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Abstract

In recent years, higher discharge burn-ups and initial fuel enrichments have led to more and more
heterogeneous core con�gurations in light water reactors (LWRs), especially at the beginning of
cycle when fresh fuel assemblies are loaded next to highly burnt ones. As this trend is expected to
continue in the future, the Paul Scherrer Institute has, in collaboration with the Swiss Association
of Nuclear Utilities, swissnuclear, launched the experimental programme LIFE@PROTEUS.

The LIFE@PROTEUS programme aims to better characterise interfaces between burnt and fresh
UO2 fuel assemblies in modern LWRs. Thereby, a novel experimental database is to be made
available for enabling the validation of neutronics calculations of strongly heterogeneous LWR
core con�gurations. During the programme, mixed fresh and highly burnt UO2 fuel lattices
will be investigated in the zero-power research reactor PROTEUS. One of the main types of
investigations will be to irradiate the fuel in PROTEUS and measure the resulting �ssion rate
distributions across the interface between fresh and burnt fuel zones.

The measurement of �ssion rates in burnt fuel re-irradiated in a zero-power reactor requires,
however, the development of new experimental techniques which are able to discriminate against
the high intrinsic activity of the fuel. The principal goal of the present research work has been
to develop such a new measurement technique.

The selected approach is based on the detection of high-energy gamma-ray lines above the
intrinsic background (i.e. above 2200 keV), which are emitted by short-lived �ssion products
freshly created in the fuel. The �ssion products 88Kr, 142La, 138Cs, 84Br, 89Rb, 95Y, 90mRb and
90Rb, with half-lives between 2.6min and 2.8 h, have been identi�ed as potential candidates.

During the present research work, the gamma-ray activity of short-lived �ssion products has,
for the �rst time, been measured and quantitatively evaluated for re-irradiated burnt UO2 fuel
samples with burn-ups of about 36 and 46GWd/t. Based on experiments carried out with these
fuel samples in a reference test lattice of the PROTEUS reactor, fresh-to-burnt-fuel �ssion rate
ratios could be determined. The 1σ uncertainties on the derived �ssion rate ratios are 1.7 to
3.4% and are mainly due to the statistical uncertainties. Calculated values of the �ssion rate
ratios, as obtained using the Monte Carlo code MCNPX, have been shown to agree with the
experimental results within these uncertainties.

In deriving fresh-to-burnt-fuel �ssion rate ratios, 142La and 138Cs have emerged as the preferred
�ssion products. Their �ssion yields for the main �ssile isotopes (235U, 239Pu and 241Pu) are
similar, which makes them relatively insensitive to the exact composition of the burnt fuel.

Finally, a measurement station for the future LIFE@PROTEUS experiments has been proposed
and evaluated, along with a detailed formulation of recommendations for optimised irradiation
and measurement strategies. The estimated accuracy for the foreseen measurements of �ssion

iii



rate ratios between fresh and highly burnt fuel pins is 1 to 2%. The contribution of nuclear-data
related uncertainties have been pointed out as possibly representing the main constraint on the
achievable accuracy in future experiments.

In brief, the present research work has established a novel experimental technique for measuring
and comparing �ssion rates in fresh and highly burnt fuels in a zero-power research reactor such
as PROTEUS. Moreover, possibilities have been presented for the further optimisation needed
for a future, routine application of the technique.

Keywords: Light water reactors (LWRs), burnt fuel, power distributions, �ssion rates, zero-
power research reactors, LIFE@PROTEUS, gamma-ray spectrometry, high-energy gamma-rays,
short-lived �ssion products.
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Zusammenfassung

Höhere Entladeabbrände und Anfangsanreicherungen in modernen Leichtwasserreaktoren (LWR)
haben in den letzten Jahren zu immer heterogeneren Kernkon�gurationen geführt, besonders zu
Beginn des Zyklus, wenn frische Brennelemente neben stark abgebrannte Brennelemente geladen
werden. Da sich in Zukunft dieser Trend voraussichtlich fortsetzen wird, hat das Paul Scherrer
Institut in Zusammenarbeit mit der Fachgruppe Kernenergie der schweizerischen Stromverbund-
unternehmen swissnuclear das Versuchsprogramm LIFE@PROTEUS lanciert.

Das Programm LIFE@PROTEUS zielt darauf ab, die Übergänge zwischen abgebrannten und
frischen UO2 Brennelementen in modernen LWRs besser zu charakterisieren. Damit soll eine
neue experimentelle Datenbasis zur Verfügung gestellt werden, die die Validierung neutronen-
physikalischer Berechnungen von stark heterogenen LWR-Kernkon�gurationen ermöglicht. Im
Rahmen des Programms werden im Nullleistungs-Forschungsreaktor PROTEUS gemischte Git-
ter aus abgebranntem und frischem UO2 Brennsto� untersucht werden. Die geplanten Unter-
suchungen umschliessen unter anderem die Bestrahlungen des Brennsto�es und die Messung der
resultierenden Spaltratenverteilungen an den Übergangen zwischen den Bereichen mit frischem
und abgebranntem Brennsto�.

Die Bestimmung von Spaltraten in abgebranntem Brennsto� in einem Nullleistungsreaktor
erfordert die Entwicklung neuer Messmethoden, die gegen die hohe spezi�sche Hintergrund-
strahlung des Brennsto�es bestehen können. Die Entwicklung einer solchen Messmethode ist
das Hauptziel der hier vorgestellten Forschungsarbeit.

Die entwickelte Messmethode beruht auf der Messung von Gammastrahlung, die durch Zerfall der
im Brennsto� gebildeten, kurzlebigen Spaltprodukte entsteht und die im hohen Energiebereich
über der spezi�schen Gamma-Hintergrundstrahlung (d.h. über 2200 keV) liegt. Hierfür haben
sich folgende Spaltprodukte, die Halbwertzeiten von 2.6min bis 2.8 h aufweisen, als potenzielle
Kandidaten herausgestellt: 88Kr, 142La, 138Cs, 84Br, 89Rb, 95Y, 90mRb und 90Rb.

Im Rahmen der vorgestellten Forschungsarbeit wurde erstmalig die Gammastrahlung von kurz-
lebigen Spaltprodukten in wiederbestrahlten abgebrannten UO2 Brennstabproben mit Abbränden
von ca. 36 und 46GWd/t gemessen und quantitativ ausgewertet. Basierend auf Experimenten
mit diesen Brennstabproben, die in einem Referenztestgitter des PROTEUS Reaktors durchge-
führt wurden, konnten Spaltratenverhältnisse zwischen frischen und abgebrannten Brennstab-
proben hergeleitet werden. Die Standardunsicherheiten der gemessenen Spaltratenverhältnisse
liegen bei 1.7 bis 3.4% und sind hauptsächlich durch die statistische Messunsicherheit bedingt.
Es wurde gezeigt, dass die mit dem Monte Carlo Code MCNPX berechneten Werte der Spalt-
ratenverhältnisse mit den experimentellen Resultaten innerhalb dieser Standardunsicherheiten
überstimmen.

Bei der Herleitung von gemessenen Spaltratenverhältnissen zwischen frischem und abgebranntem
Brennsto� haben sich 142La und 138Cs als die zu bevorzugenden Spaltprodukte herauskristallisiert.

v



Beide weisen ähnliche Spaltausbeuten für die wichtigsten spaltbaren Isotope (235U, 239Pu und
241Pu) auf, was sie relativ unemp�ndlich in Bezug auf die exakte Zusammensetzung des abge-
brannten Brennsto�s macht.

In Hinblick auf das zukünftige LIFE@PROTEUS Programm wurde ein erster Vorschlag für
eine Messstation präsentiert und evaluiert, wobei auch auf optimierte Bestrahlungs- und Mess-
strategien detailliert eingegangen wurde. Die erreichbare Genauigkeit für die vorgesehenen Mes-
sungen von Spaltratenverhältnissen zwischen frischen und hochabgebrannten Brennstäben wurde
auf 1 bis 2% geschätzt. Dabei wurde hervorgehoben, dass in zukünftigen Messungen die Un-
sicherheiten der verwendeten nuklearen Datenbibliothek der begrenzende Faktor bezüglich der
erreichbaren Messgenauigkeit darstellen könnte.

Abschliessend lässt sich sagen, dass im Rahmen der vorgestellten Forschungsarbeit eine neuartige
Messtechnik etabliert wurde, die es ermöglicht, Spaltraten in frischen und hochabgebrannten
Brennsto�en in Nullleistungs-Forschungsreaktoren wie PROTEUS zu messen und zu vergleichen.
Ausserdem wurden Möglichkeiten zur weiteren Optimierung der Messmethode vorgestellt, die
für eine zukünftige routinemässige Anwendung nötig sind.

Schlagwörter: Leichtwasserreaktoren (LWR), abgebrannter Brennsto�, Leistungsverteilungen,
Spaltraten, Nullleistungs-Forschungsreaktoren, LIFE@PROTEUS, Gammaspektrometrie, hoch-
energetische Gammastrahlen, kurzlebige Spaltprodukte.
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Chapter 1

Introduction

1.1 Status of nuclear power generation

As of January 2010, 437 nuclear power plants are in operation worldwide [IAE 09a]. Their
electrical capacity is about 370GW(e), which represents about 14% of the world's electricity
generation. During 2009, only two new reactors were connected to the grid, which is low com-
pared to previous years, and 3 reactors were shut down. Nonetheless, with 55 power plants under
construction, which is the largest number since 1992, and with 17 member states of the IAEA
actively preparing national nuclear power programmes, the interest in nuclear energy remains
high and the worldwide nuclear production will increase in the near future.

Given the increasingly strong commitments by governments, utilities and fuel vendors to build
new reactors, the IAEA recently revised its projections in nuclear power upwards by 8%. The
updated high projection foresees 810GW(e) installed global nuclear power capacity for 2030, well
more than a doubling of the current capacity [IAE 09b]. The low projection for 2030 suggests
510GW(e), which would be an increase of 38%. The expected increase can only be partly
attributed to the construction of new power plants. Upgrades in already existing power plants
are also responsible for the projected growth (see Section 1.3).

The centre of the growth in nuclear energy remains in Asia, where 36 of the 55 power plants under
construction are located. Still, currently more than 45% of the world's capacity is installed in
Europe (including the Russian Federation). At the beginning of 2010, 195 nuclear power plant
units with an installed electric net capacity of 170GW(e) were in operation in 16 European
countries1, supplying about a third of the total produced electricity [ENS 10]. Nineteen units
were under construction in six European countries, namely in Bulgaria (2), Finland (1), France
(1), the Russian Federation (9), Slovakia (2) and Ukraine (2). Several European countries have
announced serious interest to start nuclear power production, e.g. Italy, Poland and Serbia. On
the other hand, Germany continues to pursue its plans for the phase out of nuclear power.

In Switzerland, the new national policy includes renewable energies and gas �red power plants,
but nuclear and hydro remain the two main pillars for electricity generation. Currently, �ve
nuclear units are in operation at Beznau (2 units), Gösgen, Mühleberg and Leibstadt (shown in
Fig. 1.1). Together, they supply about 40% of the consumed electricity of the country with a

1These are Belgium, Bulgaria, Czech Republic, France, Germany, Hungary, the Netherlands, Romania, the
Russian Federation, Slovakia, Slovenia, Spain, Sweden, Switzerland, Ukraine and the United Kingdom.
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capacity of about 3.2 GW(e) [BFE 10]. The operation of the �ve power plants started between
1969 (Beznau I) and 1984 (Leibstadt), and is expected to end between 2019 and 2034, respectively
[WNA 10].

Figure 1.1: The Swiss nuclear power plant Leibstadt [VU 10].

In 2007, the Swiss government announced that the existing �ve nuclear power reactors should
be replaced in due course with new units. In June 2008, ATEL's subsidiary, the Nuclear Power
Plant Niederamt Ltd., applied to the Federal O�ce of Energy for the framework permit to build
a new nuclear power plant in Niederamt near Gösgen, to replace the current Gösgen reactor.
The envisaged reactor is to be an advanced 1100 to 1600 MW(e) reactor, with a hybrid cooling
system to minimise the water use. Almost in parallel, in December 2008, the Axpo Group
and BKW FMB Energie submitted framework permit applications for two new nuclear units
at Beznau and Mühleberg, as replacement of the three smaller units Mühleberg, Beznau I and
Beznau II. Two identical new reactors are envisaged. Also here, advanced 1100 to 1600MW(e)
reactors with hybrid cooling systems are planned [WNA 10].

The Federal O�ce of Energy is reported to favour construction of only two new reactors, not
three. Decisions on the framework approvals are expected for mid 2012.

1.2 Reactor types and evolution

The most prevalent reactor type used for power production is the light water reactor (LWR). In
fact, more than 85% of today's global nuclear capacity is generated by LWRs [IAE 09c]. The
two major LWR categories are pressurised water reactors (PWRs) and boiling water reactors
(BWRs).

In LWR cores, the water is used both to remove the heat produced and to slow down the �ssion
neutrons so that a self-sustained chain reaction is possible. PWRs have two water loops which
are connected via a heat exchanger (see Fig. 1.2). The primary water loop, which removes the
produced heat from the core, is kept under high pressure (∼150 bar) to avoid the boiling of the
water. In the secondary loop, steam is produced which is used to run the turbines connected
to the generator. BWRs have only one water loop and work at a lower pressure (∼70 bar) with
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STEAMLINE

Figure 1.2: PWR plant layout [WNA 10].

water in two phases. Here, the steam is produced in the reactor core and is fed directly to the
turbines.

The fuel used in LWRs is typically 235U-enriched uranium oxide pellets (UO2), stacked in Zircaloy
tubes of about 4m length and 12mm diameter. Today, 235U enrichments of 4.5wt%2 are stan-
dard. In some countries (e.g. Belgium, France, Germany, India and Switzerland), mixed oxide
fuel (MOX), i.e. a mixture of UO2 and PuO2, is also employed in order to re-use the plutonium
from discharged UO2 fuel. Depending on the reactor type (BWR/PWR), size and the design,
100 to 400 single fuel pins are combined to form fuel assemblies, and the reactor core contains
200 to 800 fuel assemblies.

Since they �rst began commercial operation in the late 1950s, LWRs have been continuously
developed and improved. Today, they have reached a very high degree of maturity and have
demonstrated a high level of safety and reliability, but still they continue to evolve. Given the
deregulation of the power generation market in the 1990s, the driving force in the development of
LWRs has been the reduction of the power generation cost in order to remain competitive with
alternative technologies. Apart from economics, improved safety performance and operational
�exibility are further incentives for the continuing evolution of LWR technology.

Most of the currently planned and being built LWRs belong to the advanced, so-called third
generation (Generation III) of nuclear power plants, which has been developed with ambitious
goals concerning safety and fuel economy. For example, the design of the European Pressurised
Reactor (EPR), which has been developed by AREVA NP, and which is being built at Olkiluoto
in Finland and at Flamanville in France, combines active and passive safety systems to increase
safety. Furthermore, the EPRs will produce electricity about 10% cheaper than current plants
and will produce at least 10% less long-lived radionuclides [EPR 10]. Another example of an
advanced PWR type is the AP-1000 by Westinghouse, which emphasises passive safety systems
even more.

2In the following, for the sake of convenience, the enrichment in 235U, expressed in weight percent (wt%), is
noted %.
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To use uranium resources more e�ectively, both AP-1000 and EPR o�er the possibility of 100%
MOX core loadings. This allows a country or a utility to deploy MOX PWRs in conjunction
with other PWRs fuelled with UO2. Recycling plutonium as LWR MOX can also be regarded
as bene�cial from the perspective of non-proliferation [NEA 03].

Besides national e�orts, the two major international programmes Generation IV International
Forum (GIF) and International Project on Innovative Reactors and Fuel Cycles (INPRO) have
been set up to promote the development of an innovative fourth generation (Generation IV) of
nuclear power systems. The main motivation for the fourth generation of reactors is to pro-
vide future nuclear energy systems with improved economic competitiveness while satisfactorily
addressing concerns related to nuclear safety, fuel resources, proliferation, waste and public per-
ception. In this context, six types of innovative advanced reactors have been selected by GIF
for collaborative research and development. These are the gas-cooled fast reactor (GFR), the
lead-cooled fast reactor (LFR), the molten salt reactor (MSR), the supercritical-water-cooled
reactor (SCWR), the sodium-cooled fast reactor (SFR) and the very-high-temperature reactor
(VHTR).

As the earliest estimated date for having Generation IV systems available for international
deployment is about the year 2030, Generation III(+) LWRs will clearly continue to dominate
the nuclear energy scene in the medium term.

1.3 Trends in LWR fuel technology

As mentioned above, the increase in nuclear power generation is partly due to power uprates
of existing plants. In parallel, the fuel usage has been improved by extending the discharge
burn-ups. With increased discharge burn-ups, less fresh fuel assemblies have to be loaded into
the core per cycle and longer cycles can be run, so that the number of discharged assemblies
is reduced. To reach the higher discharge burn-ups, the initial fuel enrichments have had to be
increased signi�cantly.

Considering the need to ensure that safety is not compromised, power up-rates and increased dis-
charge burn-ups have only been possible thanks to the accumulation of experience, improvements
of core design softwares, and advances in core layout and fuel assembly designs. Re-designed fuel
assemblies have been necessary to e�ectively compensate for the various side-e�ects associated
with increased power and increased assembly burn-ups.

In BWRs in particular, a trend to more and more heterogeneous fuel assembly layouts can be
clearly observed. Modern BWR fuel assemblies feature, for instance, an increased number of
burnable absorber rods to control the reactivity of the higher enriched fresh assemblies, addi-
tional by-pass channels to �atten the power distribution within the assemblies, part-length rods
to improve the power distribution and the shutdown margins, and both radially and axially
heterogeneous fuel enrichments.

The design of the ATRIUM 10 assembly by AREVA NP is one example of a modern BWR fuel
assembly, with 7 di�erent 235U enrichments, an asymmetric central water canal, 10 gadolinia-
poisoned fuel rods and 8 part-length rods. Another example is the SVEA-96 assembly by West-
inghouse, which is subdivided into four sub-bundles and contains 16 burnable absorber rods,
7 di�erent 235U enrichments, a diamond shaped central water canal, internal water wings and
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up to 12 part-length fuel rods. The evolution of Westinghouse BWR fuel assemblies, and the
correspondingly achieved increased coolant �ows and channel powers, are illustrated in Fig. 1.3.
The typical time between successive assembly generations is about 5 years.

- 7 - 

1  Research Activities 
Original version F. Jatuff (2005), updated by M. F. Murphy, G. Perret (2010). 

Fuel enrichments and discharge burnup levels are being steadily increased, primarily to improve 
the cycle lengths and thus reduce costs in a deregulated and thus increasingly competitive 
electricity market. Hand-in-hand with this development, measures to counteract the associated 
“side effects” of increased fuel enrichment have had to be taken. In modern BWR fuel assembly 
designs, for example, these measures include: 

• increased number of burnable absorber fuel rods to reduce reactivity swings during the cycle 

• additional by-pass channels to flatten within-assembly pin power distributions 

• part-length fuel rods to improve the power distribution and shutdown margins 

• heterogeneous (radial and axial) variations of fuel enrichments 

Examples of modern fuel assemblies are given by the ATRIUM 10 design (Framatome ANP) with 
7 different 235U enrichments, an asymmetric central water canal, 10 gadolinia-loaded fuel rods and 
8 part-length rods; or the SVEA96 designs (Westinghouse Atom) in which each element is divided 
into four sub-bundles and contains up to 16 burnable absorber fuel rods, 7 different 235U 
enrichments, a diamond-shaped central water canal, internal water wings and up to 12 part-length 
rods, possibly including some rods with increased pellet diameter. These and other BWR assembly 
designs, (for example the GE/TOSHIBA STEP-III), feature (a) 9x9 or 10x10 lattices to increase the 
coolability and thus the maximum channel power in order to allow core power up rate, (b) 
sophisticated internal water canals and heterogeneous enrichment distributions to flatten the 
assembly power distribution, and (c) relatively high initial 235U enrichments to allow high discharge 
burnup levels and to improve the cycle economy. Figure 1 shows typical BWR assembly design 
evolutions. The characteristic time between different fuel assembly generations is in the order of 
5 years.  
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Figure 1. Typical BWR assembly design evolutions: European SVEA and the Japanese STEP families.
Figure 1.3: Evolution of BWR SVEA fuel assemblies [Perret 10b].

In PWRs, the evolution of fuel assemblies has been primarily focused on the development of
cladding materials more resistant to corrosion and heat, which allow longer resident times in the
core, power uprates and increased outlet water temperatures.

As already mentioned, both the initial enrichment and the average discharge burn-up have
increased constantly in the past decades, with the primary aim of reducing the power generation
cost and thus staying competitive in the deregulated energy market. Fig. 1.4 illustrates the
evolution of average discharge burn-ups in BWRs and PWRs from 1970 to 2005. Currently,
LWR fuel assemblies are irradiated for 4 to 5 years in the reactor and discharged with an
average burn-up of typically 55 GWd/t. The average enrichment of the UO2 fuel is around
4.5%, with a maximum at 4.95% since the highest licensed enrichment is 5wt%. In comparison,
twenty years ago, the average discharge fuel burn-up was only between 30 to 35GWd/t and the
average initial fuel enrichment was around 3-3.5% [Watteau 01]. The licensed maximum average
discharge burn-up in Switzerland is currently 60GWd/t.

The trend to increase burn-ups is expected to continue if the cladding integrity can be ensured
and the fuel economics is improved. In this case, the maximum discharge burn-up may reach
up to 80 GWd/t or even higher. To reach these very high burn-ups, initial fuel enrichments of
up to 8% will be needed [NEA 06]. However, to ensure safe operation and thus to receive the
necessary approval from the safety authority, several challenges entailed by higher burn-ups have
to be mastered.
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Figure 1.4: Evolution of average discharge burn-up in LWRs (based on [IAE 07]).

1.4 High burn-up neutronics issues

Higher initial enrichments and higher discharge burn-ups lead to several challenges with respect
to reactor physics and criticality safety.

As an important out-of-pile challenge, the reactivity of fuel with enrichments above the currently
licensed 5% will have to be re-assessed for transportation in appropriate transport casks, as well
as for safe storage before loading into the reactor core. After discharge from the core, the decay
heat of the highly burnt fuel assemblies and their maximum temperature have to be known to
be within speci�ed limits for their long-term dry storage.

In-pile challenges are especially related to the beginning-of-cycle, when fresh fuel assemblies
might be loaded next to highly burnt ones. Such highly heterogeneous core con�gurations lead
to very strong neutron �ux gradients and neutron spectrum changes at the interfaces between
the fresh and spent fuel assemblies.

In general, current neutronics codes will have to be validated for these high enrichment and
burn-up conditions. Therefore, an urgent need for experimental data involving highly burnt fuel
has been recognised (e.g. [NEA 06]).

To help meet these requirements, the experimental programme Large-scale Irradiated Fuel Ex-
periments at PROTEUS (LIFE@PROTEUS) [Murphy 10] was initiated in 2006 at the Paul
Scherrer Institute (PSI), as a joint programme between PSI and the Swiss nuclear utilities
(swissnuclear). The experiments are to take place at the research reactor PROTEUS and will
involve the investigation of mixed lattices containing fresh and burnt commercial fuel pins with
burn-ups as high as 60GWd/t. The investigations related to the accuracy of code predictions will
include reactivity measurements, non-destructive characterisation of burnt fuel pins via passive
gamma-ray and neutron emission measurements, and measurements of �ssion rate distributions
in the mixed fuel lattice, especially at the interfaces between fresh and burnt fuel regions.

As regards the measurement of �ssion rates in the mixed fuel lattices, appropriate measurement
techniques for fresh fuel experiments already exist. The investigation of burnt fuel, however,
requires the development of new techniques which are able to discriminate against the intense
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intrinsic gamma-ray and neutron activity of the burnt fuel. Two approaches are being investi-
gated in PROTEUS. One involves the measurement of delayed neutrons emitted by the irradiated
fuel pins. The other, which is the topic of the present doctoral research, is based on the detection
of high-energy gamma-rays emitted by short-lived �ssion products. The aims and the outline of
the thesis are summarised in the following section.

1.5 Scope and outline of the thesis

The principal goal of the present doctoral research is the development of a measurement tech-
nique which allows the determination of �ssion rates in fresh and spent fuel pins irradiated in a
zero-power critical facility such as the PROTEUS reactor. The investigated approach is based on
the detection of high energy (>2200 keV) gamma-rays from newly produced �ssion products in
the burnt fuel. The gamma-ray technique as such is a standard technique to measure �ssions in
fresh fuel. However, gamma-ray lines used so far (e.g. 140La (1596 keV) and 135I (1260 keV)) have
energies too low to be discriminated against the intrinsic background of the burnt fuel which
reaches energies of up to 2200 keV. This intrinsic background is due to the activity of long-lived
isotopes, mainly 137Cs and 154Eu.

The measurement of gamma-ray lines in the energy region above the intrinsic background is
in itself a considerable challenge because of the decreased detection e�ciency of the commonly
used HPGe detectors at high energies and because of the short half-lives (minutes or hours) of
the �ssion products emitting gamma-rays in this energy range. Furthermore, the high intrinsic
gamma-ray background of burnt fuel requires the detector and the environment to be appro-
priately shielded during the measurements. In fact, because of these challenges, to the best of
the author's knowledge, short-lived �ssion products have not been measured previously in burnt
commercial nuclear fuel.

In the initial stage of the present research work, experiments have been conducted using fresh
fuel irradiated in the Belgian research reactor BR1 and in PROTEUS. Access to the BR1 was
facilitated thanks to the VENUS-EOLE-PROTEUS research reactors tripartite agreement be-
tween PSI, SCK·CEN (Belgium) and CEA (France). A �rst database of useful gamma-ray lines
emitted by short-lived �ssion products was thus established. In the main experimental cam-
paign, newly induced gamma-ray activity has been measured in fresh and, for the �rst time, also
in burnt fuel samples, after their irradiation in PROTEUS. Based on the previously identi�ed
gamma-ray lines, �ssion rate ratios between fresh and burnt fuel samples have been derived. A
systematic analysis has then been carried out for quantifying the experimental uncertainties and
the sensitivities of the deduced �ssion rate ratios on various parameters. The measured �ssion
rate ratios have also been compared to predictions obtained using the Monte Carlo code MC-
NPX [Pelowitz 05]. Recommendations for further improvements of the experimental procedures
have been elaborated. This has been done in the context of a preliminary design of the mea-
surement station of the future LIFE@PROTEUS programme. Finally, measurement strategies
and expected accuracies for the LIFE@PROTEUS experiments have been derived.

The thesis is organised in eight chapters.

Following this introduction, Chapter 2 covers three background topics. The �rst is the status of
knowledge for �ssion rate measurements in fresh fuel and for the measurement of freshly induced
short-lived �ssion products. The second topic consists of an overview describing the PROTEUS
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reactor, the recent LWR-PROTEUS programme and the envisaged LIFE@PROTEUS exper-
iments. The third topic is a short description of the main computer codes which have been
employed in the present research work, namely MCNPX and HELIOS [Stu 05b].

Chapter 3 summarises the preliminary experiments conducted on fresh and burnt fuel, and
presents a list of gamma-ray line candidates for the new measurement technique.

Chapter 4 describes the main measurement campaign (called WOLF-B) using fresh and burnt
fuel samples irradiated in PROTEUS. In this campaign, the feasibility of measuring the newly
induced gamma-ray activity in fresh and burnt UO2 fuel samples has been demonstrated, with
the acquisition of a suitable set of gamma-ray spectra for the derivation of �ssion rate ratios
between the two fuel types.

Chapter 5 describes the measurement analysis procedure used during the WOLF-B campaign.
The derivation of measured �ssion rate ratios based on high-energy gamma-rays and of their
uncertainties and sensitivities are fully detailed.

In Chapter 6, the experimental (E) �ssion rate ratios are compared to calculational (C) results
obtained using MCNPX. This is done mainly in the light of the uncertainties and sensitivities
of both calculational and experimental results, the latter having been detailed in the preceding
chapter.

In Chapter 7, a preliminary set-up for the LIFE@PROTEUS measurement station is presented
and evaluated, based on the experience and �ndings gained in the frame of this research. The
chapter also includes suggestions for potential improvements of the preliminary design and gives
recommendations concerning the measurement procedure to follow during LIFE@PROTEUS.

Finally, Chapter 8 provides the main conclusions to be drawn from the thesis, e�ectively sum-
marising the achievements and presenting recommendations for future development of the mea-
surement technique.
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Chapter 2

Background

This chapter provides general background information related to the present research work and
can be divided into three parts. The �rst part gives, in Section 2.1, a brief literature survey on
the status of �ssion rate measurement techniques using gamma-rays emitted by �ssion products
and on the status of the usage of gamma-rays with energies above 2200 keV. The second part is
devoted to the PROTEUS research reactor. The reactor and its past experimental programmes
are described in Section 2.2. The LWR-PROTEUS Phase II programme, which provided the
burnt fuel samples used in this research work, is described in Section 2.3. Section 2.4 describes
the future experimental programme LIFE@PROTEUS, which has been the main motivation
behind the present research work. In the third part (Section 2.5), the two reactor physics codes
MCNPX and HELIOS are brie�y described, as the two main computational tools used during
this work.

2.1 Status of �ssion rate measurement techniques and short-

lived �ssion product measurements

Using gamma-rays emitted by �ssion products is a standard technique to measure �ssion rates,
both in nuclear power reactors and in research reactors. One of the �ssion products often used
as a �ssion rate indicator is 140La. Having reached secular equilibrium with its parent 140Ba,
140La decays with an e�ective half-life of 12.8 days. The most prominent gamma-ray line has an
energy of 1596 keV.

For code validation in nuclear power reactors, 140La has been applied as a monitor of the average
thermal power distribution in the fuel, both on single fuel rods and on complete fuel assemblies.
By measuring, in-pool, the activity of 140La two to three weeks after reactor shut-down, the
average thermal power distribution in the fuel during the last weeks of reactor operation can be
derived. This technique has been applied to fuel assemblies with burn-ups ranging from 10 to
48GWd/t at the Leibstadt nuclear power plant in Switzerland [Matsson 06].

Also at research reactors, 140La is one of the standard �ssion products used to determine �ssion
rates via neutron activation, e.g. at the two reactors EOLE (CEA Cadarache, France) and
VENUS (SCK·CEN, Mol, Belgium) [Van der Meer 01]. The fuel samples (or �ssion foils) are
typically irradiated at 50W for about three hours, and the gamma-ray activity is measured after
about three days of cooling time.
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At the MINERVE reactor (CEA, Cadarache, France), the gamma-ray line at 293 keV emitted by
the shorter-lived 143Ce (T1/2 = 33h) was measured during the OSMOSE programme to determine
the �ssion rates in fresh UO2 and MOX fuel pins [Klann 04]. The gamma-ray measurements
were performed 2 to 4 days after irradiation at 240Wh.

At PROTEUS,143Ce and other isotopes with shorter half-lives have been used as �ssion rate
indicators in fresh fuel. The other �ssion products have been 135Xe (T1/2 = 9.14 h), 133I (20.8 h),
91Sr (9.63 h), 135I (6.6 h), and 92Sr (2.7 h), with gamma-ray energies ranging from 250 to 1383 keV.
As presented in [Bergmann 06], the irradiations were typically performed during 1 hour at about
30W reactor power and the measurements were carried out after several hours of cooling time.

So far, �ssion rate measurements at low-power research reactors have been limited to fresh fuel.
As indicated earlier, all of the above listed gamma-ray lines cannot be used for experiments on
spent commercial nuclear fuel in a zero-power reactor, such as those which are planned in the
LIFE@PROTEUS programme, because they would su�er serious interference from the intrinsic
gamma-ray activity of long-lived �ssion products in the spent fuel. For a burnt fuel pin that
has cooled down for several years, these are mainly 137Cs with its 662 keV gamma-ray line, 134Cs
with its 569, 605, 796, 1039, 1168, and 1365 keV gamma-ray lines, and 154Eu with its 723, 873,
996, 1005, 1275, 1494, and 1596 keV gamma-ray lines. If the cooling time is less than about
�ve years, there will be some additional contribution from 144Pr, which, in particular, emits a
gamma-ray at 2182 keV.

As the gamma-rays emanating from reasonably cooled burnt fuel are thus seen to have energies
below about 2200 keV, the measurement technique investigated in this work consists in observing
�ssion product gamma-rays with energies above this value. Gamma-ray lines above 2200 keV are
typically associated with very short-lived �ssion products with half-lives in the range of seconds,
minutes and - at the maximum - hours.

There are no published results pertaining to the use of high-energy gamma-ray lines above
2200 keV for �ssion rate measurements in fresh fuel. This is due to the decreased e�ciency
of the commonly used HPGe detector at high energies and to the short half-lives which both
would unnecessarily complicate the measurement process. As regards burnt commercial reactor
fuel, to the best of the author's knowledge, freshly induced high-energy gamma-ray activity
above 2200 keV has not been measured yet. Given the high intrinsic gamma-ray background,
appropriate detector shielding and �lter between the measured sample and detector are key
issues to measure short-lived �ssion products in burnt fuel.

Some work has been done elsewhere to determine the �ssile content and the burn-up of TRIGA
type burnt fuel by re-irradiation using an iterative approach [Wang 00] . Here again, the 140La
activity was observed, and gamma-ray lines in the 700 keV region emitted by the shorter lived
97Zr/97Nb (T1/2 = 16.6 h/1.2 h) and 132I (2.3 h) were measured. However, measurements were
carried out after re-irradiation for four hours at 100 kW, which is much higher than the highest
permissible power of 800W in PROTEUS (neutron �ux ∼4x109 cm−2s−1). Furthermore, the
relatively low intrinsic gamma-ray activity of spent TRIGA fuel is not comparable to the very
high activity of fuel rods which have been discharged from a 3000MW(th) power reactor.

In the �eld of uranium assay, use has been made of high-energy �ssion product gamma-rays
from fresh uranium samples [Firestone 05]. After neutron activation using cold and thermal
neutron beams, the intensities of gamma-ray lines above 3000 keV from the very short-lived
�ssion products 90Rb (2.6min), 90mRb (4.3min) and 95Y (10.3min) have been measured to
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accurately determine uranium depletion or analyse complex mixtures of �ssile material. The
�uxes used were rather modest, <5x107 cm−2s−1 (cf. 4x109 cm−2s−1 in PROTEUS), but, of
course, there was no background from burnt fuel long-lived �ssion products.

The use of high-energy �ssion product gamma-rays after neutron activation has also been sugges-
ted for safeguards and anti-smuggling applications [Norman 04, Slaughter 05]. To detect �ssile
material in cargo, the integrated gamma-ray activity above 3000 keV from short-lived �ssion
products has been detected, taking advantage of the high penetration of the gamma-rays at
these energies and of the fact that the detected gamma-rays at these energies are unique signa-
tures of �ssions in the cargo. A neutron generator was used and the suggested �ux was low
(<106 cm−2s−1), but, again, there was no competition from gamma-rays from burnt fuel.

In [Tobin 09, Tobin 08], the use of gamma-rays from very short-lived �ssion products after
neutron activation has been recognised as one of the possible methods to determine the plutonium
content in spent commercial fuel. However, the maturity of such a method has been rated very
low because of the lack of experimental data.

In conclusion, one can say that there is no signi�cant database, in the open literature, related
to �ssion rate measurements in burnt fuel using low-power re-irradiation. Some work, however,
has been done in reactors to detect newly induced �ssion products by re-irradiating fuel in a
relatively high neutron �ux. Furthermore, neutron activation techniques have been used for
safeguard and anti-smuggling purposes, taking advantages of the high penetration of the high-
energy gamma-rays emitted by short-lived �ssion products.

2.2 PROTEUS zero-power research reactor

The PROTEUS reactor at PSI is a zero-power research reactor, which has been in operation
since 1968. The reactor is operated at room temperature and has a maximum power of 1 kW,
corresponding to a neutron �ux of 5x109 cm−2s−1. The maximum power at which experiments
are allowed to be carried out is 800W [Fassbind 09].

The facility is constructed as a multi-zone, driven system. The reactor basically consists of a
graphite cylinder, 3.30m in height and 3.26m in diameter, containing a central cavity. The
latter is of 1.25m diameter and hosts the system under investigation. The graphite cylinder has
remained almost unchanged since the �rst operation, whereas the con�guration in the central
cavity has been modi�ed several times for the di�erent experimental programmes.

