Potentials and Deficits of a recent Approach for urban Traffic Monitoring based on Floating Car Data

Thorsten Neumann (German Aerospace Center, DLR)

The method

- Periodically transmitted floating car position data (Fig. 1)
- **Basic idea:**
 - Vehicles cluster at traffic signals
 - Assumption: Floating cars homogeneously distributed amongst all cars
 - “Clustering” of floating cars in front of traffic signals
 - Clustering of transmitted floating car positions at traffic signals
 - Correlation between distribution of floating car positions and local traffic density (Fig. 2)
 - Find “correct” density profile (i.e. traffic state) via maximum likelihood estimation (Fig. 3/4)
- Flexible data fusion by a-priori weights (Fig. 5)

Future developments

- Optimized data fusion (optimization of parameters)
- Auto-calibration
- Upgrades
 - Further traffic state variables (delay, volumes, ...)
 - Unsignalized intersections

Main results (Queue length)

- Small average error (< 2 vehicles) even at low penetration rates (Fig. 7)
- Accurate estimation of average daily curves (Fig. 8)
- Significant improvements by data fusion (Fig. 7)
- **BUT:**
 - Aggregation with historical data necessary
 - only offline applications at the moment
 - Calibration of data fusion parameters non-trivial

Further applications (Examples)

- **Traffic planning**
 - Traffic assignment, simulation (offline)
- **Traffic control**
 - Traffic signal planning (offline)
 - Traffic signal control (online)
 - Dynamic navigation (online/offline)
- **Monitoring and quality management**
 - Long-term shifts of traffic streams (offline)
 - Incident detection (online)

Outlook

- **Integration of C2X data**
 - 2 ways:
 - as common floating car data and/or
 - via the data fusion interface
 - high penetration rates by incorporating private vehicles for traffic management
 - privacy protected as no vehicle identification or tracking needed
- **Backbone of future urban traffic monitoring systems?**