certain 2-dimensional Riemannian

manifolds and show that they stay smooth globally in time. Our methods
are based on the introduction of a global Coulomb Gauge as in [17], followed

by a dynamic separation as in [8]. We then rely on an adaptation of T.Tao’s

methods used in his recent breakthrough result [24].

1. Introduction

Let M be a Riemannian manifold with metric (gij) = g. A Wave Map u : Rn+1 →
M, n ≥ 2 is by definition a solution of the Euler-Lagrange equations associated
with the functional u →

∫
Rn+1 < ∂αu, ∂

αu >g dσ. Here the usual Einstein sum-
mation convention is in force, while dσ denotes the volume measure on Rn+1 with
respect to the standard metric. In local coordinates, u is seen to satisfy the equation

2ui + Γijk(u)∂αuj∂
αuk = 0 (1)

where Γijk refer to the Riemann-Christoffel symbols associated with the metric g.
The relevance of this model problem arises from its connections with more complex
nonlinear wave equations of mathematical physics: for example, Einstein’s vacuum
equations under U(1)-symmetry attain the form of a Wave Maps equation coupled
with additional elliptic equations. More specifically, Einstein’s equations in this
case can be cast in terms of a Wave Map u : (M, g) → H2, the target being the
standard hyperbolic plane with metric hij , as follows:

Rαβ = hij∂αu
i∂βu

j

2gu
i = −Γijk(u)g

αβ∂αu
j∂βu

k

The 2nd equation here is of Wave Maps type, on a curved background. Our model
equation deals with the simpler case involving a flat background, but the hope is

1
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that the techniques for the latter problem will eventually elucidate the more com-
plicated former problem.

We are interested in the well-posedness of the Cauchy problem for (1) with initial
data u[0]×∂tu[0] at time t = 0 in Hs×Hs−1. Classical theory relying on the energy
inequality and Sobolev inequalities allows one to deduce local well-posedness in Hs

for s > n
2 + 1.

Ideally, one would like to prove local well-posedness in H
n
2 , as this would imme-

diately imply global in time well-posedness. The reason for this is that Ḣ
n
2 is the

Sobolev space invariant under the natural scaling associated with (1). Unfortu-
nately, it is known that ”strong well-posedness” in the sense of analytic or even
C2-dependence on the initial data fails at the H

n
2 -level, n ≥ 3 [1], [22]. Thus the

best result to be hoped for is global regularity of Wave Maps with smooth initial
data of small Ḣ

n
2 -norm.

In two space dimensions, the scale invariant Sobolev space coincides with the classi-
cal Ḣ1, and numerical data as well as the conjectured non-concentration of energy
suggest global regularity for Wave Maps with arbitrary smooth initial data, provided
the target is negatively curved. Non-concentration of energy has been proved by M.
Struwe for rotationally symmetric smooth Wave Maps to spheres [20] after earlier
work of Christodoulou-Tahvildar-Zadeh[3] establishing the corresponding result for
geodesically convex targets. Also, Shatah-Tahvildar-Zadeh [21] showed the corre-
sponding result for smooth equivariant Wave Maps to geodesically convex targets1.
Moreover, numerical simulations of smooth equivariant Wave Maps to S2 with large
initial data by P.Bizon [2] suggest development of singularities. This underlines the
importance of the hyperbolic plane as target manifold.

In the quest for reaching the critical n
2 regularity, local well-posedness for (1)with

initial data in H
n
2 +ε, ε > 0 was proved for n ≥ 3 by Klainerman and Machedon in

[6], and for n = 2 in [11]. Later, Tataru established global in time well-posedness
for small data in the Besov space B

n
2 ,1, [26], [27]. Note that Ḃ

n
2 ,1 has the same

scaling as Ḣ
n
2 , but unlike the latter controls L∞.

An important breakthrough with respect to global regularity was recently achieved
by T.Tao in the case of Wave Maps to the sphere [23], [24], proving global regular-
ity for smooth initial data small in Ḣ

n
2 : Tao’s work exemplifies the importance of

taking the global geometry of the target into account, an aspect largely ignored by
the local formulation (1). Embedding the target sphere in an ambient Euclidean
space, the Wave Maps equation considered by Tao takes the form

2u = −u∂αut∂αu = −(u∂αut − ∂αuu
t)∂αu (2)

α as usual runs over the space-time indices 0, 1, ...n. The nonlinearity encodes
both geometric (skew-symmetry of u∂αut−∂αuut) as well as algebraic information

1For a nice account of these matters, see [18]
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(’null-form’ structure). Tao manages to analyze all possible frequency interactions
of the nonlinearity up to the case in which the derivatives fall on high frequency
terms while the undifferentiated term has very low frequency. This bad case is then
gauged away, using the skew-symmetric structure. With this method, which served
as inspiration for the following developments, as well as sophisticated methods from
harmonic analysis, Tao manages to go all the way to n = 2(note that the smaller
the dimension, the more difficult the problem on account of the increasing scarcity
of available Strichartz estimates).

After Tao, Klainerman and Rodnianski [9], extended this result to Wave Maps from
Rn+1, n ≥ 5 to more general and in particular noncompact targets. More precisely,
Klainerman and Rodnianski consider parallelizable targets which are well-behaved
at infinity. Upon introducing a global orthonormal frame {ei}, they define the new
variables φiα defined by u∗∂α = φiαei. It turns out that these satisfy the system of
equations

∂βφ
i
α − ∂αφ

i
β = Cijkφ

j
αφ

k
β (3)

∂αφ
iα = −Γijkφ

j
βφ

k
γm

βγ (4)

where mβγ is the standard Minkowski metric on Rn+1 and Cijk,Γ
i
jk are defined as

follows:

[ej , ek] = Cijkei (5)

∇ejek = Γijkei (6)

There is again a skew-symmetric structure present in this formulation on account
of Γijk = −Γkji. Moreover, by contrast with Tao’s formulation (2), the boundedness
of φ is replaced here by the boundedness of the Cijk,Γ

i
jk. Klainerman and Rodni-

anski impose in addition the condition that all derivatives of these coefficients be
bounded, or in their terminology that M be ’boundedly parallelizable.’
If one now passes to the wave equation satisfied by the vector φα := {φiα}, one
obtains

2φα = −Rµ∂µφα + E (7)

where Rµ is skew-symmetric and moreover depends linearly on φ, provided we as-
sume the Cijk,Γ

i
jk to be constant for simplicity’s sake. E is a cubic polynomial in

φ. By contrast with (2), the leading term in the nonlinearity is ’quadratic in φ’.
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It is now possible to control all possible frequency interactions on the right hand
side (n ≥ 5) except when Rµ is localized to very low frequency while ∂µφ is at large
frequency. However, as Klainerman and Rodnianski observed, the curvature

∂νRµ − ∂µRν + [Rµ, Rν ] (8)

when R is reduced to low frequencies is ’very small’, in the sense that it is qua-
dratic in φ, hence amenable to good Strichartz estimates. To take advantage of
this, they introduce a Coulomb Gauge

∑3
j=1 ∂jR̃j = 0, which allows one to replace

the Rµ in (7) by R̃µ which is ’quadratic in φ’, effectively replacing the nonlinearity
by a term which is trilinear in φ and hence easily handled by Strichartz estimates.
The general philosophy here is that the higher the degree of the nonlinearity, the
more room is available to apply Strichartz estimates. Klainerman and Rodnianski’s
method is thus similar to Tao’s in that it utilizes a microlocal Gauge Change to
deal with specific bad frequency interactions.

The last result to be mentioned in this development is the simplification and exten-
sion of the previous arguments to include the case of 4+1-dimensional Wave Maps
to esssentially arbitrary targets achieved by Shatah-Struwe [17] and (in more re-
strictive formulation) Uhlenbeck-Stefanov-Nahmod [14]. The former observed that
using a Coulomb Gauge, in a similar fashion as above, at the beginning without
carrying out a frequency decomposition allows one to reduce the nonlinearity to
a form directly amenable to Strichartz estimates. This allows them to avoid the
microlocal Gauge Change of Tao and leads to a remarkable simplification of the
argument. In addition, they are also able to treat the case of dimension 4 + 1.

The methods in [9] and [17] run into serious difficulties for 3 + 1-dimensional Wave
Maps, and even more so for 2 + 1-dimensional Wave Maps. This can be seen intu-
itively as follows:
The global Coulomb Gauge puts the leading term of the nonlinearity roughly into
the form D−1(φ2)Dφ. In dimensions 4 and higher, Shatah and Struwe can estimate
such terms relying on the Strichartz type inequality for Lorentz spaces

||φ||L2
tL

2n,2
x

≤ C||2φ||L1
tH

σ + C||φ[0]||
H

n
2 −1 (9)

where σ = n
2 − 2. This can be used to estimate the L1

tL
∞
x -norm of D−1(φ2). 2

However, in three space dimensions, the above estimate fails. In order to handle
the case when D−1(φ2) has much lower frequency than Dφ, one would have to use
an endpoint L2

tL
∞
x -Strichartz estimate, which is false, even replacing the L∞x -norm

by BMO, see [25] .

2Alternatively, as pointed out by Klainerman and Rodnianski, one can utilize an improved
bilinear version of Strichartz estimates in [12] to handle these cases.
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The present paper starts with the basic formulation (3), (4) of Klainerman and
Rodnianski applied to the simplified context of a 2-dimensional Riemannian man-
ifold (M, g), but utilizes the Coulomb Gauge right at the beginning as do Shatah
and Struwe. The main innovation over the preceding then is to introduce a special
null-structure into the nonlinearity by way of what we term a dynamic separation3,
a method introduced first in [8]: in our context, we introduce ’twisted variables’
θiα := Aik(u)φ

k
α for suitable well-behaved functions Aik(u), and utilize the div-curl

system satisfied by these to split them into a dynamic part, which has the form
of a gradient, and an elliptic part, which satisfies an elliptic div-curl system. Sub-
stituting these components into the leading term of the nonlinearity results in a
fairly complicated trilinear null-structure4, as well as error terms at least quadri-
linear. These are decomposed into quadrilinear null-forms and error terms at least
quintilinear, iterating dynamic separation. In order to estimate the trilinear and
quadrilinear null-structures, we have to refer to estimates in [13] which were derived
using the technical framework set forth in [24]. Moreover, in order to control the
’twisted variables’ we have to prove a sort of ’Gauge Change estimate’ (Proposi-
tion 3.1) which is new for the spaces introduced in [24]. Part of what distinguishes
our setup from Tao’s is that we are working at the level of the derivative of the
Wave Map. In particular, high-high interactions become more delicate.
The result proved in this paper certainly extends to higher-dimensional targets5

satisfying similar constraints as the two-dimensional ones considered in this paper.

