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Defects play a critical role in the dynamic fragmentation process of structural ceramics.

Cracks initiate at seemingly random locations, propagate and coalesce to form frag-

ments. The process is accompanied by stress release waves, whose influence is difficult

to account for without numerical analysis. In this paper, we use a finite-element

program with a cohesive fracture capability, to relate a defect distribution contained in a

material with the resulting number of fragments. We show how the distribution tail, e.g.

the number of large defects, and the rate at which cracks can be initiated at these sites

have a critical influence on the generation of stress release waves and thus on the

fragmentation process. Our numerical calculations yield a new factor, which we label

communication factor, that we use to normalize the average fragment size and to define

a new scaling function of material properties, defect statistics and loading rate.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Fragmentation, e.g. the breakage of a structure into smaller pieces, is a widespread phenomenon in nature and in
engineering applications. It ranges from astrophysical scales such as in the creation of a galaxy (Ryan, 2000), to nanoscales
e.g. fragmentation of DNA (Holian and Grady, 1988). In the intermediate range, fragmentation underlies many damage
mechanisms, including ballistic impact, blast protection, explosive drilling in oil shales, debris after impact of satellites, car
crashes, kidney stones fragmentation, and soil desiccation. During a dynamic and brittle fragmentation event, microcracks
originate at seemingly random sites, open, propagate at large speeds, and eventually coalesce with one another to generate
fragments. During their opening, microcracks release unloading waves that propagate around and protect the encompassed
areas. Since each damaged site releases its own stress waves, a chaotic network of interactions emerges. Despite its
complexity, fragmentation underlies so many applications that it has continuously appealed to the interest of the scientific
community.

A range of phenomenological, theoretical and numerical models have been pursued during the last decades. Due to its
violent nature, fragmentation was first described through its resulting state, making the observation of fragment sizes,
shapes and velocities of considerable interest (Grady, 2009). Rosin and Rammler (1933) defined the most frequently quoted
fragment size distribution of the thirties. Later, their empirical exponential law was confronted to the Mott–Linfoot’s (1943)
power law distribution. Besides its famous experiments, Mott (1943) opened the theoretical field of modeling
fragmentation by studying the effect of wave propagation in a rapidly expanding ring. Since the eighties, numerous
other descriptions have arisen. Based on energy balance principles, Grady’s (1982) high strain rate theory predicts the
ll rights reserved.
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average fragment size without taking account for wave interactions. Fragments are generated independently so that the
local kinetic energy is fully converted into fracture energy. Glenn and Chudnovsky (1986) enriched Grady’s model by
adding the contribution of the elastic potential energy, which dominates at low loading rates. Due to their simplicity, these
energy models constitute a reference frame for most engineering and research applications. However, they do not attempt
to describe the evolution of the residual damage. Entropy models (Englman et al., 1987) couple continuum mechanics and
thermodynamics principles, by including energy conservation and entropy production. Since they are based on empirical
laws, these models are still debated. Nonetheless, all these theoretical frameworks do not account accurately for wave
reflections and interactions. A variety of numerical methods have been developed to include them. For instance, Shenoy
and Kim (2003), Drugan (2001), Zhou et al. (2006a) used the method of characteristics, but they were limited to one-
dimensional problems. The finite element method (Hughes, 2000), and the discrete element method handle more complex
geometries. Coupled to the cohesive methodology, they offer an efficient compromise between accuracy and complexity.
Maiti et al. (2005), Zhou et al. (2006b), Raghupathy et al. (2006), and Espinosa et al. (1998) used the finite element
framework to simulate fragmentation. Wittel et al. (2005) presented a numerical study of shell fragmentation, based on the
discrete element method. Even though their results seem hardly synthetizable into a simple analytical form, numerical
simulations are able to represent accurately the evolution of the physical process.

Nevertheless, most of the prior theories consider fragmentation as a macroscopic process, without including the effect
of the microstructure. In brittle fragmentation, fracture sites are usually structural flaws. A defect is activated when the
stress is locally high enough to destroy the cohesion of the material. In quasi-statics, the weakest link theory applies
(Weibull, 1939): the weakest flaws initiate and slowly lead to failure without crack interactions. In dynamics, numerous
flaws are activated and interact through a complex network of stress waves. Each damaged defect opens and generates a
stress release wave that protects the encompassed neighboring regions. When many defects open, stress waves are
generated simultaneously, propagate, and interact. The behavior is then highly non-linear. Accounting for this wave effect
and the density of activated defects, Hild et al. (2003) derived the tensile strength-rate corresponding to the transition
between the quasi-static and the dynamic regimes. Recently, Paliwal and Ramesh (2008) developed a model for
compressive fracture of heterogeneous materials that includes these interactions. Kraft et al. (2008) described numerically
how grain boundary defects influence compressive fracture. However, relating microstructural defects and fragmentation
remains an open issue, and is the central object of the present study.

