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of network inference methods

Numerous methods have been developed for inference of gene regulatory
networks from expression data, however, their strengths and weaknesses
remain poorly understood. Accurate and systematic evaluation of these 
methods is hampered by the di�culty of constructing adequate bench-
marks and the lack of tools for a di�erentiated analysis of network predic-
tions on such benchmarks.
We present the new version (3.0) of GeneNetWeaver (GNW), an open-
source tool for in silico benchmark generation and performance pro�-
ling of network inference methods. GNW can be launched directly from
any web browser thanks to the deployment technology Java Web Start.

GeneNetWeaver and the DREAM Initiative
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»   Realistic network structures are generated by extracting modules
     from known biological interaction networks [1]

»   Transcriptional regulatory networks of E. coli and S. cerevisiae are
     used for generating the DREAM in silico challenges

»   The networks extracted are then endowed with dynamics using a
     standard approach based on thermodynamics

»   Transcription / translation and

»   Both independent and synergistic interactions are modeled
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Selected publications

We are using GNW to provide an annual network inference challenge
for the DREAM project [2]. In the past three editions, a total of 91 teams
submitted about 900 network predictions to evaluate the perfor-
mance of their methods on GNW-generated benchmarks. 

»   Internal noise in the dynamics of the networks
     Chemical Langevin equation (Gillespie 2000, J Chem Phys)

»   Experimental noise (measurement error)
     Model of noise in microarrays (Tu et al. 2002, PNAS)

»   Example: comparison of noise-free and noisy data

 

0 500 1000

0.5

1

 

Time
0 500 1000

Time
0 500 1000

Time

m
RN

A
 c

on
ce

nt
ra

tio
n

Ordinary di�erential equation Langevin equation Langevin + experimental noise

      »   Dynamical models are simulated to reproduce various biological
           experiments. Simulations can be done either deterministically or
           stochastically (internal noise)

»   Types of experiments in GNW
     Wild type, knockouts, knockdowns,
     multifactorial perturbations, time series
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»   GNW allows systematic evaluation of the predictions from di�erent inference
     methods on in silico networks

»   Comprehensive reports in PDF format are automatically generated, inclu-
     ding standard metrics used to assess the accuracy of network inference methods
     such as precision-recall and receiver operating characteristic (ROC) curves

»   The reports include network motif analysis [2], where the performance of
     inference methods is pro�led on local connectivity patterns 
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