Fig. 2.1 shows a cutaway view of the reactor. The central cavity currently contains three radial
regions: the D2O driver zone, the bu�er zone and the test zone. The test zone itself is not
critical, but is fed with neutrons by the surrounding driver zones for the reactor as a whole to
reach criticality. The outer graphite block - in an annular region adjacent to the D2O driver -
contains driver rods of 5% enriched UO2, 10mm in diameter and 930mm long, clad in 12.2mm
outer-diameter aluminium tubes. This annular region is the graphite driver zone (C-driver in
Fig. 2.1). The graphite block, as a whole, also contains all the instrumentation, control and
safety systems.

The D2O driver zone contains further 5% enriched UO2 rods immersed in a heavy-water mo-
derator. This zone provides additional reactivity for the system and couples the inner part of
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the reactor with the graphite zone. The bu�er zone consists of tightly packed 22mm diameter
and about 1500mm long natural uranium metal rods in air. It serves as a �lter to minimise
the thermal neutron �ux coming from the driver regions and to harden the neutron spectrum in
the test zone. The test zone contains the system under investigation. The test zone con�gura-
tion shown in Fig. 2.1 is 45x45x430 cm3 in size and refers to the past experimental programme
LWR-PROTEUS which is described below.

This type of system does, however, have some 
limitations, for instance on the reactivity of the test zone. 

A highly reactive test zone can reduce the importance of  

3x3 array of 
BWR elements 

shutdown rod pair 

buffer

C-driver 

D2O tank test tank 

test tank drive 

Fig. 5:  A General Cut-away View of the As-Built LWR-PROTEUS Facility Showing the Central 3x3 Test Zone in the 
 Vertically Driveable Tank 

the driver regions to such an extent that the control and 
shutdown systems have too little worth, which was a 
problem in the early design phase of LWR-PROTEUS. 
The problem was overcome by changes in the D2O driver 
loading and by an increase in the number of shutdown 
rods from 8 to 16. The flux distribution for the final design 
of the system with a 0% voided test zone, is shown in Fig. 
6. Clearly identifiable is the large thermal peak in the 
driver  
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Various Radial Zones of LWR-PROTEUS

regions and the effect of the buffer in hardening the 
spectrum entering the test zone. The effectiveness of the 
buffer is further indicated in Fig. 7, in which the spectral 
index of the PROTEUS test zone (ratio of fast to thermal 
flux) is compared with that of a so-called single zone 

Figure 2.1: Cutaway view of the PROTEUS reactor as used in the LWR-PROTEUS programme.

In the past, a wide range of advanced reactor concepts were investigated at PROTEUS, e.g. the
gas-cooled fast reactor (1970s), the high-conversion light water reactor (1980s) and the modular
high temperature reactor (1990s). From 1997 to 2006, the Phases I, II and III of the LWR-
PROTEUS programme were carried out. The primary goal of the LWR-PROTEUS programme
was to provide an up-to-date database for the validation of LWR core analysis tools.

During Phase I (1997-2001) and Phase III (2003-2006), the central test zone of PROTEUS was
composed of 3x3 fresh, 4m long SVEA-96+ and SVEA-96 Optima2 BWR assemblies, respecti-
vely. They featured complex spacer and water canals, UO2 pins with di�erent 235U enrichments,
UO2-Gd2O3 gadolinium-poisoned pins, and part-length pins (in the case of the SVEA-96 Op-
tima2 assemblies). The fuel assemblies were mainly investigated via measurements of detailed
power and reaction rate distributions. The measurements were similar in the two phases, with
Phase III focusing on regions near the end of part-length pins.

Phase II of the LWR-PROTEUS programme (2001-2003) was conducted with the aim of exten-
ding experimental databases to burnt LWR fuel. It will be detailed in the next section because it
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provided the burnt fuel samples (and the hardware to handle them) used in this research work.
Furthermore, depletion calculations using the deterministic code systems CASMO-4E and HE-
LIOS had been carried out in the framework of the LWR-PROTEUS Phase II programme to
estimate the composition of the burnt samples. These compositions have currently been used
for cross-comparisons and for sensitivity studies.

During the experiments conducted in the context of this research work, the test zone of the
PROTEUS reactor was equipped with an SCWR1-like lattice. The lattice was constituted using
the same type of fuel rods as employed in the PROTEUS driver zone, i.e. 5% enriched UO2 rods
of 930mm length and 10mm diameter, clad in 12.2mm diameter aluminium tubes. The lattice
is pictured in Fig 2.2 and is based on an SCWR assembly design, containing large moderator
regions, which each replace a 4x4 fuel pin section [Yamaji 01]. The lattice pitch is 13.4mm. The
rods were held in place with the help of 5 polypropylene grid plates, plus an aluminium bottom
plate. As moderator, a 1/3 - 2/3 heavy water/light water mixture was used in order to simulate
hot pressurised feed-water.
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Figure 2.2: SCWR-like PROTEUS test lattice employed in the present research.

The lattice has been used as a test bed for the development of new techniques to measure �ssion
rates in burnt fuel, which are the delayed neutron technique [Jordan 10b] and the high-energy
gamma-ray technique, the latter being the topic of this research work. Furthermore, it has served
for the validation of calculated reaction rate distributions in SCWR-like fuel lattices [Rätz 10].

For preliminary measurements (see Section 3.4), the central lattice pin (position K11) was re-
moved to be able to insert samples for irradiation. For the main measurement campaign, the
so-called WOLF-B campaign (see Chapter 4), further pins were removed so that samples could
also be inserted into di�erent lattice positions. In total, four lattice positions and two moderator
positions were available for the WOLF-B campaign.

1supercritical-water-cooled reactor
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2.3 LWR-PROTEUS Phase II spent fuel and transport �ask

The LWR-PROTEUS Phase II programme was conducted from 2001 to 2003 and had the goal
of extending the experimental database related to reactivity and isotopic compositions to very
high burn-up levels for both UO2 and MOX fuel types. A total of 13 spent fuel samples were
experimentally investigated during the programme.

The original fuel pins containing the samples had been irradiated in Swiss nuclear power plants
between 1988 and 2001. Of the 13 samples, 11 samples (7 UO2, 4 MOX) originated from the
Gösgen PWR and had nominal burn-ups ranging from about 36 to 120GWd/t for UO2 and
from about 20 to 70GWd/t for MOX. Two UO2 samples originated from the Leibstadt BWR
and had nominal burn-ups of 40 and 70GWd/t. In order to achieve very high burn-up levels,
the fuel pins containing the samples had to be moved from their initial assemblies to other, less
irradiated assemblies, when the initial ones were discharged from the reactor. For instance, the
120GWd/t sample was made from a fuel pin which had been relocated 4 times until it reached
its �nal burn-up.

In the PSI Hot Laboratory, the 40 cm long samples had been cut from the original fuel pins
and canned with a special Zircaloy overcladding, which was welded using a certi�ed procedure
to guarantee leak tightness and freedom from contamination [Murphy 06]. The samples used in
this work are the 36, 46, 64 and 84GWd/t PWR UO2 samples.

The non-destructive experimental part of the LWR-PROTEUS Phase II programme consisted
in axial gamma-ray scanning at the PSI Hot Laboratory and in neutron source and reactivity
worth measurements in the PROTEUS reactor. A specially designed transport �ask was used
for the transfer of the fuel samples from the Hot Laboratory to the PROTEUS reactor (Fig. 2.3).
The transport �ask consisted of steel, and had a diameter of 710mm and a weight of about 6
tons. The samples were loaded into a rotary revolver at the centre of the �ask.

Placed on a special support structure, directly above the reactor inside the reactor shielding,
the �ask also served as a sample changer to lower the samples into the PROTEUS test lattice.
For this purpose, the sample changer was equipped with a control unit to rotate the revolver
inside the �ask and to move the samples (one by one) in and out of the reactor. In its original
version as used during the LWR-PROTEUS Phase II programme, the sample changer could be
used to insert one sample in the central position of the test lattice in PROTEUS. This version
of the sample changer (shown in Fig 2.3), loaded with the 36, 46, 64 and 84GWd/t UO2 samples
and two fresh UO2 samples, was used for the preliminary experiments of this research work
(see Section 3.4). After this, the sample changer was modi�ed to allow inserting samples into
di�erent lattice positions. Furthermore, a channel was manufactured into the side of the steel
body, which allowed gamma-ray measurements to be carried out inside the �ask. In this version,
the sample changer was used for the main measurement campaign of the present research work.
This was conducted on fresh UO2 samples and on three of the burnt UO2 samples (36, 46 and
64GWd/t), and is described in Chapter 4.

The destructive experimental part of the LWR-PROTEUS Phase II programme consisted of
precise radiochemical analysis of the sample composition at the PSI Hot Laboratory. Using
adjacent segments of the original fuel pins from which the samples were cut, the analysis was
carried out for more than 50 actinides and �ssion products. With this aim, the fuel was dissolved
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Figure 2.3: Combined transport �ask and sample changer used to insert samples into the PRO-
TEUS reactor.

and isotopic densities of the majority of the nuclides of interest were determined using an on-line
combination of high performance liquid chromatography (HPLC) and a multicollector inducti-
vely coupled plasma mass spectrometer (MC-ICP-MS). The chromatographic system was used
for the separation of chemical elements, and the mass spectrometry was used to determine the
isotopic composition of the elements. The results of the radiochemical analysis are summarised
in [Günther-Leopold 07].

Apart from the experimental characterisation of the samples, their isotopic compositions were
calculated at PSI using the the deterministic code systems CASMO-4E and HELIOS. Basic
information with respect to the irradiation history of the fuel samples, i.e. nodal averaged values
concerning parameters such as burn-up, power density, boron concentration, and moderator
and fuel temperatures had been provided by the fuel vendor (AREVA NP GmbH, Erlangen,
Germany) and are compiled in [Pralong Fauchère 04].

The depletion calculations of the PWR fuel samples using CASMO-4E are documented in
[Grimm 07], the comparison of calculated and measured isotopic compositions being presen-
ted in [Grimm 10]. A re�ected assembly model was used which fully took into account the
actual surroundings of the investigated fuel pin, such as other fuel rods and guide tubes. The
burn-up calculations were carried out using four time steps per cycle. In each time step, the
speci�c power, the moderator temperature, the fuel temperature and the boron concentration
were constant. The nuclear data library used for the calculation was based on ENDF/B-VI data
[McLane 96].

The depletion calculations of the PWR fuel samples using HELIOS, along with the comparison
of calculated and measured compositions, are documented in [Kröhnert 06]. A pincell model was
used, i.e. only the fuel pin and the associated moderator zone were modelled, the assumption
being that this pincell was surrounded by an in�nite number of identical pincells. The HELIOS
code and the pincell model are described in greater detail in Section 2.5.
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2.4 The LIFE@PROTEUS programme

As described in Chapter 1, higher discharge burn-ups and higher initial fuel enrichments in
modern PWRs and BWRs have led to more and more heterogeneous core con�gurations in
recent years, especially at the beginning of the reactor cycle. This has resulted from the fact
that fresh fuel assemblies are often loaded into core regions containing highly burnt assemblies,
causing large energy-dependent neutron �ux gradients to occur at the interfaces. Facing this
trend of more heterogeneous core con�gurations, a general need for appropriate experimental
data to validate the predictions of neutronics codes has been recognised.

In this context, the experimental programme LIFE@PROTEUS was launched jointly between
PSI and the Swiss nuclear utilities (swissnuclear) in 2006 [Murphy 10]. The programme aims
at better understanding the physics at the interfaces between fresh and burnt fuel assemblies
in LWRs, by providing an appropriate experimental database for code validation. With this
aim, it is planned to investigate, in the PROTEUS reactor, mixed zones of fresh and burnt fuel
containing up to 100 full-length spent fuel pins with burn-ups up to 60GWd/t.

Safely operating such lattices in the PROTEUS test zone and handling the large amount of
spent fuel pins requires a major refurbishment of the facility. From the experimental point
of view, the planned refurbishment mainly involves installing a new, large water tank and a
measurement station inside this tank. An axial cross-section of the reactor block, as it would
look after refurbishment, is shown in Fig. 2.4 (without measurement station). The water tank
has a diameter of about 1.14m and will �t inside the unchanged graphite block. It extends about
10m, from the reactor basement nearly up to the reactor's top shielding doors. The lower part of
the water tank will serve as wet storage for spent fuel pins. Above the wet storage region are the
D2O driver, bu�er and test zones. The D2O zone and the bu�er zone are only slightly changed
as compared to the current con�guration. The dimensions of the test zone remain unchanged,
with a cross-section of 45x45 cm2 and a length of 4.3m. It contains the fresh and spent fuel pins
to be investigated, and can be moved up and down to study di�erent fuel elevations.

The measurement station is planned to be attached to the top of the water tank above the
test zone, inside the reactor shielding and within the water tank. As illustrated in Fig. 2.5,
the gamma-ray detector will be installed in a large vertical tube at the top of the water tank.
The measurement station will be movable to access each pin of the test zone. The pins will be
brought into the measurement position through a stainless steel guide tube �xed next to the
large tube containing the detector.

The �rst test zone in the LIFE@PROTEUS programme is foreseen to contain nine 10x10 fuel
assemblies composed of fresh 5% enriched UO2 pins moderated by light water. The next two
phases will feature lattices with fresh fuel along with 40 and 60GWd/t burnt fuel pins, respec-
tively. An example of a test zone con�guration containing burnt fuel pins is shown in Fig. 2.6.
The majority of the fuel rods are fresh UO2 fuel (green), and the central assembly contains a
6x6 bundle of 35 spent PWR fuel rods (red), one rod position being occupied by a stainless steel
rod (orange) for structural reasons. In addition, absorber rods (blue) are inserted to control
reactivity.

The envisaged investigations are the non-invasive characterisation of burnt fuel via neutron and
gamma-ray emission measurements, the measurement of reactivity e�ects and the measurement
of power distributions at the interfaces between fresh and burnt fuel regions in the test lattice. As
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Figure 2.4: Axial cross-section of the planned PROTEUS reactor block after refurbishment.

Positioning devices for
radial and angular movements

Detector tube (filled with air)

Pin tube (filled with water)

Figure 2.5: Proposed measurement station for LIFE@PROTEUS.
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Fresh 5% enriched UO2 pin

B4C absorber rod

Structural steel pin

60GWd/t spent UO2 pin

Figure 2.6: Example of mixed fresh and burnt fuel test lattice.

discussed earlier, the latter type of investigations is particularly challenging because it requires
the development of new measurement techniques which are able to discriminate against the very
high intrinsic activity of the burnt fuel.

Calculational support for the design and planning of the LIFE@PROTEUS programme is being
provided at PSI via the use of the Monte Carlo code MCNPX and CASMO. For example,
MCNPX models of the refurbished reactor have been used to assess various safety and ope-
rational parameters. Together with the results of the measurements conducted in the context
of the present research work, the MCNPX models have been used to design the measurement
station of LIFE@PROTEUS with respect to the planned gamma-ray measurements, to predict
expected results and uncertainties, and to give recommendations to optimise the irradiation and
measurement strategies. These aspects are presented and discussed in Chapter 7 of this thesis.

2.5 Computational tools

As indicated above, the Monte Carlo code MCNPX has been instrumental in extrapolating
the currently developed experimental methodology to the future LIFE@PROTEUS con�gura-
tion. Furthermore, most of the calculations necessary for the current experimental technique
development have been carried out using MCNPX. MCNPX models were used to calculate the
as-measured �ssion rate ratios in the PROTEUS test zone, to derive correction factors for solid
angle and attenuation accounting for the measurement set-up, and to test the sensitivities of
measured and calculated �ssion rate ratios to various parameters. Additional sensitivity studies,
which were related to the isotopic composition of the burnt fuel samples, have been performed
with the deterministic code HELIOS-1.9.

This section, accordingly, provides brief descriptions of these two currently employed computa-
tional tools - of MCNPX in Subsection 2.5.1 and of HELIOS in Subsection 2.5.2.
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2.5.1 MCNPX code system

MCNPX is an extended version of the MCNP4C code, where MCNP stands forMonte Carlo N-
Particle code. The code is developed and maintained by Los Alamos National Laboratory, where
it undergoes continuous development and has periodic new releases. The version used in this
work is MCNPX-2.5.0 [McKinney 05, Pelowitz 05]. MCNPX is an internationally recognised,
general purpose radiation transport code. It includes 3D geometries and continuous-energy data
and allows transporting 34 di�erent types of particles (e.g. neutrons, electrons, gamma-rays).
The applications for the code are quite broad. Examples include the design and shielding of
accelerators and reactors, medical therapies, space radiation applications, dosimetry and nuclear
detector design.

At the PROTEUS reactor, MCNPX and its predecessor codes (e.g. MCNP4B) have been exten-
sively used to model past and current experiments such as those related to the high-conversion
light water reactor, the high temperature reactor and, more recently, the LWR-PROTEUS pro-
gramme. The PROTEUS whole-reactor model used in this work is based on a generic model of
the reactor which was speci�cally developed in 2001 [Joneja 01].

The MCNPX code has the potential for very precise geometrical modelling. The user speci�es
the geometry of the problem by combining surfaces to form cells using Boolean operators. The
surfaces can consist of �rst- and second-degree surfaces, of elliptical tori and of so-called macro-
bodies such as spheres, boxes and cylinders. Materials are de�ned by their chemical compositions
and the cross-section tables to be used. The materials are assigned to cells together with their
atomic densities or weight densities.

Tallies are used to specify the physical quantity the user wants to predict with the calculation.
The available tallies include currents and �uxes crossing a surface, �uxes at a point, average
�uxes in a cell, energy deposition in a cell and pulse-height tallies. The results of a tally can
be subdivided into bins such as energy bins, spatial bins, time bins and cosine bins. To obtain
reaction rates, tally multipliers can be applied. In this work, the cell �ux tally was mainly used,
with the appropriate tally multiplier, to estimate the �ssion rates in the fuel samples, as also the
solid angle and attenuation e�ects between the samples and the detector during measurement.

In comparison to deterministic codes, a Monte Carlo code statistically samples events, e.g. track
length, surface crossing, collisions and next event. In MCNPX, the calculations are run either in
the source calculation mode (SDEF) or in the critical calculation mode (KCODE). The KCODE
mode is used in criticality calculations and runs inactive cycles followed by active cycles, with a
given number of particle (neutron) histories per cycle. The purpose of the inactive cycles is to
converge an initially guessed source distribution to the critical source distribution in the system.
The inactive cycles are not included in the tally accumulation. The active cycles are the cycles
over which the tally information is averaged. The �ssion rates in the fuel samples irradiated in
PROTEUS were typically determined using 30 inactive cycles and 1000 active cycles of 500,000
neutrons each.

In the SDEF mode, the user de�nes a general source. The source can be assigned to cells
or surfaces and is further speci�ed with respect to its particle type, energy, direction, particle
location, etc. In the SDEF mode, the total number of source particles is de�ned in the input
�le.

In the output �le, the tally results are given with their statistical uncertainties, the latter de-
pending on the number of calculated particle histories. To increase the computational e�ciency
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i.e. to converge faster to the solution, various variance reduction techniques can be applied. Va-
riance reduction techniques are especially convenient for shielding problems, where only a small
fraction of source particles contribute to the tallied quantity. The variance reduction techniques
used in this work are mainly energy cut-o�s, source biasing and weight-window generators.

2.5.2 HELIOS code system and used pincell model

The deterministic neutron and gamma-ray transport code HELIOS [Stu 05b] is used for lattice
physics calculation of, in general, two-dimensional assembly geometries. The version currently
used is HELIOS-1.10. The main HELIOS code is framed by the two separate codes AURORA
[Stu 05a] and ZENITH [Stu 05c], which work as its input and output processors.

Within AURORA, the user de�nes the geometry of the system, the (initial) chemical compo-
sitions of the various materials, and one or more property sets which assign information such
as temperatures, densities and materials to each region of the system. Combined with de�ned
power densities, these property sets can be used in burn-up calculations to simulate a given
irradiation history, i.e. a given fuel depletion.

As regards the energy discretisation for the transport calculation, the group structure of the
cross-section library is used without any further collapsing within HELIOS. The cross-section
library of HELIOS is based on ENDF/B-VI data. Three library versions exist: a master library
with 190 neutron groups and two collapsed versions with 112 and 47 groups, the latter being
the one normally used.

One remarkable characteristic of HELIOS is its geometrical �exibility. Almost any two-dimen-
sional system can be calculated. The system is built up from so-called structures which can
be subdivided into regions. The regions within a structure specify the spatial discretisation for
solving the transport calculation. The material composition and properties are homogeneous
for each region; �uxes are assumed to be �at, cross-sections to be constant. Currents between
the regions of a structure, however, are not calculated. Instead, �rst-�ight probabilities are used
to assess in- and out-currents. In fact, HELIOS calculates interface currents only between two
neighbouring structures and at the boundary of the entire system. The angular discretisation of
the coupling currents between structures is assigned to each interface with the coupling order k.
The factor k partitions the directional half-sphere into a number of polar and azimuthal sectors.
The commonly used value for k is 4, which represents four polar sectors and one azimuthal
sector.

For the boundary condition, an albedo re�ection, a specular re�ection, or a boundary coupling
can be chosen. Boundary coupling is used to describe periodic or rotational symmetries (out-
currents through one boundary segment are in-currents of another and vice versa). In the case of
specular re�ection, particles are simply re�ected when they reach the specular boundary, keeping
the same energy they had before crossing the boundary. An albedo matrix, for its part, explicitly
de�nes the fraction of neutrons belonging to a certain energy group which is re�ected into another
energy group. Analogously to the case of current coupling between structures, a coupling order
k has to be speci�ed for the albedo matrix, in order to de�ne the spatial discretisation of the
boundary currents.

The results of a fuel depletion calculation essentially consist of �uxes, currents and material
number densities for each burn-up step along the calculational path. However, no default data
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Figure 2.7: Layout of HELIOS pincell model.

are saved automatically for the output. The user has to de�ne beforehand, in the input, all
information that has to be saved by HELIOS during the calculation. This information can be, for
example, �uxes or cross-sections condensed to a user-de�ned group structure and homogenised for
a user-de�ned area of the system. These basic data generated by HELIOS can be later retrieved
by the output processor ZENITH. The latter also allows the user to perform operations and
calculations to obtain quantities such as reaction rates directly in the output �le.

Fig. 2.7 shows the layout of the HELIOS pin cell model as used in the present research work.
Four initial materials are modelled: the fuel zone (blue), an air gap, the Zircaloy cladding tube
(green) and a square moderator zone (yellow). The size of the moderator zone corresponds to
the lattice pitch of the fuel assembly hosting the sample. The moderator area is subdivided into
8 azimuthal regions. The fuel area consists of six concentric annular regions of equal areas and
with outer radii of 0.186 cm, 0.264 cm, 0.323 cm, 0.373 cm, 0.417 cm, and 0.4565 cm.

All regions of the pin cell model are connected to a single structure. This means that interface
currents are only calculated at the boundary of the system; inside the structure, �rst-�ight
probabilities are used. For the presented pin cell model, an albedo matrix which represents
total re�ection has been de�ned as the boundary condition. The coupling order k for the albedo
re�ection is set to 4, as recommended in the user's manual. As energetic discretisation for the
transport calculation, the 47 neutron and 18 gamma-ray groups library is employed.

The irradiation histories, which have been used currently in HELIOS, di�er slightly from those
used in the CASMO-4E depletion calculation conducted during the LWR-PROTEUS Phase
II. Thus, with HELIOS, the time steps employed are not those featured in the CASMO input.
Instead, the time is calculated from the given burn-up steps and power densities. As documented
in [Kröhnert 06], the irradiation histories consisted of about 11-12 burn-up steps per cycle, each
burn-up step having a given power density. The fuel, cladding and moderator temperatures
were speci�ed as constant life-average values over all cycles. The same was done for boron
concentration in the moderator.

To account for heterogeneities in the surroundings, such as guide tubes, water-density correction
factors were used in order to adjust the pin cell calculations to the assembly conditions. The
correction factors had been derived at AREVA NP GmbH by comparing CASMO-4 pincell
and assembly calculations on the basis of the 235U concentration [Attale 07]. Clearly, despite
the use of water-density correction factors, pincell calculations are less accurate than assembly
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calculations. Nonetheless, as they are much less time-consuming and less complex, they have
formed a useful instrument for the sensitivity studies, which have currently been conducted with
respect to the fuel compositions.

As output of the burn-up calculation, the average isotopic densities of all considered �ssion
products and actinides in the fuel were saved, as well as the average isotopic densities in each of
the six radial fuel regions.
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Chapter 3

Preliminary measurements on fresh and

burnt fuel

As described in the previous chapter, the gamma-ray lines generally measured to determine
�ssion rates in fresh fuel have energies lower than 1600 keV and are emitted by �ssion products
which have half-lives of several hours or longer. Relatively low energies and long half-lives
have the advantage to enhance the detection e�ciency and to ease the measurement procedure.
Shorter-lived �ssion products have therefore not been routinely measured in low-power research
reactors. Concerning burnt fuel, to the best of the author's knowledge, gamma-ray activity from
short-lived �ssion products has not been previously investigated in a systematic manner.

For this reason, during the initial phase of the present work, several preliminary experimental
campaigns were conducted on fresh and burnt fuel samples irradiated in di�erent research re-
actors. The goals were to gain experience in the gamma-ray spectrometry of short-lived �ssion
products induced in nuclear fuel, and to establish an extensive database of gamma-ray spec-
tra. The campaigns were successful in helping to identify gamma-ray lines with energies above
2200 keV which could be used to demonstrate the feasibility of deriving �ssion rates in fresh and
burnt fuel.

Three preliminary experimental campaigns and their outcomes are presented in this chapter.
The gamma-ray spectrometry system used for all the measurements is speci�ed in Section 3.1.
Section 3.2 is devoted to the �rst experiments on fresh UO2 pellets irradiated in the BR1 reactor
at SCK·CEN in Mol, Belgium. A subsequent experimental campaign, where a fresh UO2 pin
was irradiated in PROTEUS, is described in Section 3.3, while Section 3.4 refers to the WOLF-
A measurement campaign at PROTEUS, which was the �rst campaign using not only fresh,
but also burnt UO2 fuel samples. Conclusions drawn from these preliminary experiments are
summarised in Section 3.5.

3.1 High-resolution gamma-ray spectrometry system

In the context of the present research work, gamma-ray spectrometry has been conducted with
high-purity germanium (HPGe) detectors belonging to the ORTEC GEM series [ORT 03b].
GEM detectors are high-resolution p-type semiconductor detectors with a closed-end coaxial
geometry. An outside view and a X-ray radiography of a GEM detector are shown in Fig. 3.1.
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Germanium 
crystal

Pre-amplifier 
and filter

Pop-Top detector capsule

Figure 3.1: Outside view and X-ray radiography of an ORTEC GEM HPGe detector.

Two di�erent detectors have been used for the preliminary measurements. Their dimensions and
performance speci�cations are summarised in Table 3.1. Both detectors are so-called Pop-Top
models in which the cryostat, the pre-ampli�er and the high voltage �lter are housed within a
single detector capsule having its own vacuum [ORT 03b]. The advantage is that each detector
is independent of the cooling system and can be mounted on any available cryostat and dewar
combination, or be coupled to any mechanical cooling system. The disadvantage is that a
Pop-Top detector is more susceptible to neutron damage as the detector is at a slightly higher
temperature.

Table 3.1: HPGe detectors used in the preliminary experiments.

Model GEM-15180-P GEM-18180-P

Cryostat con�guration Pop-Top Pop-Top
Crystal diameter 49.5mm 47.0mm
Crystal length 68.9mm 61.0mm
End cap to crystal 3mm 3mm
Absorbing Al layer 1.27mm 1.27mm
Absorbing inactive Ge layer 0.7mm 0.7mm
Recommended high voltage bias 4500V 3500V
Resolution∗ (FWHM) at 1.33MeV, 60Co 1.80 keV 1.80 keV
Relative e�ciency∗∗ at 1.33MeV, 60Co 15% 18%
∗The warranted values refer to a nominal count rate of 1000 cps and an ampli�er time

constant of 6µs.
∗∗The e�ciency of germanium detectors is commonly quoted relative to that of a standard

3 inch x 3 inch (7.62 cm x 7.62 cm) cylindrical NaI(Tl) scintillation crystal [Knoll 00].

For all measurements of the preliminary experimental campaigns, the germanium crystal of the
detector was cooled with liquid nitrogen stored in a dewar. The aluminium cap of each detector
was wrapped with a cadmium-and-copper shielding. This was used to stop the X-rays of energies
between 10 and 90 keV, produced by �uorescence in the lead �lter of the experimental set-ups.

The detector was connected to an EG&G ORTEC DSPEC Plus digital multi-channel analyser
[DSP ]. The DSPEC Plus is a comprehensive unit for powering the preampli�er, supplying
high-voltage to the detector, and processing the signals generated by the detector. The data
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were saved by the ORTEC software Gamma-Vision [ORT 03a] which also served to control
the various parameters of the DSPEC Plus. The rise time was selected manually for each
experimental campaign in order to optimise the peak resolution and the dead time level. For all
other ampli�er settings (e.g. pole zero, and �at top width and tilt), the automatic optimisation
of the DSPEC Plus was used. During the preliminary measurement campaigns, the rise time
was typically set to 1.6µs and the data were acquired using 16384 energy channels.

One feature of the DSPEC Plus is the so-called zero-dead-time counting mode [ORT a], in which
two spectra are recorded in parallel. In this research work, the live-time spectrum, which is
uncorrected for dead time, and the zero-dead-time spectrum (ZDT) were recorded. In the latter
spectrum, additional counts are added on a channel-by-channel basis during the acquisition to
produce an apparently dead-time free spectrum. The ZDT option is particularly suitable for
measurements of rapidly changing count rates, as was the case for the conducted experiments on
short-lived �ssion products. The reliability of the ZDT methodology has been proven for higher
dead times (reaching levels up to 90%) than for the presented experiments and for more strongly
varying count rates [Blaauw 03], ensuring its successful use in the current experiments.

During the measurement, the data were saved in a series of spectra. Typically, the �rst �ve
minutes of the acquisition were saved in 10 spectra of 30 sec (real time), the next 55min were
saved in 11 spectra of 5min, and the rest of the acquisition was saved in several spectra of 30min.
This allowed a highly �exible analysis of the spectra, which could be carried out on di�erent
sums of spectra depending on the half-lives of the �ssion products emitting the gamma-ray lines
of interest. During the preliminary measurements, the analysis of the gamma-ray spectra was
carried out using Gamma-Vision.

3.2 Experimental campaign at the BR1 reactor

Fresh UO2 fuel pellets were irradiated at the BR1 research reactor at the SCK·CEN in Mol,
Belgium, and spectra of their gamma-ray activity after irradiation were recorded. The measure-
ments were carried out in the frame of the VENUS-EOLE-PROTEUS research reactors tripartite
agreement between PSI, SCK·CEN and CEA (France).

Being the �rst campaign carried out in the context of this research work, the main goal of
the experiments was to establish a database of gamma-ray lines emitted by short-lived �ssion
products suitable to derive �ssion rates in the fuel. This experimental campaign focused on
the detection of gamma-rays above 2200 keV, emitted by very short-lived �ssion products with
half-lives of several minutes.

3.2.1 Experimental set-up and measurements

The BR1 reactor, which was made critical for the �rst time in 1956, was designed for research in
reactor physics [Wagemans 08] [BR1 ]. It is moderated with graphite, cooled by air circulation,
and fuelled with 25 tons of natural metallic uranium. A view of the reactor is shown in Fig. 3.2.
The total volume of the reactor block is about 6.7 x 6.8 x 6.8m3. The fuel is loaded into horizontal
channels (square section ∼5 x 5 cm2, lattice pitch 18 cm). The fuel channels are distributed such
as to approximately form a cylinder with a diameter of 4.7m and a length of 4.9m. The nominal
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Figure 3.2: View of the BR1 reactor.

thermal power of the BR1 is 4MW. Nowadays, it is operated on a daily basis on experimenters'
request at a maximum power of 700 kW, or at 1MW for short time periods of a few hours.

A particularity of the BR1 reactor is the high degree of thermalisation of the neutron spectrum,
thanks to the large amount of graphite moderator. Examples of performed measurements are
neutron activation analysis, neutron radiography, and calibration of neutron and gamma-ray
detectors. The main irradiation facilities of the reactor consist of about 50 irradiation channels
crossing the reactor core, both parallel and perpendicular to the fuel channels, a thermal column
above the core with a fully thermalised neutron spectrum, and a pneumatic fast rabbit system.
The fast rabbit system allows in-core irradiations in di�erent core positions and is mainly used for
neutron activation analyses. Thanks to very short transfer times between irradiation position
and measurement position, it allows the detection of nuclides with half-lives down to a few
seconds.

HPGe Detector
(with Cd-Cu shielding)

Paraffin 
filter

Lead 
filter

Pellet

Plastic capsule

Rabbit system

Lead shielding

4cm
~8.5cm

3cm

Figure 3.3: General and schematic views of the experimental set-up at the BR1 reactor.

During the described measurements, the HPGe detector (model GEM-18180-P) was placed on
the top of the reactor, where the measurement station was connected to the end of the pneumatic
rabbit system. The detection set-up with the lead shielding and the tube of the rabbit system is
shown in Fig. 3.3, together with a schematic sketch showing the sample in front of the detector.
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Two fresh UO2 fuel pellets were successively irradiated in the reactor core. The fuel pellets had
a length of ∼1 cm, a diameter of ∼0.85 cm and had two di�erent enrichments of 3.3% and 4%.
For transfer within the rabbit system, the pellets were placed inside a cylindrical plastic capsule
(diameter ∼2.5 cm, length ∼6 cm) and held in position with tissue. The fast rabbit system
enabled the activated samples to be transported after irradiation to the measurement position
within less than a second.

A series of irradiations was conducted for each pellet under various irradiation and measure-
ment conditions. The irradiation times were varied from 2 to 30min and the data acquisi-
tion was typically performed during 5 to 90min, starting directly after irradiation. The re-
actor power was varied from 1 to 10 kW. The total neutron �ux at the irradiation position is
about 2.6·108 cm−2s−1kW−1. The ratio of the thermal �ux (at 25.3meV), measured with a Au
dosimeter, and the fast �ux (threshold 2.6MeV), measured with a 58Ni dosimeter, is about 20
[Wagemans 10].

The conditions for three irradiations, which have been included in the qualitative analysis de-
scribed in Subsection 3.2.3, are given in Table 3.2. A complete list of all the irradiations carried
out is provided in [Plaschy 07b].

Table 3.2: Irradiation and measurement conditions at the BR1 reactor.

Irradiation Measurement

Index
Pellet

enrichment
Reactor
power tirr

Lead
�lter

Para�n
�lter

Distance
pellet-detector ta

A 4% 10 kW 2min 3 cm 4 cm 8.5 cm 6h
B 4% 1kW 10min 3 cm 4 cm 8.5 cm 15min
C 4% 1kW 30min 3 cm 4 cm 8.5 cm 40min

tirr: irradiation time; ta: acquisition time

3.2.2 Gamma-ray spectra and observed gamma-ray lines

As an example, the gamma-ray spectrum recorded after irradiating the 4% enriched pellet during
30min at a reactor power of 1 kW is shown in Fig. 3.4 (irradiation C in Table 3.2). The counts
were recorded during 40min starting directly after irradiation. The lower parts of the �gure
focus on the energy regions 800-2100 keV, 2100-3400 keV and 3400-4700 keV, respectively.

The �rst step of the analysis consisted in the identi�cation of the detected gamma-ray lines. The
marked peaks in Fig. 3.4 are gamma-ray lines belonging to short-lived �ssion products (except for
the 511 keV annihilation peak). The energies and the intensities of the identi�ed lines, together
with the related �ssion products and their half-lives, are listed in Table 3.3. The list emphasises
the region of interest above 2200 keV, whereas with respect to lower energies, only the most
prominent peaks are given. Note that some lines in Table 3.3 (e.g. No. 13) appear as blanks.
This has been done for the sake of consistency with respect to results presented in Section 3.3.
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Figure 3.4: Gamma-ray spectrum of a fresh UO2 pellet irradiated in the BR1 reactor (top), with
focus on the 800-2100 keV, 2100-3400 keV and 3400-4700 keV regions.
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Table 3.3: Gamma-ray lines from a fresh UO2 pellet irradiated in the BR1 reactor. The listed
lines correspond to the spectrum shown in Fig. 3.4.