Our objective is to extend the work of Zhou et al. (2006b) by including defect distributions. We wish to analyze how
defects influence the average fragment size in an idealized system, consisting of a ceramic ring under uniform expansion.
The ring material is initially elastic, and is controlled by a cohesive failure as soon as the stress field locally exceeds the
strength of local flaws. The adopted numerical framework is the finite element method (FEM). The underlying question will
be whether or not, despite the statistical complexity, our results can be synthesized in a simple normalized form, in which
fragment statistics are made explicitly dependent on material properties, flaw population, and loading parameters. The
paper is structured as follows. First, we describe the expanding ring test, which is chosen both for its simplicity and for its
ability to involve only crack initiations (the effect of crack propagation is not analyzed in this paper). Then, we propose a
method to define statistically a distribution of randomly spaced flaws. In the following sections, we first verify the
numerical convergence of our results. Then, we discuss the influence of both the population of defects (density and
representative distribution). A full section is devoted to building a theoretical model which aims at describing the
communication between microcracks sites. Finally, we propose new scaling parameters for heterogeneous fragmentation.
2. The numerical expanding ring test

2.1. Description of the test

We study the fragmentation of a ring whose motion is imparted by some radial impulse or strain rate (Fig. 1):

_e ¼ radial velocity

ring radius
ð1Þ

During the process, the input energy is converted into fracture energy, and into elastic and kinetic energies (due to the
propagation of stress waves and to the global motion). In quasi-statics, the elastic energy dominates and the weakest link
theory applies. On the contrary, the dynamic regime is governed by kinetic effects, which are arguably more challenging to
understand. Therefore, our applications concentrate on strain rates ranging from 103 to 106 s�1. Moreover, we have chosen
this test for its simplicity. The radial and periodic geometry limits boundary effects and contacts between fragments. The
small thickness of the ring restricts the fragmentation process to crack initiation. Since crack propagation makes the
physical understanding more complex, focusing on initiation rather than propagation is clearly an advantage to complete
our objectives.

Before fracture, the behavior is linear elastic and controlled by a finite element simulation (Section 2.2). When the
weakest defects are initiated, cohesive elements are inserted and stress release waves begin their propagation and
interactions. Depending on the local stress, cracks may nucleate, grow, or close (Section 2.3). As soon as one link is
completely broken, the expansion of the ring is not constrained anymore: inertial effects govern the evolution of the
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Fig. 1. Schematic of the expanding ring test showing the development of a complex network of stress wave interactions.

Fig. 2. Schematic of the linear cohesive law and the associated energies.
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fragmentation. While the ring continues expanding, cracks keep evolving and interacting until the fragmentation process is
stabilized.

2.2. Finite element discretization

The ring expansion is computed by using a finite element code. The mesh represents a two-dimensional ring of
circumferential length Lring ¼ 50 mm, with one element in the thickness. Elements are six-node triangles. Their number
depends on the applied strain rate, and is sufficiently large to obtain converged numerical results (Raghupathy et al., 2006)
(Section 3.1). The material is a fictitious ceramic with volumetric mass r ¼ 2750 kg m�3, Young’s modulus E ¼ 275 GPa, and
Poisson ratio n ¼ 0:3, that behaves linearly before fracture. The wave speed is c ¼

ffiffiffiffiffiffiffiffiffi
E=r

p
¼ 10 000 m s�1.

The discretization in space is commonly based on the principle of virtual work:

M €x þ Rint
ðxÞ ¼ Rext

ðxÞ ð2Þ

where Rint and Rext are the internal and external force arrays, M is the lumped mass matrix and x is the nodal coordinate
array.

The discretization in time is based on an explicit central difference scheme (Hughes, 2000) which limits the time scale.
The Newmark theory leads to the definition of a stable time scale Dtstable. In all the simulations, we use Dt such that

Dt ¼ SDtstable ¼
S

c
min

e2mesh
ðheÞ ð3Þ

where S is a security coefficient (typically equal to 0.1), and he is the characteristic dimension of the element e.

2.3. Cohesive element methodology

The cohesive element methodology drives the failure behavior. We follow the derivations of Camacho and Ortiz (1996)
for an initially rigid irreversible law. A threshold criterion controls the damage onset: a defect is activated as soon as the
local stress s exceeds its cohesive strength sc . When the cohesive element is inserted, the edges associated to the defect
can open. The damage behavior follows the linear decreasing cohesive law which relates the local stress scoh and the
opening displacement dcoh (Fig. 2). As long as the nodes do not contact, the cohesive law takes the form

scoh

sc
¼ 1�

dcoh

dc
for _dcoh40; dcoh ¼ dmax and Do1 ð4Þ
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scoh

sc
¼ 1�

dmax

dc
for dcohodmax and Do1 ð5Þ

The first and the second equations, respectively, govern the element opening and the element closing. The local damage
D is directly related to the maximum opening. It is comprised between 0 (initiation of the damage) and 1 (the fracture site
is fully broken):

D ¼ min
dmax

dc
;1

� �
ð6Þ

Note that the unloading slope is unconventional and necessary because the problem is one-dimensional (Zhou et al.,
2005). The interpenetration between elements is controlled by adding of a repulsive force, proportional to the
interpenetration, such that the contact nodes are artificially separated. The energy associated to the defect opening is
divided into a dissipated part Ediss and a recoverable part Erec (Fig. 2). When the cohesive element is completely broken, it
has released the toughness Gc:

Gc ¼
scdc

2
ð7Þ

When it is partially opened, it has dissipated Ediss and retains Erec:

Ediss ¼ D2Gc ð8Þ

Erec ¼ scohdcoh ¼ 2ð1� DÞ
dcoh

dc
Gc ð9Þ

When the crack is on the opening path, dcoh ¼ dmax and the recoverable energy is

Erec ¼ 2ð1� DÞDGc ð10Þ

2.4. Modeling the initial distribution of defects

Every material is inherently imperfect; defects are distributed among its volume. Each defect is naturally associated to a
failure strength, which we refer to as its cohesive strength sc. It designates the stress activation threshold required to
initiate fracture, and its value depends on its shape, size and orientation. A defect with a low failure strength is weak, while
a defect with a large failure strength has a low probability of failure. Since each defect is affiliated to a value of sc , statistical
heterogeneity is introduced with a distribution of sc. A population of defects is thus characterized by:
1.
Tab
The

D

M

S

M

W

S

Stre
the number of defects Ndef , or the defect density Lring=Ndef ;

2.
 the type of the distribution of defects (normal, uniform, etc.);

3.
 the mean m and the standard deviation u of the distribution.
Choosing an adequate distribution is not obvious. We have focused on the uniform distribution which is not realistic, but
whose simple shape helps build a physical understanding. Then, we have compared our results to Gaussian and Weibull
distributions. These choices were made with respect to the weakest link theory and to extreme value statistics (Leadbetter
et al., 1983). The cumulative density function of the Weibull distribution is defined by

FðscÞ ¼ 1� e�ððsc�sc;minÞ=lÞm ð11Þ

where l is the scale parameter, m is the shape parameter or Weibull modulus, and sc;min is the minimum value of the
cohesive strengths.

In the present paper, several distributions of defects are thus tested. Table 1 details their mathematical characteristics.
Fig. 3 illustrates some of the probability density functions (p.d.f.). The chosen Weibull distributions, which are considered
by the community to be realistic mathematical models for defects, cover a wide range of standard deviations and Weibull
moduli.
le 1
oretical characteristics of the defect distributions.

istribution name Gauss 2 Weibull 2-1 Weibull 2-2 Weibull 10 Weibull 20 Uniform 1 Uniform 20

ean m 345 345 327 347 348 345 348

tandard deviation u 23.2 23.2 95.7 5.7 3.0 140.0 3.0

inimum value sc;min x 300 150 300 300 102.5 342.8

eibull modulus m x 2 2 10 20 x x

cale parameter l x 5 200 5 5 x x

sses are expressed in MPa.
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Fig. 3. Some realizations of cohesive strengths (p.d.f.).

Fig. 4. Reference models for homogeneous fragmentation.
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2.5. Brief review of prior theories

During the past decades, this simple expanding ring test has appealed to so many researchers that an extensive review
of the prior work is inadequate. Therefore, we only describe the theory derived by Grady (1982), extended by Glenn and
Chudnovsky (1986), and the recent numerical results of Zhou et al. (2006c). They all propose a law relating the number of
fragments and the strain rate in the case of the fragmentation of a homogeneous material. The fracture energy Gc and the
cohesive strength sc are thus independent from the spatial coordinates, and each fracture site dissipates the same amount
of energy Gc.

Grady, and Glenn and Chudnovsky had recourse to an energy argument to derive the expression of the average fragment
size. Employing the cohesive methodology, Zhou et al. (2006c) detailed the effect of wave interactions and normalized their
results, making implicit the dependence on material parameters in a simple equation. The normalization involves three
relevant parameters: s0, t0 and _e0. The characteristic length s0 represents the size of a fragment in quasi-statics, when the
applied potential energy is fully converted into fracture energy. This length s0 is directly related to the characteristic time t0

defined by Camacho and Ortiz (1996). This time t0 expresses the time needed by the waves, released by a cohesive element, to

fully encompass s0. Another relevant parameter is the characteristic strain rate _e0 defined by Drugan (2001). A possible
interpretation relates _e0 and t0: t0 is the time needed by the cohesive element to fully open when submitted to _e0. The analytical
expressions of these three representative parameters are

t0 ¼
EGc

s2
c c

ð12Þ

s0 ¼ ct0 ð13Þ

_e0 ¼
sc

Et0
ð14Þ

Fig. 4 represents Grady’s, Glenn and Chudnovsky’s, and Zhou et al.’s models with normalized axes. The normalized
strain rate and the normalized average fragment size are defined in Zhou et al. (2006c) by

s ¼
s

s0
and _e ¼

_e
_e0

ð15Þ

Using this notation, our reference equations are the two theoretical models based on energy conservation (Eqs. (16) and
(17)) and the numerical model which includes wave propagation and dynamic effects (Eq. (18)):

Grady’s model : sG ¼
24

_e2

 !1=3

ð16Þ
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Glenn and Chudnovsky’s model : sGC ¼
4