Our main theorem is the following: Let (M, g) be a 2-dimensional Riemannian
manifold, which satisfies one of the following technical conditions:

(1): M is boundedly parallelizable6 and there exists an isometric embedding i :
(M, g) ↪→ (Rk, δij) ’which doesn’t twist much’ in the following sense: there exists
an orthonormal frame (e1(x), e2(x)), x ∈M for TM and an extension (ẽ1(x), ẽ2(x))
of (e1(x), e2(x)), x ∈ i(M) to a neighborhood of i(M) in Rk such that all the deriva-
tives of the ẽi(x) are bounded.

(2): M is a compact surface. Choose an isometric embedding i : (M, g) ↪→ (Rk, h),
where h = (hij) is a metric agreeing with the standard (δij) outside of a compact
set, such that i(M) is a totally geodesic submanifold of (Rk, h). That this is possible
is shown in [3].

3This terminology was suggested by S.Klainerman
4This is to be contrasted with the null-structure in [8], which is bilinear
5Our restriction on the dimension of the target ensures the commutativity of the Gauge Group.

This allows us to avoid certain technicalities related to controlling the Gauge Change. However,
the method of Tao (’approximate Gauge Change’) as in [24] or in [9] should handle the general
case.

6This notion was introduced by Klainerman-Rodnianski and means that there exists a global
orthonormal frame (e1, e2) for TM such that the functions Γk

ij , Ck
ij defined via ∇eiej = Γk

ijek,

[ei, ej ] = Ck
ijek have bounded derivatives of all orders
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(3): M = H2, the hyperbolic plane. Use the standard coordinates (x,y), y > 0
with respect to which the metric attains the form dg = dx2+dy2

y2 .

Then the following theorem holds true:

Theorem 1.1. Let M be one of the above. Then there exists a number ε > 0 with
the following property: Let (u(0), ∂tu(0)) : R3 → (M,TM) be smooth initial data
satisfying the property7

3∑
α=0

||∂α(i ◦ u)(0)||
Ḣ

1
2
< ε

in situations (1), (2), or

3∑
α=0

[||∂α(x ◦ u)
y

||
Ḣ

1
2

+ ||∂α(y ◦ u)
y

||
Ḣ

1
2
] < ε

in the third situation. Then there exists a global (in time) smooth Wave Map
u : R3+1 →M with these initial conditions.

Acknowledgments: The author would like to thank his Ph.D. advisor Sergiu Klain-
erman as well as Igor Rodnianski and Terence Tao for helpful suggestions and
comments as well as reading the manuscript. Special thanks are also due to the
referees for pointing out an error and suggesting many improvements.
The research for this paper was conducted in the fall 2001.

2. Outline of the argument

2.1. Basic formulation of the problem. This section will serve as outline for
the rest of the paper, explaining the strategy for proving the theorem cited at the
end of the last section in the case M = H2.
We translate the problem to the level of the derivative, utilizing the formulation
(3), (4) with respect to the global orthonormal frame {−y∂x,−y∂y} for TH. More
explicitly, we have

φ1
α = −∂αx

y
, φ2

α = −∂αy
y

(10)

The div-curl system satisfied by these quantities is then of the following form:

∂βφ
1
α − ∂αφ

1
β = φ1

αφ
2
β − φ2

αφ
1
β (11)

7The Sobolev spaces are defined by picking a point p ∈ M and considering the functions
i ◦ u− i ◦ p instead of i ◦ u.
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∂βφ
2
α − ∂αφ

2
β = 0 (12)

∂αφ
1α = −φ1

αφ
2α (13)

∂αφ
2α = φ1

αφ
1α (14)

α, β here vary over the space-time indices 0, 1, 2, 3, and Einstein’s summation con-
vention is in force.

Once we can show that the φiα stay smooth globally in time, the actual Wave Map
can be obtained by integration from (−∂tx

y ,−∂ty
y ) = (φ1

0, φ
2
0).

Letting φα denote the column vector with entries φ1
α, φ

2
α, we obtain the following

wave equations:

2φα = Mν∂
νφα + ”φ3”, (15)

where

Mν =
(

0 −2φ1
ν

2φ1
ν 0

)
, (16)

and ”φ3” refers to a vector with entries that are cubic polynomials in the φiα. The
fine structure of these entries will actually be relevant later on, but we leave it out
for the present discussion.

As explained in the introduction, this formulation does not lend itself to good es-
timates.

2.2. Introducing the global Coulomb Gauge. We now try to modify the ma-
trix Mν by adding a term of the form 2∂νA, in such a way that the resulting matrix
M̃ν = Mν + 2∂νA has better properties. More precisely, we want this to depend
’quadratically’ on φ. This can be achieved by utilizing the Coulomb Gauge condi-
tion

∑3
j=1 ∂jM̃j = 0, whence A = − 1

24
−1
x

∑3
j=1 ∂jMj .

Indeed, observe that the M̃ν satisfy the following div-curl system:
3∑
i=1

∂iM̃i = 0, ∂νM̃µ − ∂µM̃ν =
(

0 2(φ1
νφ

2
µ − φ1

µφ
2
ν)

−2(φ1
νφ

2
µ − φ1

µφ
2
ν) 0

)
,

(17)
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whence

M̃ν =
(

0 2
∑3
i=14−1∂i(φ1

νφ
2
i − φ1

iφ
2
ν)

−2
∑3
i=14−1∂i(φ1

νφ
2
i − φ1

iφ
2
ν) 0

)
,

(18)

or in a first approximation M̃ν = ”D−1(φ2)”.
We can now set U = eA and obtain

U−12(Uφα) = U−12(U)φα + M̃ν∂
νφα + ”φ3” (19)

Of course, we use the commutativity of the Gauge group for 2-dimensional target.
The difference between this wave equation for Uφα and (15) is that the nonlinearity
here consists of trilinear expressions. In particular, this modification suffices to
handle the case of 4+1-dimensional Wave Maps. For this, observe for example that
one can easily estimate the L1

tL
2
x-norm of M̃ν∂

νφα since this is morally D−1(φ2)Dφ
and

||D−1(φ2)Dφ||L1
tL

2
x
≤ C||φ||2

L2
tL

8,2
x
||φ||L∞t H1

x
(20)

The right-hand terms are controlled by means of Strichartz’ inequalities. Similarly,
one can estimate the remaining terms of the nonlinearity in the L1

tL
2
x-norm.

This is Shatah and Struwe’s method for H2 . One can also estimate this term
using the improved bilinear Strichartz estimate for D−1(φ2) in [12], as observed by
Klainerman and Rodnianski.

For the 3-dimensional case, Strichartz’ estimates alone don’t seem sufficient. This
can be seen by analyzing the case when D−1(φ2) has very low frequency while
Dφ has large frequency; in order to recoup the exponential loss caused by D−1,
one seems to be forced to employ a L2

tL
∞
x Strichartz estimate, which unfortunately

doesn’t exist. To proceed, we need to take into account more of the special structure
of the nonlinear terms.

2.3. Implementing the dynamic separation. We use complex notation. Intro-
duce the variables φα = φ1

α + iφ2
α. Then introduce the ’twisted variables’

ψα := ψ1
α + iψ2

α := e−iΦφα

where Φ := 4−1
∑3
k=1 ∂kφ

1
k (4 stands for 4x.) This is of course the same Gauge

Change as in the previous subsection, in complex notation. The precise wave equa-
tion satisfied by the ψα is the following:

2ψα = 2ie−iΦ4−1(
3∑
k=1

∂k[φ1
kφ

2
ν − φ2

kφ
1
ν ])∂

νφα + ”φ3”− [i2Φ + ∂νΦ∂νΦ]ψα

The most difficult term on the right-hand side is the first summand, which we also
refer to as the ’leading term’. It can be cast into the more concise form (modulo
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quadrilinear error terms)

4−1
3∑
k=1

4−1∂k[ψ1
kψ

2
ν − ψ2

kψ
1
ν ]∂

νψα

Now observe that the ψα satisfy a special curl-system, namely the following:

∂αψβ − ∂βψα = iψβ4−1
3∑
j=1

(ψ1
αψ

2
j − ψ1

jψ
2
α)− iψα4−1

3∑
j=1

(ψ1
βψ

2
j − ψ2

βψ
1
j )

(21)

The dynamic separation consists in decomposing

ψν = −RνΨ + χν := −Rν
3∑
k=1

Rkψk + χν

where Rν denotes the Riesz multiplier
√
−4x

−1
∂ν , ν = 0, 1, 2, 3. The χν (’elliptic

part’) in turn are determined by the following elliptic div-curl system, which is
easily verified:

3∑
j=1

∂jχj = 0

∂iχν − ∂νχi = ∂iψν − ∂νψi

This in addition to (21) implies that

χν = i

3∑
k,j=1

4−1∂i(ψν4−1∂j [ψ1
i ψ

2
j − ψ1

jψ
2
i ]− ψi4−1∂j [ψ1

νψ
2
j − ψ1

jψ
2
ν ])

(22)

Passing to real and imaginary parts, we can write ψ1
ν = −RνΨ1 + <χν , ψ2

ν =
−RνΨ2 + =χν , where Ψa =

∑3
k=1Rkψ

a
k .

The dynamic separation now enables us to decompose the leading term of the non-
linearity into a trilinear term with a special null-structure and an error terms which
are at least quintilinear in the ψiα. More precisely, upon substituting the gradient
parts RνΨ for ψν , we modify the leading term to the following:

3∑
j=1

4−1∂j [RjΨ1RνΨ2 −RjΨ2RνΨ1]∂νψα

This expression appears to intertwine what is customarily referred to as a Q0-
structure (referring to ∂νu∂νv) with a Qνj-structure (referring to ∂νu∂jv−∂ju∂νv).
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The main reason for its being amenable to good estimates (as stated in Proposi-
tion 3.5 below) is given by the following simple lemma, which exemplifies the precise
underlying null-structure:

Lemma 2.4. Let f, g, h be Schwartz functions. Then we have

2
3∑
j=1

4−1∂j [RνfRjg −RjfRνg]∂νh

3∑
j=1

2[4−1∂j [∇−1fRjg]h]−
3∑
j=1

24−1∂j [∇−1fRjg]h

−
3∑
j=1

4−1∂j [∇−1fRjg]2h−∇−1f2((∇−1g)h)

+∇−1f2(∇−1g)h+∇−1f(∇−1g)2h

Proof : Use the identities

RνfRjg −RjfRνg = ∂ν(
√
−4

−1
fRjg)− ∂j(

√
−4

−1
fRνg)

2∂νf∂νg = 2(fg)−2fg − f2g

Remark : The bilinear null form in [8] exhibits similar structure, though our formu-
lation, which avoids the Fourier transform, is more simple and explicit.