No. Energy a Origin No. Energy a Origin

1 511 keV x annihilation 41 2570 keV x 89Rb (10.2%) 15.4min

2 847 keV x 134I (95.4%) 52.5min 42 2632 keV x 95Y (4.8%) 10.3min

3 884 keV x 134I (64.9%) 52.5min 43 2634 keV (x) 136I (6.7%) 1.4min

4 913 keV x 133mTe (55.3%) 55.4min 44 2640 keV x 138Cs (7.6%) 33.4min

5 915 keV x 133mTe (10.9%) 55.4min 45

6 919 keV x 94Y (56%) 18.7min 46

7 1010 keV x 138Cs (2.3%) 33.4min 47 2688 keV (x) 93Sr (2.1%) 7.4min

8 1032 keV x 89Rb (63.6%) 15.4min 48 2707 keV x 89Rb (2.1%) 15.4min

9 1072 keV (x) 134I (14.9%) 52.5min 49 2753 keV (x) 90mRb (11.5%) 4.3min

10 1079 keV (x) 142Ba (11.5%) 10.6min 50

11 1204 keV x 142Ba (14.2%) 10.6min 51

12 1248 keV x 89Rb (45.6%) 15.4min 52 2971 keV (x) 142La (3.2%) 1.5 h

13 53

14 1383 keV x 92Sr (93%) 2.7 h 54

15 1428 keV (x) 55

16 1435 keV x 138Cs (76.3%) 33.4min 56

17 1525 keV x 57 3065 keV x

18 58 3249 keV (x) 95Y (0.9%) 10.3min

19 1768 keV x 138Xe (16.7%) 14.1min 59

20 1807 keV (x) 60 3317 keV x 90mRb (14.3%) 4.3min

21 61

22 62 3383 keV (x) 90Rb (6.7%) 2.6min

23 2004 keV x 63

24 2016 keV x 64 3416 keV (x)

25 2032 keV (x) 65 3451 keV (x) 95Y (0.7%) 10.3min

26 2175 keV x 95Y (7.0%) 10.3min 66

27 67 3509 keV (x) 89Rb (1.3%) 15.4min

28 2195 keV (x) 88Kr (13.2%) 2.8 h 68 3534 keV x 90Rb (4.0%) 2.6min

29 2196 keV x 89Rb (14.6%) 15.4min 69 3576 keV x 95Y (6.4%) 10.3min

30 2218 keV x 138Cs (15.2%) 33.4min 70 3600 keV (x)

31 2232 keV (x) 88Kr (3.4%) 2.8 h 71

32 2252 keV (x) 138Xe (2.3%) 14.1min 72 3625 keV (x)

33 2295 keV (x) 95Y (1.1%) 10.3min 73

34 2392 keV x 88Kr (35%) 2.8 h 74

35 2398 keV x 142La (13.3%) 1.5 h 75 3853 keV (x)

36 2484 keV (x) 84Br (6.7%) 31.8min 76 3928 keV x 84Br (6.8%) 31.8min

37 2500 keV (x) 77 4135 keV x 90Rb (6.7%) 2.6min

38 2542 keV x 142La (10%) 1.5 h 78 4365 keV x 90Rb (8.0%) 2.6min

39 2544 keV x 93Sr (3%) 7.4min

40 2555 keV x 87Kr (9.2%) 1.3 h

a: peaks observed in spectrum in Fig. 3.4, tirr = 30min at 1 kW, tcool = 0 , ta = 40min

x: signal-to-background ratio > 0.4 or net-count area > 10000 counts

(x): signal-to-background ratio < 0.4 and net-count area < 10000 counts
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3.2.3 Results of the experimental campaign at BR1

From the identi�ed gamma-ray lines listed in the previous subsection, potential candidates for the
measurement of �ssion rates in fresh and burnt fuel were selected. The selection of appropriate
gamma-ray lines was guided by several criteria. First of all, keeping in mind the envisaged
investigation on burnt fuel, the gamma-ray energy had to be above 2200 keV. Appropriate peaks
should ideally show good counting statistics due to high gamma-ray intensities and equally high
cumulative �ssion yields of the �ssion product both for 235U and 239Pu �ssions. With regard to
the determination of net-count areas, the gamma-ray lines should preferably not interfere with
other lines.

The �ssion products 90Rb (T1/2=2.6min), 90mRb (4.3min), 95Y (10.3min), 89Rb (15.4min),
84Br (31.8min), 138Cs (33.4min), 142La (1.5 h) and 88Kr (2.8 h) have several gamma-ray lines
ful�lling (at least partly) these criteria.

Table 3.4: Measured net counts and signal-to-background ratios (S/Bg) of high-energy peaks
from a fresh UO2 pellet irradiated in the BR1 reactor.

Energy
Fission
product Net counts∗ S/Bg∗

1435 keV 138Cs 149132 (1.0%) 0.79

2218 keV 138Cs 25208 (1.3%) 1.21

2392 keV 88Kr 10951 (1.8%) 0.75

2398 keV 142La 9803 (2.1%) 0.60

2542 keV 142La 8880 (2.7%) 0.76

2570 keV 89Rb 11226 (2.2%) 0.92

2632 keV 95Y 5829 (2.6%) 0.66

2640 keV 138Cs 11930 (1.4%) 1.45

2753 keV 90mRb 3636 (6.6%) 0.39

2971 keV 142La 1634 (11.8%) 0.23

3317 keV 90Rb 2884 (6.2%) 0.56

3383 keV 90Rb 916 (8.6%) 0.36

3576 keV 95Y 7432 (1.9%) 2.81

3928 keV 84Br 1540 (7.3%) 0.92

4135 keV 90Rb 1384 (8.5%) 0.93

4365 keV 90Rb 1283 (5.7%) 1.69
∗The quoted values refer to the gamma-ray spectrum

shown in Fig. 3.4.

Based on the spectrum shown in Fig. 3.4, the observed net-count areas, their statistical uncer-
tainties and the signal-to-background ratios of the selected gamma-ray lines above 2200 keV are
listed in Table 3.4. The 1435 keV line from 138Cs is given as well because, due to its high net-count
area and low counting uncertainty, it was included in the analysis for cross-comparison purposes
with the high-energy lines. The quoted net-count areas and signal-to-background ratios have
been obtained with the region-of-interest (ROI) method within Gamma-Vision [ORT 03a].
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In most of the spectra, the gamma-ray lines given in Table 3.4 were clearly apparent. Still, not
all of them could be included in a suitable quantitative analysis due to too small net-count
areas. In addition, the peak �tting, which was carried out with the Gamma-Vision software,
was complicated because of the complex spectra with slightly non-Gaussian peak shapes and
because of the lack of appropriate calibration spectra for covering energies up to 4000 keV. In
particular, the deconvolution of the two peaks 88Kr (2392 keV) and 142La (2398 keV) was found
to be very di�cult using Gamma-Vision.

Finally, the quantitative analysis was carried out based on the �ve gamma-ray lines 138Cs
(2218 keV), 89Rb (2570 keV), 138Cs (2640 keV), 95Y (2632 keV) and - as reference - 138Cs (1435 keV).
Based on these peaks, relative �ssion rates comparing the three irradiations listed in Table 3.2
were derived, and thus the feasibility of determining relative �ssion rates using the short-lived
�ssion product activity could be demonstrated. The uncertainties (1σ) of the derived �ssion rate
ratios were about 2% to up to 6% and mainly consisted of statistical uncertainties of the net-
count areas. Taking the result obtained based on the 138Cs (1435 keV) peak as reference (which
had a 1σ uncertainty of 0.7 to 2%), the derived �ssion rate ratios agreed within 1 standard
deviation [Kröhnert 08].

In general, the low count rates in the high-energy region were found to be a challenge for
future experiments. Furthermore, it was noted that the Gamma-Vision software might not be
appropriate for the analysis of complex spectra with non-Gaussian peak shapes.

3.3 Measurements on fresh fuel at PROTEUS

Following irradiations of fresh fuel pellets in the BR1 reactor, a fresh fuel pin was irradiated
in the PROTEUS reactor. During this campaign, the measurements of the induced gamma-ray
activities were conducted on top of the reactor shielding. This measurement position had the
advantage to be well shielded against the gamma-ray and neutron background from the core,
because of the ∼80 cm thick concrete doors of the reactor.

The main goals of this campaign were to reproduce the gamma-ray lines previously identi�ed
in the frame of the BR1 campaign, to extend the database from the BR1 campaign to �ssion
products with longer half-lives (30min to several hours), and to better estimate the power levels,
the irradiation and measurement times, as also the �lter needed, to obtain su�cient counts in
the identi�ed gamma-ray lines for the future experiments on burnt fuel.

3.3.1 Experimental set-up and measurements

The fresh fuel pin was irradiated in the central position of the current test lattice of the PRO-
TEUS reactor. To allow the insertion of this experimental fuel pin, the central lattice pin had
been removed, as illustrated in Fig. 3.5.
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Figure 3.5: PROTEUS test lattice and central irradiation position.

After irradiation, the pin was withdrawn manually from the core with the help of a wire attached
to its top. The pin was taken out of the reactor through a 20mm diameter penetration in the
reactor top shielding and was brought into the measurement position in front of the detector.
As shown in Fig. 3.6, the HPGe detector (model GEM-15180-P, 4500V) was mounted on top
of the reactor shielding. The distance between the detector and the centre of the sample was
about 18 cm. The �lter between the detector and the pin consisted of 10 cm of lead. This
amount of lead was chosen as a good compromise to shield against the low-energy gamma-rays
without attenuating the high-energy gamma-rays too much. With linear attenuation coe�cients
µ of 1.832 cm−1 for 500 keV photons and 0.481 cm−1 for 3000 keV photons [Hubbel 95], it can be
estimated that 10 cm of lead reduce the intensity of a 500 keV photon �ux by more than 99.9%,
whereas the intensity of a 3000 keV photon �ux is reduced by 99.2%.

HPGe detector
(with Cd-Cu
shielding)

Reactor shielding
(concrete doors)

Fuel pin

18cm

10cm

24
cm

~1
1.

5c
m

Lead filter Lead shielding

Figure 3.6: General and schematic views of the experimental set-up on top of the PROTEUS
reactor.

The fresh fuel pin used was an experimental UO2 pin with an enrichment of 4.74%. It had an
active length of about 90 cm and a fuel pellet diameter of 8.19mm. In order to minimise the
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gamma-ray dose received by the operator while handling the pin, only the upper 24 cm of the
irradiated pin were drawn out of the reactor doors. To account for the fact that only the upper
part of the pin was measured, the vertical position of the pin in the core during irradiation was
chosen in a way that the maximum induced �ssion rate was to be expected in the upper part of
the pin.

In Table 3.5, the conditions for the main irradiations carried out in the context of the described
campaign are summarised. The irradiations were performed at reactor powers varying from 120
to 400W. The irradiation times were typically between 10 and 45min. After irradiation, the
gamma-ray activity of the pin was measured for up to about 12 h, starting 5min after the reactor
shutdown. The time needed to withdraw the pin from the core to the measurement position
was about 1min. However, the pin was not withdrawn from the core earlier than 4min after
shutdown, in order to reduce the radiation dose received by the operator handling the pin.

Table 3.5: Irradiation and measurement conditions for measurements on top of the PROTEUS
reactor.

Irradiation Measurement

Index
Pin

enrichment
Reactor
power tirr

Lead
�lter

Distance
pin-detector ta dTmax

A 4.74% 400W 10min 10 cm 18 cm ∼1.5 h 26%
B 4.74% 200W 30min 10 cm 18 cm ∼12 h 23%
C 4.74% 120W 45min 10 cm 18 cm ∼12 h 17%
D 4.74% 160W 45min 10 cm 18 cm ∼12 h 22%

tirr: irradiation time; ta: acquisition time; dTmax: maximum system dead time at the beginning

of data acquisition (5min after irradiation)

3.3.2 Gamma-ray spectra and observed gamma-ray lines

An example of the acquired gamma-ray spectra is shown in Fig. 3.7. This spectrum was obtained
after irradiating the pin for 45min at a reactor power of 160W (irradiation D in Table 3.5). The
counts were acquired for about 6.5 h starting 5 minutes after shutdown. The peaks marked are
listed in Table 3.6. To ease the comparison, the peaks marked in the spectrum obtained at BR1
(Fig. 3.4) are also included in the table. Several gamma-ray lines from 142La (T1/2 = 1.5 h),
which were barely visible in the spectra obtained at the BR1 reactor, can be clearly seen due to
the longer irradiation and measurement times.
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Figure 3.7: Gamma-ray spectrum of a fresh UO2 pin irradiated in the PROTEUS reactor (top),
with focus on the 800-2100 keV, 2100-3400 keV and 3400-4700 keV regions.
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Table 3.6: Gamma-ray lines from fresh UO2 fuel irradiated in the BR1 and PROTEUS reactors.
The listed lines correspond to the spectra shown in Fig. 3.4 and Fig. 3.7.

No. Energy a b Origin No. Energy a b Origin

1 511 keV x x annihilation 41 2570 keV x x 89Rb (10.2%) 15.4min

2 847 keV x x 134I (95.4%) 52.5min 42 2632 keV x (x) 95Y (4.8%) 10.3min

3 884 keV x x 134I (64.9%) 52.5min 43 2634 keV (x) 136I (6.7%) 1.4min

4 913 keV x 133mTe (55.3%) 55.4min 44 2640 keV x x 138Cs (7.6%) 33.4min

5 915 keV x 133mTe (10.9%) 55.4min 45 2666 keV (x) 142La (1.8%) 1.5 h

6 919 keV x 94Y (56%) 18.7min 46 2678 keV (x) 88Rb (2.1%) 18.3min

7 1010 keV x x 138Cs (2.3%) 33.4min 47 2688 keV (x) (x) 93Sr (2.1%) 7.4min

8 1032 keV x (x) 89Rb (63.6%) 15.4min 48 2707 keV x (x) 89Rb (2.1%) 15.4min

9 1072 keV (x) x 134I (14.9%) 52.5min 49 2753 keV (x) 90mRb (11.5%) 4.3min

10 1079 keV (x) 142Ba (11.5%) 10.6min 50 2801 keV (x) 142La (0.8%) 1.5 h

11 1204 keV x 142Ba (14.2%) 10.6min 51 2818 keV (x) 142La (0.8%) 1.5 h

12 1248 keV x x 89Rb (45.6%) 15.4min 52 2971 keV (x) x 142La (3.2%) 1.5 h

13 1260 keV x 135I (28.7%) 6.6 h 53 3000 keV (x)

14 1383 keV x x 92Sr (93%) 2.7 h 54 3012 keV (x)

15 1428 keV (x) 55 3034 keV (x)

16 1435 keV x x 138Cs (76.3%) 33.4min 56 3045 keV (x) 84Br (2.5%) 31.8min

17 1525 keV x (x) 57 3065 keV x

18 1679 keV (x) 58 3249 keV (x) 95Y (0.9%) 10.3min

19 1768 keV x x 138Xe (16.7%) 14.1min 59 3313 keV x 142La (1.0%) 1.5 h

20 1807 keV (x) x 60 3317 keV x (x) 90mRb (14.3%) 4.3min

21 1836 keV x 61 3366 keV (x) 84Br (2.9%) 31.8min

22 1900 keV x 62 3383 keV x 90Rb (6.7%) 2.6min

23 2004 keV x x 63 3401 keV (x)

24 2016 keV x x 64 3416 keV (x) (x)

25 2032 keV (x) x 65 3451 keV (x) 95Y (0.7%) 10.3min

26 2175 keV x (x) 95Y (7.0%) 10.3min 66

27 2187 keV (x) 67 3509 keV (x) (x) 89Rb (1.3%) 15.4min

28 2195 keV (x) x 88Kr (13.2%) 2.8 h 68 3534 keV x 90Rb (4.0%) 2.6min

29 2196 keV x x 89Rb (14.6%) 15.4min 69 3576 keV x x 95Y (6.4%) 10.3min

30 2218 keV x x 138Cs (15.2%) 33.4min 70 3600 keV (x)

31 2232 keV (x) (x) 88Kr (3.4%) 2.8 h 71 3612 keV x 142La (0.9%) 1.5 h

32 2252 keV (x) (x) 138Xe (2.3%) 14.1min 72 3625 keV (x)

33 2295 keV (x) 95Y (1.1%) 10.3min 73 3632 keV x 142La (1.0%) 1.5 h

34 2392 keV x x 88Kr (35%) 2.8 h 74 3719 keV (x)

35 2398 keV x x 142La (13.3%) 1.5 h 75 3853 keV (x) (x)

36 2484 keV (x) (x) 84Br (6.7%) 31.8min 76 3928 keV x x 84Br (6.8%) 31.8min

37 2500 keV (x) 77 4135 keV x (x) 90Rb (6.7%) 2.6min

38 2542 keV x x 142La (10%) 1.5 h 78 4365 keV x (x) 90Rb (8.0%) 2.6min

39 2544 keV x 93Sr (3%) 7.4min

40 2555 keV x x 87Kr (9.2%) 1.3 h

a: peaks observed in spectrum in Fig. 3.4, tirr = 30min at 1 kW, tcool = 0 , ta = 40min

b: peaks observed in spectrum in Fig. 3.7, tirr = 45min at 1 kW, tcool = 5min , ta = 6.5 h

x: signal-to-background ratio > 0.4 or net-count area > 10000 counts

(x): signal-to-background ratio < 0.4 and net-count area < 10000 counts
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3.3.3 Results of measurements on top of PROTEUS

As the gamma-ray measurements were not started earlier than 5min after shut-down, the very
short-lived �ssion products (e.g. 90Rb and 90mRb) which had been detected at the BR1 were
hardly visible in this campaign at PROTEUS. All other gamma-ray lines from short-lived �ssion
products, previously detected at the BR1 reactor, could be identi�ed.

Thanks to longer irradiation and measurement times, better counting statistics were achieved for
the relatively long-lived �ssion products such as 138Cs and 142La. The net-count areas and signal-
to-background ratios, as obtained with Gamma-Vision, of the most promising peaks shown in
Fig. 3.7 are listed in Table 3.7. It should be mentioned that the 10 cm lead �lter between the fuel
pin and the detector was found to be appropriate for limiting the maximum system dead time
at the beginning of data acquisition to below 30%.

Table 3.7: Measured net counts and signal-to-background ratios (S/Bg) of high-energy peaks
from a fresh UO2 pin measured on top of PROTEUS.

Energy
Fission
product Net counts∗ S/Bg∗

2218 keV 138Cs 60065 (1.3%) 0.77

2392 keV 88Kr 72197 (0.7%) 0.85

2398 keV 142La 45895 (1.1%) 0.44

2542 keV 142La 31969 (1.4%) 1.03

2570 keV 89Rb 14193 (2.4%) 0.67

2632 keV 95Y 7867 (4.0%) 0.17

2640 keV 138Cs 33752 (0.9%) 1.30

2971 keV 142La 10946 (2.5%) 1.00

3313 keV 142La 5588 (5.2%) 0.64

3576 keV 95Y 8489 (2.3%) 2.57

3612 keV 142La 1701 (6.9%) 0.77

3632 keV 142La 2170 (6.1%) 0.78

3928 keV 84Br 3110 (3.6%) 2.36
∗The quoted values refer to the gamma-ray spectrum

shown in Fig. 3.7.

3.4 WOLF-A experimental campaign on fresh and burnt

fuel

In the previous sections, the �rst experiments with fresh fuel have been described. During these
experiments, carried out at the BR1 and PROTEUS reactors, the gamma-ray measurements
themselves could be conducted outside of the reactor blocks, where the detectors could be easily
shielded in an adequate manner.
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The �nal measurements on burnt fuel samples have been conducted during the so-called WOLF-
B campaign (WOLF = Wechsel�asche Optimisation for LIFE@PROTEUS), described in the
following chapter. The goal set for the WOLF-B campaign has been to use the combined
transport and sample changer �ask described in Section 2.3 for introducing the burnt fuel samples
into the reactor, and to measure their gamma-ray activity after irradiation. For this purpose, the
sample changer �ask needed to be located on top of the reactor inside the reactor shielding, and
consequently, the measurements had to take place within the reactor shielding. The WOLF-
A campaign, described in this section, was performed to carry out a �rst assessment of this
environment for measuring freshly induced, �ssion product gamma-ray activity in burnt fuel.
During WOLF-A, both fresh and burnt fuel samples were irradiated in PROTEUS, and the
gamma-ray measurements were conducted within the reactor shielding.

3.4.1 Experimental set-up and measurements

During the WOLF-A campaign, the sample changer was loaded with two fresh and four burnt
fuel samples with nominal burn-ups of 0 (fresh), 36, 46, 64 and 84GWd/t. The samples had an
active length of about 40 cm and a fuel diameter of about 0.91 cm. The characteristics of the
samples will be described in further detail in Chapter 4. At this point, only the experimental
set-up and the main outcome of the campaign are reported.

The sample changer was positioned on a special support structure directly above the reactor,
inside the reactor shielding. The support structure and the sample changer in position are shown
in Fig. 3.8. The fuel samples inside the sample changer were arranged in a revolver. By rotating
this revolver, single samples could be inserted into the central position of the test lattice via a
guiding tube, the test lattice being the same as described in the previous section (see Fig. 3.5).

Support structure for 
sample changer

Guiding tubeLead shielding of 
detector

Sample changer

Figure 3.8: Views of the experimental set-up during WOLF-A, without (left) and with (right)
sample changer in position.

As illustrated in Fig. 3.9, the HPGe detector (model GEM-15180-P, 4500V) was mounted be-
tween the two rings of the support structure below the sample changer. During the WOLF-A
campaign, various detector positions and �lter conditions have been tested. The measurements
presented in this thesis refer to the set-up shown in Fig. 3.9, where the distance between detector
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and the centre of the guiding tube was approximately 52 cm. The �lter in front of the detec-
tor consisted of 5 cm of para�n and of 11 cm of lead; 6 cm of the lead contained a horizontal
collimator slit with a width of 1.6 cm. The detector was surrounded by 5 cm wide lead bricks
to mitigate the gamma-ray background from the reactor core, while polyethylene was placed
around and below the detector to moderate the fast neutrons from the reactor core.

Graphite zone 
of reactor

Sample changer

Cryostat

Paraffin filter

52cm

Support rings

Lead filter

Detector

Sample

Graphite zone 
of reactor

Figure 3.9: Example of detector position and �lter used during the WOLF-A campaign.

The set of WOLF-A experiments described here in greater detail is given in Table 3.8. The �rst
four measurements (A -D) are background measurements of the intrinsic gamma-ray activities of
the burnt fuel samples without irradiation. To this end, the burnt fuel samples were moved one
at a time into the measurement position below the sample changer, while the other burnt samples
remained inside the sample changer. In the measurement position, the sample was placed such
that only about 21 cm of the fuel were protruding out from the shielding steel body of the sample
changer (see Fig. 3.9). This measurement position was chosen to achieve acceptable dead time
levels of the detection system. The average dead times due to the intrinsic background activities
of the 36, 46, 64 and 84GWd/t burnt samples in this measurement position were 49%, 63%,
73% and 80%, respectively1.

Using the same measurement position, measurements were conducted on both fresh and burnt
fuel samples after irradiation in PROTEUS (measurements E and F in Table 3.8). For these
measurements, the samples were irradiated in the test lattice for 5min at a reactor power of
100W.

In addition, to measure the background due to the reactor, the same irradiation was carried out
leaving all samples in the sample changer and measuring gamma-ray spectra during the same
time after reactor shutdown (measurement G in Table 3.8).

One essential aspect to be considered during the WOLF-A campaign was the high fast neutron
�ux reaching the detector crystal during the irradiations. The resulting damage of the germanium
crystal led to a continuous worsening of the detector resolution, which limited the number of
possible irradiations and the reactor power. In fact, after having reached a very poor resolution
of ∼5.9 keV at 1293 keV2, the detector had to be replaced by another one (model GEM-18180-P,

1The very high dead times of more than 70% were accepted in this case since the measurements were reference
measurements of the burnt fuel samples with constant count rates.

2The gamma-line at 1293 keV is emitted by 116mIn, which is an activation product in the detector mount (T1/2

= 54min). The resolution was determined for a total input count rate of 5200 cps and a rise time of 1.6µs.
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3500V) in the middle of the campaign. The damaged detector was later repaired via annealing
and was used again for measurements in the following experimental campaigns.

Several sets of measurements similar to that shown in Table 3.8 were conducted to test di�erent
distances between sample and detector (41 cm to 52 cm) and di�erent �lter con�gurations (5 to
11 cm of lead, with and without collimator). In addition, di�erent shielding strategies to protect
the detector from the neutron background from the reactor core were tested. For example,
additional polyethylene blocks were placed below and next to the detector. For all measurement
sets, however, the results were very similar.

Table 3.8: Irradiation and measurement conditions for a set of WOLF-A experiments.

Irradiation Measurement

Index
Sample
burn-up

Reactor
power tirr

Distance
sample-detector Lead �lter? ta dTmax

A 36GWd/t - - 52 cm 11 cm 30min 49%
B 46GWd/t - - 52 cm 11 cm 30min 63%
C 64GWd/t - - 52 cm 11 cm 30min 73%
D 84GWd/t - - 52 cm 11 cm 30min 80%

E fresh 100W 5min 52 cm 11 cm ∼5 h 37%
F 36GWd/t 100W 5min 52 cm 11 cm ∼5 h 70%
G - 100W 5min - - ∼5 h 37%

tirr: irradiation time; ta: acquisition time; dTmax: maximum dead time (for E, F, and G: 5min

after irradiation)
?6 cm of the lead �lter contained a collimator slit (1.6×6 cm2)

3.4.2 Gamma-ray spectra and observed gamma-ray lines

Reference spectra of the intrinsic gamma-ray activities of the four burnt fuel samples were
recorded, and these are compared in Fig. 3.10 in the form of dead-time corrected (ZDT) spectra.
The most prominent peaks from long-lived �ssion products are marked.

In Fig. 3.11, the gamma-ray spectrum after irradiating the 36GWd/t burnt sample (5min at
100W) is compared with that due to the reactor background after irradiation. The burnt fuel
spectrum illustrates the possibility to detect, even in the presence of the intrinsic activity of the
burnt fuel sample, gamma-ray peaks from short-lived �ssion products above 2200 keV. However,
the comparison with the reactor background spectrum clearly shows that the major part of the
detected activity in the high-energy region resulted from �ssion products freshly produced in
the reactor fuel, rather than in the measured burnt fuel sample.
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Figure 3.10: Spectra of intrinsic gamma-ray activities of burnt fuel samples with nominal burn-
ups of 36GWd/t (blue), 46GWd/t (green), 64GWd/t (red), and 84GWd/t (orange).
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Figure 3.11: Comparison between gamma-ray spectrum of irradiated 36GWd/t sample (red)
and background spectrum after irradiation without sample (black).

3.5 Conclusions from preliminary experiments

The goals of the described preliminary experimental campaigns were to build up an extensive
database of gamma-ray lines emitted by short-lived �ssion products in nuclear fuel and to identify
suitable gamma-ray lines, which could be used for the new measurement technique to determine
�ssion rates in fresh and burnt fuel.

An experimental campaign on irradiated fresh UO2 fuel pellets was conducted at the BR1 reactor
focusing on very short-lived �ssion products. The irradiation and measurement times were
typically between 2-30min and 5-90min, respectively. In the analysis of the measurements,
138Cs (T1/2 = 33.4min), 89Rb (15.4min) and 95Y (10.3min) were identi�ed as promising �ssion
products from which relative �ssion rates could be derived. 142La, with a half-life of 1.5 h,
was identi�ed as an additional candidate for future experiments, but could not be included in
the quantitative analysis because of poor statistics in most of its gamma-ray lines. 88Kr has a
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very prominent gamma-ray line at 2392 keV which overlaps partly the 142La (2398 keV) peak.
Although both peaks had su�cient counts, neither of them was included in the analysis because of
peak �tting di�culties within the Gamma-Vision software, which was used for the determination
of the peak net-count areas. Finally, the feasibility to derive experimental �ssion rate ratios
was demonstrated on the basis of the four high-energy gamma-ray lines 138Cs (2218 keV), 89Rb
(2570 keV), 95Y (2632 keV) and 138Cs (2640 keV).

An campaign on a fresh UO2 experimental pin was carried out at PROTEUS and aimed at
improving the irradiation and data acquisition strategies. The irradiation and measurement
times were extended to up to 45min and 6 h, respectively. Thus, better counting statistics were
obtained for the 142La peaks.

90Rb and 90mRb are two further �ssion products which have gamma-ray lines in the high-energy
region. However, they do not have as high �ssion yields as the other identi�ed isotopes. Because
of their very short half-lives, they will most likely not be suitable for the LIFE@PROTEUS
experiments, where the transfer time to bring the irradiated fuel pins to the measurement position
will probably be in the range of several minutes.

Another �ssion product which could be theoretically used as a �ssion rate indicator is 84Br,
which has a gamma-ray line at 3928 keV. However, its �ssion yields for both 235U and 239Pu
�ssions are very low. Furthermore, 90Rb and 84Br have gamma-ray lines in the very high energy
region (about 4000 keV). This is a disadvantage compared to the other identi�ed peaks because,
due the rapidly decreasing e�ciency of the HPGe detectors with higher energy, it is very di�cult
to obtain su�ciently high count rates in these peaks.

In Table 3.9, the characteristics of all identi�ed �ssion products which could serve as �ssion rate
indicators in fresh and burnt fuel are summarised. The most prominent gamma-ray lines above
2200 keV are listed as well. All nuclear data are extracted from JEFF-3.1 [Koning 06].

Table 3.9: Gamma-ray line candidates for measuring �ssion rates in fresh and burnt fuel.

Fission Cumulative th. �ssion yields [%]

product Half-life 235U 239Pu Gamma-ray lines (intensity)

88Kr 2.84 h 3.54 (1.8%) 1.25 (2.8%) 2392 keV (35%)
142La 1.52 h 5.86 (1.7%) 4.97 (1.1%) 2398 keV (13.3%), 2542 keV (10%),

2971 keV (3.2%)
138Cs 33.4min 6.69 (1.7%) 5.94 (2.7%) 2218 keV (15.2%), 2640 keV (7.6%)
89Rb 15.4min 4.69 (1.2%) 1.68 (1.9%) 2570 keV (10.2%)
95Y 10.3min 6.47 (1.1%) 4.82 (2.0%) 2632 keV (4.8%), 3576 keV (6.4%)

84Br 31.8min 1.01 (1.9%) 0.45 (4.3%) 3928 keV (6.8%)
90mRb 4.3min 1.36 (14.1%) 0.71 (14.0%) 2753 keV (11.5%), 3317 keV (14.3%)
90Rb 2.6min 4.37 (3.0%) 1.27 (5.4%) 3383 keV (6.7%) , 4135 keV (6.7%),

4365 keV (8%)

In the frame of the WOLF-A experimental campaign, during which measurements were con-
ducted inside the reactor shielding, the possibility to detect high-energy gamma-ray activity
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from short-lived �ssion products next to the high intrinsic gamma-ray background of a 36GWd/t
burnt fuel sample was demonstrated, albeit the detected short-lived activity was mainly coming
from the reactor fuel. The observed high gamma-ray background from the reactor, together
with the observed degradation in the detector resolution due to neutron damage, emphasised
the need for an appropriate gamma-ray and neutron shielding of the detector during and after
irradiation.

The next chapter describes the WOLF-B experimental campaign, during which both gamma-ray
and neutron backgrounds were mitigated by placing the gamma-ray detector inside the sample
changer.
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Chapter 4

Measurements of high-energy gamma-rays

emitted by short-lived �ssion products in

burnt fuel

This chapter is devoted to the WOLF-B experimental campaign, which was conducted at the
PROTEUS reactor. The goals of the WOLF-B campaign were to measure freshly induced
gamma-ray activities in burnt UO2 fuel samples irradiated in PROTEUS and to establish a
suitable set of gamma-ray spectra for the derivation of �ssion rate ratios between fresh and
burnt fuels.

The WOLF-B campaign followed the WOLF-A campaign (see Section 3.4), which was part of
the preliminary measurements described in the previous chapter. For both the WOLF-A and
WOLF-B campaigns, fresh and burnt fuel samples were irradiated in the PROTEUS core using
a specially designed sample changer.

During the preliminary measurements on fresh fuel at the BR1 and PROTEUS reactors, various
high-energy gamma-ray lines emitted by short-lived �ssion products (e.g.142La, 138Cs, 89Rb and
95Y) were identi�ed as suitable for the determination of �ssion rates in fresh and burnt fuel.
During the WOLF-A campaign, gamma-ray spectrometry was conducted for the �rst time on
irradiated burnt fuel samples. However, because the detector was located too close to the reactor
core and could not be adequately shielded, the measured gamma-rays lines of interest were mainly
emitted by short-lived �ssion products created in the PROTEUS driver fuel rather than in the
measured burnt fuel sample. In addition, the damage in the detector crystal caused by fast
neutrons emitted from the reactor core during the irradiation was also found to be problematic.
To meet these issues, the WOLF-B campaign used a modi�ed sample changer which allowed the
gamma-ray measurements to be carried out inside the sample changer to mitigate the crystal
damage during the irradiation and to enhance the signal-to-noise ratio of the measurement.

The WOLF-B campaign comprised two phases. In the �rst phase, test measurements were
conducted to estimate the neutron and gamma-ray background in the new measurement position,
and to optimise irradiation and measurement strategies. The second phase consisted of the �nal
measurements, during which fresh and burnt fuel samples were irradiated in di�erent lattice
positions of the PROTEUS test zone. These �nal measurements were later used for the derivation
of �rst �ssion rate ratios between fresh and burnt fuel. The quantitative analysis will be presented
in the next chapter.

51



Chapter 4. Measurements of high-energy gamma-rays emitted by short-lived �ssion products in

burnt fuel

The gamma-ray spectrometry system used for the WOLF-B campaign is presented in Section 4.1.
A description of the experimental set-up, which includes the modi�ed sample changer and the
fresh and burnt fuel samples, is given in Section 4.2. The test phase and the �nal measurements
of the WOLF-B campaign are described in Sections 4.3 and 4.4. The presentation of typical
spectra, as also of net-count areas of gamma-ray lines of interest and their uncertainties, is
included in these two sections. A summary of the chapter is given in Section 4.5.

4.1 High-resolution gamma-ray spectrometry system

During the WOLF-B experimental campaign, gamma-ray spectrometry was conducted with
two HPGe detectors manufactured by ORTEC. The speci�cations of the detectors are given in
Table 4.1. One of the detectors (model GEM-15180-P, 4500V) had already been employed during
the WOLF-A campaign and had been damaged because of the high �uence of fast neutrons (see
Section 3.4). It was recovered via annealing of the crystal and was used again during the WOLF-
B campaign.

Table 4.1: HPGe detectors used during the WOLF-B campaign

Model GEM-15180-P GEM-15180-P

Cryostat con�guration Pop-Top Pop-Top
Crystal diameter 49.5mm 50.0mm
Crystal length 68.9mm 57.2mm
End cap to crystal 3mm 3mm
Absorbing Al layer 1.27mm 1.27mm
Absorbing inactive Ge layer 0.7mm 0.7mm
Recommended high voltage bias 4500V 3600V
Resolution∗ (FWHM) at 1.33MeV, 60Co 1.80 keV 1.80 keV
Relative e�ciency∗∗ at 1.33MeV, 60Co 15% 15%
∗The warranted values refer to a nominal count rate of 1000 cps and an ampli�er time

constant of 6µs.
∗∗The e�ciency of germanium detectors is commonly quoted relative to that of a standard

3 inch x 3 inch (7.62 cm x 7.62 cm) cylindrical NaI(Tl) scintillation crystal [Knoll 00].

In general, the gamma-ray spectrometry was carried out as described for the preliminary mea-
surements in Section 3.1. The data were processed by the ORTEC DSPEC Plus multi-channel
analyser [DSP ], and the spectra were saved with the Gamma-Vision software [ORT 03a]. The
automatic optimisation of the DSPEC Plus was used for most ampli�er settings (e.g. pole zero,
and �at top width and tilt). The rise time and the number of channels in the spectrum were set
manually to 1.2µs and 8192 channels (instead of 1.6µs and 16384 channels during the previous
measurement campaigns) to mitigate the loss of resolution during the campaign due to neutron
damage (see Subsection 4.3.2).