_e
sinh

1

3
sinh�1 3

2
_e

� �� �
ð17Þ

Zhou et al:’s model : sZMR ¼
4:5

1þ 4:5 _e2=3
ð18Þ

Nevertheless, these normalizations only address the homogeneous case. In this paper, since we are dealing with a
distribution of fracture toughnesses and a distribution of cohesive strengths, the parameters Gc and sc are not clearly
defined anymore. In order to simplify the problem, we have constrained the parameter t0 to be identical for all cohesive
elements. This implies that all the cohesive elements have the same intrinsic opening time. This choice facilitates the
understanding of the phenomenon without a too severe loss of generality. We still account for a distribution of sc and a
distribution of Gc; the only difference is that they are linked to one another by

sc ¼

ffiffiffiffiffiffiffiffiffiffi
E

s0
Gc

s
ð19Þ

To determine s0, we have chosen the reference values sc0 ¼ 300 MPa and Gc0 ¼ 100 N m�1.
3. Numerical convergence and defect density

3.1. Influence of the number of elements NFE

Our finite elements discretization is controlled by two independent parameters: the number of elements of the finite
element computation NFE, and the number of defects Ndef . Contrary to the number of defects Ndef which is a physical
parameter standing for the density of defects, the number of elements NFE is purely numerical. It determines the numerical
convergence of the simulations. In this section, we focus on the effect of NFE. The next section is dedicated to studying the
effect of Ndef .

Verifying the numerical convergence usually consists in setting the number of defects Ndef to given values and varying
the number of elements NFE. This convergence issue has already been addressed for homogeneous materials in Raghupathy
et al. (2006), but, as far as we know, has not be dealt for heterogeneous materials. Fig. 5 underlines that, for a given number
of defects Ndef , the number of fragments Nfrag is a slightly decreasing function of the number of elements, as long as the
mesh is fine enough. For instance, when Ndef ¼ 8000, the number of fragments varies from 1485 (NFE ¼ 20 000) to 1461
(NFE ¼ 35 000). Each point corresponds to one simulation carried out at the strain rate 106 s�1 for a Gaussian distribution
with mean m ¼ 345 MPa and standard deviation u ¼ 23:2 MPa (Gauss 2 in Table 1).

As a result, we have set the number of elements NFE to 30 000, which guarantees the convergence for every strain rate
lower than 106 s�1. Besides, one should note that, when the number of elements NFE and the number of defects Ndef have
close values, the numerical simulations are very unstable and generally lead to the full explosion of the ring, breaking all
the cohesive elements. In general, it is advised to set

NFE42:5Ndef

Convergence can also be verified by varying the number of elements NFE, while keeping the ratio Ndef =NFE constant.
Fig. 6 underscores that the convergence is guaranteed for the four tested ratios. The rate of convergence is lower for small
ratios because the number of defects increases slower. As explained in Section 3.2, the converged number of fragments
depends on the ratio because of defect density effect.
Fig. 5. Numerical convergence of the number of fragments Nfrag for a constant number of defects Ndef .
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Fig. 6. Numerical convergence of the number of fragments Nfrag for a constant ratio Ndef =NFE .

Fig. 7. Evolution of the number of fragments with the number of defects.

Fig. 8. Evolution of the rate of the dissipated cohesive energy and the total cohesive energy, with the number of fragments.
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3.2. Influence of the number of defects Ndef

3.2.1. Proportion of the broken defects Nbroken
def

In this section, we look at the influence of the number of defects on the fragmentation process. We set the number of
elements to 30 000, and the p.d.f. of the initial distribution to be Gaussian, with mean m ¼ 345 MPa and standard deviation
u ¼ 23:2 MPa (Gauss 2 in Table 1). We let the number of defects Ndef vary, and we count the number of fragments Nfrag . If
there are few initial defects in the ring, they will all break. However, if we consider a higher defect density, only a part of the
defects will break while the rest will get partially damaged or will remain fully intact.

Fig. 7 plots the number of fragments Nfrag versus the number of defects Ndef . As there is only one element in the
thickness, we can easily relate the number of fragments and the number of broken defects:

Nfrag ¼ Nbroken
def þ 1 ð20Þ

Fig. 8 represents the evolution of the ratio Ediss=ðEdiss þ ErecÞwith the number of defects. The total cohesive energy stands for
the sum of dissipated and recoverable energies (Ediss þ Erec). Obviously, the curves in Fig. 7 are monotonically increasing,
while they are monotonically decreasing in Fig. 8. The proportion of the dissipated cohesive energy with respect to the total
cohesive energy gets smaller as the number of defects, or number of potential dissipative links, increases. Three phases arise:
(i)
 All the defects break: NdefCNbroken
def . The total cohesive energy takes mainly the form of dissipated energy, which means

that there are only a few cohesive elements that store recoverable energy, or that only a few defects are partially
damaged. Most of them are fully broken.
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(ii)
 Defects are either broken or damaged: NdefCNbroken
def þ Ndamaged

def . The cohesive energy is divided into recoverable and
dissipated energies.
(iii)
 Defects are either broken, damaged, or intact: Ndef ¼ Nbroken
def þ Ndamaged

def þ Nintact
def . Raising Ndef does not affect

significantly Nbroken
def anymore. Fig. 8 underlines that the proportion of the recoverable and the dissipated energies is

also stable. This steady value depends on the strain rate, which appears to be a decreasing function of the strain rate.
For instance, when _e ¼ 104 s�1, it is about 0.70, while _e ¼ 106 s�1 leads to a value of 0.62. At a given strain rate, it
guarantees that raising the number of defects in the ring has no effect neither on Nbroken

def nor on Ndamaged
def .
The steady regime (iii) is a consequence of stress wave relaxation. Indeed, each damaged fracture site releases a wave
that unloads partially the encompassed regions. The fragmentation process reaches its final state when the waves have
sufficiently unloaded the body. As a result, with increasing number of defects, more sites possibly become damaged and
release stress waves. This amounts to a faster fragmentation process. Since it cannot be infinitively short, the process
characteristic time reaches a lower value, irrespective to the number of defects. Hence, in this regime, increasing the
number of defects does not alter the final stage.

