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Numerous methods have been developed for inference of gene regulatory Gs S Qo4
networks from expression data, however, their strengths and weaknesses GG9 . 5
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remain poorly understood. Accurate and systematic evaluation of these 0

methods is hampered by the difficulty of constructing adequate bench- Multifactorial perturbation (without noise)
marks and the lack of tools for a differentiated analysis of network predic- 1
tions on such benchmarks.

We present the new version (3.0) of GeneNetWeaver (GNW), an open-
source tool for in silico benchmark generation and performance profi-
ling of network inference methods. GNW can be launched directly from
any web browser thanks to the deployment technology Java Web Start.
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GeneNetWeaver and the DREAM Initiative

We are using GNW to provide an annual network inference challenge
for the DREAM project [2]. In the past three editions, a total of 91 teams » GNW allows systematic evaluation of the predictions from different inference
submitted about 900 network predictions to evaluate the perfor- methods on in silico networks

mance of their methods on GNW-generated benchmarks.

Performance profiling of network inference methods

» Comprehensive reports in PDF format are automatically generated, inclu-
ding standard metrics used to assess the accuracy of network inference methods

Generate network dynamica| mode| such as precision-recall and receiver operating characteristic (ROC) curves

» The reports include network motif analysis [2], where the performance of

» Realistic network structures are generated by extracting modules inference methods is profiled on local connectivity patterns

from known biological interaction networks [1]

Standard metrics (PR and ROC curves) Motif prediction confidence
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Transcriptional regulatory networks of E. coli and S. cerevisiae are
used for generating the DREAM in silico challenges

ARACNE CLR
AUPR = 0.375 . AUPR=0424

The networks extracted are then endowed with dynamics using a
standard approach based on thermodynamics
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Both independent and synergistic interactions are modeled
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Models of noise

» Internal noise in the dynamics of the networks
Chemical Langevin equation (Gillespie 2000, J Chem Phys)
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» Experimental noise (measurement error)
Model of noise in microarrays (Tu et al. 2002, PNAS)

» Example: comparison of noise-free and noisy data SeleCted pUblicatiOnS

Ordinary differential equation Langevin equation Langevin + experimental noise
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