Another new feature compared to the preliminary measurements was the cooling of the detector.
The new detector position inside the sample changer (see Section 4.2) required a �exible cooling
solution and precluded the use of liquid nitrogen in a dewar which would be rigidly coupled
to the detector. Instead of liquid nitrogen, the mechanical cooling unit X-Cooler II by ORTEC
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[ORT 06], which is shown in Figure 4.1, was used. The X-Cooler II is an electric-powered cooling
system containing a cold head, a transfer hose and a compressor. The cold head comprises
the gas expansion and the heat exchanger, and is attached to the Pop-Top detector. The cold
head and the compressor are connected via the 3m long �exible and insulated transfer hose
containing the gas pressure and return lines. According to the product speci�cations [ORT c],
no degradation of the detector resolution is to be observed for energies above 500 keV.

Detector capsule

Cold head

Transfer hose

Compressor

Figure 4.1: HPGe detector connected to the cooling unit X-Cooler II [ORT c].

4.2 Experimental set-up

4.2.1 Modi�ed sample changer

As for the WOLF-A experiments, the fuel samples were loaded into the sample changer (see
Section 2.3), which was placed above the reactor and allowed the insertion of the samples into
the test lattice. For the WOLF-B campaign, however, the sample changer was modi�ed. A view
of the modi�ed sample changer is shown in Fig. 4.2. A horizontal cavity was drilled into the
steel body of the sample changer to accommodate the HPGe detector, which was mounted on
a movable shield plug. Furthermore, the modi�ed sample changer allowed the samples to be
introduced into six di�erent positions of the test lattice. To this aim, the guiding tube below the
sample changer was replaced by a guide block which featured six channels guiding the samples
into the di�erent test lattice positions.

The layout of the PROTEUS test lattice as employed for the WOLF-B campaign, with indica-
tions of the positions into which the fuel samples could be inserted, is shown in Fig. 4.3. During
the WOLF-A campaign, the samples could only be lowered into the central position of the test
lattice. After the modi�cation of the sample changer and after removing three additional test
lattice pins, each sample could be lowered into six di�erent irradiation positions. Four of the
irradiation positions were located in the lattice (L11, K7, K11, and I11) and two were located
in the moderator regions (M8, and I8).
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Figure 4.2: Views of the modi�ed sample changer without (left) and with (right) additional
neutron shielding.
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Figure 4.3: Layout of the PROTEUS test lattice during the WOLF-B campaign.

During the WOLF-B campaign, the detector was placed inside the sample changer, ready to
measure the gamma-rays emitted by an irradiated sample once it had been withdrawn from the
core into the steel body of the �ask. Schematic vertical and radial cross-sections of the sample
changer are shown in Fig. 4.4. In the radial cross-section, the rotary revolver at the centre of
the sample changer loaded with the six fuel samples is visible as well. For the measurements,
there was at least 14 cm of steel between the sample and the detector. Compared with the 10 cm
of lead that was previously used as a �lter during the measurements carried out on top of the
reactor shielding (see Section 3.3), the attenuation of gamma-rays above 2000 keV was slightly
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reduced (e.g. 98.1% instead of 99.2% at 3000 keV), whereas the attenuation of gamma-rays below
2000 keV remained greater than 99%.

Fig. 4.4 also shows the neutron shielding set-up that was used for the �nal measurements, which
are described in Section 4.4. To better shield the detector against fast neutrons emitted by the
reactor core, the cylindrical body of the sample changer was �rst wrapped with a 1mm thick
sheet of cadmium (enclosed in a 0.5 cm thick sheet of polyethylene) and with three layers of
polyethylene rods, which had a diameter of 2.55 cm (see 1 in Fig. 4.4). In the frame of the
test phase of the WOLF-B campaign, the neutron shielding was further improved by placing
polyethylene and para�n wax plates below the sample changer and in between the support
structure rings (see 2 in Fig. 4.4). Their minimum thickness was 6 cm. Furthermore, the detector
itself was surrounded by 5wt% borated (natural boron) polyethylene rings which had a thickness
of 1.4 cm (see 3 in Fig. 4.4).

Sample

Axial cross-section

Detector

1

Samples

Shield plug

Detector

1

3

Support structure2

Neutron shielding

1: 1mm layer of cadmium 
and polyethylene

2: Polyethylene and paraffin
3: Borated polyethylene

Radial cross-section

3

Figure 4.4: Schematic cross-sections of the modi�ed sample changer.

4.2.2 Speci�cations of fresh and burnt fuel samples

Three fresh and three burnt UO2 fuel samples were loaded into the modi�ed sample changer. One
of the fresh fuel samples and the three burnt ones were measured in the context of the present
research work. The general speci�cations of the three burnt samples and of the measured fresh
sample are summarised in Table 4.2.

The measured fresh fuel sample had an enrichment of 3.5% and a length of 38.9 cm. The burnt
fuel samples had initial enrichments of either 3.5% or 4.1%, and nominal burn-ups of 36, 46 and
64GWd/t. They were part of one of the sets of burnt fuel samples which had been prepared
for Phase II of the LWR-PROTEUS programme (see Section 2.3). In the PSI Hot Laboratory,
40 cm long segments had been cut from PWR fuel rods used in a Swiss nuclear power plant and
had been over-clad with Zircaloy.

As mentioned earlier, the isotopic compositions and burn-ups of the burnt fuel samples had
been well characterised for the LWR-PROTEUS programme. The composition of the samples
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Table 4.2: Characteristics of the fresh and burnt UO2 samples used in the WOLF-B campaign.

No.
Nominal
burn-up

Initial
enrichment

Reactor
cycles Cooling time

Fuel
length

Fuel
diameter

1 Fresh 3.5% - - 389mm 9.16mm
2 36GWd/t 4.1% 2 ∼12.5 years 400mm 9.13mm
3 46GWd/t 3.5% 3 ∼12.5 years 400mm 9.13mm
4 64GWd/t 3.5% 4 ∼12.5 years 400mm 9.13mm

had been estimated by measuring adjacent segments of the original fuel pin at the PSI Hot
Laboratory [Günther-Leopold 07]. The measured isotopic compositions were used in this work
for modelling the fuel samples in Monte Carlo simulations (see Section 6.1).

In addition to the results of the chemical analysis, the isotopic compositions had been calculated
with the CASMO-4E [Rhodes 04] and HELIOS [Stu 05b] burn-up codes. Both CASMO-4E and
HELIOS results were employed in the context of this work for sensitivity studies described in
Subsections 5.3.4 and 6.2.2.

4.3 Test phase

The test phase of the WOLF-B campaign aimed at deciding on appropriate irradiation and mea-
surement strategies for the �nal measurements. Several irradiations with and without samples
were conducted to investigate the gamma-ray and fast neutron backgrounds at the new detector
position, to monitor the detector loss of resolution with the repeated irradiations, to optimise
the position of the samples during the measurement with respect to the detector dead time and
count rates, and to optimise the power and time of irradiation for the di�erent samples.

4.3.1 Gamma-ray background

The high gamma-ray background from the reactor fuel was a major problem during the WOLF-A
campaign. Placing the detector inside the sample changer during the WOLF-B campaign solved
this problem, thanks to the lower solid angle seen from the reactor and to the large amount of
attenuating steel surrounding the detector.

During the test phase of WOLF-B, the gamma-ray background was measured after operating the
reactor for 20min at a power of 800W. For this measurement, the detector was positioned inside
the sample changer and all burnt fuel samples were moved 70 cm down, where their intrinsic
gamma-ray activities would not interfere with the measurement. The spectrum was recorded
during 2.5 h, starting 5min after reactor shutdown, and is shown in Fig. 4.5.

A detailed list of the various observed background lines after irradiation is given in Table 4.3,
focusing on the high-energy region above 2200 keV. No full-energy peaks characteristic of short-
lived �ssion products are apparent, which proves the shielding to be adequate against the gamma-
ray background coming from the reactor core.
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Figure 4.5: Background gamma-ray spectrum for WOLF-B set-up recorded from 5min to 2.5 h
after irradiation.

Table 4.3: Background gamma-ray lines for the WOLF-B set-up after irradiation (spectrum
shown in Fig. 4.5).

Index Energy Origin (isotope, gamma-ray intensity, half-life) Net counts?

1 417 keV 116mIn 27.9% T1/2 = 54min 524752 (0.28%)
2 478 keV 10B Prompt neutron capture gamma-ray 124791 (2.04%)
3 511 keV Annihilation 295170 (0.67%)
4 819 keV 116mIn 11.6% T1/2 = 54min 88152 (0.91%)
5 847 keV 56Mn 98.8% T1/2 = 2.6 h 1294506 (0.13%)
6 1097 keV 116mIn 57.6% T1/2 = 54min 584233 (0.21%)
7 1293 keV 116mIn 84.7% T1/2 = 54min 707346 (0.17%)
8 1508 keV 116mIn 10.42% T1/2 = 54min 78378 (1.11%)
9 1779 keV 28Al 100% T1/2 = 2.2min 3965 (15.1%)
10 1811 keV 56Mn 27.6% T1/2 = 2.6 h 314446 (0.31%)
11 2112 keV 116mIn 15.3% T1/2 = 54min 246379?? (0.19%)
12 2113 keV 56Mn 14.8% T1/2 = 2.6 h
13 2223 keV 1H Prompt neutron capture gamma-ray 1163 (16.0%)
14 2391 keV 116mIn Coincidence summing 1097 keV + 1293 keV 27040 (1.25%)
15 2523 keV 56Mn 1.03% T1/2 = 2.6 h 22784??? (1.54%)
16 2530 keV 116mIn Coincidence summing 417 keV + 2113 keV
17 2658 keV 56Mn 0.66% T1/2 = 2.6 h 7081 (2.56%)
18 2800 keV 116mIn Coincidence summing 1293 keV + 1508 keV 3398 (3.88%)
19 2960 keV 56Mn 0.31% T1/2 = 2.6 h 2589 (4.94%)
20 3369 keV 56Mn 0.17% T1/2 = 2.6 h 1254 (8.05%)
? The quoted net counts refer to the spectrum shown in Fig. 4.5 and were acquired during 2.5 h

after a reactor operation of 20min at 800W, starting 5min after shutdown.
?? summed net counts of lines 11 and 12
??? summed net counts of lines 15 and 16
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Most of the observed peaks are related to activation of the materials composing the sample
changer and the detector mount. The most prominent neutron activation products are 56Mn
(T1/2 = 2.6 h), which is formed by the (n,γ) reaction on the 55Mn of the steel of the sample
changer, and 116mIn (T1/2 = 54min) due to the (n,γ) reaction on 115In in the detector mount1.
Two peaks at 478 keV and 2223 keV, corresponding to prompt gamma-rays from neutron captures
in 10B and 1H, could be observed. Both isotopes are part of the borated polyethylene rings
surrounding the detector for neutron shielding. These prompt gamma-rays are most probably
due to the intrinsic neutron background of the burnt fuel samples located 70 cm further down.

With respect to the measurement of the high-energy gamma-ray lines emitted by short-lived
�ssion products, the 1H (2223 keV) and 116mIn (2391 keV) peaks are of importance as they can
interfere with the 138Cs (2218 keV) peak on the one hand, and with the 88Kr (2392 keV) and142La
(2398 keV) peaks on the other hand. The 1H(2223 keV) and 116mIn (2391 keV) peaks could not
be avoided in the current experimental set-up as 1H was present in the borated polyethylene
around the detector, which represented an important part of the neutron shielding, and 115In
was present in the detector mount.

Since no gamma-ray background from the reactor fuel could be observed, no further measures
with respect to the gamma-ray shielding were necessary.

4.3.2 Neutron background from the reactor

The neutron damage of the detector crystal during the WOLF-A campaign was - in addition to
the high gamma-ray background from the reactor - a major problem and provided another reason
to perform the WOLF-B measurements with the detector placed inside the sample changer.

In order to quantify the improved neutron shielding in the new detector position, two Monte
Carlo models using MCNPX-2.5 [Pelowitz 05] were employed: a whole-reactor model and a model
of the sample changer. These models are described in greater detail in the following chapters,
in Subsections 5.4.1 and 6.1.1. The whole-reactor model was used to create an arti�cial neutron
source representing the neutron background of the reactor during operation. To this end, the
neutrons emitted by the reactor in the direction of the sample changer were recorded using a
surface source write (ssw) card, which creates a source �le containing the neutron tracks crossing
an arti�cial surface above the reactor. Using a surface source read (ssr) card, the neutron source
�le was later read into the model of the sample changer. In the latter, the detector positions
during the WOLF-A and WOLF-B measurements were modelled and, for each position, the fast
neutron �ux (0.1 keV - 12MeV) was tallied in the germanium crystal of the detector.

Compared to the position of the detector below the sample changer during the WOLF-A cam-
paign, the new location inside the sample changer led to a smaller solid angle seen from the
reactor, as also to more attenuating material between detector and reactor. The MCNPX simu-
lations of the two detector positions showed that the fast neutron �ux during reactor operation
in the new detector position was reduced to ∼16% of the WOLF-A value.

With the help of additional MCNPX simulations, an optimised neutron shielding was designed.
As described in Subsection 4.2.1, the �nal neutron shielding consisted of polyethylene rods and a

1The two most prominent gamma-ray lines of 116mIn are at 1097 keV and 1293 keV. Theoretically, the two
observed peaks at these energies could also be related to 59Fe (T1/2 = 44d), which could be formed by (n,γ)
reactions on 58Fe in the steel body of the sample changer. Measurements of the amplitude in the two peaks at
di�erent times con�rmed, however, that the related half-life was that of 116mIn (i.e. 54min) and not of 59Fe.
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cadmium sheet placed around the body of the sample changer, and of para�n and polyethylene
blocks placed below the sample changer. Furthermore, rings of a borated polyethylene were
placed directly around the detector. All in all, the optimised neutron shielding led to a �nal fast
neutron �ux in the germanium crystal which was as little as about 2% of the WOLF-A value.

Despite the reduced fast neutron �ux, the damage to the detector could not be completely
eliminated. An average fast neutron �ux (0.1 keV - 12MeV) of about 1·103 cm−2s−1W−1 still
reached the detector during reactor operation. The resulting neutron damage represented a
limiting factor with respect to the number of possible irradiations, as also to the power levels
and irradiation times.

4.3.3 Degradation of detector resolution due to fast neutron damage

For the test phase of the WOLF-B campaign, the detector model GEM-15180-P (4500V) was
used. As mentioned above, in spite of an optimised neutron shielding, the detector crystal was
damaged by the fast neutron �ux during reactor operation. This led to a continuous worsening
of the detector resolution with each irradiation.

The degradation of detector resolution with irradiation during the test phase is illustrated in
Fig. 4.6. The �gure shows the evolution of the Full-Width-Half-Maximum (FWHM)2 for two
peaks of 56Mn (1811 keV and 2113 keV) with respect to the integrated reactor power, i.e. the
product of reactor power and irradiation time expressed in Wh. For example, the two �rst
irradiations indicated in Fig. 4.6 lasted 30min at a reactor power of 200W, and thus corresponded
each to an integrated power of 100Wh.

FWHM of HPGe detector during test phase of WOLF-B campaign
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Figure 4.6: Evolution of the resolution of the detector model GEM-15180-P (4500V).

After exposure to an integrated power of about 1300Wh, the detector resolution for the 2113 keV
peak reached a FWHM value of about 5.6 keV, compared to about 4.5 keV at the beginning of the

2The FWHM values were determined with Gamma-Vision for background spectra recorded after irradiation,
with average input rates varying from 10000 to 20000 cps (corresponding to average dead times of about 6 to
12%).
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test phase. It was found that this FWHM represented approximately the worst usable detector
resolution, above which the peak �tting process was not possible any more in a reliable manner.

For the �nal measurements, the damaged detector was replaced by the newer model GEM-
15180-P (3600V), which showed a similar initial resolution. Consequently, it could be estimated
that, during the �nal measurements, it would be possible to carry out irradiations equivalent to
1300Wh before the worsened detector resolution prevented further usable measurements.

4.3.4 Measurement position of irradiated samples

The fuel samples were housed inside the sample changer in a rotary revolver which served to
place the samples into di�erent positions in the test lattice. By rotating the irradiated sample
inside the sample changer and adjusting its elevation, the amount of attenuating steel between
sample and detector could be modi�ed.

The irradiated fresh fuel sample, having a negligibly low intrinsic activity, could be measured as
close as possible to the detector. The distance between detector and sample centre was about
20 cm, with about 12 cm steel as �lter, as shown schematically in Fig. 4.7.

The irradiated burnt fuel samples, however, had very high intrinsic gamma-ray activities, and
therefore had to be moved further away from the detector to maintain reasonable system dead
times. As indicated in Fig. 4.7, a more distant radial position was used and the samples were
placed 30 cm further down. As a consequence, the detected counts in the freshly-induced gamma-
ray lines were also reduced. To compensate for this e�ect, the burnt fuel samples needed to be
irradiated at higher power levels than the fresh fuel sample.

The system dead times, before and after irradiation of each sample in the moderator positions
M8 and I8, are summarised in Table 4.4. While the gamma-ray spectrometry of a particular
sample was being performed, all the other burnt fuel samples were moved below the steel �ask,
so that their intrinsic gamma-ray activities did not interfere with the measurements. All the
other fresh fuel samples, having no intrinsic activity, remained in the sample changer, as indicated
in Fig. 4.7.

Table 4.4: Measurement positions of fresh and burnt fuel samples and system dead times during
the WOLF-B campaign.

Measurement position? System dead time

Sample
Radial
distance

Vertical
displacement

Before
irradiation

After
irradiation??

fresh 20 cm - 0.6% 57%
36GWd/t 25 cm 30 cm 33% 47%
46GWd/t 25 cm 30 cm 62% 68%
64GWd/t 25 cm 30 cm 68% 74%
? see Fig. 4.7
?? The values are given for irradiation in the moderator positions M8 and I8.

The fresh sample was irradiated for 30min at a power of 100W; the burnt

samples were irradiated for 15min at a power of 800W.

60



Chapter 4. Measurements of high-energy gamma-rays emitted by short-lived �ssion products in

burnt fuel

Radial position of measured 
fresh sample

Axial position of measured
fresh sample

detector

22
cm

detector

25cm

Radial position of measured 
36GWd/t burnt sample

20cm

detector

8c
m

Axial position of measured 
36GWd/t burnt sample

detector

Measured 
irradiated sample

Inactive
fresh samples

sample sample

Figure 4.7: Measurement positions of the fresh and burnt fuel samples during the WOLF-B
campaign.

4.3.5 Irradiation times and power levels

The principal goal of the WOLF-B measurements was to measure the short-lived �ssion products
with half-lives from 10.3min (95Y) to 1.5 h (142La). Consequently, the ideal irradiation times
to obtain high count rates in the gamma-ray lines of interest should have been at least 30min,
and in the case of 142La, preferably more than an hour. However, the irradiation times and the
power levels for the �nal measurements had to be carefully chosen as a compromise between
desired high count rates in the investigated gamma-ray lines and undesired neutron damage of
the detector.

Test measurements showed that irradiating the fresh fuel sample in position M8 for 30min at a
power level of 100W would be su�cient to reach net-count areas of about 69,000 counts in the
142La (2542 keV) peak and 24,000 counts in the 95Y (3576 keV) peak.

As indicated in the previous subsection, the burnt fuel samples needed to be measured further
away from the detector, because of their high intrinsic gamma-ray activities. In order to com-
pensate for the resulting lower count rates, the burnt samples were irradiated at the higher power
level of 800W. To minimise the neutron �uence in the detector, the irradiation times were re-
duced to 15min, putting more emphasis on the shorter-lived �ssion products 89Rb and 95Y. The
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obtained net-count areas for the 36GWd/t sample, after an irradiation in the lattice position
M8, were about 4,200 counts in the 142La (2542 keV) peak and 4,150 counts in the 95Y(3576 keV)
peak.

To establish a good database for the analysis and the derivation of �ssion rate ratios, the priority
during the �nal measurement campaign was set on the irradiation of the fresh and the 36GWd/t
burnt samples in at least three di�erent lattice positions, with the burnt sample to be irradiated
twice in each position to obtain better counting statistics and to demonstrate the reproducibility
of the measurements. Speaking in terms of integrated reactor power, each irradiation of the
fresh fuel sample represented an integrated power of 50Wh, whereas each irradiation of the
burnt samples represented an integrated power of 200Wh. In total, the envisaged irradiations
summed to an integrated power of 1350Wh (3 x 50Wh + 6x 200Wh), which was in the range of
the estimated feasible integrated power of 1300Wh before a too high degradation of the detector
resolution would be reached (see Subsection 4.3.3).

4.4 Final measurements

As mentioned earlier, the test phase of the WOLF-B campaign served for de�ning the irradiation
and acquisition strategies to be applied in the �nal measurements, during which quantitative
gamma-ray spectrometry was carried out on appropriately irradiated fresh and burnt fuel sam-
ples.

For the �nal measurements, the �rst detector, which had been damaged by fast neutrons during
the test phase, was replaced by the model GEM-15180-P (3600V).

4.4.1 List of experiments

In total, 14 irradiations were conducted for the �nal measurements (see Table 4.5). As indi-
cated earlier, the fresh sample was irradiated at a reactor power of 100W, whereas the burnt
samples were irradiated at 800W. The average neutron �ux in the fresh fuel sample was about
1.5·107 cm−2s−1W−1 in the lattice position L11 and about 1.6·107 cm−2s−1W−1 in the modera-
tor positions M8. The values of the fast-to-thermal �ux ratio were 0.27 and 0.36, respectively
(energy boundary 0.625 eV). The time needed to bring the sample to the measurement position
after reactor shutdown was 1 to 5min, depending on the sample and irradiation positions. The
maximum dead times quoted in Table 4.5 refer to the average dead times 5min after irradiation.

The �nal measurements can be considered in terms of three sets of irradiations. The �rst set
consisted of irradiations of the 36GWd/t burnt sample in the three di�erent lattice positions
M8, K7 and L11. Each irradiation was carried out twice to improve the counting statistics and
to demonstrate the reproducibility of the experiments. In the second set, the fresh fuel sample
was irradiated in the same three lattice positions. After the two �rst sets, the detector resolution
was found to be still in the usable range (FWHM of about 5.1 keV at 2113 keV) so that further
irradiations using the higher-burnt sample were conducted. This third set comprised irradiations
of the three burnt samples in the lattice position I8.

The irradiation number 14 in Table 4.5 is a measurement of the pure reactor background after
operation without any sample inserted into the lattice. In this case, all burnt samples were
placed below the sample changer during data acquisition.
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Before each irradiation, a 30min background spectrum was recorded with the soon-to-be-irra-
diated sample in the measurement position. During the gamma-ray measurement of a given
sample, all remaining burnt samples were lowered below the sample changer. For safety reasons,
all samples were retracted into the sample changer after the end of the data acquisition. To limit
the damage of the detector due to the neutrons emitted by the burnt fuel samples, the detector
was moved outside of the sample changer into a �parking position� when no measurement was
being carried out.

Table 4.5: List of irradiations carried out during the �nal measurement phase of the WOLF-B
campaign.

Irradiation Measurement

No. Sample
Lattice
position

Reactor
power tirr tcool ta dT5min

1 36GWd/t M8 800W 15min ∼8.5min 7 h
2 36GWd/t K7 800W 15min 4.5min 7 h ∼43.3%
3 36GWd/t L11 800W 15min 2min 7.5 h ∼45.7%
4 36GWd/t K7 800W 15min 3min 7 h ∼44.7%
5 36GWd/t L11 800W 15min 2min 7 h ∼45.3%
6 36GWd/t M8 800W 15min 3min 7 h ∼46.7%

7 fresh K7 100W 30min 2min 8 h ∼42.6%
8 fresh M8 100W 30min 4min 8 h ∼57.4%
9 fresh L11 100W 30min 4.5min 8 h ∼48.4%

10 46GWd/t I8 800W 15min 3.5min 7.5 h ∼67.8%
11 46GWd/t I8 800W 15min 4min 6.5 h ∼68.1%
12 64GWd/t I8 800W 15min 4min 5 h ∼73.8%
13 36GWd/t I8 800W 15min 3.5min 7 h ∼47.2%

14 - - 800W 15min 2min 7 h ∼7.4%
tirr: irradiation time; tcool: cooling time; ta: acquisition time; dT5min: system dead time 5min

after irradiation

4.4.2 Measured gamma-ray lines emitted by short-lived �ssion prod-

ucts in burnt fuel

During the �nal measurements on fresh and burnt fuel samples, it was possible to quantitatively
assess the freshly induced gamma-ray activity, not only in the fresh, but also in the burnt fuel
samples with burn-up values of 36, 46 and 64GWd/t. The most prominent peaks from the
freshly-induced �ssion products were 142La (2542 keV), 89Rb (2570 keV), 95Y (2632 keV), 138Cs
(2640 keV) and 95Y (3576 keV). Based on these peaks, the �nal quantitative analysis of the spectra
was carried out, as is described in the following chapter. The three peaks 138Cs (2218 keV),
88Kr(2392 keV) and142La (2398 keV) were not considered because of their interference with the
background peaks 1H(2223 keV) and 116mIn (2391 keV). All other observed peaks from short-
lived �ssion products, which had previously been identi�ed as potential �ssion rate indicators
(see Table 3.9), had too poor counting statistics to be included in the quantitative analysis.
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The recorded activities from the three burnt samples after irradiation in the moderator positions
(irradiations 6, 10 and 12 in Table 4.5) are shown in the top part of Fig. 4.8. Apart from the
long-lived �ssion products 137Cs and 154Eu present in the burnt fuel, the background peaks from
the two activation products 116mIn and 56Mn are marked. Fig. 4.8 also provides two sets of
focused views on the energy regions 2500-2700 keV and 3500-3675 keV, containing the observed
short-lived �ssion product gamma-ray lines 142La (2542 keV), 89Rb (2570 keV), 95Y (2632 keV),
138Cs (2640 keV) and 95Y (3576 keV). The �rst set (shown in the middle of the �gure) contains
the counts acquired during 1 h starting 3.5min after irradiation, to emphasise the very short-
lived �ssion products 95Y and 89Rb. The second set (shown at the bottom) contains the counts
acquired during 4 h starting 3.5min after irradiation, putting the emphasis on the gamma-ray
lines emitted by the somewhat longer-lived �ssion products 138Cs and 142La.

The marked peaks from the short-lived �ssion products are clearly apparent for the 36GWd/t
sample. For the higher burnt samples, the peaks are less pronounced. The reasons for this
are, on the one hand, the lower �ssion rates in the higher burnt samples due to the lower
amount of �ssionable material, and on the other hand, the already advanced degradation of
detector resolution. In fact, for these reasons, the 64GWd/t sample was not considered for the
quantitative analysis.

The obtained net-count areas of the marked short-lived �ssion product peaks, as obtained with
the region-of-interest (ROI) method within Gamma-Vision, and the related signal-to-background
ratios are listed in Table 4.6.

Table 4.6: Measured net counts and signal-to-background ratios (S/Bg) of most prominent
gamma-ray lines from short-lived �ssion products freshly induced in burnt fuel samples.

36GWd/t 46GWd/t 64GWd/t
Gamma-ray line Net counts S/Bg Net counts S/Bg Net counts S/Bg

142La (2542 keV) 4244 (4.3%) 0.22 2710 (9.5%) 0.09 2130 (14.4%) 0.05
89Rb (2570 keV) 2788 (5.7%) 0.23 1340 (12.8%) 0.10 -
138Cs (2640 keV)? 8583 (3.4%) 0.35 6598 (5.4%) 0.20 4539 (9.0%) 0.10
95Y(3576 keV) 4150 (2.6%) 1.16 2719 (5.3%) 0.57 1922 (8.2%) 0.32
? The counts given for the 138Cs (2640 keV) peak also contain the counts of the adjacent
95Y(2632 keV) peak.
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Focuses on energy regions A and B, counts acquired during 1h after irradiation:

Focuses on energy regions A and B, counts acquired during 4h after irradiation:

Figure 4.8: Top: gamma-ray spectra of re-irradiated burnt UO2 fuel samples with burn-up
values 36GWd/t (blue), 46GWd/t (green), 64GWd/t (red), recorded during 4 h after irradiation.
Middle and bottom: focuses on the energy regions 2500-2700 keV (A) and 3500-3675 keV (B) for
di�erent acquisition times.
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4.5 Chapter summary

During the WOLF-B campaign, gamma-ray spectrometry was performed on fresh and burnt fuel
samples (with nominal burn-ups of 36, 46 and 64GWd/t), irradiated in di�erent positions of
the PROTEUS test lattice. The gamma-ray spectrometry took place inside the sample changer,
which had been modi�ed for this purpose. This new measurement position proved to o�er ade-
quate gamma-ray and neutron shielding against the reactor background after reactor operation.
During reactor operation, the fast neutron �ux in the detector position could, however, not be
eliminated completely and caused a continuous worsening of the detector resolution. Therefore,
the total possible number of irradiations, the reactor power levels and the irradiation times were
limited.

For the �nal measurements, 14 irradiations were carried out. The emphasis was put on irradiating
a fresh and a 36GWd/t burnt fuel sample in di�erent lattice positions. After these measurements,
the three burnt samples were irradiated using a single lattice position.

It was demonstrated that - for the �rst time in a zero-power reactor - it was possible to detect
gamma-rays emitted by short-lived �ssion products freshly produced in burnt nuclear fuel. Con-
cerning the fresh sample, and the 36 and 46GWd/t burnt samples, various gamma-ray peaks
from short-lived �ssion products showed su�ciently high count rates for a quantitative analy-
sis. The measurements of the 64GWd/t burnt samples, however, had lower statistics, and the
acquired gamma-ray spectra were found harder to analyse due to the already advanced neutron
damage of the detector crystal when these measurements were conducted.

Five high-energy gamma-ray lines were considered for the analysis of the measurements of the
fresh, the 36 and the 46GWd/t burnt samples. These are 142La (2542 keV), 89Rb (2570 keV),
95Y (2632 keV), 138Cs (2640 keV) and 95Y (3576 keV). All the other gamma-ray lines, which had
been previously identi�ed as potential �ssion rate indicators, showed too low counting statistics
or su�ered interference with background peaks.

The analysis of the WOLF-B experiments, i.e. the methodology to derive �ssion rate ratios from
the short-lived �ssion product peaks, is presented in the following chapter, together with the
experimental results for inter-position and inter-sample �ssion rate ratios.
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Chapter 5

Derivation of measured �ssion rates in

fresh and burnt fuel

This chapter is dedicated to the derivation of �ssion rate ratios using gamma-ray lines from
short-lived �ssion products, based on the irradiations conducted during the WOLF-B campaign
which is described in the previous chapter. Ratios of �ssion rates have been derived for the
same sample irradiated in di�erent lattice positions (inter-position �ssion rate ratios), and for
di�erent samples irradiated in the same position (inter-sample �ssion rate ratios).

In total, 15 gamma-ray lines above 2200 keV from the short-lived �ssion products 88Kr, 142La,
138Cs, 89Rb, 95Y, 84Br, 90Rb and 90mRb were initially identi�ed as potential �ssion rate indicators
in fresh and spent fuel; these are listed in Table 3.9 of Chapter 3. In the framework of the WOLF-
B campaign, most of these gamma-ray lines could be detected in fresh and in spent fuel samples
having burn-up values up to 64GWd/t. However, for the quantitative analysis described in this
chapter, some gamma-ray lines were rejected because of their low statistics or interference with
background peaks. The 64GWd/t sample was entirely excluded from the quantitative analysis.

As mentioned at the end of the previous chapter, it is the �ve gamma-ray lines 142La (2542 keV),
89Rb (2570 keV), 95Y (2632 keV), 138Cs (2640 keV) and 95Y (3576 keV) which have been retained
for the derivation of measured �ssion rate ratios for the fresh, and the 36 and 46GWd/t burnt
samples. For the fresh fuel sample, three additional prominent lines in the lower-energy region
have been included for cross-comparison purposes. These are 138Cs (1435 keV), 135I (1260 keV)
and 92Sr (1383 keV). The last two belong to the lower-energy gamma-ray lines routinely used in
PROTEUS as �ssion rate indicators in fresh fuel (see Section 2.1).

The methodology to derive �ssion rate ratios is described in Section 5.1. The following three
sections deal with the three main factors needed for the derivation of �ssion rate ratios, which
are the net-count area of the selected gamma-ray peaks (Section 5.2), the corrections for activity
saturation and decay (Section 5.3), and the corrections for solid angle and attenuation of gamma-
rays between sample and detector (Section 5.4). The derived measured inter-position and inter-
sample �ssion rate ratios are presented in Section 5.5. A chapter summary is given in Section 5.6.

5.1 Methodology to derive �ssion rate ratios

The various gamma-ray lines considered for the presented analysis of the WOLF-B campaign are
summarised in Table 5.1. The general methodology for deriving �ssion rates, inter-sample �ssion

69



Chapter 5. Derivation of measured �ssion rates in fresh and burnt fuel

rate ratios and inter-position �ssion rate ratios from the measured activity in these gamma-ray
lines is described in the following.

Table 5.1: Characteristics of gamma-ray lines considered for the derivation of �ssion rate ratios
in fresh and burnt fuel.

Energy Fission product Half-life
Gamma-ray
intensity

2542 keV 142La 1.52 h 10.0%
2570 keV 89Rb 15.4min 10.2%
2632 keV? 95Y 10.3min 4.8%
2640 keV? 138Cs 33.4min 7.6%
3576 keV 95Y 10.3min 6.4%

1260 keV?? 135I 6.57 h 28.7%
1383 keV?? 92Sr 2.71 h 93.0%
1435 keV?? 138Cs 33.4min 76.3%
?These two gamma-ray lines had to be evaluated together (see text below).
??Used for fresh fuel only.

5.1.1 Fission rates

In general, the �ssion rate F in a sample during an irradiation in PROTEUS can be derived by
correcting the measured activity of a freshly built-up �ssion product FP as follows:

F (Eγ) =
Nnet

ε(Eγ) · attsample(Eγ) · bγ,FP · CFP
(5.1)

where Nnet is the measured net-count area of the gamma-ray line of energy Eγ in the ZDT spec-
trum; ε(Eγ) is the detection e�ciency of the germanium detector at this energy; the correction
factor attsample(Eγ) accounts for the solid angle and the attenuation of the gamma-rays between
sample and detector; CFP denotes a correction factor taking into account the build-up of the
considered �ssion product during irradiation and its decay after irradiation, and bγ,FP is the
intensity of the considered gamma-ray line.

Since two of the main peaks - 95Y (2632 keV) and 138Cs (2640 keV) - are closely overlapping (see
Fig. 5.1), only one �ssion rate was determined on the basis of the sum of these two peaks to
avoid high uncertainties due to the spectrum deconvolution in this multiplet area. Consequently,
Eq. 5.1 has to be modi�ed to account for both contributing isotopes by introducing an e�ective
saturation and decay correction factor (bγ,FPCFP )eff , as given by Eq. 5.2.

F (2640keV ) =
Nnet

εdet(2640keV ) · attsample(2640keV ) · (bγ,FPCFP )eff
(5.2)

with (bγ,FPCFP )eff = (b2632keV,95Y · C95Y ) + (b2640keV,138Cs · C138Cs)
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In this case, Nnet denotes the sum of the two net-count areas of 95Y (2632 keV) and 138Cs
(2640 keV). Both ε(Eγ) and attsample(Eγ) are assumed to be the same for the two peaks, since
their energies are just 8 keV apart from each other. In the following, for simplicity's sake, a value
of Eγ = 2640 keV is used to characterise parameters related to the joint counting of the two
gamma-ray lines.

Several additional minor gamma-ray lines contribute to the gamma-ray lines 142La (2542 keV),
92Sr (1383 keV) and 138Cs (1435 keV). These additional gamma-ray lines, which are listed in
Table 5.2, cannot be separated from the main gamma-ray lines. Although they had only minor
contributions to the net-count areas, they have been systematically taken into account in the
analysis. Thus, the net-count areas of 142La (2542 keV), 92Sr (1383 keV) and 138Cs (1435 keV)
have been corrected for minor contributions from 133Te, 93Sr, 99mNb and 101Mo, in an analogous
manner to Eq. 5.2.

Table 5.2: Additional �ssion products contributing to three of the investigated gamma-ray lines.