Now consider the terms arising upon substituting at least one ’elliptic term’ χν for
ψν in the leading term. Schematically, they can be represented by either of the
following:

∇−1(∇−1(∇−1(ψ2)ψ)ψ)∇x,tψ

∇−1(∇−1(∇−1(ψ2)ψ)∇−1(∇−1(ψ2)ψ))∇x,tψ

Both of these turn out to be significantly easier to treat than the preceding null-form
term. Indeed, we won’t have to refer to an inherent null-structure anymore.
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2.5. The Bootstrapping argument. In order to prove the global regularity of
u, we utilize a bootstrapping argument, quite similar to the one in [24]. More pre-
cisely, we introduce certain translation invariant Banach spaces S[k]([−T, T ]×R3),
N [k]([−T, T ]×R3), k ∈ Z, T > 0 which enjoy a list of remarkable properties. The
norms ||.||S[k]([−T,T ]×R3) will be used to estimate the components at frequency ∼ 2k

of the φiα
8 which are known to be smooth on the time interval [−T, T ], while the

norms ||.||N [k]([−T,T ]×R3) will be used to estimate the components at frequency ∼ 2k

of the nonlinearity, again restricted to and smooth on the time interval [−T, T ]. Of
course, ||.||S[k] will have to majorize the energy ||.||

Ḣ
1
2

as well as a certain range of
Strichartz norms, all applied to functions microlocalized at frequency ∼ 2k.
Our goal will be to bootstrap each of the norms ||Pkφiα||S[k]([−T,T ]×R3). As a mat-
ter of fact, we will only have to bootstrap ||P0φ

i
α||S[0]([−T,T ]×R3), because the S[k]

scale appropriately with respect to ’dilations’ compatible with the div-curl system
(11)-(14): denoting φλ := 2λφ(x2λ), we will have ||Pk+λφλ||S[k+λ]([−T,T ]×R3) =
||Pkφ||S[k]([−T,T ]×R3), k, λ ∈ Z. Here Pk denotes the Littlewood-Paley projector to
frequency ∼ 2k. A similar identity holds for N [k]([−T, T ]×R3).

The S[k] and N [k] (leaving out the time-parameter T for simplicity’s sake) will be
related by the fundamental energy inequality:

||Pkφ||S[k]([−T,T ]×R3) ≤ C[||2Pkφ||N [k]([−T,T ]×R3) + ||Pkφ[0]||
Ḣ

1
2×Ḣ− 1

2
]

(23)

where C is independent of T . In order to use this inequality, we need to estimate
the N [k]-norm of the nonlinearity. For this, it will be important to us amongst
other things that there are

(1) null-form estimates of the form

||P0[RνPk1φ∂
νPk2ψ]||N [0] ≤ C2−δmax{k1,0}||Pk1φ||S[k1]||Pk2ψ||S[k2], δ > 0

(24)

(2) Bilinear estimates that make up for the missing L2
tL

∞
x -estimates. These

come about by using null frame spaces, and have roughly the form

||Pk1φPk2ψ||L2
tL

2
x
≤ C2

k1−k2
2 ||Pk1φ||S[k1]||Pk2ψ||S[k2] (25)

provided φ, ψ are microlocalized on small caps whose distance is at least
comparable to their radius, and provided their Fourier support lives fairly
closely to the cone.

(3) Trilinear estimates:

||P0

3∑
j=1

4−1∂j [RνPk1ψ1RjPk2ψ2 −RjPk1ψ1RνPk2ψ2]∂νPk3ψ3||N [0]

≤ C2−δ1|k1−k2|2−δ2|k3|
∏

||Pkj
φj ||S[kj ], δ1, δ2 > 0 (26)

These are the crucial tool for the paper.

8Suitable dilates of these spaces will be used for the frequency components of u
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(4) The S[k] have to be well-behaved under the Gauge Change. In particular,
we need an assertion of the form that provided ||Pkφ||S[k] are small in a
suitable sense, then so are ||Pk[f(∇−1φ)φ]||S[k], where ∇−1 stands for a
linear combination of operators of the form 4−1∂j , and f(x) is a smooth
function all of whose derivatives are bounded.

3. Technical preparations

The spaces S[k], N [k] and many of their properties were considered in Tao’s seminal
paper [24], although their origins can be traced back to Tataru’s [27]. Most of this
section(except the trilinear inequality and the Gauge Change result) is due to these
2 authors; we will therefore be rather brief with the definitions.
First, we introduce Tao’s concept of frequency envelope, as in [23],[24]: for any
Schwartz function ψ on R3, we consider the quantities

ca := (
∑
k∈Z

2−σ|a−k|||Pkψ||2
Ḣ

1
2
)

1
2 (27)

Here Pk, k ∈ Z are the standard Littlewood-Paley operators that localize to fre-
quency ∼ 2k, i.e. they are given by Fourier multipliers mk(|ξ|) = m0(

|ξ|
2k ), where

m0(λ) is a smooth function compactly supported within 1
2 ≤ λ ≤ 2 with∑

k∈Zm0( λ2k ) = 1, λ > 0.
The σ > 0 is chosen to be smaller than any of the exponential decays occuring later
in the paper. E.g. 1

1000 would suffice. We note that all of the generic constants C
occuring in the sequel depend at most on this parameter σ.
Note that

ck2−σ|a−k| ≤ ca ≤ 2σ|a−k|ck (28)

as well as
∑
k∈Z c

2
k ≤ C||ψ||2

Ḣ
1
2
.

The main reason for the usefulness of this concept is that provided we know that
the frequency localized components Pkρ for some other Schwartz function ρ on R3

(think: the time-evolved Wave Map) have Ḣ
1
2 -norm bounded by a multiple Cck,

we can immediately bound the Ḣ
1
2+ε-norm of ρ for ε > 0 small enough. This will

allow us later to continue the Wave Map, by referring to local well-posedness of the
div-curl system (11)-(14) in H

1
2+ε, and finite speed of propagation.

We introduce the following norms on frequency localized Schwartz functions on
R3+1 for our bootstrapping argument: for every l > 10, choose a covering Kl of
S2 by finitely overlapping caps κ of radius 2−l. This is to be chosen such that the
set of concentric caps with half the radius still covers the sphere. Now let

||ψ||S[k] :=

||∇x,tψ||
L∞t Ḣ

− 1
2

x

+ ||∇x,tψ||
Ẋ
− 1

2 , 1
2 ,∞

k

+ sup
±

sup
l>10

(
∑
κ∈Kl

||P̃k,±κQ±<k−2lψ||
2
S[k,κ])

1
2

(29)
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where it is understood that ψ lives at frequency ∼ 2k, k ∈ Z. The operators P̃k,κ
are given by symbols m̃k(|ξ|)aκ( ξ

|ξ| ), where a : S2 → R is a smooth function with
support contained in the concentric cap inside κ with half the radius of κ, and
m̃k localizes frequency to size ∼ 2k and satisfies m̃kmk = mk, where mk is the
multiplier chosen above. We also require that

∑
κ∈Kl

P̃k,κ = P̃k, the latter being
defined in the obvious way.
Q±<k−2l localizes the modulation, i.e. ||τ |−|ξ||, to size < 2k−2l and also restricts the
Fourier support to τ >< 0, i.e. to the upper or lower half-space. More precisely, it
is given by the multiplier

∑
i<k−2lmi(||τ | − |ξ||)χ>0(±τ).

The norm ||φ||
Ẋ
− 1

2 , 1
2 ,1

k

refers to 2−
k
2

∑
j∈Z 2

j
2 ||Qjφ||L2

tL
2
x
.

The definition of S[k, κ] is a scaled-down version of the one in [24]:

||ψ||S[k,κ] :=2
k
2 ||ψ||NFA∗[κ] + |κ|− 1

2 2−
k
2 ||ψ||PW [κ] + 2

k
2 ||ψ||L∞t L2

x
(30)

The definitions of the individual ingredients in turn are as follows:

(1) NFA∗[κ] is the Banach space obtained upon completing S(R3+1) with re-
spect to the norm

||ψ||NFA∗[κ] := sup
ω/∈2κ

dist(ω, κ)||φ||L∞tω
L2

xω
(31)

Here (tω, xω) refer to null-frame coordinates, i.e. tω = (t, x) · 1√
2
(1, ω), xω =

(t, x)− tω
1√
2
(1, ω).

(2) PW [κ] is the atomic Banach space whose atoms are the set A of all Schwartz
functions ψ with ||ψ||Lt2ωL∞xω

≤ 1 for some ω ∈ κ. In other words,

||ψ||PW [κ] = inf{|λ||∃{0 ≤ λi ≤ 1}, {ψi} ⊂ A, 1 ≤ i ≤ N s.t.
∑
i

λi = 1,

λ
∑
i

λiψi = ψ} (32)

Of course, the Banach space S[k] is obtained by completing the Schwartz functions
on R3+1 with respect to ||.||S[k].

Next, we will place frequency localized pieces of the nonlinearity into the following
spaces N [k], again introduced by Tao and implicitly present in Tataru’s work: they
are the atomic Banach spaces whose atoms are
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(1) Schwartz functions F at frequency between 2k−4 and 2k+4 with ||F ||L1
tL

2
x
≤

2
k
2 .

(2) Schwartz functions F with frequency between 2k−4 and 2k+4 and modula-
tion between 2j−5 and 2j+5 such that ||F ||L2

tL
2
x
≤ 2

j
2 2

k
2 .

(3) Schwartz functions F for which there exists a number l > 10 and Schwartz
functions Fκ with Fourier support in the region {(τ, ξ)|±τ > 0, ||τ |− |ξ|| ≤
2k−2l−100, 2k−4 ≤ |ξ| ≤ 2k+4,Θ ∈ 1

2κ} such that F =
∑
κ∈Kl

Fκ and
(
∑
κ∈Kl

||Fκ||2NFA[κ])
1
2 ≤ 2

k
2 . Here Θ = τξ

|τ ||ξ| and NFA[κ] is the dual
space of NFA[κ]∗, i.e. the atomic Banach space whose atoms are Schwartz
functions F which satisfy

1
dist(ω, κ)

||F ||L1
tω
L2

xω
≤ 1

for some ω /∈ 2κ.

We try to briefly explain the reason for introducing these spaces: the PW [κ] com-
ponent of S[k] is to be though of as a substitute for the missing L2

tL
∞
x -estimate.