In practice, working on the steady phase (iii) requires to have enough defects on the ring. The transition value between
phases (ii) and (iii) depends on the strain rate. In phase (iii), any rise in the number of initial defects will have no
consequence in the results, in terms of number of fragments and cohesive energies. In the following sections, the number of
defects is set such that we are certain to work in phase (iii), keeping in mind that the simulation duration increases with
the number of initial defects.
3.2.2. Representation in terms of average fragment size

In order to compare our results to Grady’s and Zhou et al.’s models, we have normalized the axes following Section 2.5,
considering that the material is homogeneous. This hypothesis is evidently wrong, but is a priori necessary to compare
results. The issue of normalization for heterogeneous materials is handled in Section 5. Fig. 9 represents the evolution of
the normalized average fragment size versus the normalized strain rate, for different values of Ndef .

We underline the influence of Ndef by computing the average slope of each plot, and compare it to Grady’s model. Fig. 10
illustrates that it is a monotonically decreasing function with an asymptotic limit. For Ndef ¼ 100, the slope is closed to zero
which expresses that all the defects are broken (phase (i)). As Ndef increases, the slope decreases (phase (ii)) until it reaches
the steady region for NdefZ10 000 (phase (iii)). Although this asymptotic value is slightly different from Grady’s, its minus
two-thirds theoretical prediction appears to be a very good approximation for the present one-dimensional test.
Fig. 9. Normalized representation of the average fragment size for several number of defects.

Fig. 10. Evolution of the average slope of the plots in Fig. 9 in the dynamic regime, with the number of defects.
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4. Keys to understand communication between defects

4.1. Qualitative understanding

Being able to predict how crack interactions affect fragmentation is challenging. In the present article, we take
advantage from the simplicity of the expanding ring test to develop a comprehensive measure of crack interactions. When
the ring fragments, some defects are initiated, they open and release stress waves that propagate and protect the
encompassed regions. An opening defect interacts with its neighbors through these waves. If they propagate fast, the waves
encompass a large region which may prevent numerous defects from getting damaged. Hild et al. (2003) went further by
considering that once a defect is encompassed by a wave, it is definitively protected and cannot get damaged anymore. In
this case, the communication between defects is then prevailing. We call it the extremely communicative process. On the
contrary, if they propagate slowly, less defects are encompassed, and little interactions take place: the communication is
inconsequential. This without communication approach was derived by Grady (1982, 1988) whose pioneering energy theory
does not include any crack interactions. The next paragraphs are dedicated to compare these two extreme behaviors in
order to quantify the degree of communication for any non-extreme case.

4.1.1. Characterization of the communication extreme cases

Without communication: The stress waves are propagating slowly, compared to the crack opening, and do not have time
to transmit the information. Consequently, each fracture site behaves independently from the others. The time associated
to the crack opening t0 is much smaller than the characteristic wave propagation time Lring=c. In the non-communicative

fragmentation case, the weakest flaw first is initiated; then, since they do not interact, the second weakest flaw gets
initiated, then the third. The process continues until all the fracture energy is dissipated. Only the weakest defects are
damaged (Fig. 11). Instantaneous crack opening, extremely slow wave propagation, fragility, and the absence of
communication are thus directly related. Moreover, when a weak defect breaks, it releases a small amount of energy which
is proportional to its associated sc (Eq. (19)). Dissipating totally the input strain energy will thus require the activation of
numerous flaws. The non-communicative process may consequently generate ‘‘numerous’’ fragments.

With intense communications: Defects communicate intensively through stress waves that are propagating fast in
comparison to the crack opening. The time associated to the crack opening t0 is thus much larger than the characteristic
wave propagating time Lring=c. When the stress waves propagate fast enough, they encompass defects that are associated to
any critical failure strength sc. Weakest and strong defects may either be protected or damaged, depending on whether or
not they have been encompassed by a stress release wave (Fig. 11). Slow crack opening, fast wave propagation, ductility, and
high communication rate are thus associated. Moreover, considering that a strong defect breakage releases a large amount
of energy, this intensely communicative process may result in a ‘‘small’’ number of fragments.

Effective wave speed: Hence, the same opening time t0 and the same wave speed c can lead to two opposite behaviors.
One possible way of taking this remark into account is to define an effective wave speed ceff . It measures the interactions
between defects during any fragmentation process. The following paragraphs are dedicated to define and quantify it.