Energy Fission product Fission products contributing to same energy

2542 keV 142La 133Te (2542 keV), 93Sr (2544 keV), 99mNb (2544 keV)
1383 keV 92Sr 101Mo (1382 keV)
1435 keV 138Cs 93Sr (1434 keV)

5.1.2 Inter-position �ssion rate ratios

Estimates of the inter-position �ssion rate ratio FRRA−B, comparing irradiations of the same
sample in di�erent lattice positions A and B, are obtained according to Eq. 5.3.

FRRA−B(Eγ) =
FA(Eγ)

FB(Eγ)
=
Nnet,A

Nnet,B

· (bγ,FPCFP )eff,B
(bγ,FPCFP )eff,A

(5.3)

Since only �ssion rates based on the same gamma-ray lines are compared, the energy dependent
detector e�ciencies ε(Eγ) cancel out when calculating these �ssion rate ratios. As the counting
of the each particular sample was always carried out in the same measurement position, indepen-
dently of the irradiation position, the correction factors attsample(Eγ) are also the same for the
two measurements and cancel out as well. For the three �ssion rate ratio estimates based on the
89Rb (2570 keV), 95Y(3576 keV) and 135I (1260 keV) gamma-ray lines, the respective gamma-ray
intensities bγ,FP also cancel out. For the �ssion rate ratio estimated with the joint counting of
the 95Y (2632 keV) and 138Cs (2640 keV) gamma-ray lines, however, the gamma-ray intensities
are part of the sum which forms the e�ective saturation and decay correction factor, as given in
Eq. 5.2, and therefore do not cancel out. The same is also valid for the �ssion rate ratios based
on gamma-ray lines 142La (2542 keV), 92Sr (1383 keV) and 138Cs (1435 keV), which contain small
contributions from other �ssion product gamma-ray lines.

5.1.3 Inter-sample �ssion rate ratios

Eq. 5.4 gives the relation for estimating the inter-sample �ssion rate ratio FRRf−s between a
fresh (f) and a spent (s) fuel sample irradiated in the same lattice position. The solid angle and
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attenuation correction factors attsample(Eγ) no longer cancel because the measurement positions
of the fresh and the spent samples were di�erent.

FRRf−s(Eγ) =
Ff (Eγ)

Fs(Eγ)
=
Nnet,f

Nnet,s

· atts(Eγ) · (bγ,FPCFP )eff,s
attf (Eγ) · (bγ,FPCFP )eff,f

(5.4)

As shown in Eq. 5.3 and 5.4, the energy dependent detector e�ciency εdet(Eγ) is not required
because only ratios of �ssion rates are considered. The determination of the quantities Nnet,
(bγ,FPCFP )eff and attsample(Eγ) are discussed in the following three sections.

5.2 Determination of net-count areas

5.2.1 Peak �tting with HyperLab software

During the WOLF-B campaign, the recorded data were saved with the ORTEC software Gamma-
Vision. Using the NORM_CORR mode [ORT 03a], two spectra were recorded in parallel: the
live-time spectrum (LTC) containing dead-time losses and the zero-dead-time spectrum (ZDT)
corrected for dead-time losses (see Section 3.1). For the determination of the net-peak areas, the
ZDT spectra were used. In general, the analysis of the spectra was very challenging. The main
di�culty was the peak shape distortion which increased with the number of irradiations because
of the fast neutron damage in the detector crystal. In contrast to the preliminary measurement
campaigns, where the spectra analysis was carried out using Gamma-Vision, a new deconvolution
software was required. Additional aspects were the high number of multiplet areas and the lack
of calibration spectra covering the energy range above 2200 keV.

Meeting these challenges, the net-count area of each gamma-ray line was determined using the
gamma-ray spectrum analysis code HyperLab [Hyp 05], which proved to be quite suitable for
the analysis of the obtained gamma-ray spectra. One characteristic of the HyperLab code is that
the non-linear spectrum deconvolution does not require an a priori peak shape calibration, since
the FWHM calibration process is highly automated. The spectrum deconvolution is performed
as described in [Hyp 05] and [Simonis 03] on a region-by-region basis using a semi-empirical
�t function. Examples of the spectrum �ts for the two energy regions containing the analysed
high-energy gamma-ray lines are shown in Fig. 5.1.

The spectrum peak evaluation within HyperLab consists of several steps [Hyp 05]. First, a
database is created by reading the spectrum �les. As a next step, the FWHM calibration
can be checked in the FWHM calibration editor where the used FWHM calibration curve is
displayed together with the width of suspected peaks identi�ed by HyperLab. Although no
exact calibration is needed for the spectrum deconvolution, a manual modi�cation of the used
calibration curve is recommended if large deviations are found between the current calibration
curve and the suspected peaks' FWHMs. In this work, the FWHM calibration was, in general,
slightly adjusted to �t the suspected peaks' FWHMs before performing the automatic �t.

The �t function used for the automatic �tting in HyperLab is a sum of six terms, which are
related to the Gaussian peak function (one term), the left and right skew peak functions (two
terms), the background functions (two terms) and a low-energy tail function (one term). The
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Figure 5.1: Example of �tted spectrum regions in HyperLab.

various parameters of the function are �tted in order to �nd the best match between the model
function and the measured counts. In the default peak evaluation setting for moderate count
rates and regular peaks, the low energy tail function is disabled. For this work, however, the
optional setting for high count rates and slightly distorted peaks was selected in order to enable
the low energy tailing.

After performing the automatic �tting, the user can check and, if necessary, �ne-tune the results.
As shown in Fig. 5.1, the original counts of the spectrum can be displayed along with the �tted
curve of the individual peaks (blue), the �tted curves of all singlet and multiplets (red), and the
�tted curve of the background components (green). In the analysis of the spectra from the fresh
and the 36GWd/t samples, �ne-tuning was used especially for the multiplet areas containing
the peaks 142La (2542 keV), 89Rb (2570 keV), 95Y (2632 keV) and 138Cs (2640 keV). The typical
reason for the �ne-tuning was the non-realistic background estimated in the �rst automatic �t.
The �ne-tuning mainly consisted of merging the initial two or more regions into a single region
covering the range from about 2500 to 2700 keV and adjusting the region boundaries, until the
background curve appeared realistic. Normally, the number of �tted peaks and their shapes
were not a�ected. Nonetheless, the net-count areas of the peaks could change depending on
the �ne-tuning. This aspect is further discussed in the frame of the reproducibility study with
respect to the �tted net-count areas in Subsection 5.2.5.

The �tting of the spectra from the 46GWd/t sample was more challenging because of the
advanced neutron damage in the detector crystal. As the focus of the WOLF-B campaign was
on the measurements of the fresh and the 36GWd/t samples, the irradiations of the higher burnt
samples took place at the end of the campaign, when the detector resolution was already very
degraded. In order to obtain a realistic background �t in these spectra, �ne-tuning was necessary
not only for the energy region from 2500 to 2700 keV, but also for the 95Y (3576 keV) peak.
Furthermore, the 95Y (2632 keV) peak had to be added manually, because the two neighbouring
peaks 95Y (2632 keV) and 138Cs (2640 keV) were not recognized as separated in the automatic
�t. Although the �tting of the two peaks after the manual �ne-tuning appeared reasonable, the
quoted uncertainties on their net-count areas were extremely high (about 30%).

After the spectrum �t, a report is created containing the net-count areas and estimated uncer-
tainties of the single peaks. Typical results for net-count areas and corresponding uncertainties
are given for the three samples in Subsection 5.2.4.
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5.2.2 Choice of analysed acquisition time

During data acquisition, the counts were saved in series of spectra. Starting 2 minutes after
irradiation, 6 spectra of 30 seconds each, followed by 11 spectra of 5minutes and 11-14 spectra
of 30minutes, were recorded. This procedure allowed one to analyse di�erent sums of spectra,
depending on the chosen gamma-ray line and the half-life of the corresponding �ssion product.
The typical starting times, duration and average dead-times of the spectra are given in Table 5.3
for irradiations of the fresh, the 36GWd/t and the 46GWd/t samples. The time delay in
Gamma-Vision for storing one spectrum, before the subsequent spectrum could be recorded,
was about 2-3 seconds.

Table 5.3: Timing and average dead-time corrections of series of gamma-ray spectra.

Fresh, irr. position K7 36GWd/t, irr. position K7 46GWd/t, irr. position I8
No. tc [sec] ta [sec] av. dT [%] tc [sec] ta [sec] av. dT [%] tc [sec] ta [sec] av. dT [%]

1 120 30 64.33 120 30 - 120 30 -
2 153 30 60.33 152 30 - 152 30 -
3 185 30 57.00 184 30 52.00 185 30 -
4 217 30 54.33 216 30 50.33 216 30 73.33
5 249 30 52.00 248 30 49.33 250 30 70.00
6 281 30 50.00 281 30 48.33 282 30 70.00
7 314 300 42.63 313 300 45.67 314 300 68.00
8 616 300 34.27 615 300 43.30 617 300 66.67
9 918 300 29.00 917 300 42.13 919 300 66.00
10 1221 300 25.17 1220 300 41.33 1221 300 65.33
11 1523 300 22.23 1522 300 40.73 1524 300 65.00
12 1825 300 19.83 1825 300 40.27 1826 300 65.00
13 2127 300 17.87 2127 300 39.87 2129 300 64.67
14 2430 300 16.20 2429 300 39.53 2431 300 64.33
15 2732 300 14.80 2732 300 39.23 2734 300 64.33
16 3034 300 13.60 3034 300 38.97 3036 300 64.00
17 3336 300 12.60 3336 300 38.73 3338 300 64.00
18 3639 1800 10.01 3639 1800 38.16 3641 1800 63.56
19 5442 1800 7.19 5441 1800 37.44 5443 1800 63.11
20 7244 1800 5.53 7243 1800 36.96 7245 1800 62.89
21 9046 1800 4.40 9046 1800 36.60 9048 1800 62.67
22 10848 1800 3.65 10848 1800 36.34 10850 1800 62.50
23 12651 1800 3.09 12651 1800 36.11 12652 1800 62.39
24 14452 1800 2.66 14453 1800 35.96 14455 1800 62.28
25 16255 1800 2.34 16256 1800 35.82 16257 1800 62.22
26 18058 1800 2.08 18058 1800 35.71 18059 1800 62.17
27 19860 1800 1.86 19860 1800 35.63 19863 1800 62.11
28 21662 1800 1.71 21662 1800 35.55 21665 1800 62.06
29 23464 1800 1.57 23464 1800 35.48 23467 1800 62.00

tc: cooling time, i.e. time between end of irradiation and start of data acquisition; ta: acquisition

time; av. dT: average dead time
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In most cases, it took longer than 2 minutes to bring the samples into the measurement position
after irradiation. Nonetheless, the data acquisition was always started 2 minutes after irradiation
to keep the same timing for all measurements. The 6 spectra of 30 seconds were not included in
the analysis.

In order to optimise the signal-to-background ratio of the investigated peaks and thus to min-
imise the statistical uncertainties on the net-count areas, di�erent sums of spectra were used for
the analysis of the peaks of the very short-lived �ssion products 89Rb and 95Y, on the one hand,
and the longer-lived �ssion products 142La, 138Cs, 135I and 92Sr on the other hand. The 89Rb
and 95Y peaks were normally �tted using the 11 spectra of 5 minutes starting 5 minutes after
irradiation. Also for the 138Cs (2640 keV) peak, which was �tted together with the neighbouring
95Y (2632 keV) peak, the �tting in HyperLab proved to be easier for this relatively short acqui-
sition time. The net-count areas of all other peaks were determined using the sum all 5-minutes
spectra and all available spectra of 30 minutes, the total acquisition time being about 6.5 to 8
hours.

In order to increase the counting statistics, the 36GWd/t and the 46GWd/t spent fuel samples
had been irradiated and measured twice in each lattice position, which are K7, L11 and M8 for
the �rst, and I8 for the latter sample. Normally, the analysis was conducted on the summed
spectra of the two measurements. An exception was the irradiation of the 36GWd/t sample
in position M8. The data acquisition after the �rst irradiation (irradiation 1 in Table 4.5) had
to be restarted because of an initial incorrect positioning. This led to a certain doubt with
respect to the accuracy of the time at which the acquisition was started1. Consequently, only
the measurements after the second irradiation in the M8 position (irradiation 6 in Table 4.5) was
included in the �nal analysis.

5.2.3 Dead-time correction and related uncertainty

The zero-dead-time counting correction of the DSPEC Plus relies on adding more than one count
at a time to a given channel, depending on the dead time in the spectrometer at the moment of
the detection. As a consequence, simple Poisson statistics are no longer applicable to the ZDT
spectrum, and the true uncertainties on the net-count areas are higher than what they would be
in a Poisson-distributed spectrum. Gamma-Vision o�ers the possibility to record, instead of the
LTC spectrum, the variance spectrum which would contain the variance of the ZDT spectrum
on a channel-by-channel basis.

According to [Pommé 02], the variance spectrum is a good estimate of the true statistical variance
of the counts accumulated in the ZDT spectrum as long as the region of interest (ROI) is a small
portion of the total spectrum. The uncertainty σ(ZDT ) on the counts N(ZDT ) in the ROI of
the ZDT spectrum can be written as:

σ2(ZDT ) = < n > ·N(ZDT ), (5.5)

with < n >= Σ(n ·n)/N(ZDT ) being the average dead-time correction on the ROI and n being
the short-term dead-time correction (i.e. the correction applied to one single count). The value√
< n > represents the deviation of the uncertainties from the Poisson distribution.

1The acquisition times were recorded accurately within Gamma-Vision. However, as the clock of the laptop
used for the data acquisition was not working correctly, it was necessary to note the time at which each data
acquisition was started in order to know the exact cooling times.
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In this work, however, it was decided to record both the LTC and ZDT spectra in order to have
an estimate of the average dead times for the full spectrum expressed as the real-to-live time
ratio. Not having the variance spectra, the true variance can be calculated by Eq. 5.5 using an
average dead time correction < n > = Σn/Σ1 = N(ZDT ), as in the dual loss-free counting
spectrum technique. This approximation holds for a large range of conditions [Pommé 03]. In
the current work, however, we chose to further approximate < n > by the real-to-live time ratio,
as the approximation < n >=Σn/Σ1 cannot readily be calculated on sums of spectra.

As illustrated in Table 5.3, the dead time decreased slowly during the measurements of the
irradiated spent fuel samples. A good approximation of the dead time is thus given by the real-
to-live time ratio of the �rst 5-minutes spectrum. Typically, for the 36 GWd/t and 46 GWd/t
samples, the factor

√
< n > for the uncertainty, as compared to a Poisson distribution, is about

1.3 and 1.8, respectively.

During the measurements of the irradiated fresh fuel sample, the dead time strongly varied,
decreasing from about 43% for the �rst 5-minutes spectrum to less than 2% in the last 30-
minutes spectrum. As most counts of 138Cs, 89Rb and 95Y are recorded in the �rst half hour
of the measurements, the real-to-live time ratio of the �rst 5-minutes spectrum is used as an
approximation for

√
< n >, which is about 1.4. For the longer-lived �ssion products, i.e. 135I

, 92Sr and 142La, most of the recorded counts are recorded after the �rst hour, when the dead
time is signi�cantly lower. A fair approximation of the uncertainty factor

√
< n > can thus, in

this case, be obtained from the �rst 30-minutes spectrum and is about 1.1.

Concluding, the current experience has shown that fractioning the measurement time with sev-
eral spectra allows easier analysis of �ssion products with di�erent half-lives but signi�cantly
complicates the uncertainty treatment related to the zero-dead-time corrections. In the future,
for dead times larger than 20%, where

√
< n > is higher than 1.1, it is recommended that the

zero-dead-time and variance spectra are recorded in a single run.

5.2.4 Typical results for net-count areas

As an example, the obtained net-count areas for the fresh, 36GWd/t and 46GWd/t samples
are listed in Table 5.4, for the irradiation positions K7 and I8, where the quoted uncertainties
include the dead-time related factors described in the previous subsection. Although the fresh
fuel sample had been irradiated at lower power, the obtained net counts are much higher, mainly
because the fresh sample was measured closer to the detector than the spent ones. To increase
the statistics for the spent fuel measurements, the 36GWd/t and the 46GWd/t samples were
irradiated and measured twice in each lattice position. In Table 5.4, the net-count areas are
given for the sum of spectra from both irradiations in K7 and I8, respectively, these being the
values used for the derivation of �ssion rate ratios.

5.2.5 Reproducibility of the results

Apart from the increase in counting statistics, the repeated irradiations of the 36GWd/t sample
and the 46GWd/t sample in each lattice position also served to investigate the reproducibility
of the measurements. Thus, the reproducibility of the determination of net-count areas using
HyperLab could be tested by comparing the individual results from the two irradiations in the
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Table 5.4: Net-count areas Nnet derived with HyperLab.

Fresh sample, K7 36GWd/t sample, K7? 46GWd/t sample, I8?

Energy ta Nnet ta Nnet ta Nnet

2542 keV ∼7.5 h 44234 (0.8%) ∼6 h 10530 (2.7%) ∼6 h 13114 (5.5%)
2570 keV 55min 18723 (1.6%) 55min 4190 (4.5%) 55min 4217 (9.2%)
2640 keV 55min 34503 (3.9%) 55min 10095 (3.0%) 55min 9881 (29.7%)
3576 keV 55min 15740 (1.4%) 55min 6008 (2.2%) 55min 6671 (4.4%)
1260 keV ∼7.5 h 32036 (2.1%)
1383 keV ∼7.5 h 171557 (0.7%)
1435 keV 55min 111964 (0.8%)

ta: acquisition time, starting in each case 5min after irradiation.
?In each of these cases, the counts were obtained for the sum of the acquired spectra from

the two irradiations at the same lattice position.

same lattice position. Provided that the reactor power during the two irradiations was the same
and that the analysed spectra had the same cooling times and measurement times, the obtained
net-count areas in the investigated gamma-ray peaks would also be expected to be the same.

The reactor power during irradiation was monitored by BF3 detectors and �ssion chambers
located near the inner periphery of the graphite driver region of the reactor. Comparing the
monitor signals recorded during two irradiations conducted at the same nominal reactor power
of 800W, it was shown that the reactor power was well reproducible (less than 0.4% deviation),
so that no corrections were necessary with respect to the power level.

Regarding the cooling and measurement times, all measurements were performed with the same
timing (see Subsection 5.2.2), except for the �rst irradiation of the 36GWd/t sample in position
M8. Because of the 2 to 3 seconds needed in Gamma-Vision for saving one spectrum and
initiating the next one, a slight shift in the timing of the measurements was possible. However,
for the repeated irradiations in L11 and K7 (36GWd/t sample) and I8 (46GWd/t sample), the
recorded measurement times deviate by a maximum of 1 second over the entire acquisition time.

The acquisition of the gamma-ray spectra was started manually as accurately as possible. It
was shown, with the help of a sensitivity study, however, that a delay of 1 second in the starting
time of the measurements would a�ect the recorded net-count areas of the gamma-ray lines from
the two shorter-lived �ssion products 89Rb and 95Y quite signi�cantly, i.e. by 1.7% and 0.5%,
respectively. This relatively high sensitivity has to be taken into account when interpreting the
conducted reproducibility test. It is also important for the derivation of the saturation and decay
correction factors CFP (see Subsection 5.3.5).

The ratios of the net-count areas obtained from the two repeated irradiations of the 36GWd/t
sample in the position K7 and in the position L11 are shown in Fig. 5.2 for equivalent sums of
spectra. The ratios for the 142La (2542 keV) peak are obtained from spectra measured from 5min
to 6.5 h after irradiation. The ratios for the other peaks are obtained from spectra measured from
5min to 60min after irradiation. The results are seen to agree within 1-2 standard deviations.
This indicates a satisfactory reproducibility of the HyperLab �ts for this sample, though the
uncertainties on the ratios are relatively high (ranging from 4 to 9%).

During the spectrum analysis, the necessary �ne-tuning done by the user on the background �t
after the automatic HyperLab spectrum �tting a�ected the obtained net-count areas. A test
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Figure 5.2: Reproducibility test of net-count areas obtained with HyperLab.

carried out on the spectra from the the 36GWd/t sample irradiated in the position K7 showed
that the 89Rb (2570 keV) peak was especially sensitive to the chosen boundaries of the �tted
region. Modifying the region boundaries by 10 to 80 channels (5 to 80 keV) resulted in changes
of up to 5% on the net-count area, although the peak �t and the background �t appeared equally
realistic and the quoted uncertainties on the net-count areas remained the same. For the 142La
(2542 keV) and 138Cs (2640 keV) peaks, the maximum change in the net-count area was about
2%, whereas the net-count area of the 95Y (3576keV) peak, not being part of a multiplet area,
was even less sensitive to �ne-tuning by the user. Due to the high uncertainties, however, it is
hardly possible to exactly quantify this user-dependency of the results.

The equivalent reproducibility test of the peak �tting for the 46GWd/t sample showed that
the net-count areas in the four peaks could be reproduced within 1-2 standard deviations. The
uncertainties on the ratios of net-count areas were much higher in this case, varying from 8-20%
to as high as 40% for the 138Cs (2640 keV) peak. The main reason for the higher uncertainties
was the more di�cult spectrum �tting due to the highly distorted peaks as a consequence of the
advanced neutron damage.

In general, if in future experiments it becomes possible to reduce the statistical uncertainty of
the investigated peaks on the one hand, and to eliminate the neutron damage in the detector
crystal on the other hand, the reproducibility of the peak �tting can be expected to improve
correspondingly.

5.3 Saturation and decay corrections

The factor CFP is �ssion-product dependent and accounts for the build-up (saturation) of the
considered �ssion product during irradiation and its decay after irradiation. The gamma-ray
intensity bγ,FP is the total fraction of the β−decays followed by the emission of a gamma-ray of
energy Eγ. Consequently, the product (bγ,FPCFP ) relates the number of gamma-rays of energy
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Eγ emitted by the �ssion product to the number of �ssions occurring in the sample during
irradiation.

The analysed gamma-ray lines, together with the related �ssion products and their parent iso-
topes and isomeric states, are summarised in Table 5.5. Among the investigated �ssion products,
only 138Cs has an isomeric state with a non-negligible half-live. The parent isotope 138Xe only
decays into the ground state 138Cs and not into the isomeric state 138mCs, which eases the satura-
tion and decay corrections2. An extensive list of the various nuclear data and their uncertainties
used in this research work can be found in AppendixA.

Table 5.5: List of considered parent isotopes and isomeric states for all �ssion products included
in the analysis.

Gamma-ray energy Fission product (T1/2) Parent (T1/2) Isomeric state (T1/2)

2542 keV 142La (1.52 h) 142Ba (10.6min) -
2570 keV 89Rb (15.4min) 89Kr (3.2min) -
2632 keV 95Y (10.3min) 95Sr (23.9 sec) -
2640 keV 138Cs (33.4min) 138Xe (14.1min) 138mCs (2.9min)
3576 keV 95Y (10.3min) 95Sr (23.9 sec) -
1260 keV 135I (6.57 h) 135Te (19 sec) -
1383 keV 92Sr (2.71 h) - -
1435 keV 138Cs (33.4min) 138Xe (14.1min) 138mCs (2.9min)

Nuclear data are extracted from the JEFF-3.1 library.

The most general case in this work is the consideration of saturation and decay of 138Cs. The
corresponding correction factor CFP is given by Eq. 5.63:

CFP =

(
Yind,2
λ2

+
i12 · λ1 · Ycum,2
λ2 · (λ1 − λ2)

+
im · λm · Ycum,m
λ2 · (λm1 − λ2)

)
· f(λ2)

+

(
i12 · λ2 · Ycum,1
λ1 · (λ2 − λ1)

)
· f(λ1)

+

(
im · λ2 · Ycum,m
λm · (λ2 − λm)

)
· f(λm) (5.6)

with f(λx) =
(
1− e−λxti

)
· e−λxtc ·

(
1− e−λxta

)
where ti is the irradiation time, tc the cooling time between irradiation and measurement, and
ta the acquisition time. The index 1 refers to the parent of the detected �ssion product, the
index 2 to the �ssion product itself and the index m to its isomeric state. Ycum and Yind are the
cumulative and independent e�ective �ssion yields, and l1, l2 and lm are the decay constants.
As mentioned, Eq. 5.6 describes the case of 138Cs. Here, the parent of the �ssion product does not
decay to the isomeric state but only to the ground state of the �ssion product, the corresponding

2Note that 133Te, which has a minor contribution to the 142La (2542 keV) peak, also has an isomeric state. In
this case, the decay of the precursor 133Sb to the isomeric state 133mTe was neglected.

3During the irradiation of a spent fuel sample, a small amount of 138Cs is produced by the 137Cs (n,γ) reaction,
137Cs being a long-lived �ssion product in the fuel. However, this contribution has been shown to be negligible
and is therefore not considered in the saturation and decay correction.
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branching ratio being i12. The branching ratio for the decay of the isomeric state to the ground
state is expressed with im.

All other �ssion products do not have isomeric states (or these isomeric states do not decay into
the ground state), so that Eq. 5.6 reduces to:

CFP =

(
Yind,2
λ2

+
i12 · λ1 · Ycum,2
λ2 · (λ1 − λ2)

)
· f(λ2) +

(
i12 · λ2 · Ycum,1
λ1 · (λ2 − λ1)

)
· f(λ1) (5.7)

As regards 92Sr, the very short half-life of the parent isotope 92Rb (T1/2=4.5 s) makes the
corrections negligible and Eq. 5.6 simpli�es even further to:

C92Sr =
Ycum,2
λ2

· f(λ2) (5.8)

Equations 5.6 to 5.8 are derived for a single irradiation of the sample followed by a single mea-
surement. During the data acquisition, the counts were saved in a series of spectra, as described
in Subsection 5.2.2. Later, the analysis was carried out on appropriate sums of spectra. As men-
tioned earlier, the time delay in Gamma-Vision to store one spectrum and start the subsequent
one was about 2 to 3 seconds. As the time was accurately recorded within Gamma-Vision, the
�idle� time between the di�erent spectra is accounted for by calculating the correction factor
CFP,spec separately for each single spectrum spec (having a cooling time tc and an acquisition
times ta) and then summing them.

During the WOLF-B campaign, only one irradiation was conducted per day such that most
of the studied �ssion products produced during previous irradiations had completely decayed.
However, for 135I, which has a 6.6 hour half-life, previous irradiations have also to be taken into
account. This is done by summing the correction terms CFP,i over all considered irradiations i,
with the cooling time tc updated to account for the time between each considered past irradiation
and the current measurement.

Finally, the correction factor CFP is formed as a sum over all considered irradiations i and all
single spectra spec which are part of the analysed measurement:

CFP =
∑
i

∑
spec

CFP,i,spec (5.9)

In the special cases where the 36GWd/t sample and the 46GWd/t sample were irradiated twice
in the same lattice position and the counts of the two measurements are summed for the analysis,
the two correction terms CFP were obtained separately and then summed.

5.3.1 E�ective �ssion yields

As indicated in Eq. 5.6 and Eq 5.7, the e�ective independent �ssion yield of a �ssion product has
to be used if the half-life of its parent isotope is not negligible. Unfortunately, the independent
�ssion yields of most of the investigated �ssion products have extremely high uncertainties (e.g.
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30-36% on the thermal independent �ssion yields of 95Y, 138Cs, 89Rb and 142La). To avoid these
high uncertainties, the e�ective independent �ssion yields have been derived as the di�erence
between the e�ective cumulative �ssion yields of the �ssion product and the e�ective cumulative
�ssion yields of the parent isotope (and of the isomeric state, in the case of 138Cs) weighted by
the branching ratios i12 (and im):

Yind,2 = Ycum,2 − i12 · Ycum,1 − im · Ycum,m (5.10)

The e�ective cumulative �ssion yields Ycum of the di�erent isotopes are determined according to
Eq. 5.11 as the sum of the cumulative �ssion yields for the main �ssioning isotopes 235U, 238U,
239Pu and 241Pu, weighted by their contributions to the total number of �ssions aU5, aU8, aP9

and aP1. The latter four values have been obtained, for each sample in the di�erent irradiation
positions, on the basis of the whole-reactor Monte Carlo model which is described in detail in
Subsection 6.1.1 of the next chapter. For �ssions in 235U, 239Pu and 241Pu, thermal �ssion yields
Yth are used, whereas for 238U, the fast �ssion yield Yf is applied. This assumption is valid
because more than 99% of the �ssions in 235U,239Pu and 241Pu occurred in the thermal energy
group (0 - 9.1 keV), whereas more than 99% of the �ssions in 238U occurred in the fast energy
group (9.1 keV - 10MeV).

Ycum = aU5 · Ycum,th,U5 + aU8 · Ycum,f,U8 + aP9 · Ycum,th,P9 + aP1 · Ycum,th,P1 (5.11)

The contributions ai to the total number of �ssions are summarised for the di�erent samples in
Table 5.6.

Table 5.6: Contributions of �ssioning isotopes to total �ssions.

Sample Lattice position aU5 aU8 aP9 aP1

fresh K7 96.4% 3.6%
L11 96.8% 3.2%
M8 97.7% 2.3%

36GWd/t K7 50.7% 4.5% 38.8% 6.0%
L11 51.4% 4.0% 38.6% 6.0%
M8 53.1% 2.9% 38.0% 6.0%

46GWd/t I8 27.4% 3.7% 57.1% 11.8%

For the fresh and 36GWd/t samples, the two positions K7 and L11 lead to similar distributions
of �ssions in 235U, 238U, 239Pu and 241Pu due to the similar neutron spectra in these positions.
For the moderator position M8, which has a more thermal spectrum because of the higher
amount of moderator, the contribution from 235U is slightly higher and the contribution from
238U accordingly lower. In general, however, the contributions ai do not strongly vary for the
di�erent irradiation positions of the two samples. Generally speaking, the major part of �ssions
in the fresh sample occurred in 235U. In the 36GWd/t spent sample, 235U and 239Pu were the main
�ssioning isotopes, but with still more �ssions in 235U than in 239Pu. In the 46GWd/t sample,
most �ssions occurred in 239Pu, and the relative contribution of 241Pu doubled compared to the
36GWd/t sample.

81



Chapter 5. Derivation of measured �ssion rates in fresh and burnt fuel

5.3.2 Error propagation

It is seen, from Eq. 5.6, that the correction-term product (bγ,FPCFP )eff depends on a large
number of variables xi. Assuming that all these variables are independent, the combined standard
uncertainty sv(bγ,FPCFP )eff is determined with the error propagation law:

σ(bγ,FPCFP )eff =

√√√√∑
i

σ2
xi

(
∂(bγ,FPCFP )eff

∂xi

)2

(5.12)

Since times were carefully recorded during the measurements, the variables ta and ti can be
considered as exact values. Also the cooling time tc between irradiation and measurement can
be considered exact for the error propagation; nevertheless, a sensitivity study was performed
with respect to small shifts in tc (see Subsection 5.3.5). Furthermore, the variables aU5, aU8,
aP9, aP1, obtained on the basis of the Monte Carlo simulations, are not included in the current
uncertainty analysis, as their Monte Carlo uncertainties were less than 0.2%. A sensitivity study
on di�erent parameter sets ai is presented separately in Subsection 5.3.4.

Finally, the uncertainty analysis is carried out based on a set of 18 variables: x = {bg,FP ,
Ycum,1,th,U5, Ycum,1,f,U8, Ycum,1,th,P9, Ycum,1,th,P1, Ycum,2,th,U5, Ycum,2,f,U8, Ycum,2,th,P9, Ycum,2,th,P1,
Ycum,m,th,U5, Ycum,m,f,U8, Ycum,m,th,P9, Ycum,m,th,P1, l1, l2, lm, i12, im} for the correction regarding
138Cs, and on a reduced set of 12 variables for the other �ssion products without isomeric states.
Again, the indices 1, 2 and m refer to the parent isotope of the detected �ssion product, the
�ssion product itself and its isomeric state, respectively; th and f indicate thermal and fast
�ssion yields. If additional �ssion products contribute to a particular gamma-ray line (as is the
case for 142La (2542 keV) and 138Cs (2640 keV), for example), the vector x is extended by an
equivalent set of variables for each additional �ssion product.

As in this study only ratios of �ssion rates are derived for the �nal results, the error propagation
has ultimately to be conducted, according to Eq. 5.12, on the ratios of e�ective correction factors
(bγ,FPCFP )eff,A/(bγ,FPCFP )eff,B and (bγ,FPCFP )eff,f/(bγ,FPCFP )eff,s.

Table 5.7: Cumulative �ssion yields [%] and uncertainties of considered �ssion products (JEFF-
3.1 data).

Energy
Fission
product Ycum,th,U5 Ycum,th,P9

Parent
isotope Ycum,th,U5 Ycum,th,P9

2542 keV 142La 5.86 (1.7%) 4.97 (1.1%) 142Ba 5.80 (1.7%) 4.68 (1.3%)
2570 keV 89Rb 4.69 (1.2%) 1.68 (1.9%) 89Kr 4.43 (1.4%) 1.42 (2.7%)
2640 keV 138Cs 6.69 (1.7%) 5.94 (2.7%) 138Xe 6.41 (1.8%) 5.02 (3.3%)
3576 keV 95Y 6.47 (1.1%) 4.82 (2.0%) 95Sr 5.28 (2.2%) 3.23 (5.2%)
1260 keV 135I 6.39 (3.4%) 6.33 (3.7%) 135Te 3.84 (7.1%) 2.14 (17.5%)
1383 keV 92Sr 6.03 (1.1%) 3.00 (2.2%)
1435 keV 138Cs 6.69 (1.7%) 5.94 (2.7%) 138Xe 6.41 (1.8%) 5.02 (3.3%)

Typical resulting uncertainties sv(bγ,FPCFP )eff on the di�erent gamma-ray lines are indicated in
Table 5.8 in the following subsection. Among the various nuclear data, the cumulative �ssion
yields were found to have the main contribution to these uncertainties. The cumulative 235U and
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239Pu �ssion yields of the �ssion products and their parent isotopes are given in Table 5.7 along
with their uncertainties, which are in general between 1 and 5%. As mentioned, a complete list
of nuclear data uncertainties is included in AppendixA.

5.3.3 Typical results

For the calculation of the saturation and decay correction factors (bγ,FPCFP )eff and their com-
bined uncertainties, a Matlab routine has been set up, which receives as input data the irradiation
history of the sample, the starting time and the duration of the measurements and all required
nuclear data. The results for the measurements of the fresh, 36GWd/t and 46GWd/t samples
are given in Table 5.8 for the various investigated gamma-ray lines. The 1σ uncertainties strongly
depend on the �ssion product. For the high-energy gamma-ray lines, they vary from about 3%
for the 142La (2542 keV) peak to 8.5% for the 95Y (3576 keV) peak.

The results for the fresh and the 36GWd/t samples shown in Table 5.8 have been obtained for ir-
radiations in position K7. However, for a given sample, the irradiation, cooling and measurement
times were kept the same and the e�ective �ssion yields were almost constant for the di�erent
irradiation positions. Consequently, the factors (bγ,FPCFP )eff for the irradiation positions M8
and L11 are very similar to those listed in Table 5.8.

Table 5.8: Typical saturation and decay correction factors (bγ,FPCs,FP )eff

Fresh 36GWd/t 46GWd/t
Gamma-ray line (bγ,FPCf,FP )eff (bγ,FPCs,FP )eff (bγ,FPCs,FP )eff

142La (2542 keV) 10.34 (2.8%) 9.95 (2.6%) 9.46 (2.5%)
89Rb (2570 keV) 4.07 (6.3%) 3.07 (6.3%) 2.28 (6.3%)
138Cs (2640 keV) 6.34 (3.4%) 6.82 (3.5%) 6.64 (3.5%)

95Y (3576 keV) 2.24 (8.5%) 2.87 (8.5%) 2.61 (8.5%)
135I (1260 keV) 18.02 (9.7%)
92Sr (1383 keV) 79.96 (1.2%)

138Cs (1435 keV) 46.73 (2.8%)

The quoted values refer to irradiation in positions K7 (fresh and 36GWd/t)

and I8 (46GWd/t).

As mentioned earlier, it is the ratios of the correction factors which are needed to derive �ssion
rate ratios. For the inter-position �ssion rate ratios, which only compare the same fuel type
in di�erent irradiation positions, the individual correction factors are almost the same and the
nuclear data uncertainties thus compensate almost entirely. The combined uncertainties on the
ratios of correction factors are less than 0.03%.