This is directly exemplified by the following first fundamental bilinear inequal-
ity:

||φψ||NFA[κ] ≤ C
2

k′
2 |κ′| 12

dist(κ, κ′)
||φ||L2

tL
2
x|||ψ||S[k′,κ′] (33)

which is a direct consequence of the inclusion S[k, κ] ⊂ 2
k
2 |κ| 12PW [κ]. This inequal-

ity also suggests that NFA[κ] is to be seen as a substitute for L1
tL

2
x, the energy

space. This may seem odd, as we are substituting a null-frame analogue for the
customary version, and there is no Duhamel’s formula in that context. However,
we shall only place pieces of the nonlinearity into NFA[κ] which are microlocalized
along an angular sector contained in κ, and it turns out that there is an analogue
of the energy inequality then.
The NFA∗ [κ]-component of S[k] makes certain algebra estimates work and will in
particular enable us to obtain a general Gauge Change estimate cited below. This
shall be a consequence of the following 2nd fundamental bilinear inequality,
which is essentially dual to the first:

||φψ||L2
tL

2
x
≤ C

2
k′
2 |κ′| 12

dist(κ, κ′)2
k
2
||φ||S[k,κ]||ψ||S[k′,κ′] (34)

This is again an immediate consequence of the definitions, viz. also [24]. Finally,
we also note that truncated free waves are naturally embedded into these
spaces, which is of course crucial for an ’energy inequality’(see below, (38)) to
work. We exemplify this by the following inequality 9 valid for all Schwartz func-
tions φ ∈ S(R3+1):

9Keep in mind that elements of Ẋ
1
2 , 1

2 ,1

k are weighted averages of free waves.
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||φ||S[k,κ] ≤ C||φ||
Ẋ

1
2 , 1

2 ,1
k

(35)

In the sequel, it will be important to have some Strichartz norms of the form LptL
q
x

at our disposal. Unfortunately, the author was unable to build sharp Strichartz
norms(satisfying 1

p + 1
q = 1

2 ) into the S[k], on account of difficulties related to the
energy inequality (38). This means we have to make do with a certain range of
non-sharp Strichartz norms, which can be seen to be controlled by the S[k]. This
will be the content of a theorem below.

Since we will be implementing a bootstrapping argument, we can only assume the
a priori existence of a solution on a finite time interval [−T, T ]. We therefore need
to localize the above (frequency-localized) norms to this interval. To wit

||Pkφ||S[k]([−T,T ]×R3) := inf
ψ∈S(R3+1), ψ|[−T,T]=φ

||Pkψ||S[k](R3+1) (36)

||Pkφ||N [k]([−T,T ]×R3) := inf
ψ∈S(R3+1), ψ|[−T,T]=φ

||Pkψ||N [k](R3+1) (37)

We can now formulate the following energy inequality, which is the essential
link between the N [k] and S[k]-norm that will allow us to finish the bootstrapping
argument:

||Pkφ||S[k]([−T,T ]×R3) ≤ C[||2Pkφ||N [k]([−T,T ]×R3) + ||φ[0]||
Ḣ

1
2×Ḣ− 1

2
]

(38)

where C is independent of T . This is proved as in [24]; the only difference between
our S[k, κ] norm and Tao’s S[k, κ]-norm is their scaling, which doesn’t affect the
proof.

It is important that the S[k]([−T, T ]×R3)-norms of the frequency localized com-
ponents of a Schwartz function are in a sense uniformly lower semicontinuous with
respect to T , as demonstrated in [24]. In particular, we may assume that T > 0
has been chosen such that the component functions φ of our Wave Map satisfy

||Pkφ||S[k]([−T,T ]×R3) ≤ Cck (39)

where ck is a frequency envelope associated with the initial conditions φ[0]× ∂tφ[0]
as above, i.e.

ck := (
∑
k′

2−δ|k
′−k|(||Pk′φ||

Ḣ
1
2

+ ||Pk′∂tφ||
Ḣ− 1

2
)2)

1
2 (40)

Moreover, since we assume that φ is rapidly decaying in space directions, we can
construct a Schwartz function φ̃ with φ̃|[−T,T ] = φ and such that ||Pkφ̃||S[k] ≤ 2Cck.
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This is achieved by using a partition of unity. We will always substitute φ̃ for φ
when making actual estimates.

Notation The Riesz operators Rν , ν ∈ {0, 1, 2, 3}, refer to operators ∂ν(
√
−4x)

−1.
We usually omit the subscript for operators like ∇x,4x, understanding that they
refer only to space variables.
The symbol ∇−1 is either a shorthand for an operator 4−1∂i, or else refers to
(
√
−4)−1, depending on the context.

We use the notation Pk+O(1) =
∑
k1=k+O(1) Pk1 , Qj+O(1) =

∑
j1=j+O(1)Qj1 . Also,

||φ||S[k+O(1)] =
∑
k1=k+O(1) ||Pk1φ||S[k1] etc.

The following terminology, introduced by T.Tao in [24], shall be useful in the fu-
ture: we call a Fourier multiplier disposable if it is given by convolution with
a translation invariant measure of mass ≤ O(1). In particular, operators such as
Pk, PkQ<>j where j ≥ k + O(1) are disposable, see above reference. By contrast,
Qj is not disposable. However, it acts boundedly on Lebesgue spaces of the form
LptL

2
x.

Whenever we consider an expression of the form P0(AB[CD]), for example, we
shall refer to A,B,C,D as inputs and the whole expression as output. Also,
when referring to [, ], we mean [CD], while (, ) would refer to P0(AB[CD]); thus
the shape of brackets matters in the discussion. When considering a part of the
whole expression such as [CD], we may also refer to this as output, and C,D as
inputs, depending on the context. In the proof of the Gauge Change estimate, we
shall use the term modulation to refer to the distance of the (space time) Fourier
support of a function to the light cone.

Summary of the key properties satisfied by these spaces

The paradifferential Calculus approach chosen in this paper enables us to divide
the nonlinearity into different pieces (obtained upon microlocalizing all the inputs
as well as the output) which can be controlled individually. However, the fact
that we start out with refined information about the frequency localized compo-
nents of the Wave Map forces us to retrieve the refined information via the boot-
strapping argument. Thus while on the one hand we gain from the fact that we
can subdivide the nonlinearity into many pieces each of which is amenable to an
individual attack, we lose in that we have to recover the original frequency en-
velope from our estimates. For example, whenever enacting a Gauge Change of
the form ψ := f(4−1

∑3
k=1 ∂kφ̃

1
k)φ̃ where φ̃, φ̃1

k are Schwartz functions (the latter
real valued10) agreeing with φ, φ1

k on [−T, T ] and for which the S[k]-norms of the
frequency localized pieces sit under approximately the same frequency envelope,
we shall need to know that the frequency modes of ψ are controlled by a dilate
of the same frequency envelope. Moreover, we shall have to rely on refined mul-
tilinear estimates which allow us to sum over all possible frequency interactions
contributing to a fixed frequency mode of the nonlinearity, as well as to recover the

10Note that the S[k], N [k] are conjugation invariant. Thus we can always find real-valued

extensions of our component functions with the required properties.
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original frequency envelope. We summarize here the key properties to be referred
to throughout the rest of the paper:

(1): The Gauge Change Estimate

Proposition 3.1. Let f(x) be a smooth function all of whose derivatives are
bounded. Also, let φi, i = 1, 2, 3, 4 be Schwartz functions satisfying the condition
maxi ||Pkφi||S[k] ≤ ck for a ’sufficiently flat’ frequency envelope {ck}(i.e. σ in the
definition sufficiently small). Then

||Pk(f(4−1
3∑
j=1

∂jφj)φ4)||S[k] ≤ Cck

We shall give the proof later in the paper.

(2): Bilinear estimates.

Q0 null-form estimates

Theorem 3.2. Let φ,ψ be Schwarz functions on R3+1. We have

||Pk[RνPk1φ∂νPk2ψ]||N [k] ≤ C2−δmax{k1−k,0}||Pk1φ||S[k1]||Pk2ψ||S[k2]

for some δ > 0. Also, we have

||Pk∇x[RνPk1φRνPk2ψ]||N [k] ≤ C||Pk1φ||S[k1]||Pk2ψ||S[k2]

Finally

||RνφRνψ||L2
tL

2
x
≤ C(

∑
k1

||Pk1φ||2S[k1]
)

1
2 (

∑
k2

||Pk2ψ||2S[k2]
)

1
2

The first two inequalities are due (in somewhat modified form) to T.Tao [24]. We
present proofs for the above versions(our spaces being scaled down with respect to
Tao’s) in [13].

Theorem 3.3. Let φ, F be Schwartz functions, and k1 = k2 +O(1). Then we have

||P0(Pk1φPk2F )||N [0] ≤ C2−δk1 ||Pk1φ||S[k1]||∇x(Pk2F )||N [k2]

for some δ > 0.
Moreover, we have the estimate

||P0∇x(φPk2F )||N [0] ≤ C(||φ||L∞t L∞x + sup
k
||Pk∇xφ||S[k])||∇x(Pk2F )||N [k2]
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This is again due to Tao [24] in slightly different form. Proofs may be found in [24],
[13].

Bilinear algebra and Qνj-estimate

Theorem 3.4. Let φ1, φ2 be Schwartz functions. Then if j ≤ k, we have ∀ε > 0
and 0 < δ < ε

||PkQj(Pk1φ1Pk2φ2)||Ẋ−ε,ε,∞ ≤ Cε,δ2δmin{j−min{k1,k2,k},0}2−
|k1−k2|

2

∏
i=1,2

||Pkiφi||S[ki]

||PkQj(Pk1φ1Pk2φ2)||
Ẋ− 1

2 , 1
2 ,∞ ≤ Cε2

1
2+ε min{j−min{k1,k2,k},0}2−|k1−k2|

∏
i=1,2

||Pkiφi||S[ki]

Also, one has the inequality

||Pk(Pk1φPk2ψ)||L2
tL

2+µ
x

≤ Cµ2
µ

4+2µk2−
|k1−k2|

2

∏
i=1,2

||Pki
ψi||S[ki]

for any µ > 0. In particular, we can control the L4
tL

p
x-norm, p > 4, of the k-th fre-

quency component in terms of S[k], and by interpolation with L∞t L
2
x, one controls

all norms of the form LptL
q
x,

1
p+ 1

q <
1
2 , p ≥ 4, at that frequency11. Finally, we have

||Pk(RνPk1ψ1RjPk2ψ2 −RjPk1ψ1RνPk2ψ2)||L2
tL

2
x

≤ C2−
|k1−k2|

2 2−|k−max{k1,k2}|
∏
i=1,2

||Pkiψi||S[ki]

This theorem, proved in [13], would be essentially superfluous if S[k] could be cus-
tomized in such a way as to be included in L4

tL
4
x.