4.1.2. Definition of relevant parameters

Fig. 11 illustrates an initial probability density function f init , the two extreme cases previously detailed, and an
intermediate possibly real one (the hatched curves do not represent p.d.f. because their area is smaller than one). The
hatched areas represent the proportion of the broken defects, and are related to the number of defects Ndef and the number
of fragments Nfrag . We denote these areas by a:

a ¼
Nfrag

Ndef
ð21Þ

Contrary to the weakest link which is always activated, the communication affects the average and the maximum failure
strengths of the broken defects, respectively, denoted by mbroken and sbroken

c;max . A small sbroken
c;max expresses a low communication
Fig. 11. Schematic of the broken defects, within the same initial distribution: the extremely communicative, the without communication and one possibly

real cases. Note: sc;min ¼ sinit
c;min ¼ sbroken

c;min and sinit
c;maxasbroken

c;max .
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rate, while a large one underscores that interactions are prevailing. The two extreme cases follow therefore the properties:

Without communication process :

sbroken
c;min ¼ sinit

c;min ¼ sc;min

mbrokenominit

sbroken
c;max osinit

c;max

f broken ¼

f init

a if scosbroken
c;max

0 otherwise
a ¼

R sbroken
c;max

sc;min
f init

8<
:

8>>>>>>>>><
>>>>>>>>>:

Extremely communicative process :

sbroken
c;min ¼ sinit

c;min ¼ sc;min

mbrokenCminit

sbroken
c;max Csinit

c;max

f brokenCf init

8>>>>><
>>>>>:

ð22Þ

In the following section, we will therefore focus on a, sc;min, minit and mbroken by studying the evolution of the function C
defined by

C : ½0;1�-½0;1�

a-
mbroken � sc;min

minit � sc;min
ð23Þ

The variation of the parameter a can be achieved either by changing the number of initial defects Ndef , or by changing
the strain rate _e which affects the number of fragments Nfrag . We have also studied the evolution of the maximum and the
standard deviation of the broken distribution, and have drawn similar conclusions than the ones detailed in the following.
Consequently, for reasons of conciseness, they will not be presented in the present paper.

4.2. Quantitative measure of the communication between defects

4.2.1. Studied distributions

We now vary the initial p.d.f. and compare the degree of communication they result in. For each initial p.d.f. f init , we
expect the numerical simulations to lead to a p.d.f. of the broken defects f broken with a communication rate between the two
previously described extreme cases. The results obtained for three different initial p.d.f. f init are presented here (Fig. 3):
�
 A uniform distribution with a large standard deviation uinit ¼ 140 MPa and a mean minit ¼ 345 MPa. It corresponds to the
case Uniform 1 in Table 1. The slope of the p.d.f. is zero everywhere, except at the minimum and the maximum values
sinit

c;min and sinit
c;max where it is infinite. This high slope at sinit

c;min ¼ 102:5 MPa should lead to the activation of many defects at
the same instant, so that they may not have time to communicate. This large activation rate should thus result in a low
communication rate.

�
 A Gaussian distribution with a standard deviation uinit ¼ 23:2 MPa and a mean minit ¼ 345 MPa. It corresponds to the case

Gauss 2 in Table 1. Since the slope at sinit
c;minC245 MPa is nearly zero, it tends to smooth the fragmentation process, and

the interactions should have time to establish. This low activation rate of defects should thus result in a large
communication rate.

�
 A Weibull distribution with a standard deviation uinit ¼ 23:2 MPa and a mean minit ¼ 345 MPa. It corresponds to the case

Weibull 2-1 in Table 1. This p.d.f. should lead to an intermediate behavior since the slope at sinit
c;min ¼ 300 MPa is

comprised between zero and infinity.

Besides, in order to justify more rigorously the influence of the slope of f init at sinit
c;min, we have also tested the distributions

represented in Fig. 12. Although they do not probably correspond to any real distribution of defects, these p.d.f. highlight
the qualitative trend which relates the communication behavior to the rate of insertion of cohesive elements, and to the
slope of f init at sinit

c;min. We set sinit
c;min ¼ 307 MPa, sinit

c;max ¼ 381 MPa and vary the intermediate sinit
c;intermediate such that

sinit
c;intermediate ¼ sc;min þ bðsinit

c;max � sc;minÞ where b 2 ½0;1� ð24Þ

4.2.2. Definition and determination of the communication parameter

Our main concern is the study of the monotonously increasing function C (Eq. (23)) with the aim at determining a
relevant communication parameter. Evidently, Cð0Þ ¼ 0 and Cð1Þ ¼ 1. Fig. 13 underlines that, depending on the
communication rate, several curves may link these two points. In the case of intense communication, we have shown that
sbroken

c;max Csinit
c;max, which corresponds to a Heaviside step function. Reversely, the case without communication links directly the
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Fig. 13. Schematic of the theoretical effect of the communication rate on the function C for a uniform initial distribution of defects f init .

Fig. 12. Schematic of the initial distributions of defects generated to control the influence of the slope at sc;min on the communication behavior.

Fig. 14. Influence of a ¼ Nfrag=Ndef on the broken p.d.f., for an initial Gaussian p.d.f.
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value of a with the p.d.f. f init (Eq. (22)). For instance, a uniform p.d.f. f init theoretically coincides with the bisector function
(Fig. 13).