The ratios of the correction factors for the inter-sample �ssion rate ratios are listed in Table 5.9.
The combined 1σ uncertainties on the ratios (bγ,FPCFP )eff,f/(bγ,FPCFP )eff,s for the fresh and
the 36GWd/t samples are 0.5-1%. The correction factors and their uncertainties do not compen-
sate entirely because, as there is no plutonium in the fresh sample, the corresponding e�ective
�ssion yields are not the same in the two samples. This e�ect is stronger for the comparison
between the fresh and the 46GWd/t sample. Since most of the �ssions in the 46GWd/t sample
occur in plutonium, the uncertainties on the �ssion yields compensate less, and the combined
uncertainties on the ratios (bγ,FPCFP )eff,f/(bγ,FPCFP )eff,s are 1-1.4%.
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Table 5.9: Ratios of correction factors (bγ,FPCs,FP )eff as needed for inter-sample �ssion rate
ratios.

fresh
36GWd/t

fresh
46GWd/t

Gamma-ray line (bγ,FPCFP )eff,f
(bγ,FPCFP )eff,s

(bγ,FPCFP )eff,f
(bγ,FPCFP )eff,s

142La (2542 keV) 1.039 (0.8%) 1.093 (1.2%)
89Rb (2570 keV) 1.096 (0.5%) 1.444 (1.0%)
138Cs (2640 keV) 0.930 (1.0%) 0.970 (1.4%)

95Y (3576 keV) 0.783 (0.9%) 0.854 (1.4%)

5.3.4 Sensitivity study regarding the parameters aU5, aU8, aP9 and aP1

The contributions aU5, aU8, aP9 and aP1 of the �ssioning isotopes 235U, 238U, 239Pu and 241Pu to
the total number of �ssions are needed for the determination of the e�ective �ssion yields. They
were calculated with an MCNPX whole-reactor model and their purely statistical Monte Carlo
uncertainties are less than 0.2%. They strongly depend, however, on the modelled composition of
the fuel samples in the MCNPX calculations. Regarding the fresh fuel sample, the composition
is well known and thus not a�ected by any such uncertainty. With respect to the spent fuel
samples, the compositions are not known exactly and generally need to be measured.

For the present work, the isotopic compositions of the spent fuel samples had been determined
by post-irradiation examination (PIE) measurements on an adjacent section of the fuel pin from
which the sample had been cut. To study the sensitivity of the results to di�erent isotopic com-
positions, the fuel composition of the 36GWd/t sample was also modelled according to results
of burn-up calculations using the deterministic code CASMO-4E [Rhodes 04] (see Section 2.3).

The sensitivities of the �ssion contributions aU5, aU8, aP9 and aP1, and the resulting sensitivity
of the saturation and decay correction (bγ,FPCFP )eff , to the measured and calculated isotopic
compositions of the 36GWd/t sample are listed in Table 5.10 for the irradiation position K7.

It is seen that the parameter aU8 is very similar for the two isotopic compositions, whereas aU5,
aP9 and aP1 change by -3.6%, +3.4% and +9.2%, respectively. This corresponds to the deviation
in 235U, 239Pu and 241Pu densities between the measured and the calculated compositions (see
Subsection 6.1.2).

The correction factors for the 89Rb (2570 keV) peak are most sensitive to the change in the
parameter set aU5, aU8, aP9 and aP1 because of the very di�erent �ssion yields for 235U and
239Pu �ssions. In contrast to this, the results based on 142La and 138Cs are very insensitive to
the exact knowledge of the individual contributions of the major �ssioning isotopes.

Applying the calculated CASMO-4 isotopic composition to the 36GWd/t sample irradiated in
the other two positions L11 and M8 leads to very similar changes in the parameter sets ai.
Consequently, similar sensitivities of the correction factors are expected for these positions as
well.

As mentioned earlier, the measured isotopic compositions of the spent fuel samples have been
used for the derivation of �ssion rates in this work. Nonetheless, the sensitivities quoted in
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Table 5.10: Sensitivity of contributions to total number of �ssions and of correction factors
(bγ,FPCs,FP )eff to di�erent isotopic compositions of the 36GWd/t sample modelled in MCNPX.

aU5 aU8 aP9 aP1

Meas. Composition 0.507 0.046 0.388 0.060
CASMO composition 0.489 0.045 0.401 0.065

Ratio CASMO/meas. 0.964 0.992 1.034 1.092

142La (2542 keV) 89Rb (2570 keV) 138Cs (2640 keV) 95Y(3576 keV)
(bγ,FPCs,FP )eff (bγ,FPCs,FP )eff (bγ,FPCs,FP )eff (bγ,FPCs,FP )eff

Meas. composition 9.95 3.71 6.82 2.85
CASMO composition 9.94 3.65 6.81 2.84

Ratio CASMO/meas. 1.002 1.016 1.001 1.004

All quoted values refer to the irradiation position K7.

Table 5.10 should be considered for future applications of the developed measurement technique,
since they show a clear disadvantage of 89Rb (as compared to the other three �ssion products)
in situations where measurements need to be carried out on fuels for which the composition is
not exactly known.

5.3.5 Sensitivity study regarding the cooling time

During the gamma-ray measurements, the data acquisition was done automatically using a
Gamma-Vision job-�le. The job-�le was started manually 2 minutes after irradiation of the
sample. Although care was taken to guarantee a reproducible starting time of the job-�le, a
sensitivity study has been carried out in this context. This was done by deriving the saturation
and decay correction factors (bγ,FPCFP )eff of the four gamma-ray lines 142La (2542 keV), 89Rb
(2570 keV), 138Cs (2640 keV) and 95Y (3576 keV), assuming that the job-�le had been started
with a delay of 1 or 3 seconds. For example, a delay of 1 second would increase the cooling
time tc of each spectrum by 1 second, whereas the acquisition time ta would stay the same. The
sensitivities of the correction factors are given in Table 5.11 for the irradiation of the 36GWd/t
sample.

Table 5.11: Sensitivities of correction factors (bγ,FPCFP )eff to changes in cooling time tc

Gamma-ray line [%/1sec] [%/3sec]

142La (2542 keV) 0.16 0.21
89Rb (2570 keV) 1.67 1.80
138Cs (2640 keV) 0.08 0.16

95Y(3576 keV) 0.51 0.73

The results based on 142La and 138Cs are not very sensitive to the changes of 1 and 3 seconds
in the cooling times because they and their parent isotopes have relatively long half-lives. The
results based on 95Y show a slightly higher sensitivity because it has a shorter half-life (10.2min).
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The results based on 89Rb show an even higher sensitivity to the extension of the cooling time,
mainly because of the half-life of the parent isotope 89Kr, which is 189 seconds. On the one
hand, this half-life is short enough so that a signi�cant amount (0.35%) of 89Kr decays within
1 second. On the other hand, it is long enough so that 5 minutes after irradiation, when the
measurements of the analysed spectra have been started, there is still 33% of the initial amount
of 89Kr left in the fuel.

Extreme precaution in recording the measurement timing is thus necessary in order to guarantee
the reproducibility of measurements. As an alternative solution, to reduce the sensitivity of the
results, one could start the measurements later after the end of irradiation, but this would be
at the expense of increasing the statistical uncertainty.

5.4 Solid angle and attenuation corrections

The ratio of solid angle and attenuation correction factors att(Eγ), which is needed for the
derivation of �ssion rate ratios between fresh and spent fuel samples, was determined using an
MCNPX [Pelowitz 05] model of the measurement set-up. The MCNPX model, typical solid
angle and attenuation correction factors and their sensitivities are detailed below.

5.4.1 MCNPX model of the measurement set-up

An already existing model of the sample changer [Plaschy 07a] was modi�ed to represent the
WOLF-B set-up with the detector positioned inside the body of the sample changer as shown in
Fig. 5.3. Technical drawings were used to accurately model all steel parts of the sample changer
with respect to their dimensions and materials; special care was taken for relevant parts located
between the samples and the detector.

The HPGe detector was modelled according to the product data sheet which contains the di-
mensions of the active germanium crystal, the thickness of the absorbing inactive germanium
layer (dead layer) and the position of the crystal inside the aluminium cap. The dimensions and
the position of the cavity inside the germanium crystal are not speci�ed in the data sheet, and
were modelled according to measurements performed in the framework of a previous PhD thesis
[Caruso 07]. A cross-section of the modelled detector is shown in Fig. 5.4.

The fresh and spent fuel samples were modelled in their measurement positions as illustrated
in Fig. 5.3. Three di�erent measurement set-ups were modelled, one for each sample. The
composition of the fresh fuel sample was modelled according to its average nominal speci�cations.
The isotopic composition of each burnt fuel sample was modelled, as mentioned earlier, according
to the results of PIE measurements on an adjacent section of the fuel pin from which the sample
had been cut. The models of the fresh and the spent fuel samples are described in more detail
in the next chapter (see Subsection 6.1.2).

Gamma-ray sources with energies of 2542 keV, 2570 keV, 2640 keV and 3576 keV were distributed
in the measured samples according to the axial �ssion pro�les and transported to the detec-
tor. The axial total �ssion pro�les in the samples were obtained with the whole-reactor model
(see Subsection 6.1.1) and di�ered only marginally for the three di�erent irradiation positions.
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Fresh sample 36GWd/t burnt sample 46GWd/t burnt sample

Fresh sample Burnt sample

Sample Sample

Typical axial
fission profile in sample

Axial positions of measured fuel samples

Radial positions of measured fuel samples

Measured irradiated sampleInactive fresh samples

Detector

Detector

Figure 5.3: Schematic views of fresh and burnt fuel samples inside the sample changer.

Aluminium cap
Active germanium crystal

Cavity

Inactive germanium layer

Figure 5.4: Cross-section of model of the germanium detector.

Nonetheless, the simulations were conducted for all investigated irradiation positions. The mea-
surement set-up was the same for all irradiations of a given sample. Radially, the gamma-ray
sources were assumed to be homogeneously distributed. Although the radial distribution of
�ssions (and thus that of gamma-ray emitting �ssion products) in a fuel sample is certainly
not homogeneous, the corresponding sensitivity study presented in Subsection 5.4.3 has shown
a limited impact on the detected response.
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The solid angle and attenuation correction factors were obtained as the detector response per
source gamma-ray in the sample. The detector response was tallied as the average uncollided
gamma-ray �ux in the active germanium crystal of the detector (see Fig 5.4).

5.4.2 Typical results

Results for the tallied average uncollided gamma-ray �uxes in the active germanium layer for
the fresh, the 36 and the 46GWd/t burnt samples are summarised in Table 5.12. The quoted
values correspond to irradiations at the lattice positions K7 (fresh and 36 GWd/t samples) and
I8 (46GWd/t sample). Results for the fresh and 36GWd/t samples irradiated in positions L11
and M8 do not di�er signi�cantly from those shown in Table 5.12 because of the similar axial
�ssion pro�les.

Table 5.12: Tallied uncollided �uxes in active germanium layer of the detector.

Fresh 36GWd/t 46GWd/t

Gamma-ray line [cm−2sg−1]? [cm−2sg−1]? [cm−2sg−1]?

142La (2542 keV) 1.02·10−6 (0.1%) 4.20·10−8 (0.3%) 5.15·10−8 (0.3%)
89Rb (2570 keV) 1.04·10−6 (0.1%) 4.32·10−8 (0.3%) 5.29·10−8 (0.3%)
138Cs (2640 keV) 1.09·10−6 (0.1%) 4.63·10−8 (0.3%) 5.66·10−8 (0.3%)

95Y (3576 keV) 1.74·10−6 (0.1%) 8.92·10−8 (0.3%) 1.08·10−7 (0.2%)
?sg = source gamma-ray

The 1σ uncertainties on the tallied average gamma-ray �uxes are about 0.1% and 0.3% for
source gamma-rays emitted in the measurement positions for the fresh and the spent fuel sam-
ples, respectively. The resulting Monte Carlo uncertainty on the ratio between fresh and spent
fuel results is thus about 0.3%. Note that these uncertainties are only statistical Monte Carlo
uncertainties (depending on the number of simulated source gamma-rays). The sensitivity of the
detector response to other aspects of the modelling are presented in the following subsection.

The resulting ratios of solid angle and attenuation correction factors between the fresh and
the 36GWd/t sample and the fresh and the 46GWd/t samples are summarised in Table 5.13.
Depending on the gamma-ray energy, 15 to 25 times more gamma-rays reached the detector from
the fresh-fuel measurement position than from the spent-fuel ones. Such large factors make the
measured inter-sample �ssion rate ratios highly sensitive to the exact positioning of the spent
fuel sample. This sensitivity is quanti�ed in the following subsection.

The correction factors atts(Eγ) for the 36GWd/t sample are about 20% higher than for the
46GWd/t sample, although the two samples were measured in the same position. This is due
to the additional presence of two fresh samples between the measured sample and the detector
when measuring the 36GWd/t sample (see Fig. 5.3). When the 46GWd/t sample was measured,
the two revolver channels between sample and detector were empty, because these were the
channels containing the 36GWd/t and the 64GWd/t samples, which were moved below the
sample changer to prevent any interference of their intrinsic activities during the measurement.
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Table 5.13: Ratios of solid angle and attenuation corrections factors att(Eγ).

fresh
36GWd/t

fresh
46GWd/t

Gamma-ray line attf (Eγ)

atts(Eγ)

attf (Eγ)

atts(Eγ)

142La (2542 keV) 24.21 (0.3%) 19.65 (0.3%)
89Rb (2570 keV) 24.04 (0.3%) 19.53 (0.3%)
138Cs (2640 keV) 23.55 (0.3%) 18.16 (0.3%)

95Y (3576 keV) 19.57 (0.3%) 16.14 (0.2%)

5.4.3 Sensitivity studies

Three aspects were investigated with respect to the sensitivities of the computed solid angle
and attenuation correction factors: the z-position (elevation) of the samples inside the sample
changer, the size of the modelled cavity in the germanium crystal of the detector, and the radial
distribution of the gamma-ray sources in the fuel samples.

• Elevation of the samples in the MCNPX model of the sample changer

The position of the fuel pellets inside the cladding and the overcladding was modelled as ex-
actly as possible following the available technical drawings. However, the fuel could be slightly
displaced axially inside the cladding. In addition, the exact position of the sample inside the
sample changer could slightly di�er from the assumed one.

In this sensitivity study, the modelled positions of the fuel samples were shifted up by 1 and 5mm
in the z-direction, and the new solid angle and attenuation correction factors were calculated
and compared to the original ones. The sensitivities for the 2542 keV and the 3576 keV gamma-
ray sources are listed in Table 5.14 for the fresh (attf (Eγ)) and the 36GWd/t (atts(Eγ)) fuel
samples.

Table 5.14: Sensitivities of correction factors att(Eγ) to changes of sample elevation in the
MCNPX model of the sample changer.

[%/1mm] [%/5mm]

Fresh attf (2542keV ) 0.15 0.73
attf (3576keV ) 0.14 0.69

36GWd/t atts(2542keV ) 1.50 8.60
atts(3576keV ) 1.44 7.86

The results for the 36GWd/t sample are seen to be highly sensitive to the modelled sample
elevation. In the employed measurement position, the top of the spent fuel sample was located
approximately 7.5 cm below the detector (referring to the z-position). Therefore, the modelled
elevation strongly in�uences the amount of attenuating material and the solid angle between
sample and detector. In comparison, the fresh fuel was measured in front of the detector, and a
change in its elevation a�ects the solid angle and attenuation correction factor only moderately.
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The high sensitivity of the solid angle and attenuation correction factors for the spent fuel samples
has to be taken into account when interpreting the comparison of measured and calculated inter-
sample �ssion rate ratios, which will be presented in the next chapter (see Subsection 6.3.1).

• Size of the modelled cavity in the germanium crystal of the detector

The dimensions of the germanium crystal and its location inside the aluminium cap of the
detector are well documented in the vendor's data sheet. There is, however, no information
concerning the axial cavity of the crystal, which was therefore assumed to have the same size
as for the detector used in [Caruso 07]. A sensitivity study was carried out to test the impact
of the modelling of the cavity on the results. Two extreme test cases were investigated. In a
�no-cavity� case, the germanium crystal was modelled without any cavity, whereas in a �void�
case, the germanium zone was modelled as void without any assigned material. The ratios of the
tallied average uncollided gamma-ray �uxes in the germanium zone, relative to the original case,
are listed for the 2542 keV gamma-ray sources in the fresh and 36GWd/t samples in Table 5.15.

Table 5.15: Ratio of tallied uncollided �uxes (Eγ =2542 keV) for di�erent modelling of the
germanium crystal of the detector.

no−cavity
original

void
original

Fresh sample 0.962 (0.1%) 1.389 (0.2%)
36GWd/t sample 0.961 (0.4%) 1.393 (0.6%)

Ratio fresh/36GWd/t 1.002 (0.5%) 0.997 (0.4%)

It it seen that the tallied �ux depends quite signi�cantly on the material assumed for the inside
of the germanium crystal of the detector (see rows 2 and 3 in Table 5.15). However, the changes
are the same for both fresh and spent fuel simulations and thus compensate for each other
when taking the ratio (see row 4). Consequently, an exact modelling of the material inside the
germanium crystal is not necessary for the derivation of inter-sample �ssion rate ratios.

• Radial distribution of the gamma-ray sources in the fuel samples

As mentioned earlier, the radial distribution of the gamma-ray sources within the fuel samples
was assumed to be homogeneous, although in the actual fuel samples �ssions (and therefore
gamma-rays emitted by �ssion products) are not homogeneously distributed. To test this as-
sumption, a radial pro�le was applied to the gamma-ray source in the spent fuel simulations for
the two source energies 2542 keV and 3576 keV. The modelled radial pro�le was according to a
MCNPX whole-reactor simulation, in which the 36GWd/t sample was subdivided into 6 radial
zones with equal areas (see Subsection 6.2.2). The isotopic compositions of the 6 zones were
derived with a HELIOS depletion calculation (see Subsection 2.5.2) using a pincell model of the
spent fuel sample with the same 6 radial fuel zones.

The radial pro�le obtained for each isotope was applied to the average measured isotopic com-
position used in the MCNPX whole-reactor model. Relative to the total number of �ssions in
the sample, the fractions of �ssions obtained in the 6 zones for the irradiation position L11 were
0.223, 0.167, 0.157, 0.153, 0.151 and 0.149, with most �ssions in the outer zone and a �attened

90



Chapter 5. Derivation of measured �ssion rates in fresh and burnt fuel

pro�le towards the centre of the sample. This pro�le was applied to the radial gamma-ray
source of the spent fuel sample in the model of the sample changer, and the uncollided �ux
in the germanium crystal of the detector was tallied. In addition, the uncollided gamma-ray
current leaving the sample was tallied using a surface tally. The latter served to estimate the
self-attenuation of the gamma-rays within the fuel sample.

For both investigated energies, the self-attenuation was found to be the same (about 20%) with
and without the radial source distribution in the sample. Furthermore, the tallied uncollided
gamma-ray �uxes in the germanium crystal remained constant, justifying the use of �at ra-
dial source distributions in the MCNPX simulation to derive the solid angle and attenuation
correction factors4.

5.5 Results for �ssion rate ratios

Measured �ssion rate ratios were derived, according to Eqs. 5.3 and 5.4, between di�erent irradi-
ation positions for the same fuel sample (inter-position �ssion rate ratios) and between di�erent
samples irradiated in the same lattice position (inter-sample �ssion rate ratios). The �nal results
are presented in the following two subsections.

The quoted combined uncertainties for the �ssion rate ratios include the uncertainties on the
net-count areas Nnet and on the ratios of saturation and decay correction factors (bγ,FPCFP )eff .
For the inter-sample �ssion rate ratios, they include also uncertainties on the applied correction
factors att(Eγ) for the solid angle and attenuation between samples and detector. The uncer-
tainty for each gamma-ray line was obtained using the error propagation law. Eq. 5.13 provides
an example for the case of a �ssion rate ratio between the fresh (f) and a spent (s) fuel sample:

σFRR(Eγ) =
√
σ2
Nnet,f

+ σ2
Nnet,s

+ σ2
atts(Eγ )

attf (Eγ )

+ σ2
(bγ,FP CFP )eff,s
(bγ,FP CFP )eff,f

(5.13)

It is important to note that the results of the sensitivity studies performed in connection with
the calculation of atts(Eγ) are not included in the combined uncertainties.

For each �ssion rate ratio, a set of four individual estimates was obtained corresponding to the
four high-energy gamma-ray lines 142La (2542 keV), 89Rb (2570 keV), 138Cs (2640 keV) and 95Y
(3576 keV). For the inter-position �ssion rate ratios of the fresh fuel sample, three additional
estimates were obtained using the lower-energy gamma-ray lines 92Sr (1260 keV), 135I (1383 keV)
and 138Cs (1435 keV). As the individual estimates FRR(Eγ) are independent from each other,
and provided that they are consistent within their uncertainties σFRR(Eγ), they can be combined
into a single �nal estimate FRR by taking an appropriately weighted mean, according to Eq. 5.14.

FRR =

∑
1

σ2
FRRi(Eγ )

· FRRi(Eγ)∑
1

σ2
FRRi(Eγ )

, σ2
FRR =

1∑
1

σ2
FRRi(Eγ )

(5.14)

4Note that, in this sensitivity study, a symmetric radial �ssion pro�le has been assumed as the realistic
pro�le in the fuel samples. However, fuel pins which will be irradiated during the LIFE@PROTEUS campaign
might show an asymmetric radial �ssion pro�le due to strong neutron-�ux gradients between fresh and spent
fuel zones. Therefore, the assumption of �at radial source distributions may thus need to be re-evaluated for
LIFE@PROTEUS.
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Strictly speaking, the two estimates FRR(3576 keV ) and FRR(2640 keV ) are not completely
independent, the �rst being based on the gamma-ray line from 95Y and the second including
a small contribution from 95Y. The two estimates are, however, only slightly correlated and
can be considered as independent. The same is valid for the two estimates FRR(1435 keV )
and FRR(2542 keV ), which both contain minor contributions from 93Sr (see Table 5.2). Fur-
thermore, the two estimates FRR(1435 keV ) and FRR(2640 keV ) are strongly correlated since
both gamma-ray lines are from 138Cs. This correlation has been neglected in the current study,
as it only a�ects the inter-position �ssion rate ratios of the fresh sample.

5.5.1 Inter-position �ssion rate ratios

Table 5.16 provides the results for the inter-position �ssion rate ratios for the fresh and the
36GWd/t samples, taking the irradiation position L11 as reference position. For both samples,
the irradiations in the positions M8 and K7 lead to about 1.27 and 0.82 times the number of
�ssions than in the reference position L11, respectively.

Table 5.16: Measured estimates for inter-position �ssion rate ratios.

Fresh sample
M8
L11

K7
L11

142La (2542 keV) 1.269± 0.017 (1.4%) 0.813± 0.011 (1.3%)
89Rb (2570 keV) 1.234± 0.028 (2.3%) 0.783± 0.014 (1.7%)
138Cs (2640 keV) 1.313± 0.081 (6.2%) 0.831± 0.032 (3.8%)

95Y(3576 keV) 1.266± 0.025 (2.0%) 0.842± 0.012 (1.4%)
135I (1260 keV) 1.320± 0.031 (2.4%) 0.861± 0.025 (2.9%)
92Sr (1383 keV) 1.297± 0.009 (0.7%) 0.829± 0.007 (0.9%)

138Cs (1435 keV) 1.260± 0.015 (1.2%) 0.824± 0.010 (1.2%)

Weighted mean: 1.282± 0.006 (0.5%) 0.824± 0.005 (0.6%)

36GWd/t sample
M8
L11

K7
L11

142La (2542 keV) 1.291± 0.053 (4.1%) 0.843± 0.030 (3.6%)
89Rb (2570 keV) 1.272± 0.087 (6.8%) 0.776± 0.050 (6.4%)
138Cs (2640 keV) 1.187± 0.073 (6.2%) 0.844± 0.042 (4.9%)

95Y(3576 keV) 1.273± 0.042 (3.3%) 0.811± 0.024 (3.0%)

Weighted mean: 1.265± 0.028 (2.2%) 0.821± 0.020 (2.4%)

The individual estimates in Table 5.16 are seen to have 1σ uncertainties of 1 to 6% for the fresh
fuel results and 3 to 7% for the spent fuel results. The uncertainties on the weighted mean are
about 0.5% (fresh fuel) and about 2.3% (spent fuel). The quoted uncertainties mainly consist
of the uncertainties on the net-count areas. The nuclear data, being part of the saturation and
decay corrections, do not contribute to the combined uncertainties because the corresponding
correction factors basically cancel out in the ratio of �ssion rates.
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5.5.2 Inter-sample �ssion rate ratios

The results for the measured inter-sample �ssion rate ratios between the fresh and the 36GWd/t
samples, and between the fresh and the 46GWd/t samples are listed in Table 5.17.

Table 5.17: Measured estimates for inter-sample �ssion rate ratios.

Fresh-to-36GWd/t
K7 M8 L11

142La (2542 keV) 1.362± 0.039 (2.9%) 1.397± 0.049 (3.5%) 1.416± 0.040 (2.8%)
89Rb (2570 keV) 1.382± 0.066 (4.8%) 1.337± 0.070 (5.2%) 1.373± 0.068 (5.0%)
138Cs (2640 keV) 1.272± 0.064 (5.1%) 1.437± 0.103 (7.1%) 1.295± 0.068 (5.3%)

95Y(3576 keV) 1.393± 0.038 (2.8%) 1.342± 0.041 (3.1%) 1.346± 0.035 (2.6%)

Weighted mean: 1.364± 0.024 (1.7%) 1.366± 0.028 (2.0%) 1.367± 0.023 (1.7%)

Fresh-to-46GWd/t
M8 (I8)

142La (2542 keV) 2.003± 0.114 (5.7%)
89Rb (2570 keV) 2.026± 0.190 (9.4%)
138Cs (2640 keV) 2.428± 0.734 (30.2%)

95Y(3576 keV) 2.103± 0.101 (4.8%)

Weighted mean: 2.057± 0.070 (3.4%)
The �ssion rates in the di�erent samples are normalised to the same reactor power of 100W.

The �ssion rate ratios between the fresh and the 36GWd/t samples were derived for the three
irradiation positions K7, M8 and L11. The estimates based on 142La and 95Y have a 1σ un-
certainty of 2 to 4%, whereas the estimates based on 89Rb and 138Cs have higher uncertainties,
i.e. 4 to 7%. Within these uncertainties, the results agree with each other. Independent of the
irradiation position, the weighted mean of the �ssion rate ratios is ∼1.37±0.02 (1.7-2%).

The �ssion rate ratios comparing the fresh and the 46GWd/t samples were derived for the
equivalent irradiation positions M8 and I8. Again, the results based on the di�erent gamma-ray
lines agree within their respective uncertainties, these being generally between 5 and 9%. Only
the result based on the 138Cs (2640 keV) peak has an extremely high uncertainty (more than
30%), because of the large uncertainty on its net-count area for the 46GWd/t sample. The
weighted mean for the fresh-to-46GWd/t �ssion rate ratio is ∼2.06± 0.07 (3.4%).

Table 5.18 gives the individual contributions to the combined uncertainties on the fresh-to-
36GWd/t �ssion rate ratio and for the fresh-to-46GWd/t �ssion rate ratio.

As for the inter-position �ssion rate ratios, the uncertainties on the net-count areas represent
the main contribution to the combined uncertainties. The nuclear data uncertainties do not
compensate entirely any more and contribute to an uncertainty of 0.5-1% for the fresh-36GWd/t
results and of 1-1.4% for the fresh-to-46GWd/t results. Compared to the net-count areas, these
contributions from the nuclear data are relatively small. However, it should be noted that the
nuclear-data related uncertainties may become more important in future experiments because
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Table 5.18: Contributions to the combined uncertainties of measured inter-sample �ssion rate
ratios.?

Fresh-to-36GWd/t
Gamma-ray line Comb. uncert. Statis. Nucl. data Monte Carlo
142La (2542 keV) 2.90% 2.85% 0.74% 0.32%
89Rb (2570 keV) 4.77% 4.73% 0.54% 0.32%
138Cs (2640 keV) 5.06% 4.95% 0.97% 0.31%

95Y(3576 keV) 2.76% 2.61% 0.83% 0.32%

Weighted mean 1.73%

Fresh-to-46GWd/t
Gamma-ray line Comb. uncert. Statis. Nucl. data Monte Carlo
142La (2542 keV) 5.67% 5.61% 1.18% 0.30%
89Rb (2570 keV) 9.39% 9.32% 1.04% 0.30%
138Cs (2640 keV) 30.2% 30.2% 1.41% 0.29%

95Y(3576 keV) 4.78% 4.58% 1.35% 0.22%

Weighted mean 3.40%
?The values for the fresh-to-36GWd/t �ssion rate ratio refer to the irradiation

position K7; those for the fresh-to-46GWd/t �ssion rate ratio refer to the

irradiation position M8 (I8).

they cannot be easily reduced. Generally speaking, the higher the burn-up di�erence between two
compared samples, the higher is the uncertainty related to nuclear data, because of the di�erences
in the e�ective �ssion yields caused by the di�erent sample compositions (see Subsection 5.3.3).

The Monte Carlo uncertainties associated with the calculation of the solid angle and attenuation
correction factors are only about 0.3% and hence have an almost negligible contribution to the
total combined uncertainties.

5.6 Chapter summary

Based on the measurements of a fresh, a 36GWd/t and a 46GWd/t sample during the WOLF-
B experimental campaign, a detailed description has been provided for the methodology to
obtain experimental �ssion rate ratios using high-energy gamma-rays emitted by short-lived
�ssion products. The analysis is based on the use of the four high-energy lines 142La (2542 keV),
89Rb (2570 keV), 138Cs (2640 keV) and 95Y (3576 keV) and, for the fresh fuel sample, the three
additional lower-energy lines 138Cs (1435 keV), 135I (1260 keV) and 92Sr (1383 keV).

Based on appropriately evaluated results for these gamma-ray lines, inter-position �ssion rate
ratios have been derived for the fresh and the 36GWd/t samples. Furthermore, inter-sample
�ssion rate ratios are reported between the fresh and the 36GWd/t samples on the one hand,
and between the fresh and the 46GWd/t samples on the other hand. It has been found that
results obtained for di�erent gamma-ray lines are quite consistent within the respective 1σ
uncertainties. For the inter-position �ssion rate ratios, these were 1-6% for the fresh fuel and
3-7% for the 36GWd/t spent fuel results. The weighted means of the individual estimates had
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uncertainties of about 0.5 and 2.3%, respectively. The uncertainties on the inter-sample �ssion
rate ratios were in general 2-7% for the fresh-to-36GWd/t comparison and 5-9% for the fresh-
to-46GWd/t comparison, the uncertainties on the weighted means being about 1.8% and 3.4%,
respectively.

In all cases, the uncertainties on the net-count areas represent the main contribution to the com-
bined uncertainties. It should be noted, however, that the contribution from the nuclear data
uncertainties to the combined uncertainties reached more than 1% for the fresh-to-46GWd/t
comparison. This contribution mainly consisted of the uncertainties on the �ssion yields because
of the very di�erent sample compositions and the resulting di�erence in the relative number of
�ssions in 235U, 238U, 239Pu and 241Pu. This is important because, in contrast to the statis-
tical uncertainties, the nuclear data uncertainties cannot be reduced in future experiments at
PROTEUS.

The inter-sample �ssion rate ratios were found to be highly sensitive to slight axial displacements
of the spent fuel samples in their measurement positions. Shifting the 36GWd/t spent fuel
sample by 1mm led to a change of 1.5% in the solid angle and attenuation correction factor
needed for the derivation of �ssion rate ratios between the fresh and spent fuel. With the fresh
fuel sample having been measured directly next to the detector, the �ssion rates in this sample
were only moderately sensitive to its modelled elevation.

The inter-sample �ssion rate ratios based on the 89Rb peak show a high sensitivity to the assumed
contributions of 235U, 238U, 239Pu and 241Pu to the total number of �ssions, these being needed
for the derivation of e�ective �ssion yields (used in the saturation and decay correction). The
results based on 95Y show a lower sensitivity, whereas the results based on 142La and 138Cs are
quite insensitive to the exact knowledge of the individual �ssion contributions.

A sensitivity study with respect to the exact time at which the gamma-ray measurements were
started has emphasised the importance of an accurate record of the cooling time between the
end of irradiation and the start of measurement. This is particularly true in the current analysis,
where the cooling time was 5 minutes, the results based on the 89Rb peak being particularly
sensitive to the exact knowledge of the cooling time.

In the following chapter, the currently measured �ssion rate ratios are compared to MCNPX
predictions. The possible future reduction of the measurement uncertainties, as also of the
sensitivities of the results to irradiation and measurement parameters, is addressed in Chapter 7.
Recommendations are made in this context for an optimised measurement station, and for
optimised irradiation and measurement strategies to be applied in the main LIFE@PROTEUS
experimental campaign.

95



BIBLIOGRAPHY

Bibliography

[Caruso 07] S. Caruso. Characterisation of high-burnup LWR fuel rods through gamma
tomography. PhD thesis, École Polytechnique Fédérale de Lausanne
(EPFL), Switzerland, 2007.

[Hyp 05] HyperLabs software. HyperLab 2005 Gamma-Sepctroscopy Software Sys-
tem, Manuals, 2005.

[ORT 03a] ORTEC. GammaVision-32, Gamma-ray Spectrum Analysis and MCA
Emulator, A66-B32 User's Manual, 2003.

[Pelowitz 05] D.B. Pelowitz. MCNPX User's Manual Version 2.5.0, 2005.

[Plaschy 07a] M. Plaschy. Reference MCNPX model of the ”Wechsel�asche” shielding
and corresponding dose rate calculations. Internal Report AN-41-07-01,
PSI, 2007.

[Pommé 02] S. Pommé. A plausible mathematical interpretation of the variance spec-
tra obtained with the DSPECPlusTM digital spectrometer. Nuclear In-
struments and Methods in Physics Research Section A, vol. 482, page
565-566, 2002.

[Pommé 03] S. Pommé. On the statistical control of loss-free counting and zero dead
time spectrometry. J. Radioanalytical and Nucl. Chemistry, vol. 257 No.3,
page 463-466, 2003.

[Rhodes 04] J. Rhodes, Smith K. & Edenius M. CASMO-4E, Extended Capability
CASMO-4: User Manual. Studsvik Scandpower, SSP-01/401 Rev. 2,
Inc., 2004.

[Simonis 03] A. Simonis, J. Östör, S. Kálvin & B. Fazekas. HyperLab: A new concept
in gamma-ray spectrum analysis. J. Radioanalytical and Nucl. Chemistry,
vol. 257 No.3, page 589-595, 2003.

96



Chapter 6

Comparison of calculated and measured

�ssion rate ratios

In the previous chapter, the derivation of experimental results for inter-position and inter-sample
�ssion rate ratios, based on the use of high-energy gamma-ray lines emitted by short-lived
�ssion products, was presented in detail. In this chapter, the measured �ssion rate ratios are
compared to calculated results obtained using an MCNPX whole-reactor model of the multi-zone
PROTEUS facility.

The employed MCNPX model is described in Section 6.1. Section 6.2 gives the results for the
calculated �ssion rate ratios and contains sensitivity studies with respect to the modelled spent
fuel compositions and the positioning of the fuel samples in the model. The comparison of
the measured and calculated �ssion rate ratios are presented in Section 6.3, and the chapter is
summarised in Section 6.4.

6.1 MCNPX modelling

The Monte Carlo simulations in the current research have been conducted using the MCNPX
code version 2.5.0 [Pelowitz 05], together with the JEFF-3.1 nuclear data library [Koning 06].
The whole-reactor model was primarily set up to obtain calculated predictions for �ssion rates
in the fresh and spent fuel samples that were irradiated in the PROTEUS test zone during the
WOLF-B campaign. In addition to the total �ssion rates, the axial pro�les of �ssions in the
samples and the contributions ai of the major �ssioning isotopes (235U, 238U, 239Pu and 241Pu)
to the total number of �ssions were also calculated. These results were needed for the analysis
of the measured gamma-ray spectra, as described in Chapter 5.

6.1.1 Whole-reactor model

A detailed 3-D MCNPX model of the multi-zone PROTEUS reactor was already available at
PSI [Joneja 01]. This model was modi�ed to match the WOLF-B experiments with respect to
the critical loading and the test tank con�guration. Axial and radial cuts of the model are shown
in Fig. 6.1.
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Figure 6.1: Axial and radial views of the MCNPX whole-reactor model of PROTEUS.