(3): Trilinear null-form estimates

Proposition 3.5. Let ψl, l = 1, 2, 3 be Schwartz functions on R3+1. We then have
the estimate

||P0(
3∑
j=1

4−1∂j [RνPk1ψ1RjPk2ψ2 −RjPk1ψ1RνPk2ψ2]∂νPk3ψ3)||N [0]

≤ C2−δ1|k1−k2|2δ2(min{k3−max{k1,k2},0})2−δ3|k3|
3∏
l=1

||Pkl
ψl||S[kl]

(41)

11One can also majorize ||P0R0φ||L4
t L

p
x

by C||P0φ||S[k]. For P0Q<0φ, this follows from the

immediately preceding, whereas for P0Q≥0φ, this is a consequence of Bernstein’s inequality.
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for appropriate constants δ1, δ2, δ3 > 0. As a corollary, we have

||P0(
3∑
j=1

4−1∂j [Rνψ1Rjψ2 −Rjψ1Rνψ2]∂νψ3)||N [0] ≤ C(
∑
k∈Z

c2k)c0

provided maxi=1,2,3 ||Pkψi|| ≤ ck for some frequency envelope {ck} which is ’suffi-
ciently flat’, i.e. σ << min{δi}.
Proposition 3.6. Let ψi be as above. Then we have the inequalities

||P0[RνPk1ψ1R
νPk2ψ2Pk3ψ3]||N [0]

≤ C2−δ1|k1−k2|2δ2(min{k3−max{k1,k2},0})2−δ3|k3|
3∏
l=1

||Pkl
ψl||S[kl]

||P0[∇−1(RνPk1ψ1∂
νPk2ψ2)Pk3ψ3]||N [0]

≤ C2−δ1|k1−k2|2δ2(min{k3−max{k1,k2},0})2−δ3|k3|
3∏
l=1

||Pkl
ψl||S[kl]

for appropriate δ1, δ2 > 0. One obtains a similar corollary as in the preceding
Proposition.

Both of these are proved in [13]. The 2nd Proposition is a simpler variant of an
inequality in [24].

(4): Quadrilinear null-form estimates.

Proposition 3.7. Let ψi, i = 1, 2, 3, 4 be Schwartz functions satisfying ||Pkψi||S[k] ≤
ck ’for a sufficiently flat frequency envelope {ck}’. Then we have the inequality

||P0[
3∑

i,j=1

4−1∂j(4−1∂i(Rνψ1Riψ2 −Riψ1Rνψ2)Rjψ3)∂νψ4

−
3∑

i,j=1

4−1∂j(4−1∂i(Rjψ1Riψ2 −Riψ1Rjψ2)Rνψ3)∂νψ4]||N [0]

≤ C(
∑
k∈Z

c2k)
3
2 c0

The proof of this, which implicitly relies on an identity similar to but more com-
plicated than the one recorded in Proposition 3.5, can also be found in [13].

4. Proof of the Proposition 1.1

We shall present the detailed argument provided (M, g) falls into the first category.
The other cases are handled more or less identically. For a given Wave Map u, we
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introduce the variables φiα, i = 1, 2, α = 0, 1, 2, 3, as follows:

∑
i=1,2

φiαei(u) = u∗(∂α)

Then recall the fundamental div-curl system

∂βφ
i
α − ∂αφ

i
β = Cijk(u)φ

j
αφ

k
β (42)

∂αφ
iα = −Γijk(u)φ

j
βφ

k
γm

βγ (43)

We pass from these to the corresponding wave equations, which take the form

2φiα = −2Γikj(u)φ
k
β∂

βφjα +Aijkl(u)φ
j
βφ

kβφlα (44)

where we have used the fact that Cijk = Γijk − Γikj , as well as

∂λ(f(u)) =
∑
i=1,2

ei(f)(u)φiλ

for any smooth function f : M → R and λ = 0, 1, 2, 3. Our assumptions in (1)
imply that we can extend the Aijkl to an open neighborhood of M in Rk, where
all their derivatives are bounded. We shall prove Theorem 1.1 via the following
Bootstrapping Proposition:

Proposition 4.1. Let T > 0, let u : R3+1 →M be a smooth Wave Map on a time
interval [−T, T ], , and let the notation be as above; then there exist a number ε > 0
and a large constant M > 0 independently of T, u, such that the following holds:

||Pk∇xu||S[k]([T,−T ]×R3) + sup
i,α

||Pkφiα||S[k]([−T,T ]×R3) < Mck =⇒

||Pk∇xu||S[k]([−T,T ]×R3) + sup
i,α

||Pkφiα||S[k]([−T,T ]×R3) <
M

2
ck

for all sufficiently flat12 frequency envelopes ck satisfying (
∑
k∈Z c

2
k)

1
2 < ε.

The Theorem 1.1 follows from this and the subcritical result of Klainerman-Machedon
[8]13

Proof We employ roughly the same strategy as the one outlined in section 2. The
first step consists in changing the Gauge in order to improve the leading term of

12In the sense that the σ used in its defining property is small enough.
13Note that the Wave Maps equation in terms of u is 2(i ◦ u)l = Bl

jk(u)(∂ν(i ◦ u), ∂ν(i ◦ u)),

where Bi
jk is the 2nd fundamental form of the embedding i. This is structurally identical to the

local formulation of Wave Maps studied in [8].
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the nonlinearity. For this, we employ a Coulomb Gauge of the following form:

ψα := ψ1
α +

√
−1ψ2

α = e
√
−14−1 P3

j=1 ∂j(Γ
1
l2(u)φl

j)(φ1
α +

√
−1φ2

α)

Upon introducing the notation 4−1
∑3
j=1 ∂j(Γ

1
l2(u)φ

l
j) = Φ, we deduce the follow-

ing wave equation

2ψα = Mµ∂
µψα +

√
−1[2Φ +

√
−1∂νΦ∂νΦ]ψα + eiΦ(A1

jkl(u)φ
j
βφ

kβφlα

+
√
−1A2

jkl(u)φ
j
βφ

kβφlα)−Mµ

√
−14−1

3∑
j=1

∂j∂µ(Γ1
l2(u)φ

l
j)ψα (45)

The Mµ in turn satisfy the following elliptic div-curl system:

3∑
j=1

∂jMj = 0

∂lMα − ∂αMl = −
√
−1[∂l(Γ1

k2(u)φ
k
α)− ∂α(Γ1

k2(u)φ
k
l )] := Ejk(u)φ

j
lφ
k
α

where the Ejk(.) are skew-symmetric in j, k and extend as smooth functions with
bounded derivatives of all orders to a neighborhood of M in Rk 14. This system
allows us easily to solve for the Mα, as follows:

Mα =
3∑
l=1

4−1∂l(
∑

j,k=1,2

Ejk(u)φ
j
lφ
k
α)

The conclusion upon substituting these expressions into (45) is that the new leading
term of the nonlinearity is the following:

2ψα =
3∑
l=1

4−1∂l(
∑

j,k=1,2

Ejk(u)φ
j
lφ
k
µ)∂

µφα + ...

We need to make one more substitution, namely E12(u)φ2
λ = θ1λ. Note that by

virtue of Proposition 3.1, the k-th frequency mode of ψα as well as the k-th fre-
quency mode of θ1λ have their S[k]-norm bounded by a suitable dilate of {ck}. We
reformulate the wave equation as follows:

2ψα =
3∑
l=1

4−1∂l(θ1µφ
1
l − θ1l φ

1
µ)∂

µφα + ...

In order to render the null-structure visible, we implement the dynamic separation

14We shall from now on omit such qualifications as they are automatic from our assumptions.
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associated with the curl equation(42) to decompose the φiα into a ’dynamic’ (gradi-
ent) part and an ’elliptic’part (determined via an elliptic divergence curl system). It
is easily checked that the θ1α satisfy an analogous curl-system, and can be similarly
decomposed. More specifically, we write

φiα = RαΦi + φ̃iα, i = 1, 2

θ1α = RαΘ1 + θ̃1α

where the Rα are Riesz operators as in section 2, and we have set

Φi = −
3∑
k=1

Rkφ
i
k, Θ1 = −

3∑
k=1

Rkθ
1
k

These ’potentials’ satisfy similar estimates (up to constants) as the φα. The trilin-
ear null-form arising upon substituting the gradient parts is of an identical nature
as the one discussed in section 2. Moreover, taking into account the fact that we
have identities of the form

φ̃iα =
3∑
l=1

4−1∂l(
∑

j,k=1,2

Di
jk(u)φ

j
αφ

k
l )

for skew-symmetric Di
jk(u), and similar identities for the θ̃1α, reveals that substi-

tuting an ’elliptic part’ for either φiα or θiα results in terms at least quadrilinear of
the following structure:

3∑
l=1

4−1∂l(θ1l
3∑
r=1

4−1∂r(D1
12(u)(φ

1
rφ

2
µ − φ2

rφ
1
µ))∂

µφα

−
3∑
l=1

4−1∂l(θ1µ
3∑
r=1

4−1∂r(D1
12(u)(φ

1
rφ

2
l − φ2

rφ
1
l ))∂

µφα

∇−1(∇−1(C(u)φ2)∇−1(D(u)θ2))∇x,tφ (46)

where the latter term15 is of course only recorded in schematic form (we don’t need
its fine structure). As to the quadrilinear terms, we simply repeat the previous step
of introducing new variables

ξλ = D1
12(u)φ

2
λ

15Recall that we use the shorthand ∇−1 for operators of the type 4−1∂j ; occasionally, we

shall also use this notation to denote the multiplier
√
−4−1

.
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These satisfy similar (frequency localized) estimates as the φiα and also a similar
curl system, which allows us to apply dynamic separation

ξλ = RλΞ + ξ̃λ, ξ̃λ = ∇−1(A(u)(φ2))

Carrying out the substitution leads to a quadrilinear null-form

3∑
l=1

4−1∂l(RlΘ1
3∑
r=1

4−1∂r(RrΦ1RµΞ1 −RµΦ1RrΞ1))∂µφα

−
3∑
l=1

4−1∂l(RµΘ1
3∑
r=1

4−1∂r(RrΦ1RlΞ1 −RlΦ1RrΞ1)∂µφα

as well as error terms of the following schematic form16:

∇−1(φ∇−1(φ∇−1(A(u)φ2)))∇x,tφ

∇−1(∇−1(C(u)φ2)∇−1(D(u)φ2))∇x,tφ

and similar terms of higher degree of linearity(up to degree 7.)For future reference,
we note that on account of Proposition 3.1, one can always replace A(u)φ by φ.
Thus, to summarize the preceding discussion we state

Observation 1: The leading term Mµ∂
µψ can be decomposed into the sum of

trilinear null-forms17 of the type in Proposition 3.5 , quadrilinear null-forms of
the type contained in Proposition 3.7 and error terms at least quintilinear of the
schematic form:

∇−1(φ∇−1(φ∇−1(φ2)))∇x,tφ

∇−1(∇−1(φ2)∇−1(φ2))∇x,tφ

and similar terms of higher degree of linearity.