From a mathematical point of view, monotonically decreasing p.d.f. can lead to convex curve. However, such p.d.f. seem
to have no physical meaning: a monotonically decreasing p.d.f. f init refers to a material which has more weakest links than
strong ones. Since brittle materials usually exhibit more macroscopic than microscopic defects, we have limited our study
to p.d.f. leading to concave curves, as shown in Fig. 13.

Intermediate behaviors are situated between these two extreme cases. In order to characterize the function C, several
tests are carried out for the same initial distribution f init and several values of a. In Fig. 14, the initial distribution is
Gaussian with mean minit ¼ 345 MPa and standard deviation uinit ¼ 23:2 MPa (Gauss 2 in Table 1). a ¼ 1 represents the
initial distribution f init , and the three other values (a ¼ 0:1;0:05;0:02) result from a change in the strain rate and hence, in
the number of fragments Nfrag .

Fig. 15 plots the functions C associated to the four distributions Uniform 1, Weibull 2-1, Gauss 2 (Table 1) and b ¼ 0:4 (Eq.
(24)). Each numerical test results in one point, the dotted lines are the fitting functions. Power laws appear to be adequate
approximations and lead to

8f init ; (a 2 ½0;1�; 8a 2 ½0;1�; CðaÞ ¼ aa
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Fig. 16. Dispersion in the average fragment size when the strain rate and the microstructure vary.

Fig. 15. Numerical evaluation of the communication parameter a for four distinct initial p.d.f.
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where

a ¼

0:20 for Gauss2

0:30 for b ¼ 0:4

0:65 for Weibull2�1

0:75 for Uniform1

8>>>><
>>>>:

ð25Þ

The distribution Gauss 2 leads thus to a more communicative process than the Weibull 2-1 and the Uniform 1
distributions. Since the values of the Gauss 2 weakest links vary regularly, their activation is not instantaneous, the stress
waves have time to propagate and influence the neighboring defects. The slope of the p.d.f. f init appears to be essential in
the communication process. This is confirmed by the b ¼ 0:4 distribution (Eq. (24)) which slope at sc;min is comprised
between the Gauss 2’s and the Weibull 2-1’s slopes.

In conclusion, the p.d.f. strongly influences the fragmentation process. The slope at sc;min plays a prevailing role in the
activation of weak cohesive elements and a fortiori in the communication process. It can be quantified by the
communication parameter a which low values represent highly interactive processes.

5. Scaling of the average fragment size

In this section, we focus on heterogeneous materials with a high density of defects, such that the number of defects and
the number of fragments are independent (plateau region described in Section 3.2). We look at the influence of the
distribution of defects and the strain rate on the average fragment size. Fig. 16 plots the average fragment size for different
initial distributions and for several strain rates. The scattering of the points underlines that defects play a prevailing role in
the fragmentation process.

The idea of normalizing the axes to gather all these points into a single curve arises. In the normalization proposed by
Zhou et al. for homogeneous materials, the normalization parameters were expressed in terms of sc and Gc. Now, since the
material is heterogeneous, sc and Gc are defined through their distributions instead of being a single value. The
homogeneous normalization is not adequate anymore. With the aim at understanding separately the effect of the initial
p.d.f. and the communication parameter a, we propose two normalizations. The first one only depends on the initial p.d.f.
and not on the communication, while the second accounts for both. Thus, we define new semi-empirical normalization
parameters:

_e0;new ¼
minit

Et0
ð26Þ

s0;new ¼ ceff t0 ð27Þ
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Fig. 17. Effect of the first normalization which only includes the minimum cohesive strength sc;min and the average of the initial distribution of defects

minit .

Fig. 18. Effect of the second normalization which includes sc;min , minit and the communication parameter a, and comparison to Grady’s and Zhou et al.’s

laws.
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where

ceff ¼

c
sc;min

minit

� �1=5

first normalization

c

ffiffiffiffiffiffiffiffiffiffiffiffi
2

aþ 1

r
sc;min

minit

� �1=5

second normalization

8>>>><
>>>>:

ð28Þ

minit is the average of the initial distribution of defects, sc;min is the cohesive strength associated to the weakest link, t0 is the
characteristic opening time of the cohesive elements, and a is the communication factor defined in Section 4.

Multiplying the wave speed c by a function depending on the communication factor a is necessary to include the
influence of the interactions between cracks, on the average fragment size. For a homogeneous material, the p.d.f. tends to
be a Dirac function, for which the function C is not defined anymore. If one considers that the Dirac function is a uniform
distribution with a zero standard deviation, and that communications between cracks do not have time to establish, then
a-1. It directly leads to ceff-c. When the material is heterogeneous, the communication time affects the number of
fragments. A low value of a is associated to a process during which cracks strongly interact. Stress waves propagate fast
compared to the crack opening time t0, which justifies that the effective wave speed is a decreasing function of a. Note that
the exponent 1

5 in Eq. (28) was obtained to fit best our results.
In Figs. 17 and 18, the x-axis and y-axis are, respectively, _e new ¼ _e=_e0;new and snew ¼ saverage=s0;new. The effect of the first

normalization is illustrated in Fig. 17. It brings the curves into three distinct groups: the Gaussian, the Weibull, and the
Uniform. The shape of the p.d.f. appears to affect the gathering and needs thus to be included. Therefore, we propose to use
the communication parameter a defined in Section 4, which is directly linked to this shape and to the rate of insertion of
cohesive elements. Fig. 18 compares the final normalization to Grady’s and Zhou et al.’s laws for homogeneous materials.
The log–log plot underscores that our results exhibit a characteristic exponent which is very closed to Grady’s minus two-
thirds exponent, and that we predict approximately the same non-dimensional number of fragments that Zhou et al.
obtained for homogeneous materials.