Axial and radial cuts focussing on the test lattice are shown in Fig. 6.2. The lattice pins were
held in position with polypropylene grid plates. The two radial cuts correspond to elevations
without grid plate (top) and with grid plate (bottom). As an example, the fresh fuel sample in
the irradiation position L11 is shown. In the radial cuts, the other possible irradiation positions
M8, I8, K7, K11 and I11 are also visible, the latter two not having been used in the WOLF-B
campaign. The axial elevation during irradiation, which is indicated in the axial cut in the left
part of Fig. 6.2, was the same for all samples and was chosen such that the maximum number of
�ssions occurred in the top part of the samples (because of the axial buckling in the test zone).
This was done to increase the statistics of the burnt fuel measurements, since the measurement
position below the detector favoured the detection of gamma-rays emitted in the upper part of
the samples. As described earlier, the measurement position below the detector had been chosen
to limit the system dead time due to the intrinsic gamma-ray activity of the burnt samples (see
Subsection 4.3.4).

The materials and the dimensions of the cladding and the overcladding of the samples were
modelled accurately according to the technical drawings and [Perret 07]. As regards the fresh
fuel sample, the dimensions of the cladding, end plugs and fuel pellets were measured.

The cladding of the spent fuel samples was the original cladding of the fuel pin from which
the burnt samples had been cut. The 40.0 cm long samples had been encapsulated in Zircaloy
overcladding. In total, the overcladding of the spent fuel samples had a length of about 50.9 cm,
including the end plugs at both ends.

Regarding the fresh fuel sample, a stack of fresh fuel pellets (of 38.9 cm length) had been loaded
into a specially designed cladding tube which was closed at its bottom. This tube was placed
into an overclad similar to those of the spent fuel samples. The total length of the fresh fuel
overcladding including end plugs was about 51.4 cm.

To determine the axial position of the samples inside the test lattice, the lowest possible elevation
in the test lattice, i.e. when the samples touched the bottom plate, was taken as reference.
Although the nominal axial position during irradiation was the same for all samples, the e�ective
elevation of the fuel pellets di�ered slightly between the fresh and the spent samples, because
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Figure 6.2: Axial and radial views of the test lattice with the fresh fuel sample in position L11.

the total length of their overcladdings, as well as the axial positions of the fuel pellets inside
their claddings, di�ered. The two axial positions of the samples in the test lattice are shown in
Fig. 6.3.

To derive their axial �ssion pro�les, the burnt and fresh fuel samples were modelled in terms of
20 axial volumes of 2.0 cm and 1.945 cm height, respectively.

6.1.2 Isotopic composition of fuel samples

The fresh fuel sample was modelled according to its average nominal speci�cations. As mentioned
earlier, the isotopic compositions of the burnt fuel samples were modelled according to the
results of post-irradiation examination (PIE) measurements on adjacent sections of the fuel pins
from which the samples had been cut [Günther-Leopold 07]. In the framework of the LWR-
PROTEUS Phase II programme, the number densities of the 53 most important actinides and
�ssion products had been measured by PIE at the PSI Hot Laboratory. In the context of the
current work, these were corrected to account for the decay between the PIE measurements and
the irradiations of the samples in PROTEUS.

In addition to the measured compositions, isotopic compositions of the spent fuel samples were
calculated with the CASMO-4E and HELIOS depletion codes. The CASMO-4E depletion cal-
culations had also been conducted at PSI in the framework of the LWR-PROTEUS Phase II
programme and are documented in [Grimm 07]. They were carried out using a re�ected-assembly
model and cross-sections based on the ENDF/B-VI nuclear data �le [McLane 96]. The HELIOS
depletion calculations, which are documented in [Kröhnert 06], used a re�ected pincell model
and a data library also based on ENDF/B-VI.
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Figure 6.3: Axial positions and axial dimensions of fresh and burnt fuel samples.

The detailed description of the two calculational models and a complete comparison of calcu-
lated and measured isotopic densities can be found in [Grimm 10] and [Kröhnert 06]. Table 6.1
indicates the deviations of the calculated isotopic densities from the measured results for 235U,
238U, 239Pu and 241Pu.

Table 6.1: Ratios of measured (Hotlab) and calculated (CASMO, HELIOS) isotopic densities of
the main �ssioning isotopes.

Sample Ratio 235U 238U 239Pu 241Pu

36GWd/t CASMO/Hotlab 0.967 1.000 1.038 1.098
HELIOS/Hotlab 0.978 0.999 1.138 1.147

46GWd/t CASMO/Hotlab 0.874 0.998 0.922 0.958
HELIOS/Hotlab 0.980 1.000 0.975 0.955

The CASMO-4E results are seen to show a better agreement with the measurements for the
36GWd/t sample than for the 46GWd/t sample. For the HELIOS results, the agreement with
the measurements is better for the 46GWd/t sample. The di�erences between the CASMO-4E
and the HELIOS calculations can be explained by the di�erences in the used models (assembly
and pincell) and by the slightly di�erent irradiation histories used (see Sections 2.3 and 2.5.2).

In the MCNPX model, the fuel compositions of the samples were considered to be homogeneous.
For the burnt fuel samples, this is clearly an approximation, as in a real burnt fuel pin the isotopes
are radially and also axially distributed. The impact of this assumption on the results has been
investigated with the help of sensitivity studies which are presented in Subsection 6.2.2.
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6.2 Calculated �ssion rate ratios

The fresh and the 36GWd/t samples were modelled in the irradiation positions K7, M8 and
L11. The 46GWd/t sample was modelled in the irradiation position I8. The simulations were
run in the KCODE mode calculating 30 inactive cycles of 500,000 neutrons to obtain the �ssion
source distribution in the core, followed by 1000 active cycles of 500,000 neutrons. The achieved
1sv uncertainty on the average �ssion rates in the fuel samples was about 0.2%. The calculated
contributions ai from 235U, 238U, 239Pu and 241Pu �ssions to the total number of �ssions had 1sv
uncertainties of about 0.2%. The �ssion rates in the 20 axial segments were calculated with 1sv
uncertainties of about 0.6%.

As a reference, the calculated �ssion rates in the spent fuel samples were estimated using the
measured isotopic compositions. For the sake of comparison, some �ssion rates were also pre-
dicted using the fuel compositions as obtained with the CASMO-4E assembly calculations and
the HELIOS pincell calculations.

6.2.1 Results

The calculated inter-position and inter-sample �ssion rate ratios in the fresh, 36GWd/t and
46GWd/t samples are given in Table 6.2.

As regards the inter-position comparison, for both fresh and 36GWd/t samples, the �ssion rates
are seen to be about 30% higher in position M8 as compared to position L11, and about 17-
18% lower in position K7 as compared to position L11. The inter-sample comparisons show,
independently from the irradiation position, that the �ssion rates in the fresh fuel sample are
about 1.4 and 2.1 times higher than in the 36GWd/t and 46GWd/t samples, respectively.

Concerning the impact of the fuel composition, the �ssion rates in the 36GWd/t sample obtained
using the CASMO-4E isotopic composition did not deviate much from the results based on
the measured composition (less than 0.8%), whereas the results obtained with the HELIOS
composition were 3.2% lower than those based on the measured composition. The discrepancy
between the HELIOS and the measured fuel compositions did not impact the inter-position
�ssion rate ratios. It has, however, a non-negligible impact on the inter-sample �ssion rate ratio
(deviations of about 3%).

Regarding the 46GWd/t sample, the �ssion rates using the measured and the CASMO-4E
isotopic compositions di�ered signi�cantly (7%), whereas the results based on HELIOS agreed
within 1.2% with those based on the measured composition.
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Table 6.2: Calculated estimates for inter-position and inter-sample �ssion rate ratios.

Inter-position �ssion rate ratios

Fresh sample
M8
L11

K7
L11

M 1.308± 0.003 (0.2%) 0.821± 0.002 (0.2%)

36GWd/t sample
M8
L11

K7
L11

M 1.292± 0.003 (0.3%) 0.832± 0.002 (0.3%)
C 1.284± 0.003 (0.2%)
H 1.285± 0.003 (0.3%)

Inter-sample �ssion rate ratios

Fresh-to-36GWd/t

K7 M8 L11

M 1.392± 0.004 (0.3%) 1.427± 0.003 (0.2%) 1.409± 0.003 (0.2%)
C 1.437± 0.003 (0.2%) 1.412± 0.003 (0.2%)
H 1.392± 0.003 (0.2%) 1.367± 0.003 (0.2%)

Fresh-to-46GWd/t

M8 (I8)

M 2.088± 0.005 (0.2%)
C 2.245± 0.004 (0.2%)
H 2.113± 0.005 (0.2%)
M: Burnt fuel sample modelled using measured isotopic compositions.

C: Burnt fuel samples modelled using isotopic compositions obtained with CASMO-4 assembly calculations.

H: Burnt fuel samples modelled using isotopic compositions obtained with HELIOS pincell calculations.
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6.2.2 Sensitivity studies

• Set of isotopes considered in the spent fuel composition

The measured isotopic compositions of the burnt fuel samples included 53 actinides and �ssion
products. In comparison, the isotopic compositions obtained with the CASMO-4E and HELIOS
depletion calculations contained 136 and 101 isotopes, respectively. Examples of elements not
included in the measured results are O, B, Xe, Te, Pd and Kr. To check that the measured 53
isotopes were su�cient to adequately calculate �ssion rates, the calculated CASMO-4E compo-
sition of the 36GWd/t burnt sample was reduced to the same 53 isotopes and the �ssion rates
in the position L11 was re-calculated. The �ssion rates obtained with both the reduced and
the full set of isotopes were found to be almost identical (within 0.05%). Consequently, one can
conclude that the set of 53 measured isotopes was adequate to calculate �ssion rates in the burnt
fuel.

• Axial elevation of fuel samples in the PROTEUS test zone

The axial position of the fuel samples inside their cladding, as also the dimensions of the cladding,
overcladding and end plugs of the samples, were modelled as accurately as possible. However, it
could not be excluded that the fuel samples were slightly shifted (∼1-5mm) axially within their
overcladding.

The sensitivity of the calculated �ssion rates to an axial displacement was investigated by calcu-
lating the �ssion rates in the fresh and 36GWd/t samples in the irradiation position L11 after
shifting the samples up by 5mm. It was found that, in general, the calculated �ssion rates
changed by less than 1% for the change of 5mm in sample elevation; the sensitivity was slightly
higher for the fresh sample (0.96%/5mm) than for the 36GWd/t sample (0.51%/5mm). It
should also be mentioned that the contributions ai from 235U, 238U, 239Pu and 241Pu, which were
used for the derivation of measured �ssion rate ratios, did not vary signi�cantly (less 0.5%) with
the change in sample elevation.

• Axial burn-up pro�le in the 36GWd/t burnt sample

An axial scan of the intrinsic gamma-ray activity (total counts from 400 to 2000 keV) of the
spent fuel pin, from which the 36GWd/t burnt sample had been cut, had revealed that the
sample should have a signi�cant axial burn-up gradient, the burn-up changing by about∼10%
from its lower to upper end. The measured isotopic composition of the sample currently used
referred to the end with the lower burn-up value. Quantifying the exact axial burn-up pro�le,
modifying the measured isotopic compositions accordingly and implementing the changes in the
MCNPX models would have been very di�cult and too time consuming for this work. Instead,
the MCNPX model used axially homogeneous sample compositions and the impact of the burn-
up pro�le on the �ssion rates was assessed separately using calculated isotopic compositions
corresponding to di�erent burn-ups.

The HELIOS pincell model was modi�ed to estimate the change in the isotopic composition of the
36GWd/t sample assuming a 5% and a 10% higher sample burn-up. This was done by keeping
the same irradiation history and increasing the power levels in the depletion calculation. As
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example, the changes in the isotopic densities of 235U, 238U, 239Pu and 241Pu, due to increases of
5% and 10% in the sample burn-up, are given in Table 6.3. The two isotopic compositions for the
increased burn-up levels were implemented in the MCNPX model, still assuming a homogeneous
axial distribution, and the �ssion rates in the irradiation position L11 were re-calculated. The
changes in the contributions of 235U, 238U, 239Pu and 241Pu �ssions to the total number of �ssions
and the changes in the calculated �ssion rates are also given in Table 6.3.

Table 6.3: Sensitivities of isotopic densities, of contributions to total �ssions and of calculated
�ssion rates in the 36GWd/t sample to assumed burn-up increases.

Isotopic densities
235U 238U 239Pu 241Pu

5% burn-up increase −6.6% −0.2% +0.6% +4.6%
10% burn-up increase −12.8% −0.3% +1.1% +9.6%

Contributions to total �ssions Total �ssion rate
aU5 aU8 aP9 aP1

5% burn-up increase −6.4% −0.1% +0.5% +4.7% −2.9%
10% burn-up increase −12.5% −2.1% +1.3% +10% −5.2%

The calculated �ssion rates in the sample with a 5% and a 10 % increased burn-up are seen
to be 2.9% and 5.2% lower than those obtained using the nominal burn-up. Consequently, to
a �rst approximation, the burn-up pro�le could lead to a 3% reduction of the �ssion rate in
the 36GWd/t sample in the irradiation position L11. Results for the other positions M8 and
K7 could be expected to be very similar. One may thus conclude that the inter-position �ssion
rate ratios remain quite insensitive to the axial pro�le of the 36GWd/t fuel sample, whereas the
inter-sample �ssion rate ratios between the fresh and 36GWd/t samples are a�ected signi�cantly.

It should be noted that, to a lower extent, the measured estimates for the �ssion rates in the
36GWd/t sample are also a�ected by an increase of the sample burn-up. Indeed, to derive
measured �ssion rates, one requires the calculated isotopic �ssion contributions ai, which are
dependent on the isotopic composition of the sample. Especially the estimates based on the 89Rb
(2570 keV) peak were found to be very sensitive to the parameter set ai (see Subsection 5.3.4).
The measured �ssion rate rate for the 36GWd/t sample in the position L11, based on the 89Rb
(2570 keV) peak, increased by 1.9% using the sample composition with a 5% higher burn-up
compared to the results obtained using the original HELIOS composition. In comparison, the
impact on the results based on the 142La (2542 keV), 138Cs (2640 keV) and 95Y (3576 keV) peaks
was less than 0.7%.

• Radial pro�le of isotopic compositions

The isotopic composition in the fuel samples was modelled homogeneously also in the radial
direction. For the burnt samples, in which the isotopes would normally be radially distributed,
the impact of this simpli�cation has been investigated as follows. HELIOS depletion calculations
of the 36GWd/t and 46GWd/t samples were used to obtain, for each isotope, the normalised
radial pro�le in 6 radial zones of equal areas (radii of 0.186, 0.264, 0.323, 0.373, 0.417, 0.4565 cm).
These normalised radial pro�les were implemented into the MCNPX model (without changing
the average number densities of the considered isotopes in the two samples), and the calculated
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Figure 6.4: Within-sample isotopic densities and �ssion rates for the 36GWd/t sample.

�ssion rates were compared to the original results using the average HELIOS compositions
homogeneously distributed.

As an example, the radial distributions of the main �ssioning isotopes 235U, 239Pu and 241Pu
within the 36GWd/t sample are shown in Fig. 6.4, along with the resulting radial pro�les of
their �ssions and that of the total number of �ssions (example for the irradiation position L11).
Although the radial distribution of �ssions in the plutonium isotopes are strongly peaked at the
rim of the pin, the calculated total number of �ssions in the 36GWd/t sample changed only
marginally (0.4%) by introducing the radially distributed isotopic composition. The same was
valid for the contributions ai to the total number of �ssions (less than 0.4% deviations). Very
similar results were obtained for the 46GWd/t sample. Consequently, the simpli�cation of a
radially homogeneously distributed sample material in the MCNPX model is quite justi�ed.

6.3 Comparison of calculated and experimental �ssion rate

ratios

The MCNPX calculated inter-position and inter-sample �ssion rate ratios as presented in Ta-
ble 6.2 are compared in this section to the measured results. For the latter, the values used
correspond to the weighted mean of the individual estimates based on the di�erent gamma-ray
lines. These mean values are given in Tables 5.16 and 5.17 of the previous chapter.

For each calculation-to-experiment (C/E) ratio, the relative combined total uncertainty σC/E,rel
has been obtained with the error propagation law, combining the relative uncertainties σC,rel
and σE,rel on the calculated and on the measured �ssion rate ratios:

σC/E,rel =
√

(σC,rel)2 + (σE,rel)2 (6.1)
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The σC,rel values consider only the Monte Carlo statistical uncertainty, i.e. they depend on the
number of simulated neutron histories in the whole-reactor model. The σE,rel values comprise
contributions from the uncertainties on the net-count areas, from the nuclear data uncertainties
needed in the saturation and decay corrections, and from the statistical uncertainties on the
solid angle and attenuation correction factors obtained with MCNPX (see Section 5.5).

6.3.1 Inter-position �ssion rate ratios

The comparison between calculated and experimental estimates of the inter-position �ssion rate
ratios are given in Table 6.4 for the fresh and 36GWd/t samples irradiated in the positions K7,
M8 and L11, taking the position L11 as reference.

Table 6.4: Comparison of calculated (C) and experimental (E) inter-position �ssion rate ratios,
C/E values.

Sample M8
L11

K7
L11

Fresh 1.020± 0.006 (0.6%) 0.996± 0.006 (0.6%)
36GWd/t 1.021± 0.023 (2.2%) 1.012± 0.025 (2.4%)

In general, there is an agreement within 2% between calculated and measured results. The
C/E values for the fresh fuel sample have very low 1σ uncertainties (about 0.6%). The results
comparing the irradiation positions K7 and L11 agree within this uncertainty, whereas those
comparing the irradiation positions M8 and L11 only agree within 3-4 standard deviations. Also
for the spent fuel sample, the discrepancy between calculation and experiment appears higher
for the M8/L11 ratio than for the K7/L11 ratio. Both these discrepancies, however, are still
within the corresponding 1σ uncertainties of about 2.3%.

In contrast to the inter-sample �ssion rate ratios which are presented in the following subsection,
the inter-position ratios are not a�icted with high sensitivities. This is because several of
the investigated sensitivities of both measured and calculated �ssion rates (e.g. to the fuel
composition and to the sample position) compensate when taking the ratios.

6.3.2 Inter-sample �ssion rate ratios

The C/E values for the inter-sample �ssion rate ratios between the fresh and 36GWd/t samples
(irradiation positions K7, L11, M8), and between the fresh and 46GWd/t samples (irradiation
position M8(I8)), are given in Table 6.5.

For all three irradiation positions, the agreement between the measured and calculated fresh-to-
36GWd/t �ssion rate ratios is within 1-3 standard deviations, which are 1.7 to 2%. Nonetheless,
the results predicted by MCNPX appear on average about 3% higher than the measured values.

Including the considerations made earlier with respect to the axial burn-up pro�le in the 36GWd/t
sample (see Subsection 6.2.2), the calculated �ssion rates in this sample should be about 3% lower
than those used in Table 6.5. This would increase the observed bias between measurement and
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Table 6.5: Comparison of calculated (C) and experimental (E) inter-sample �ssion rate ratios,
C/E values.

Samples K7 M8 L11

Fresh-to-36GWd/t 1.020± 0.018 (1.8%) 1.045± 0.021 (2.0%) 1.031± 0.018 (1.7%)
Fresh-to-46GWd/t 1.012± 0.034 (3.4%)

calculation to about 6%. It is not easy, however, to identify the cause for such a bias. One possi-
ble reason could be a slight axial displacement of the 36GWd/t sample inside the overcladding.
As described earlier (see Subsection 5.4.3), the exact position of the fuel in the overcladding was
needed to derive the solid angle and attenuation correction factors with the MCNPX model of
the sample changer. The sensitivity of the measured �ssion rate ratios to the modelled elevation
of the spent fuel samples was found to be quite high (about 1.5%/1mm and about 8%/5mm).
Consequently, a displacement of about 3-4mm of the 36GWd/t fuel sample could, in principle,
account for a 6% discrepancy between calculated and measured results.

To avoid these di�culties in future experiments, care should be taken to ensure a relatively �at
burn-up pro�le in the irradiated fuels (at least in the measured part of the fuel samples). In
addition, the sensitivity of the measured results towards the sample elevation can be signi�cantly
reduced by using, for all samples, a similar measurement position in front of the detector.

The measured and calculated fresh-to-46GWd/t �ssion rate ratios, which were derived for the
equivalent irradiation positions M8 and I8, agreed within the 1σ uncertainty of 3.4%, which
demonstrates the possibility to extend the currently developed measurement technique to higher
burn-ups.

As an example, the individual contributions to the combined uncertainty of the C/E value for
the fresh-to-36GWd/t �ssion rate ratio are given in Table 6.6, along with the most signi�cant
sensitivities of the C, E and C/E values. The presented sensitivities correspond to a 5mm
change in the elevation of the burnt sample inside the overclad, to a 5% burn-up change in
the 36GWd/t sample, and to a 1 second increase in the cooling time of the 36GWd/t sample
between irradiation and measurement. The uncertainties and sensitivities are also given for
the estimates based on the separate use, in the measurements, of each of the four gamma-ray
lines 142La (2542 keV), 89Rb (2570 keV), 138Cs (2640 keV) and 95Y (3576 keV), where the C value
remains unchanged in all cases.

The assumed burn-up of the 36GWd/t sample and the assumed axial elevation of the sample
in the overclad a�ect both the measured and calculated �ssion rate ratios. The burn-up change
has a much stronger a�ect on the calculated results, whereas the change in sample elevation
mainly impacts the measured results. The increase in cooling time has an impact only on the
experimental results. Note that the impacts on the individual estimates based on the di�erent
gamma-ray lines can vary quite signi�cantly. As these four estimates were combined by taking
the weighted mean, the impact on the �nal C/E value is the corresponding combination of the
results for the particular gamma-ray lines.

It should be noted that, although Table 6.6 refers to the irradiation position L11, very similar
results can be expected for the other irradiation positions M8 and K7.
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Table 6.6: Uncertainties and sensitivities of the C/E values for fresh-to-36GWd/t �ssion rate
ratios (irradiation position L11).

142La
(2542 keV)

89Rb
(2570 keV)

138Cs
(2640 keV)

95Y
(3576 keV)

weighted
mean

Total uncert. C/E 2.8% 5.0% 5.3% 2.6% 1.7%

Statistical uncert., E 2.6% 5.0% 5.2% 2.5%
Nuclear data uncert., E 0.7% 0.5% 1.0% 0.8%

Monte Carlo MCNPX uncert., E 0.3% 0.3% 0.3% 0.3%
Monte Carlo MCNPX uncert., C 0.2% 0.2% 0.2% 0.2%

Sensitivities to shifting up the 36GWd/t sample by 5mm within the overclad:
C −0.5% −0.5% −0.5% −0.5% −0.5%
E +7.9% +8.3% +8.3% +7.3% +7.7%

Sensitivities to a 5% increased burn-up of the 36GWd/t sample:
C +3.0% +3.0% +3.0% +3.0% +3.0%
E −0.4% −1.8% −0.3% −0.6% −0.6%

C/E +3.4% +5.0% +3.4% +3.7% +3.7%

Sensitivities to a 1 sec longer cooling time for the 36GWd/t sample measurement:
E −0.2% −1.6% −0.1% −0.5% −0.5%

C/E +0.2% +1.7% +0.1% +0.5% +0.5%

6.4 Chapter summary

Simulating the WOLF-B experiments presented in Chapter 4, calculated estimates of inter-
position and inter-sample �ssion rate ratios have been obtained with an MCNPX whole-reactor
model, achieving 1σ uncertainties of about 0.3%. The comparison with the measured estimates
has shown a satisfactory agreement (within about 2%) for the inter-position �ssion rate ratios of
the fresh fuel sample and of the 36GWd/t fuel sample. For the inter-sample �ssion rate ratios,
between the fresh and 36GWd/t samples and between the fresh and 46GWd/t samples, the
agreement is within 4.5%.

The uncertainties of the calculation-to-experiment (C/E) values have mainly consisted of the
uncertainties on the measured results. The 1σ uncertainties on the inter-position �ssion rate
ratios for the fresh and 36GWd/t samples were thus about 0.6% and 2.3%, respectively. The
inter-sample C/E values had 1σ uncertainties of 1.7 to 2% for the �ssion rate ratios between the
fresh and 36GWd/t samples, and 3.4% for the �ssion rate ratio between the fresh and 46GWd/t
samples. The main contributor to these uncertainties was the uncertainty on the measured
net-count areas for the di�erent gamma-ray lines.

The compositions of the spent fuel samples were modelled according to results of post-irradiation
examination (PIE). Additional predictions using calculated fuel compositions obtained with the
codes CASMO-4E and HELIOS have shown that the calculated �ssion rates can signi�cantly
depend on the estimation of the isotopic composition of the spent fuel (deviations of up to 3.2%
for the 36GWd/t sample and 7% for the 46GWd/t sample).
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Furthermore, the axial burn-up pro�le of the 36GWd/t sample complicated the interpretation
of the calculated results since the burn-up in�uences the fuel composition. This burn-up pro�le
(corresponding to an axial variation of about 10%) could not be easily implemented into the
MCNPX model, and the fuel composition was therefore modelled homogeneously in the axial
direction. Sensitivity studies showed, however, that this simpli�cation could cause a bias in the
calculated �ssion rates of about 3%. This bias would cancel out for the inter-position �ssion rate
ratios of the 36GWd/t sample, but not for fresh-to-36GWd/t inter-sample �ssion rate ratios.
In comparison, modelling the fuel homogeneously in the radial direction only caused a minor
change in the results (less than 0.4%).

The calculation-to-experiment comparisons have been found to be mainly sensitive to the knowl-
edge of the fuel composition and the exact positioning of the burnt fuel samples during the
measurements. The fuel composition was found to be of major importance to accurately derive
calculated �ssion rate ratios (about 3% deviation for a burn-up change of 5% in the 36GWd/t
sample). The assumed elevation of the burnt samples within the overclad had the highest impact
on the measured �ssion rate ratios (deviations of about 8% for a shift of 5mm). The burnt fuel
composition assumed in the MCNPX model also a�ected the measured �ssion rate ratios as it
determined the contributions ai of 235U, 238U, 239Pu and 241Pu �ssions to the total number of �s-
sions. On the whole, however, the experimental results were not very sensitive to the burnt fuel
sample composition. An exception here is the case of results based on the 89Rb gamma-ray line
(1.9% variation for a burn-up change of 5% in the 36GWd/t sample). The 89Rb-based results
were also found to be very sensitive to the assumed cooling time between the end of irradiation
and the beginning of measurement (1.6% variation for a shift of 1 second).

With respect to future experiments, the sensitivity of the calculated �ssion rate ratios to the
assumed fuel composition will remain problematic, especially because PIE will not be conducted
on all burnt fuel pins used in the LIFE@PROTEUS experiments. On the contrary, the very
high sensitivity of the currently measured results to axial displacements of the burnt samples
can be reduced relatively easily by using similar measurement positions in front of the detector
for all samples. An accurate recording of the measurement times will be essential because of
the high sensitivity of the results obtained for 89Rb to the exact cooling time between end
of irradiation and beginning of measurement. However, as these results also showed a high
sensitivity towards the assumed burnt sample composition, it might be advisable not to include
the 89Rb (2570 keV) peak in the future analyses. Finally, to reduce the uncertainties on the
measured �ssion rate ratios, one of the major challenges for future measurements is to increase
the counting statistics while minimising the system dead time. In this context, a �rst design of
a measurement station for the LIFE@PROTEUS programme is proposed and evaluated in the
following chapter. Recommendations concerning the corresponding measurement and irradiation
strategies that should be adopted are also given.
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Chapter 7

Analysis and recommendations for the

LIFE@PROTEUS measurement station

In Chapters 4 and 5, it was demonstrated how relative �ssion rates between fresh and spent fuel
samples can be measured using gamma-ray lines above 2200 keV emitted by freshly induced short-
lived �ssion products. Final uncertainties were about 2% for fresh-to-36GWd/t �ssion rate ratios
and 3.4% for fresh-to-46GWd/t �ssion rate ratios; the main contribution to these uncertainties
were statistical. The low statistics and the fast neutron damage in the detector crystal during
reactor operation were found to be two principal aspects which need to be improved in future
experiments.

Furthermore, the measured results were found to be highly sensitive (8%/5mm) to the exact
axial measurement position of the spent fuel samples. High sensitivities (>1.5%) were also found
towards the assumed composition of the burnt fuel samples when using gamma-ray lines emitted
by 89Rb, the �ssion yields of which strongly depend on the �ssioning actinides. In addition,
the short half-lives of 89Rb and its precursor caused a high sensitivity (>1.5%/1 s) towards the
exact measurement of the cooling time between the end of irradiation and the beginning of
measurement.

The aim of this chapter is to transpose the �ndings of the presently conducted WOLF-B experi-
ments to the envisaged LIFE@PROTEUS programme and to demonstrate that the limitations of
WOLF-B can be largely eliminated in future experiments. It is in this context that a preliminary
design of the measurement station for LIFE@PROTEUS is presented and evaluated.

MCNPX models of a representative LIFE@PROTEUS test lattice and of the preliminary design
of the measurement station are used to estimate the fast neutron background from the core, the
intrinsic gamma-ray background from the burnt fuel pins and the expected high-energy gamma-
ray signals from short-lived �ssion products. For all these aspects, the results of the WOLF-B
analysis have served as reference.

The two MCNPX models, i.e. of the test lattice and the measurement station, are presented
in Section 7.1. Possible limitations of the measurement station with respect to neutron back-
ground, axial detection resolution and expected system dead times are evaluated in Section 7.2.
The performance of the measurement station, in terms of expected number of net counts for
the high-energy gamma-ray lines from short-lived �ssion products, is presented in Section 7.3.
Uncertainties, as well as sensitivities of measured and calculated �ssion rate ratios, are discussed
in Section 7.4. Section 7.5 deals with possible future optimisation of the presented measurement
station, and the chapter is summarised in Section 7.6.
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7.1 Reference test lattice and measurement station

Two relevant MCNPX models had already been developed in the framework of conceptual studies
for the LIFE@PROTEUS programme at PSI and were thus available for the present investiga-
tion. The �rst model featured the full, as-to-be-refurbished PROTEUS reactor, including a
representative test lattice as planned for the LIFE@PROTEUS campaign [Murphy 10]. The
second model featured the measurement station and comprised only a simpli�ed modelling of
the reactor [Perret 10a].

7.1.1 Reference test lattice model

In the frame of the LIFE@PROTEUS campaign, it is currently planned to mainly investigate
three di�erent test lattices. The �rst will contain only fresh fuel pins, the second fresh and
40GWd/t spent fuel pins, and the third fresh and 60GWd/t spent fuel pins [Murphy 10]. The
test zone will, in each case, consist of nine 10x10 assemblies. For the two mixed lattices, the
fresh and spent interfaces, which are to be studied in LIFE@PROTEUS, will be located in the
central assembly.

The lattice con�guration containing the 60GWd/t spent fuel pins has been selected as reference
lattice for the current investigation and is shown in Fig. 7.1. The lattice consists of 5% enriched
fresh UO2 pins and a bundle of 35 spent UO2 fuel pins with a burn-up of 60GWd/t in the central
assembly. The spent fuel has an initial enrichment of 4.3% and a cooling time of 10 years. In
each assembly, the 4 corner pins are replaced by structural steel pins. In addition, 8 pins are
replaced by B4C absorber rods in each of the outer 8 assemblies to control the reactivity of the
test zone. In total, the lattice contains 768 fuel pins, 733 of which are fresh and 35 spent.

The typical isotopic composition of 60GWd/t spent fuel pins had been calculated with the
CASMO-4E depletion code [Grimm 09]. In the MCNPX model, the isotopic composition of the
spent fuel pins was modelled as homogeneous in both radial and axial directions.

.

Fresh 5% enriched UO2 pin

B4C absorber rod

Structural steel pin

60GWd/t spent UO2 pin

Figure 7.1: Reference test lattice considered for the LIFE@PROTEUS campaign.
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7.1.2 Measurement station model

As described in Section 2.4, the measurements during the LIFE@PROTEUS campaign will take
place in a measurement station above the test zone. The measurement station will consist of
two vertical tubes. The larger tube will contain the detector, and an adjacent smaller one will
hold the irradiated pin in the measurement position. The refurbished PROTEUS reactor will
feature a much larger water tank, housing the bu�er and D2O-driver zones as well as the test
zone. The tubes containing the detector and the measured pin will be both located in the large
water tank. While the larger, detector-containing tube will be water tight, the smaller one will
be open and hence contain water. Apart from this general concept, however, the exact detection
geometry and the shielding of the detector still have to be determined.

As mentioned earlier, an MCNPX model of a �rst generic measurement station for the LIFE-
@PROTEUS campaign had already been developed [Perret 10a]. This model has been used as
a starting point to develop the preliminary design of the measurement station, which is shown
in Fig 7.2. The �gure shows an axial and a radial cut of the measurement station, with the two
tubes for the detector and the fuel pin. The surroundings of the measurement station, i.e. the
concrete shielding of the reactor and the reactor core, are modelled in a simpli�ed way employing
simple geometries and homogenised materials based on [Jordan 09].

Graphite block
containing
driver fuel

Steel tube 
for detector

Steel tube 
for pin

Water tank

Detector position inside lead shielding

Measured 
pin

MCNPX model of measurement  station
above test zone Axial cut:
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length fuel pins
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Figure 7.2: Preliminary design of the LIFE@PROTEUS measurement station.
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The measurement station, as a whole, will be movable radially (in x- and y-directions) to allow
measuring any given lattice pin using the same measurement position in front of the detector.
The detector is located about 50 cm above the upper end of the full-length fuel pins of the test
lattice and about 1.2m above the active zone of the test tank. The axial detector position has
to be kept relatively low for safety reasons. To limit contamination risks in case of clad failure,
one should indeed guarantee that the spent fuel pins remain under water in the water tank, even
during measurements. The axial position of the measurement station has been chosen to ful�ll
this requirement, while measuring a spent fuel pin in a position where its axial burn-up pro�le
is relatively �at (i.e. not towards the end of the pins, but rather close to its axial centre).

The gamma-ray detector is embedded into a 71 cm high cylinder of lead with a diameter of
25.8 cm (total mass ∼300 kg). The lead shielding below the detector has a height of 12 cm.
Above, the detector is shielded against the upper part of the measured fuel pin with 20 cm of
lead. Clearly, in the �nal measurement set-up, this upper lead shielding will have to feature a
channel for signal and high voltage cables and for the cooling system of the detector.

The geometry of the HPGe detector and its position inside the lead shielding were chosen on the
basis of the WOLF-B campaign. The detector itself was modelled exactly as for the WOLF-B
measurements (see Subsection 5.4.1), which simpli�ed the comparison between the WOLF-B and
LIFE@PROTEUS set-ups. The detector position inside the lead shielding is shifted 2.95 cm from
the centre of the lead cylinder to increase the amount of lead �lter between pin and detector.
The distance between pin and detector centres is thus 21.95 cm, including 5.5 cm of water and
about 12 cm of lead. This detector position has been chosen to yield similar detector responses
for uncollided 3576 keV gamma-rays in the LIFE@PROTEUS and WOLF-B set-ups.

In the following section, potential limitations of the measurement station are characterised.
These are the neutron background from the reactor core, the spatial resolution of the measure-
ments, and the dead time generated by the intrinsic gamma-ray background from the spent fuel
pin. The performance of the measurement station, in terms of the expected number of counts
for the high-energy gamma-ray lines, is estimated in Section 7.3.

7.2 Potential limitations of the measurement set-up

This section contains the evaluation of the preliminary set-up proposed for the LIFE@PROTEUS
measurement station with respect to the neutron background emitted by the reactor core, the
axial detection resolution of the measurement set-up and the intrinsic gamma-ray background
emitted by the spent fuel pins in the measurement position.

7.2.1 Neutron background from core during irradiation

A su�cient shielding against neutrons from the reactor core during reactor operation is a funda-
mental prerequisite for gamma-ray measurements using an HPGe detector in LIFE@PROTEUS.

During the WOLF-B campaign, the number of irradiations, the irradiation duration and the
reactor power were strongly limited by the continuous crystal damage caused by fast neutrons
during each irradiation. The analysis of the acquired gamma-ray spectra was considerably
impaired by the neutron damage which degraded the detector resolution.
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After optimising the neutron shielding of theWOLF-B measurement station (see Subsection 4.3.2),
the fast neutron �ux (0.1 keV-12MeV) reaching the detector crystal, during an irradiation at
800W, was estimated to be about 8.5·105 cm−2s−1. The total neutron �ux in the detector crys-
tal was about 1.4·106 cm−2s−1. These measurement conditions clearly need to be avoided in
LIFE@PROTEUS to prevent the severe crystal damage experienced during WOLF-B.