16We are fudging the distinction between the variables φi
α, θi

α, ξi
α, since they are essentially

equivalent as far as estimates are concerned.
17whose inputs have frequency modes satisfying the same inequalities as the original φi

α but
with respect to a dilate of the frequency envelope {ck}
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The remaining terms in the nonlinearity of (45) are handled similarly. The third,
fourth and fifth term lead to trilinear null-forms of the type contained in Proposi-
tion 3.6 upon enacting dynamic separation, as well as quadrilinear terms of the form

∇−1(φ2)φ2

These in turn are decomposed into quadrilinear null-forms of the schematic type

∇−1(Rνφ1Rjφ2 −Rjφ1Rνφ2)φ2

where φ1, φ2 refer to suitable expressions A1,2(u)φ, as well as terms at least quin-
tilinear of the type

∇−1(∇−1(φ2)φ)φ2

∇−1(∇−1(φ2)∇−1(φ2)φ2

The sixth term of the nonlinearity is decomposed into terms of the exact same type
as in the immediately preceding. What remains is the expression

2Φψα

contained in the 2nd term of the nonlinearity. We reformulate it using (44). One
obtains the expression

3∑
l=1

4−1∂l(Γijkφ
j
ν∂

νφkl +Aijkl(u)φ
j
βφ

kβφlα)ψα

which, upon introducing the new variables ηikν := Γijkφ
j
ν and implementing dynamic

separation with respect to these variables(as well as the φjβ for the 2nd summand),
turns into a trilinear null-form (whose fine structure we have suppressed)

∇−1(RνE∂νφ)ψ

as well as quadrilinear terms of the rough form

∇−1(∇−1(φ2)∇x,tφ)φ

∇−1(Rβφ1R
βφ2φ3)φ4
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and error terms of the form

∇−1(∇−1(φ2)φ2)φ

∇−1(∇−1(φ2)∇−1(φ2)φ)φ

The first kind of quadrilinear expression needs to be further decomposed into
quadrilinear null-forms and error terms at least quintilinear. Reiterating dynamic
separation with respect to suitable variables allows one to decompose such terms
into the sum of schematically written quadrilinear null-forms:

∇−1(
3∑
l=1

4−1∂l(Rlφ1Rνφ2 −Rνφ1Rlφ2)∂νφ3)ψα

as well as error terms of the schematic form

∇−1(∇−1(∇−1(φ2)φ)∇x,tφ)φ

∇−1(∇−1(∇−1(φ2)∇−1(φ2))∇x,tφ)φ

We summarize this discussion as follows:

Observation 2: The remaining terms of the nonlinearity can be expressed as a
sum of trilinear null-forms of the types contained in Proposition 3.6, quadrilinear
null-forms of the type

∇−1(
3∑
l=1

4−1∂l(Rlφ1Rνφ2 −Rνφ1Rlφ2)∂νφ3)φ4

∇−1(Rνφ1Rjφ2 −Rjφ1Rνφ2)φ2

∇−1(Rβφ1R
βφ2φ3)φ4

as well as error terms at least quintilinear of the schematic form

∇−1(∇−1(∇−1(φ2)φ)∇x,tφ)φ
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∇−1(∇−1(φ2)φ)φ2

∇−1(∇−1(φ2)φ2)φ

∇−1(∇−1(∇−1(φ2)∇−1(φ2))∇x,tφ)φ

∇−1(∇−1(φ2)∇−1(φ2))φ2

∇−1(∇−1(φ2)∇−1(φ2)φ)φ

In order to proceed with the proof of Proposition 4.1, we need to estimate the 0-th
frequency component of each of the expressions recorded in Observation 1,2, and
close by means of the energy inequality (38). More precisely, for any expression
F (φ1, φ2, · · · , φk) occuring in Observation 1, 2, we need to establish an inequality

||P0F (φ1, φ2, · · · , φk)||N [0] ≤ CM(M(
∑
k

c2k)
1
2 )lc0

for some l > 0, provided the φi are Schwartz functions satisfying ||Pkφi||S[k] ≤
CMck for a sufficiently flat frequency envelope {ck}. This has already been achieved
for the trilinear null-forms as well as the quadrilinear null-form in Observation
1 by means of Proposition 3.5, Proposition 3.6, Proposition 3.7. For the follow-
ing computations, we shall make frequent use of the basic Bernstein’s inequality18,
which states that for any measurable set R ⊂ Rn and ∞ ≥ p ≥ 2, we have

||F−1(χRFφ)||Lp
x
≤ C|R|

1
2−

1
p ||φ||L2

x

The 2nd quadrilinear null-form in Observation 2:

Use the shorthand ∇−1(Rνφ1Rlφ2 − Rlφ1Rνφ2) = Qν,j(φ1, φ2). Then we decom-
pose

18as well as simple variations thereof
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P0[Qν,j(φ1, φ2)φ3φ4] = ∑
k,k1,2,3,4|max{k1,k2}>k+O(1)

P0[Qν,jPk(Pk1φ1, Pk2φ2)Pk3φ3Pk4φ4]

Now we use Theorem 3.4. Choose 2+ close to 2 and let 1
M + 1

2+ = 1
2 . Then

||
∑

k,k1,2,3,4|max{k1,k2}>k+O(1)

P0[Qν,jPk(Pk1φ1, Pk2φ2)Pk3φ3Pk4φ4]||L1
tL

2
x

≤ C
∑

k≥0, k1,2,3,4|max{k1,k2}>k+O(1)

||Pk3φ3Pk4φ4||L2
tL

2+
x
||Qν,jPk(Pk1φ1, Pk2φ2)||L2

tL
2
x

+
∑

k<0, k1,2,3,4|max{k1,k2}>k+O(1)

||Pk3φ3Pk4φ4||L2
tL

2+
x
||Qν,jPk(Pk1φ1, Pk2φ2)||L2

tL
M
x

≤ CM4
∑

k,k1,2,3,4|max{k1,k2}>k+O(1)

2−
(1−ε)

2 |k|2k−max{k1,k2}2−
|k1−k2|

2 2−
|k3−k4|

2

∏
i

ci

It is straightforward to verify that the summation can be carried out to provide the
desired estimate for any sufficiently flat envelope.

The first quadrilinear null-form in Observation 2:

Use the shorthand

4−1
3∑
j=1

∂j(Rνφ1Rjφ2 −Rjφ1Rνφ2)∂νφ3 = N(φ1, φ2, φ3)

We use the following Littlewood-Paley trichotomy:

P0[∇−1N(φ1, φ2, φ3)φ4]

=
∑

k>10, k=k4+O(1)

P0[Pk∇−1N(φ1, φ2, φ3)Pk4φ4]

+
∑

k∈[−10,10], k4≤15

P0[Pk∇−1N(φ1, φ2, φ3)Pk4φ4]

+
∑

k<−10, k4∈[−5,5]

P0[Pk∇−1N(φ1, φ2, φ3)Pk4φ4]

(47)

The first summand on the right-hand side is estimated by means of Proposition 3.5
as well as Theorem 3.3:
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||
∑

k>10, k=k4+O(1)

P0[Pk∇−1N(φ1, φ2, φ3)Pk4φ4]||N [0]

≤ C
∑

k>10, k=k4+O(1)

2−δk4 ||PkN(φ1, φ2, φ3)||N [k]||Pk4φ4||S[k4]

≤ CM4(
∑
r

c2r)
∑

k>10, k=k4+O(1)

2−δk4ckck4 ≤ CM4(
∑
r

c2r)c
2
0

provided we choose the frequency envelope sufficiently flat, i.e. σ << δ.
The 2nd summand on the right-hand side of (47) is more of the same. As to the
third, we decompose it further as follows:

∑
k<−10, k4∈[−5,5]

P0[Pk∇−1N(φ1, φ2, φ3)Pk4φ4]

=
∑

k<−10, k4∈[−5,5]

P0[Pk∇−1N(φ1, φ2, P<k+Cφ3)Pk4φ4]

+
∑

k<−10, k4∈[−5,5]

P0[Pk∇−1N(φ1, φ2, P≥k+Cφ3)Pk4φ4]

Observe that the first summand in the immediately preceding can be schematically
written as a sum of terms of the following form:

∑
k<−10, k4∈[−5,5]

P0[Pk∇−1N(φ1, φ2, P<k+Cφ3)Pk4φ4]

=
∑

k<−10, k4∈[−5,5]

P0[Pk∇−1(Qν,l(φ1, φ2)∇x,tP<k+Cφ3)Pk4ψ4]
(48)

This is estimated by means of Theorem 3.4: let 2
4+ + 1

M = 1
2 .

||
∑

k<−10, k4∈[−5,5]

P0[Pk∇−1(Qν,l(φ1, φ2)∇x,tP<k+Cφ3)Pk4ψ4]||N [0]

≤ C
∑

k<−10, k4∈[−5,5]

2−k||P<k+C′Qν,l(φ1, φ2)||L2
tL

M
x

||∇x,tP<k+Cφ3||L4
tL

4+
x
||Pk4φ4||L4

tL
4+
x

≤ CM4(
∑
r

c2r)
∑

k<−10, k4∈[−5,5]

2
k
2+ ckck4 ≤ CM4(

∑
r

c2r)c
2
0

The 2nd term in (48) is estimated by means of the precise formulation of Proposi-
tion 3.5:
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||
∑

k<−10, k4∈[−5,5]

P0[Pk∇−1N(φ1, φ2, P≥k+Cφ3)Pk4φ4]||N [0]

≤
∑

ki, i∈{1,2,3}|max{k1,k2}>k3+O(1), k3≥k+C

∑
k4∈[−5,5]

||P0[Pk∇−1N(Pk1φ1, Pk2φ2, Pk3φ3)Pk4φ4]||N [0]

≤ CM4
∑

ki, i=1,2,3|max{k1,k2}>k3+O(1)

∑
k4∈[−5,5]

2−δ1|k1−k2|2δ2(k3−max{k1,k2})
4∏
i=1

cki

This summation can again be carried out, provided the frequency envelope is suf-
ficiently flat.

The third quadrilinear null-form in Observation 2

This is treated similarly to the preceding by means of Proposition 3.6 and left out.