Although empirical, our second normalization successfully merges the initially scattered points into a single curve.
Following the shape of the function proposed by Zhou et al. (Section 2.5), the present curve can be fitted by

snew ¼
3

1þ 4:5ð_e newÞ
2=3

ð29Þ
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Its developed form is

s ¼ t0ceff
3

1þ 4:5
Et0

minit

� �2=3

_e2=3

where

ceff ¼ c
2

aþ 1

� �1=2 sc;min

minit

� �1=5

ð30Þ

The parameters used in the simulations are:
�
 Young’s modulus E ¼ 275 GPa.

�
 Wave speed c ¼ 104 m s�1.

�
 Reference opening time t0 ¼ 300ms
along with defect distribution dependent parameters:
�
 Average of the initial distribution of defects minit .

�
 Weakest link sc;min.

�
 Communication parameter:

a ¼

0:20 for Gaussian distribution

0:65 for Weibull distribution

0:75 for Uniform distribution

8><
>:
The resulting effective wave speeds are

ceff ¼ c

1:21 for Gauss2

1:07 for Weibull2�1

0:94 for Weibull2�2

1:08 for Weibull10

1:09 for Weibull20

0:84 for Uniform1

1:06 for Uniform20

8>>>>>>>>>>><
>>>>>>>>>>>:

The proposed scaling law matches the initially scattered points, but highlights differences to prior analytical and
numerical models. For rather defect-free materials (such as Uniform 20 in Table 1), we predict slightly more fragments than
the one-dimensional numerical model of Zhou et al. (e.g. our average fragment size is about 22% smaller). This seems to be
due to the specific implementation of the two-dimensional contact algorithm. Our computed average fragment size is also
smaller by a factor of 10 than Grady’s energy predictions which assumes that the process is energy-equilibrated. While
valid for ductile materials, this assumption appears incomplete for the presently tested brittle solids. Indeed, in his first
papers (Grady, 1982, 1988), Grady considers that the local kinetic and the elastic strain energies are converted into fracture
energy at the onset of failure. In more recent work, Grady (2008) underlines that brittle solids undergo a non-equilibrated
fragmentation. Indeed, since the onset of the fragmentation process is a nearly instantaneous, the damaged and the non-
damaged regions barely communicate; at first, damage stays local. Hence, the non-damaged parts of the structure continue
accumulating elastic strain energy, which is eventually converted into fracture energy, generating more fragments. Our
simulations confirm Grady’s (2008) second hypothesis. We have quantified that at high strain rates, most fragments result
from the conversion of the potential energy accumulated in the damaged structure. In other words, kinetic energy is being
converted into strain energy for a ‘‘long’’ period after peak strength. Since Grady’s initial energy equilibrium law does not
include this excess of strain energy, it predicts less fragments than our explicit numerical calculations.

Despite these dissimilarities, both the reference models and the present fitting curve exhibit a similar trend. Dynamic
fragmentation tends asymptotically to a power-law with exponent equal to the inverse two-thirds. Ultimately, this suggests
that the energetic criterion governs the dynamic regime. Indeed, statistical predictions would have inferred a dependence
of the power exponent to the initial distribution of defects (Hild et al., 2003), and an impulse criterion would have lead to
an inverse one-third exponent (Grady, 2006; Tuler and Butcher, 1968). Our results confirm that, even though dynamic
brittle fragmentation is not energy-equilibrated, its asymptotic behavior is energy controlled.

6. Conclusion

In this paper, we have modeled the fragmentation of a heterogeneous brittle ring submitted to radial expansion.
Numerical simulations underscore the prevailing role of defects in the fragmentation physical process and in the resulting
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fragment sizes. They also emphasize on the importance of accounting for stress release waves, which propagate away from
crack initiation sites and may prevent damage nucleation at other defects.

We have quantified the crack initiation process by considering the degree of interactions between defects. It has lead us
to define a new communication parameter which depends on the left tail of the initial probability density function of
defects, and which accounts for the rate of insertion of cohesive elements. This communication parameter, combined with
the wave speed, has been used to construct a normalization of the average fragment size as a function of strain rate. This
normalization successfully unifies the initially scattered fragment size data into a unique curve. It efficiently scales the
behavior of homogeneous and heterogeneous materials and highlights that, at high strain rates, dynamic fragmentation is
characterized by a universal asymptotic behavior. The power-law with exponent minus two-thirds, predicted by Grady’s
energy-equilibrated theory, adequately fits our results. This indicates that the asymptotic limit of dynamic fragmentation is
dominated by an energy criterion.
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