The first quintilinear term of Observation 1

We note the following elementary estimates: on account of Theorem 3.4, we have

||∇−εPa(Pbφ1∇−1Pc(φ2φ3))||
L

4
3
t L

p
x

≤ Cε2µ(ε)(min{a,b,c}−max{a,b,c})||Pbφ1||S[b]

where 1
p = 5

12 −
ε
3 , ε > 0 very small and µ(ε) > 0.19

Next, we note that

||Pa∇−1(Pbφ∇−(1−ε)PcF )||L1
tL

∞
x
≤ Cε2λ(ε)(min{a,b,c}−max{a,b,c})

||Pbφ||S[b]||PcF ||
L

4
3
t L

p
x

||Pa∇−2ε(Pbφ∇−(1−ε)PcF )||L1
tL

3+
x
≤ Cε2λ(ε)(min{a,b,c}−max{a,b,c})

||Pbφ||S[b]||PcF ||
L

4
3
t L

p
x

where p is as before and λ(ε) > 0, 1
3+ = 1

3 −
ε
3 . Now use the trichotomy

19Use the fact that ||P0φ||
L4

t L4+
x

≤ C||P0φ||S[0]
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||P0[∇−1(φ∇−1(φ∇−1(φ2)))∇x,tφ]||L1
tL

2
x

≤
∑

k1>10, k1=k2+O(1)

||P0[∇−1Pk1(φ∇−1(φ∇−1(φ2)))∇x,tPk2φ]||L1
tL

2
x

+
∑

k1∈[−10,10], k2<15

||P0[∇−1Pk1(φ∇−1(φ∇−1(φ2)))∇x,tPk2φ]||L1
tL

2
x

+
∑

k1<−10, k2∈[−5,5]

||P0[∇−1Pk1(φ∇−1(φ∇−1(φ2)))∇x,tPk2φ]||L1
tL

2
x

(49)

Using the preceding calculations, we compute

∑
k1>10, k1=k2+O(1)

||P0[∇−1Pk1(φ∇−1(φ∇−1(φ2)))∇x,tPk2φ]||L1
tL

2
x

≤
∑

k1>10, k1=k2+O(1)

∑
ai, i=1,...4

C2−k1

||Pk1(Pa1φ∇−1Pa2(Pa3φ∇−1Pa4(φ
2)))||L1

tL
3+
x
||∇x,tPk2φ||L∞t L2

x

≤
∑

k1>10, k1=k2+O(1)

∑
ai

CM5(
∑
r

c2r)∑
2µ(ε)(min{k1,a1...a4}−max{k1,a1,...a4})2−( 1

2−ε)k1ca1ca3ck1

≤ CM5(
∑
k

c2k)
2c0

The remaining terms in (49) are estimated similarly, and left to the reader.

The first quintilinear expression in Observation 2

First assume that there is a high-high interaction within the outermost bracket (, ),
i.e. consider the contribution

∑
k1>>k

P0[∇−1Pk(∇−1(∇−1(φ2)φ)∇x,tPk1φ)φ]

This term is morally equivalent to

∑
k1>>k

P0[∇−1Pk(∇−1(φ2)φPk1φ)φ]

It is easy to see upon using Theorem 3.4 as well as an additional frequency tri-
chotomy that for fixed k

∑
k1>>k

||Pk(∇−1(φ2)φPk1φ)||
L1

t Ḣ
− 1

2
x

≤ CM3(
∑
r

c2r)
3
2
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This implies that∑
k1>>k

min{||Pk∇−1(∇−1(φ2)φPk1φ)||L1
tL

2
x
, ||Pk∇−1(∇−1(φ2)φPk1φ)||L1

tL
∞
x
}

≤ CM4(
∑
r

c2r)
22−

|k|
2

From this the desired estimate follows easily. Next, assume that there is no high-
high interaction in the outermost (, ), i.e. k ≥ k1 +O(1). This contribution is seen
to be morally equivalent to

∑
k1≤k+O(1)

P0[Pk(∇−1(∇−1(φ2)φ)Pk1φ)φ]

Now use reasoning similar to the previous quintilinear estimate to obtain

∑
k1<k+O(1)

||Pk(∇−1(∇−1(φ2)φ)Pk1φ)||L1
tL

3+
x
≤ CM4(

∑
r

c2r)
22δk

This in conjunction with another frequency trichotomy easily implies the desired
inequality.

The remaining error terms of degree five or higher are either similar or simpler and
left out.

Having estimated all expressions in Observations 1, 2, we can now close the boot-
strapping argument. Fix M >> 1, then choose ε << 1 such that (38) as well as
Proposition 3.120 imply

||P0∇xu||S[k] + ||P0φ
i
α||S[0] ≤

M

2
ck

5. Proof of the Gauge Change estimate

We commence with the following simple lemma:

Lemma 5.1. Let j ≥ k + O(1). Then provided f(x) : R → C as well as
φi, i = 1, 2, 3 are as in the statement of Proposition 3.1, we have

||PkQjf(
∑
j

4−1∂jφj)||L2
tL

2
x
≤ C2−

3j
2 −

k
2

20recall the definition of φi
α via u
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Proof : Note that the operator PkQj2−1 with symbol mk(|ξ|)mj(||ξ|−|τ ||)
|τ |2−|ξ|2 is bounded

on L2
tL

2
x with norm ≤ C2−2j . Thus it suffices to show that

||PkQj(
∑
j,k

4−1∂j∂νφj4−1∂k∂
νφkf

′′(
∑
l

4−1∂lφl)||L2
tL

2
x
≤ C

||PkQj(
∑
j

4−12∂jφjf
′′(

∑
l

4−1∂lφl))||L2
tL

2
x
≤ C2

j−k
2

The first inequality is immediate from Theorem 3.2. The 2nd is proved by invoking
a frequency as well as modulation trichotomy. In particular, one uses the fact that
provided l >> max{k1, k2, k3}, we have

Pk1Q<l−C(Pk2QlfPk3g) = Pk1Q<l−C(Pk2QlfPk3Ql+O(1)g)

as well as (letting ∇−1 =
√
−4−1)

Pk1Qlf(∇−1φ) = Pk1QlD
−1
t (R0φf

′(∇−1φ))

where D−1
t is the operator associated with the multiplier τ−1; of course, the op-

erator PkQlD−1
t is disposable with norm ∼ 2−l. The proof then boils down to a

mechanical exercise in Paradifferential Calculus left for the reader.

We also mention the improved Bernstein’s inequality which states that for any
p ≥ 2, ε > 0:

||PkQjφ||L2
tL

p
x
≤ Cε2(1− 2

p ) min{ j−k
2+ε ,0}||PkQjφ||L2

tL
2
x

For a proof of this see [24].

Proceeding with the proof of the Proposition, we use the frequency trichotomy

P0[φf(∇−1φ)] =
∑

k1>10, k1=k2+O(1)

P0[Pk1φPk2f(∇−1φ)]

+
∑

k1∈[−10,10], k2<15

P0[Pk1φPk2f(∇−1φ)] +
∑

k1<−10, k2∈[−5,5]

P0[Pk1φPk2f(∇−1φ)]

where we have used a schematic presentation for the exact expression in the state-
ment of Proposition 3.1. We shall only deal with the first and 2nd summand on
the right-hand side, the third being much simpler.
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(1): High-High interactions: the first term.

Output restricted to small modulation:

∑
k1>10, k1=k2+O(1)

P0Q<10[Pk1φPk2f(∇−1φ)]

Freeze the output to modulation 2j , j < 10. Also, freeze k1,2 for the time being.
We replace P0Qj [Pk1φPk2f(∇−1φ)] by

3∑
l=1

∫
R3
al(y)P0Qj [Pk1φ(x)Pk2(Rlφf

′(∇−1φ))(x− y)]dy

where al(y) is the convolution kernel of the operator 4−1∂lP̃k2
21 Then we observe

that

||Pk2(RlφP≥j−20f
′(∇−1φ))||L4

tL
4−
x
≤ Cε2εk22−δ(ε)jck2

for suitable(small) ε, δ(ε). Also, using the preceding lemma as well as Bernstein’s
inequality, we have

||Pk2(RlφP<j−20Q≥j−20f
′(∇−1φ))||L4

tL
4−
x
≤ Cε2εk22−δ(ε)jck2

The preceding pair of inequalities implies that

2
j
2 ||

3∑
l=1

∫
R3
al(y)P0Qj [Pk1φ(x)Pk2(Rlφ(f ′(∇−1φ)

− P<j−20Q<j−20f
′(∇−1φ)))(x− y)]dy||L2

tL
2
x

≤ Cε2( 1
2−δ(ε))j2(ε−1)k2ck2

Provided we choose ε > 0 small enough, we can sum this over j < 10, and also
obtain the required exponential decay in k2. This in particular implies that we
control the Ẋ

1
2 ,

1
2 ,1

0 -norm of this contribution, which is all we need, on account of
the inequality

||PkQ<k+O(1)φ||S[k] ≤ C||Pkφ||
Ẋ

1
2 , 1

2 ,1
0

For the remaining term, we introduce the notation (Tyf)(x) := f(x−y) and observe

21Recall that P̃k2 is like Pk2 but with Pk2 P̃k2 = Pk2 .
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that

3∑
l=1

∫
R3
al(y)P0Qj [Pk1φ(x)Pk2(RlφP<j−20Q<j−20f

′(∇−1φ))(x− y)]dy

=
3∑
l=1

∫
y∈R3

∫
z∈R3

al(y)b(z)P0Qj [Qj+O(1)(Pk1φ(x)Pk2+O(1)RlTy+zφ(x))

P<j−20Q<j−20Ty+zf
′(∇−1φ)(x))]dydz

where b(z) is the kernel representing the disposable operator Pk2 . Then we use
Theorem 3.4, as well as the translation invariance of the S[k]:

2
j
2 ||

∫
y∈R3

∫
z∈R3

al(y)b(z)P0Qj [Qj+O(1)(Pk1φ(x)Pk2+O(1)RlTy+zφ(x))

P<j−20Q<j−20Ty+zf
′(∇−1φ)(x))]dydz||L2

tL
2
x

≤ C2−k1 sup
y, z∈R3

||Qj+O(1)[Pk1φPk2+O(1)RlTy+zφ]||
Ẋ

1
2 , 1

2 ,∞ ≤ C2−k12
j

2+ ck1ck2

This can be summed over j < O(1) and furnishes the required exponential gain in
−k1.
We now turn to the case when the output is at very large modulation 2j , j ≥ 10.
We decompose into the case j + 10 ≥ k1 and its opposite. Also, we shall only
consider the Ẋ

1
2 ,

1
2 ,∞

0 -component of S[0], since the Proposition in the case of the
energy component is standard.

(1.1): j + 10 ≥ k1. We apply another trichotomy with respect to modulation:

P0Qj(Pk1φPk2f(∇−1φ)) = P0Qj(Pk1Q<j−10φPk2Q<j−10f
′(∇−1φ))

+ P0Qj(Pk1Q≥j−10φPk2f
′(∇−1φ)) + P0Qj(Pk1Q<j−10φPk2Q≥j−10f

′(∇−1φ))

We observe that the 2nd and third summand on the right-hand side are rather
easy to treat on account of lemma 5.1. For the first, note that both inputs may be
assumed to be microlocalized on the same half space τ >< 0, and k1 = j + O(1).
We need to estimate

2
3j
2 ||P0Qj(Pk1Q<j−10φPk2Q<j−10f(∇−1φ))||L2

tL
2
x

∼ 2
3j
2 −k1 ||P0Qj(Pk1Q<j−10φPk2Q<j−10(φf ′(∇−1φ))||L2

tL
2
x

We may assume f ′(∇−1φ) to be at frequency < 2j−10, since otherwise, we can use

||Pk2Q<j−10(φP≥j−10f
′(∇−1φ))||

L4
tL

4
3 +
x

≤ C2−(1−ε)k1c2k1

We can also assume f ′(∇−1φ) to be at modulation< 2j−10, on account of lemma 5.1;
of course this immediately restricts φ to modulation < 2j+O(1). Next, assume
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f ′(∇−1φ) to be at frequency 2l, 0 ≤ l < j − 10. Then we have

P0Qj(Pk1Q<j−10φPk2Q<j−10∇−1(Q<j+O(1)φPlQ<j−10f
′(∇−1φ))

=
∑

κ1,2∈Kl−k1 , dist(κ1,−κ2)≤2l−k1+O(1)

P0Qj(Pk1,κ1Q<j−10φ

Pk2Q<j−10∇−1(Pk2+O(1),κ2Q<j+O(1)φPlQ<j−Cf
′(∇−1φ))

We discard the disposable operator Pk2Q<j−10∇−1 of L1-norm < 2−k1+O(1), and
obtain:

2
3j
2 ||P0Qj(Pk1Q<j−10φPk2Q<j−10∇−1(φPlf ′(∇−1φ)))||L2

tL
2
x

≤ C2
j
2 2l−k1

∑
κ1,2∈Kl−k1 , dist(κ1,−κ2)≤2l−k1+O(1)

||Pk1,κ1Q<j−10φ||S[k1,κ1]||Pk2+O(1),κ2Q<j+O(1)φ||S[k2,κ2]||Plf
′(∇−1φ)||L∞t L3

x

Using the inequality ||Plf ′(∇−1φ)||L∞t L3
x
≤ C2−l, as well as Cauchy-Schwarz and

the following inequality22:

(
∑

κ∈Kl−k1

||Pk1,κQ<j−10φ||2S[k1,κ])
1
2 ≤ C|k1|||Pk1φ||S[k1]

we obtain the estimate

2
3j
2 ||P0Qj(Pk1Q<j−10φPk2Q<j−10∇−1(φPlf ′(∇−1φ)))||L2

tL
2
x

≤ C|k1|2
k1
2 2−k1 ||Pk1φ||S[k1]||Pk2+O(1)φ||S[k2] ≤ C2−

k1
2+ c2k1

This can be summed over k1 + O(1) > l ≥ 0 and is acceptable. The case when
f ′(∇−1φ) is at frequency < 0 is almost identical, by placing f ′(∇−1φ) into L∞t L

∞
x .

(1.2): We are left to estimate

∑
k1,k2>j+10

P0Qj [Pk1φPk2f(∇−1φ)] =
∑

k1,k2>j+10

(Pk1Q<j−10φPk2Q≥j−10f(∇−1φ)

+
∑

k1,k2>j+10

(Pk1Q≥j−10φPk2Q<j−10f(∇−1φ)

The 2nd summand on the right-hand side is straightforward on account of the def-
inition of S[k]. As to the first, we need a simple modification of lemma 5.1, proved
similarly:

||PkQjf(∇−1φ)||L2
tL

2
x
≤ C2−j−k, j < k +O(1)

22Which follows easily from the definitions and Plancherel
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The desired inequality follows easily form this.

High-Low interactions.

We leave the estimate of the energy of the output to the reader. We commence by
estimating the Ẋ

1
2 ,

1
2 ,∞

0 -norm of the output provided the modulation is low. We use
the following mixed trichotomy: let j < −10, say.

P0Qj [P[−5,5]φP<−10f(∇−1φ)]

= P0Qj [P[−5,5]φP−10>.≥j−10f(∇−1φ)]

+ P0Qj [P[−5,5]Q≥j−10φP<j−10Q<j−10f(∇−1φ)]

+ P0Qj [P[−5,5]φP<j−10Q≥j−10f(∇−1φ)]

The 2nd and third summand are easy on account of lemma 5.1. For the first sum-
mand, we reformulate it as follows:

P0Qj [P[−5,5]φP−10>.≥j−10f(∇−1φ)]

=
∑

−10>j̃≥j−10

P0Qj [P[−5,5]φPj̃∇
−1(φf(∇−1φ))]

Freezing j̃ for the moment, we decompose further

P0Qj [P[−5,5]φPj̃f(∇−1φ)]

= P0Qj [P[−5,5]φPj̃∇
−1(Q<j−10φP<j−20Q<j−20f

′(∇−1φ))]

+ P0Qj [P[−5,5]φPj̃∇
−1(Q≥j−10φP<j−20Q<j−20f

′(∇−1φ))]

+ P0Qj [P[−5,5]φPj̃∇
−1(φP<j−20Q≥j−20f

′(∇−1φ))]

+ P0Qj [P[−5,5]φPj̃∇
−1(φPj−20≤.≤j̃+10f

′(∇−1φ))]

+ P0Qj [P[−5,5]φPj̃∇
−1(φP>j̃+10f

′(∇−1φ))]

(50)

For the first term on the right-hand side, we observe that

P0Qj [P[−5,5]φPj̃∇
−1(Q<j−10φP<j−20Q<j−20f(∇−1φ))]

=
∫
R3
aj̃(y)P0Qj [Qj+O(1)(P[−5,5]φPj̃+O(1)Q<j−10Tyφ)

P<j−20Q<j−20Tyf(∇−1φ)]dy

where aj̃ is the kernel associated with the multiplier ∇−1Pj̃ of L1-mass ∼ 2−j̃ .
Using Theorem 3.4 as well as translation invariance of the S[k], we conclude that
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||P0Qj [P[−5,5]φPj̃∇
−1(Q<j−10φP<j−20Q<j−20f(∇−1φ))]||

Ẋ
1
2 , 1

2 ,∞
0

≤ C2
j−j̃
2+ c0cj̃

This can be summed over O(1) > j̃ > j to yield the desired inequality.
For the 2nd term on the right-hand side of (50), we use the improved Bernstein’s
inequality:

2
j
2 ||P0Qj [P[−5,5]φPj̃∇

−1(Q≥j−10φP<j−20Q<j−20f
′(∇−1φ))]||L2

tL
2
x

≤ C
∑

j̃>l>j−10

||[P[−5,5]φ||L∞t L2
x
||Pj̃+O(1)Qlφ||L2

tL
∞
x

+
∑
l≥j̃

||[P[−5,5]φ||L∞t L2
x
||Pj̃+O(1)Qlφ||L2

tL
∞
x

≤
∑

j̃>l>j−10

C2
l−j̃
2+ 2

j−l
2 c0cj̃ +

∑
l≥j̃

C2
j−l
2 c0cj̃ ≤ C2

j−j̃
2+ c0cj̃

This can again be summed over j̃.
For the third summand of (50), we invoke lemma 5.1, of course, as well as Bern-
stein’s inequality. One computes

2
j
2 ||P0Qj [P[−5,5]φPj̃∇

−1(φP<j−20Q≥j−20f
′(∇−1φ))]||L2

tL
2
x

≤ C2
j
2−j̃ ||P[−5,5]φ||L∞t L2

x
||Pj̃φ||L4

tL
∞
x
||P<j−20Q≥j−20f

′(∇−1φ)||L4
tL

∞
x

≤ C2
j−j̃
4 c0cj̃

This can again be summed over j̃ > j − 10.
The fourth term is similar to the third and left out(one can place f(∇−1φ) into
L4
tL

∞
x ). Finally, for the fifth term, one places φP>j̃+10f

′(∇−1φ) into L2
tL

∞
x , using

||Pj̃ [φP>j̃+10f
′(∇−1φ)]||L2

tL
∞
x
≤ C2

j̃
2 cj̃

The simple details are left out. This finishes the treatment of the Ẋ
1
2 ,

1
2 ,∞

0 com-
ponent of ||.||S[0], provided the output is at small modulation. The case when the
modulation is large is dealt with similarly to the analogous situation in the high-
high case.

Now we estimate the ’null-frame component’ of ||.||S[0], i.e.

sup
±

sup
l<−10

(
∑
κ∈Kl

||P0,±κQ
±
<2l(φf(∇−1φ))||2S[0,κ])

1
2

Fix l < −10. We decompose
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P0Q
±
<2l[P[−5,5]φf(∇−1φ)] = P0Q

±
<2l[P[−5,5]Q

±
<2lφP<l−10Q<−10f(∇−1φ)]

+ P0Q
±
<2l[P[−5,5]Q≥2lφf(∇−1φ)] + P0Q

±
<2l[P[−5,5]φP≥l−10f(∇−1φ)]

We treat each term on the right-hand side:

First term: Use the disposability of P0,κQ
±
<2l, see [24]

∑
κ∈Kl

(||P0,κQ
±
<2l[P[−5,5]Q

±
<2lφP<l−10Q<−10f(∇−1φ)]||2S[0,κ])

=
∑
κ∈Kl

∑
κ′∈Kl−5, κ′⊂κ

||P0,κQ
±
<2l[P[−5,5],κ′Q

±
<2lφP<l−10Q<−10f(∇−1φ)]||2S[0,κ′])

≤ C(
∑

κ′∈Kl−5

||P[−5,5],κ′Q
±
<2lφ||

2)
1
2 ≤ Cc0

2nd term: This follows easily from the inequality

||PkQ<kφ||S[k] ≤ C||Pkφ||
Ẋ

1
2 , 1

2 ,1
k

(51)

as well as the definition of S[k].

Third term: We reformulate it as follows:

P0Q
±
<2l[P[−5,5]φP≥l−10f(∇−1φ)]

=
∑
r<2l

∑
k≥l−10

∫
R3
ak(y)P0Qr[P[−5,5]φ(x)Pk(φf ′(∇−1φ))(x− y)dy

where ak(y) is the kernel representing the operator Pk∇−1. Next, one decomposes

Pk(φ(x− y)f ′(∇−1φ))(x− y) = Pk(φP≥r−10f
′(∇−1φ))(x− y)

+ Pk(Pk+O(1)φP<r−10Q<r−10f
′(∇−1φ))(x− y)

+ Pk(Pk+O(1)φP<r−10Q≥r−10f
′(∇−1φ))(x− y)

The 2nd term provides the following contribution to the output:
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∑
r<2l

∑
k≥l−10

∫
R3
ak(y)P0Qr[P[−5,5]φ(x)Pk(Pk+O(1)φ

P<r−10Q<r−10f
′(∇−1φ))(x− y)]dy

=
∑
r<2l

∑
k≥l−10

∫
R3

∫
z∈R3

ak(y)bk(z)P0Qr[Qr+O(1)(P[−5,5]φ(x)Pk+O(1)Ty+zφ(x))

P<r−10Q<r−10Ty+zf
′(∇−1φ)(x)]dy

where bk(z) is the kernel representing the operator Pk. This is easily estimated by
means of Theorem 3.4 as well as the inequality (51). The first and third summand
yield contributions estimated by placing
P<r−10Q≥r−10f

′(∇−1φ)(x− y) and P≥r−10f
′(∇−1φ)(x− y) into L4

tL
p
x for suitable

p > 4, as in earlier instances. This is left to the reader, and concludes the proof of
Proposition 3.1.
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