Using the MCNPX model of the reference set-up of the LIFE@PROTEUS measurement station,
the neutron �ux reaching the detector during reactor operation could only be estimated with
rather high uncertainty (about 15%) because of the poor statistics. Here, the total neutron �ux
reaching the detector crystal during irradiation at 800W was estimated to be about 35 cm−2s−1,
many orders of magnitudes lower (2.5·10−5) than that during the WOLF-B campaign. The main
reason for this low value is the large volume of shielding water between the reactor core and the
measurement station, which was not present during WOLF-B.

The presented LIFE@PROTEUS measurement station thus o�ers enough neutron shielding
against the reactor core to rule out strong neutron damage of the detector as was observed
during the WOLF-B campaign. This allows, theoretically, an unlimited repetition of irradia-
tions and simpli�es the analysis of the measured gamma-ray spectra.

7.2.2 Axial resolution of detection system

In comparison to the WOLF-B experiments, where only 40 cm long samples were measured
and no speci�c importance was given to axial resolution, full-length fuel pins (∼4-5m) will
be used in the LIFE@PROTEUS experiments. In the power plants (which will provide the
spent fuel pins), and also in the PROTEUS reactor, the fuel pins are held in position with
the help of spacers, which cause axial heterogeneities regarding the composition of the fuel
and the �ssion rates in the core. The axial distance between the spacers is about 50 cm. To
avoid a�ecting LIFE@PROTEUS measurements by these spacer-induced heterogeneities, the
measurement station must o�er an axial detection resolution which is better than, or at least in
the range of 50 cm.

The axial resolution of the detection system was determined using the MCNPX model of the
measurement station with a pin in the measurement position. The pin was subdivided axially into
10 cm segments to identify the origin of the gamma-rays participating to the detector response.
An axially and radially homogeneous gamma-ray source was applied to each fuel segment. Using
a point detector located in the centre of the detector, the average uncollided �uxes of gamma-
rays emitted from the di�erent segments were tallied. The calculations were performed with
three di�erent source energies: 1260 keV, 2540 keV and 3576 keV. To predict the system dead
time during measurements, the procedure was repeated tallying also the total gamma-ray �uxes
(uncollided plus collided). Examples of the detector response to uncollided gamma-rays emitted
from the di�erent axial segments of the pin are shown in Fig. 7.3 for the di�erent gamma-ray
energies. The detector responses due the individual axial segments are normalised to unity for
each energy.
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Figure 7.3: Axial detection resolution of LIFE@PROTEUS measurement station for di�erent
gamma-ray sources (results for uncollided �uxes).

It is seen that more than 70% of the detected uncollided 3576 keV gamma-rays are emitted from
the 20 cm pin section directly in front of the detector. Due to the higher attenuation in the lead
at lower energies, this e�ect is more pronounced for lower gamma-ray energies. For the 1260 keV
gamma-rays, more than 80% of the detected uncollided gamma-rays originate from this 20 cm
pin section.

The fractions of the total detector responses due to gamma-rays emitted in the 20 cm, 40 cm and
60 cm sections of fuel next to the detector are given in Table 7.1. About 98% of the 1260 keV
gamma-rays reaching the detector are seen to be emitted from the 60 cm fuel section facing the
detector. For the higher-energy gamma-rays, 94 to 95 % of the uncollided gamma-rays reaching
the detector are emitted in this section.

Table 7.1: Fractions of total detector responses for gamma-rays emitted in di�erent sections of
the measured fuel pin (uncollided �uxes).

1260 keV 2540 keV 3576 keV
Section of fuel pin (135I) (142La) (95Y)

−10 cm to 10 cm 82.1% 74.3% 72.6%
−20 cm to 20 cm 96.5% 92.6% 91.3%
−30 cm to 30 cm 97.7% 95.3% 94.2%

The results for the total (i.e. uncollided and collided) gamma-ray �uxes show a very similar
distribution to those of the uncollided �uxes plotted in Fig. 7.3. This means that the low-energy
background counts recorded during measurements originate mainly from the 60 cm fuel section
facing the detector. In fact, the lead shielding above the detector was design to limit the system
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dead time due to intrinsic gamma-ray lines emitted in the top part of the measured pin. The
magnitude of the system dead time for the preliminary measurement station is estimated in the
next subsection.

With respect to the required axial detection resolution of ∼50 cm, the reference measurement
station o�ers an acceptable resolution. In the future, however, it will be important to re-evaluate
the spatial resolution. Some further improvements would be bene�cial, e.g. by using additional
shielding above and below the detector, to avoid any biases in the measurements due to spacer-
related heterogeneities.

7.2.3 Intrinsic gamma-ray background from measured burnt fuel pin

The intensity of the intrinsic gamma-rays emitted by the spent fuel reaching the gamma-ray
detector is of importance, as this will be the main contribution to the system dead time during the
measurements of the LIFE@PROTEUS campaign. The zero-dead-time counting of the ORTEC
DSPEC Plus accurately corrects measurements with very high dead times. Nonetheless, the �nal
measurement set-up should aim to keep the dead time as low as possible because the higher the
dead time, the higher will be the statistical uncertainties on the net-count areas of the detected
gamma-ray lines (see Subsection 5.2.3).

During the WOLF-B measurements, the system dead times due to the intrinsic gamma-ray
background from the burnt fuel (before re-irradiation) were about 35% and 62% for the 36GWd/t
and 46GWd/t samples, respectively. Compared to these values, the additional dead time caused
by the freshly induced gamma-ray activity after irradiation was small. Thus, for example, the
total dead times caused by these two samples in measurement positions �ve minutes after an
irradiation of 15min at 800W were about 45% and 68%, respectively; and a part of this additional
dead time was also caused by gamma-rays emitted by activated surrounding materials.

To account for the the zero-dead-time corrections in the WOLF-B analysis, the statistical un-
certainties (1σ) had to be multiplied by a factor of 1.3 for the 36GWd/t sample and a factor of
1.8 for the 46GWd/t sample. As described in Subsection 5.2.3, the used approximation for the
correction factor was

√
< n >, < n > being the average real-to-live time ratio. Consequently,

unless the relative statistical uncertainty can be reduced drastically for the LIFE@PROTEUS
measurements, high dead times should be avoided to prevent any signi�cant increase of the
statistical uncertainties.

The gamma-ray backgrounds due to the intrinsic activity of the measured pin or sample were
determined using the MCNPX models of the LIFE@PROTEUS and WOLF-B measurement
stations. The same gamma-ray source, which models the intrinsic activity of burnt fuel, was
used in both cases to ease the comparison. To increase the e�ciency of the MCNPX calculation
of the LIFE@PROTEUS set-up, the source was only assigned to the 60 cm section of the fuel
pin facing the detector. In each case, the source was distributed homogeneously in the fuel. The
considered energies and their contributions to the modelled source are summarised in Table 7.2.
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Table 7.2: Modelled gamma-ray source for the intrinsic activity of the burnt fuel [Jordan 09].

Energy 605 keV 662 keV 706 keV 802 keV 873 keV 996 keV

Isotope 134Cs 137Cs 134Cs 134Cs 154Eu 154Eu
Contribution 7.12% 81.18% 6.24% 0.64% 0.73% 0.63%

Energy 1004 keV 1039 keV 1129 keV 1140 keV 1274 keV 1365 keV 2186 keV

Isotope 154Eu 134Cs 154Eu 154Eu 154Eu 134Cs 144Ce
Contribution 1.07% 0.07% 0.02% 0.01% 2.07% 0.22% 0.001%

The total gamma-ray �uxes (i.e. uncollided and collided) reaching the detector for the LIFE-
@PROTEUS and the WOLF-B measurement stations are calculated to be 1.1·10−9 cm−2sg−1

and 4.3·10−9 cm−2sg−1, respectively, �sg� denoting source gamma-rays. As the gamma-ray �ux
tallied by MCNPX is normalised per source gamma-ray, the tallied �uxes had to be corrected
for the di�erent source volumes. The resulting ratio, corrected for the di�erent source volumes,
is about 0.39. Consequently, the intrinsic gamma-ray background reaching the detector while
measuring a full length pin in the LIFE@PROTEUS set-up would be about 40% of the value
one had when measuring a 40 cm burnt sample of the same isotopic composition in WOLF-B.

The isotopic composition of the 60GWd/t burnt fuel pin (4.3% initial enrichment) is compa-
rable to that of the 46GWd/t burnt fuel sample (3.5% initial enrichment) used in WOLF-B1.
Therefore, the dead time for the 60GWd/t pin in LIFE@PROTEUS can be estimated using the
dead time for the 46GWd/t sample measured during WOLF-B. For the estimation, dead times
were plotted as a function of the total input count rates recorded during the WOLF-B campaign.
The system dead time due to the intrinsic activity of the 46GWd/t sample in the measurement
position was 62%; the corresponding total input count rate was 150,000 cps. It was assumed
that the system dead time caused by a 60GWd/t fuel pin in LIFE@PROTEUS corresponded to
an input count rate which was 40% of the total input count rate related to the measurement of
the 46GWd/t sample. i.e. 60,000 cps. Thus, using linear interpolation, the system dead time
caused by a 60GWd/t fuel pin in LIFE@PROTEUS was estimated to be about 30%.

A system dead time of ∼30% results in multiplying the statistical uncertainty by a correction
factor of about 1.2, which is more than acceptable. In other words, a lead �lter of 12 cm between
pin and detector o�ers su�cient protection with respect to the intrinsic activity of 60GWd/t
spent fuel pin.

7.3 Estimated counts from short-lived �ssion products

In this section, the achievable number of counts in the high-energy gamma-ray lines from short-
lived �ssion products are estimated for the proposed LIFE@PROTEUS measurement station.
The general methodology to estimate the net counts is described in Subsection 7.3.1. The per-
formance of the measurement station, based on the gamma-ray lines that had been used in
the WOLF-B analysis, is presented in Subsection 7.3.2. The same irradiation and measurement

1Note that the given burn-up value of the 46GWd/t sample is a nominal value; the true burn-up of the sample
is estimated to be 52 to 54GWd/t [Grimm 07].
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times as used in WOLF-B have been assumed. Improvements of the measurement technique to
maximise the statistics are investigated in Subsections 7.3.3 and 7.3.4. These improvements con-
sist of using longer irradiation times, on the one hand, and of considering additional gamma-ray
lines, which had not been considered in WOLF-B, on the other hand.

7.3.1 Methodology

In general, the number of net counts Nnet(Eγ) obtained in a gamma-ray peak at the energy Eγ,
emitted by a �ssion product FP after an irradiation with the �ssion rate F, can be written as:

Nnet(Eγ) = F · ε(Eγ) · att(Eγ) · (bγ,FPCFP )eff (7.1)

where ε(Eγ) is the energy-dependent detection e�ciency of the gamma-ray detector, att(Eγ) is
a correction factor for the solid angle and attenuation between measured pin and detector, and
(bγ,FPCFP )eff is the e�ective correction factor taking into account the saturation and decay of
the considered �ssion product (see Section 5.1).

The net counts Nnet,LIFE of a given gamma-ray peak measured with the described LIFE-
@PROTEUS measurement station can be related to the net counts Nnet,WOLF of the same
gamma-ray peak measured during the WOLF-B campaign, using Eq. 7.2. As the gamma-ray
detector is assumed to be the same in both measurement set-ups, the detection e�ciency ε(Eγ)
cancels out.

Nnet,f,LIFE(Eγ)

Nnet,f,WOLF (Eγ)
=

Ff,LIFE
Ff,WOLF

· attf,LIFE(Eγ)

attf,WOLF (Eγ)
·

(bγ,FPCFP )eff,f,LIFE
(bγ,FPCFP )eff,f,WOLF

(7.2)

As indicated in Eq. 7.2, the net-count areas obtained for the fresh fuel sample (index f,WOLF)
have been used to derive the expected net-count areas for a fresh fuel pin in LIFE@PROTEUS
(index f,LIFE). In a similar manner, the net counts obtained for the 36GWd/t burnt sample are
used to derive the expected net-count areas for the 60GWd/t burnt pin in LIFE@PROTEUS2.
The needed parameters are detailed, one by one, in the following paragraphs.

WOLF-B net-count areas Nnet,WOLF

The net-count areas of the gamma-ray lines 142La (2542 keV), 89Rb (2570 keV), 138Cs (2640 keV)
and 95Y (3576 keV) were obtained for both fresh and 36GWd/t samples, irradiated in the position
L11, with the analysis software HyperLab (see Section 5.2). During the WOLF-B campaign, the
36GWd/t sample had been irradiated twice in each lattice position, and the sum of counts from
both irradiations had been used for the �nal analysis. Here, however, the net counts obtained
from a single irradiation of the sample have been used.

Ratios of �ssion rates FLIFE/FWOLF

The ratios of �ssion rates in the LIFE@PROTEUS and WOLF-B test lattices were determined
using the results from MCNPX whole-reactor models.

2The obtained net counts of the 36GWd/t sample (and not those of the 46GWd/t sample) were used as
reference because of the much better statistics compared to those obtained for the 46GWd/t sample.
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The calculated �ssion rates in the fresh and the 36GWd/t samples irradiated in the lattice po-
sition L11 during the WOLF-B campaign (see Section 6.2) have been used as reference. Regard-
ing the LIFE@PROTEUS test lattice, the total �ssion rates were calculated using the MCNPX
whole-reactor model of the refurbished facility [Murphy 10], as brie�y described in Section 7.1.

Results for representative �ssion densities (i.e. with reference to volume and source neutrons)
of fresh and 60GWd/t fuel pins located in the central assembly of the LIFE@PROTEUS test
lattice are given in Table 7.3. They are compared to �ssion densities in the fresh and the
36GWd/t spent fuel samples irradiated during the WOLF-B campaign. The �ssion densities for
the LIFE@PROTEUS test lattice pins have been obtained as an average over a 30 cm segment
located in the middle of the PROTEUS core and correspond to a zone without spacers.

Table 7.3: Calculated �ssion densities and resulting �ssion rate ratios in LIFE@PROTEUS and
WOLF-B.

Fission density [cm−3sn−1]?

LIFE fresh 1.65·10−6 (0.4%)
60GWd/t 7.30·10−7 (0.4%)

WOLF-B?? fresh 1.31·10−5 (0.02%)
36GWd/t 9.26·10−6 (0.02%)

LIFE/WOLF-B ratio of �ssion rates [-]

fresh / fresh 0.08
60GWd/t / 36GWd/t 0.13
?sn: source neutron
??irradiation position L11

Regarding the fresh fuel, the �ssion rate in the LIFE@PROTEUS test lattice (assuming the
same reactor power) is seen to be about 13% of that in the WOLF-B test lattice. This is due to
the higher number of fuel pins in the LIFE@PROTEUS test lattice and the similar distribution
of the total power between the di�erent zones of the PROTEUS reactor in the two programmes.
During the WOLF-B campaign, the test lattice consisted of 101 fresh lattice fuel pins plus
one fuel sample (see Fig 4.3), whereas the LIFE@PROTEUS reference test lattice (see Fig 7.1)
contains in total 768 fuel pins (733 fresh and 35 spent).

Comparing the 60GWd/t pin and the 36GWd/t sample, the �ssion rate estimated for the
LIFE@PROTEUS lattice is about 8% of that in the WOLF-B test lattice.

All LIFE@PROTEUS irradiations are assumed to be carried out at a reactor power of 800W.
During the WOLF-B campaign, the fresh fuel sample was irradiated at a reactor power of only
100W (to limit the detector damage due to fast neutrons). Therefore, the LIFE/WOLF-B fresh-
fuel ratio of �ssion rates given in Table 7.3 needs to be scaled up by a factor of 8 for the derivation
of net counts in LIFE@PROTEUS. For the spent fuel, no modi�cation is needed, because the
36GWd/t sample had been irradiated at 800W.

Ratios of solid angle and attenuation correction factors attLIFE/attWOLF

Solid angle and attenuation correction factors for the WOLF-B measurement set-up were calcu-
lated with MCNPX in Section 5.4. They were estimated by tallying the uncollided gamma-ray
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�uxes in the germanium crystal of the detector due to mono-energetic gamma-ray sources emit-
ted from the fuel samples. The gamma-ray sources were modelled homogeneously in the radial
direction; in the axial direction, they were modelled following the calculated �ssion pro�le in
the samples during irradiation. As the fresh and the 36GWd/t spent fuel samples had not
been measured in the same position, two di�erent correction factors were calculated for each
considered gamma-ray energy, one for each sample.

For the LIFE@PROTEUS measurement set-up, analogous calculations have been carried out,
applying a gamma-ray source to the 60 cm section of the fuel pin next to the detector. Here,
however, the source was homogeneously distributed in both radial and axial directions. This was
a simpli�cation since, in LIFE@PROTEUS, �ssions in the fuel pins will be axially distributed
according to the axial buckling of the PROTEUS core and will account for the presence of
spacers. Furthermore, modelling only 60 cm high gamma-ray sources can lead to a bias of 5-6%
for the tallied high-energy �uxes because, in reality, 5-6% of the uncollided gamma-rays reaching
the detector crystal originate from outside of the modelled 60 cm section (see Subsection 7.2.2).
This means that the currently estimated count rates in the high-energy peaks are 5-6% too low.
For the present evaluation of the measurement station, however, this bias is quite acceptable,
considering in particular that it is in the conservative direction.

The measurement positions of the fresh and spent fuel pins are the same in LIFE@PROTEUS.
Moreover, the self-attenuations in fresh and spent fuel are very similar. The calculations have ac-
cordingly only been carried out for the fresh fuel pin, the corresponding factors for the 60GWd/t
pin being assumed to be the same.

The ratios of solid angle and attenuation correction factors were calculated for all considered
gamma-ray energies. As an example, the uncollided 2542 keV and 3576 keV �uxes tallied in the
germanium crystal, when measuring the fresh and spent fuel segments in LIFE@PROTEUS
and in WOLF-B, are given in Table 7.4. The �uxes are normalised to the number of source
gamma-rays. The �ux ratios, once corrected for the di�erent source volumes, are equal to the
corresponding ratios of solid angle and attenuation correction factors. The results are also given
in Table 7.4.

Table 7.4: Tallied uncollided �uxes for the LIFE@PROTEUS and WOLF-B measurement set-
ups, and corresponding ratios of solid angle and attenuation correction factors.

Uncollided �ux [cm−2sg−1]?

2542 keV 3576 keV

LIFE fresh and 60GWd/t 5.86·10−8 (2.3%) 7.67·10−8 (2.4%)

WOLF-B?? fresh (38.9 cm) 1.02·10−6 (0.1%) 1.74·10−6 (0.1%)
36GWd/t (40 cm) 4.20·10−8 (0.3%) 8.92·10−8 (0.3%)

LIFE/WOLF-B ratio of solid angle and attenuation correction factors [-]

fresh / fresh 0.089 0.068
60GWd/t / 36GWd/t 2.09 1.29

?sg: source gamma-ray
??irradiation position L11
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The solid angle and attenuation corrections for spent fuel measured during WOLF-B and
LIFE@PROTEUS are seen to be quite comparable. Their ratios are between 1.3 and 2.1, de-
pending on the gamma-ray energy. In fact, the detector position inside the lead �lter of the
LIFE@PROTEUS measurement station was chosen with this aim.

As regards the fresh fuel measurements, however, the uncollided gamma-rays reaching the de-
tector in the LIFE@PROTEUS set-up are at least 10 times less than in the WOLF-B set-up.
This is due to the specially optimised measurement position of the fresh fuel sample during the
WOLF-B campaign, where the sample was measured very close to the detector to increase the
counting statistics.

Ratio of saturation and decay correction factors (bγ,FPCFP )eff,LIFE/(bγ,FPCFP )eff,WOLF

As described in Section 5.3, the saturation and decay correction factors (bγ,FPCFP ) are �ssion
product dependent. They relate the number of gamma-rays of a particular energy Eγ emitted
by the �ssion product FP to the number of �ssions occurring in the fuel during irradiation.
E�ective correction factors (bγ,FPCFP )eff are calculated according to Eq 5.2 and account for the
possibility of several �ssion products contributing to the same gamma-ray energy.

A Matlab routine was written in order to calculate the saturation and decay corrections for the
WOLF-B measurements. The same routine has been used to calculate the saturation and decay
factors for the foreseen LIFE@PROTEUS measurements.

In a �rst study, the same irradiation, cooling and measurement times as for WOLF-B were
assumed for the LIFE@PROTEUS measurements. The irradiation time of the spent fuel pin
was set to 15min, whereas the irradiation time of the fresh fuel pin was set to 30min. The
cooling time for both fuel pins was 5min.

The only di�erence between the LIFE@PROTEUS and WOLF-B correction factors were the
di�erent sets of contributions ai to the total number of �ssions from the four main �ssioning
isotopes 235U, 238U, 239Pu and 241Pu. The contributions ai were needed to derive e�ective �ssion
yields used in the calculation of the saturation and decay of the di�erent �ssion products.

For the fresh fuel and the 36GWd/t fuel samples irradiated in position L11 during WOLF-B,
the contributions ai had been calculated using the whole-reactor MCNPX model. For the fresh
and the 60GWd/t pins irradiated in the LIFE@PROTEUS reference lattice, they had been
calculated in the framework of preliminary investigations [Murphy 10] and were available for
this work. The contributions ai to the total number of �ssions for both LIFE@PROTEUS and
WOLF-B are listed in Table 7.5.

The ratios of saturation and decay correction factors for the four gamma-ray lines are given in
Table 7.6. Due to the similar contributions a5 and a8 in the fresh fuel for both LIFE@PROTEUS
and WOLF-B irradiations, the correction factors are almost the same and their ratio is equal
to unity. For the 36GWd/t sample and the 60GWd/t fuel pin, the contributions to the total
number of �ssions are very di�erent due to the di�erent isotopic compositions of the fuels.
Consequently, the saturation and decay correction factors di�er signi�cantly for �ssion products
whose �ssion yields strongly depend on the �ssioning isotopes. For example, in the case for 89Rb,
the ratio of correction factors is 0.78.
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Table 7.5: Contributions to total number of �ssions during the LIFE@PROTEUS and WOLF-B
irradiations.

Estimated contributions to total �ssions
aU5 aU8 aP9 aP1

LIFE? Fresh 95% 5%

60GWd/t 27% 7% 53% 13%
WOLF-B?? fresh 97% 3%

36GWd/t 51% 4% 39% 6%
?Given values refer to central 60 cm section of fuel pins.
??irradiation position L11

Table 7.6: Ratios of saturation and decay correction factors between LIFE@PROTEUS and
WOLF-B.

fresh
fresh

60GWd/t
36GWd/t

Gamma-ray line (bγ,FPCFP )eff,f,LIFE
(bγ,FPCFP )eff,s,LIFE

(bγ,FPCFP )eff,f,WOLF

(bγ,FPCFP )eff,s,WOLF

142La (2542 keV) 1.00 0.95
89Rb (2570 keV) 0.99 0.78
138Cs (2640 keV) 1.00 0.97

95Y (3576 keV) 1.00 0.92

7.3.2 Estimated net counts for the gamma-ray lines used in WOLF-B

In a �rst step, the net-count areas which are achievable for the fresh and the 60GWd/t pins mea-
sured in the LIFE@PROTEUS measurement station have been estimated for the four gamma-ray
lines which were used for WOLF-B. These are 142La (2542 keV), 89Rb (2570 keV), 138Cs (2640 keV)
and 95Y (3576 keV). The main characteristics of these peaks, such as half-lives, gamma-ray in-
tensities and cumulative �ssion yields for 235U and 239Pu �ssions, are given in Table 7.7.

Table 7.7: Characteristics of gamma-ray lines used in WOLF-B analysis.?

Gamma-ray Cumulative �ssion yields [%]
Gamma-ray line Half-life intensity Yth,U5 Yth,P9

142La (2542 keV) 1.52 h 10.0% 5.86 (1.7%) 4.97 (1.1%)
89Rb (2570 keV) 15.4min 10.2% 4.69 (1.2%) 1.68 (1.9%)
138Cs (2640 keV) 33.4min 7.6% 6.69 (1.7%) 5.94 (2.7%)

95Y (3576 keV) 10.3min 6.4% 6.47 (1.1%) 4.82 (2.0%)
?All nuclear data are extracted from JEFF3.1.

The net-count areas obtained after irradiating the fresh and 36GWd/t samples in the lattice
position L11 have been used as reference. The irradiation times (30min for fresh fuel, 15min
for burnt fuel), the cooling times (5min) and the measurement times (1 to 8 hours, depending
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on the gamma-ray line) were assumed to be the same for LIFE@PROTEUS and WOLF-B. The
reactor power was set to 800W for all irradiations in LIFE@PROTEUS. The reactor power
during WOLF-B was 800W for the 36GWd/t sample and only 100W for the fresh sample. The
derived net-count areas are given in Table 7.8.

Table 7.8: Estimated net counts in LIFE@PROTEUS (same irradiation time as for WOLF-B).

Fresh pin 60GWd/t burnt pin
tirr=30min, 800W tirr=15min, 800W

Gamma-ray line
Ratio of counts
LIFE/WOLF-B?

Expected
counts LIFE

Ratio of counts
LIFE/WOLF-B??

Expected
counts, LIFE

142La (2542 keV) 9% 4890 16% 1020
89Rb (2570 keV) 9% 2100 12% 370
138Cs (2640 keV) 9% 3650 15% 1270

95Y (3576 keV) 7% 1280 9% 380
?Reference: WOLF-B, position L11, tirr=30min, 100W, irradiation 9 in Table 4.5.
??Reference: WOLF-B, position L11, tirr=15min, 800W, irradiation 5 in Table 4.5.

Comparing the 60GWd/t spent fuel pin (LIFE@PROTEUS) to the 36GWd/t spent fuel sample
(WOLF-B), the estimated net-count areas for LIFE@PROTEUS are only 9 to 16% of the va-
lues obtained for the same irradiation time and reactor power in the WOLF-B campaign. Both
WOLF-B and LIFE@PROTEUS measurements have similar solid angle and attenuation correc-
tion factors, and similar saturation and decay correction factors. The decrease in count rates
is mainly due to the di�erent �ssion rates. The �ssion rates induced in the spent fuel in the
LIFE@PROTEUS test lattice are about 10 times lower than in the WOLF-B lattice.

Comparing the fresh pin to the fresh sample, the estimated net-count areas for LIFE@PROTEUS
are about 10% of those for WOLF-B. Here, several aspects have to be considered in the compa-
rison. The reactor power during LIFE@PROTEUS is to be 800W instead of only 100W during
WOLF-B, which increases the count rates by a factor of 8. However, at the same time, the num-
ber of induced �ssions in the LIFE@PROTEUS lattice is only about 13% of that in WOLF-B
and the uncollided gamma-ray �ux reaching the detector is more than ten times lower.

Comparing the fresh and 60GWd/t fuel pins in LIFE@PROTEUS, the estimated net counts
obtained after the same irradiation are about 3 to 6 times higher for the fresh fuel pin than
for the 60GWd/t pin. This is mainly due to the higher �ssion rates for the fresh fuel pin as
compared to the spent fuel. In addition, the e�ective �ssion yields tend to be higher than for
the spent fuel, as the proportion of 235U �ssions is more important. This is particularly true for
89Rb, the �ssion yields of which for 235U and 239Pu �ssions are most di�erent (4.7% and 1.7%,
respectively).

Clearly, net-count areas about 10 to 16% of those obtained in WOLF-B are not su�cient. One
has to point out that these values refer to rather short irradiation times of 15 and 30min, for
which the longer-lived 142La and 138Cs are not yet saturated. In WOLF-B, these short irradiation
times were necessary to limit the neutron damage of the detector. Since in LIFE@PROTEUS
the detector will be much better shielded from the reactor core, there is not any such constraint
on the irradiation times. In the following subsections, longer irradiation times and additional
gamma-ray lines are considered for LIFE@PROTEUS in order to increase the statistics.
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7.3.3 Longer irradiation times

The estimated net counts discussed in the previous subsection for the 142La (2542 keV), 89Rb
(2570 keV), 138Cs (2640 keV) and 95Y (3576 keV) gamma-ray lines were derived for relatively short
irradiation times of 15 to 30min. Fig 7.4 illustrates the saturation process for the four �ssion
products during irradiation (unlimited irradiation time). It it clearly seen that the activities of
138Cs (T1/2=33min) and 142La (1.5 h) could be increased signi�cantly using longer irradiation
times.
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Figure 7.4: Saturation process during irradiation for the �ssion products 142La, 89Rb, 138Cs and
95Y.

The only negative impact of longer irradiation times might be a higher system dead time during
measurement, as the activity of the irradiated fuel pin increases. During WOLF-B, however,
it was found that the additional dead time due to the freshly induced �ssion products is small
compared to the dead time caused by the intrinsic gamma-ray activity of the spent fuel samples.
Therefore, it is not likely that the overall uncertainty due to system dead-time corrections will
increase signi�cantly with longer irradiations.

Net counts for the four gamma-ray lines, assuming longer irradiations for LIFE@PROTEUS,
were estimated using the methodology described in Subsection 7.3.1. Only the saturation and
decay correction factors for the di�erent �ssion products had to be adjusted to account for
the longer irradiation time tirr. The irradiation times were increased to 1, 2 and 3 h. Longer
irradiation times were not considered in view of possible safety limitations, e.g. the maximum
integrated reactor power per week3.

The results are summarised in Table 7.9. Due to their short half-lives of 15min and 10min, 89Rb
and 95Y reach their saturation very quickly. Consequently, the net counts of their gamma-ray

3For example, today, the maximum energy produced by the reactor per week is limited to 2000Wh in order
to guarantee a dose rate lower than 40µSv/week in the control room [Fassbind 09]. This, and other similar
limitations, may have to be re-considered during the refurbishment of the reactor for LIFE@PROTEUS.
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peaks do not increase signi�cantly with longer irradiations. The maximum net-count areas of
the 89Rb (2570 keV) and 95Y (3576 keV) peaks are less than 800 counts for the 60GWd/t spent
fuel pin. In comparison, the net-count areas for the 142La (2542 keV) and 138Cs (2640 keV) peaks
can be increased to more than 4700 and 7000 counts, respectively, by irradiating the spent fuel
fuel pin for 3 h.

Table 7.9: Estimated net counts in LIFE@PROTEUS using longer irradiation times.

Fresh pin 60GWd/t burnt pin
800W 800W

Gamma-ray line tirr=1h tirr=2h tirr=3h tirr=1h tirr=2h tirr=3h

142La (2542 keV) 8710 14100 17510 3640 5670 7050
89Rb (2570 keV) 2900 3100 3100 720 770 770
138Cs (2640 keV) 8460 11030 11780 3410 4460 4760

95Y (3576 keV) 1490 1520 1520 590 600 600

7.3.4 Additional gamma-ray lines

During WOLF-B, several gamma-ray peaks, which could be potentially used as �ssion rate
indicators, could not be included in the analysis because of their interference with background
peaks or because of insu�cient statistics. These peaks are 138Cs (2218 keV), 88Kr (2392 keV),
142La (2398 keV), 142La (2971 keV) and 84Br (3928 keV). Their gamma-ray intensities and the most
important �ssion yields are summarised in Table 7.10. Interfering background peaks during the
WOLF-B experiments are also given in Table 7.10. Relevant nuclear data and their uncertainties,
in relation to the additional gamma-ray lines, are included in AppendixA.

Table 7.10: Characteristics of additional high-energy gamma-ray lines.?

Gamma-ray Cumulative �ssion yields [%] Interfering WOLF-B
Gamma-ray line Half-life intensity Yth,U5 Yth,P9 background peak

138Cs (2218 keV) 33.4min 15.2% 6.69 (1.7%) 5.94 (2.7%) 1H (2223 keV)
88Kr (2392 keV) 2.8 h 34.6% 3.54 (1.8%) 1.25 (2.8%) 116mIn (2391 keV)
142La (2398 keV) 1.52 h 13.3% 5.86 (1.7%) 4.97 (1.1%) 116mIn (2391 keV)
142La (2971 keV) 1.52 h 3.1% 5.86 (1.7%) 4.97 (1.1%)
84Br (3928 keV) 31.8min 7.6% 1.01 (1.9%) 0.45 (4.3%)
?All nuclear data are extracted from JEFF3.1.

The 142La (2971 keV) and 84Br (3928 keV) peaks were not considered in WOLF-B because of
their insu�cient counting statistics. Towards the end of the measurement campaign, when the
detector resolution was already degraded, the 142La (2971 keV) peak additionally su�ered from
the interference with the 56Mn background peak at 2960 keV (from the activation of the steel of
the sample changer). In the case of the 88Kr (2392 keV) and 142La (2398 keV) peaks, interference
was caused by the 2391 keV peak of 116mIn, produced by activation of the detector mount. The
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interference of the 138Cs (2218 keV) peak was caused by the prompt gamma-rays from the 1H(n,γ)
reaction in the polyethylene shielding used for the detector.

In this section, the possibility to use these additional peaks in LIFE@PROTEUS is evaluated
by estimating their potential interference in the new detector environment and by quantifying
their achievable net-count areas.

Expected background peaks for LIFE@PROTEUS

As mentioned above, the interfering gamma-ray peaks observed in the energy region above
2200 keV during WOLF-B resulted mainly from the activation of materials surrounding the
detector. This was due to the large neutron background from the reactor during irradiation. The
two most prominent activation products were 56Mn (T1/2 = 2.6 h) and 116mIn (T1/2 = 54min).
In the case of LIFE@PROTEUS, it has been seen that the neutron background from the core
will be negligibly small (see Subsection 7.2.1). Consequently, the two activation products 56Mn
and 116mIn are not expected to be present in the gamma-ray spectra. The 88Kr (2392 keV), 142La
(2398 keV) and 142La (2971 keV) peaks will thus be usable, provided su�ciently high net-count
areas can be achieved.

As mentioned earlier, the 1H(2223 keV) background peak originated from prompt (n,γ) reactions
in the polyethylene shielding surrounding the detector. This peak was very small compared to the
other background peaks and was mainly present in the measurements of the spent fuel samples
due to their intrinsic neutron emission. In the LIFE@PROTEUS reference measurement station,
there is no polyethylene shielding. Due to the high amount of water surrounding the measure-
ment station, however, the 1H(2223 keV) peak could be a problem while measuring spent fuel
pins. Nonetheless, the 138Cs (2218 keV) peak has been included in the analysis presented in this
section. One has to be aware, however, that it might not be easily usable for LIFE@PROTEUS.

To estimate the LIFE@PROTEUS net-count areas of the additional gamma-ray lines, one �rst
needs to evaluate the net-count areas of these peaks during WOLF-B. Some of them could not
be determined directly from the measured gamma-ray spectra and were therefore estimated as
detailed below.

Determination of net-count areas for WOLF-B

The 138Cs (2218 keV) net counts Nnet,f,WOLF (2218keV ) for the fresh fuel sample could be obtai-
ned directly from the measured gamma-ray spectrum using the analysis software HyperLab. For
the spent fuel sample, however, this peak interfered with the 1H(2223 keV) background peak,
as mentioned above. Therefore, the net counts Nnet,s,WOLF (2218keV ) for the 36GWd/t spent
sample could not be obtained directly from the gamma-ray spectrum. Instead, the net counts
have been estimated in a manner analogous to Eq. 7.2, using the fresh fuel result as reference:

Nnet,s,WOLF (2218keV )

Nnet,f,WOLF (2218keV )
=
Fs,WOLF

Ff,WOLF

·atts,WOLF (2218keV )

attf,WOLF (2218keV )
·

(
b138Cs(2218keV )C138Cs

)
eff,s,WOLF(

b138Cs(2218keV )C138Cs

)
eff,f,WOLF

(7.3)

For the 36GWd/t sample, the net-count area of the 142La (2971 keV) peak could be obtained
directly with HyperLab, although the number of counts was very small. For the fresh sample,
due to the advanced degradation of the detector resolution when the sample was measured, the
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142La (2971 keV) peak interfered too much with the 56Mn (2960 keV) peak. The net-count area
Nnet,f,WOLF (2971keV ) has been therefore obtained based on the spent fuel result:

Nnet,f,WOLF (2971keV )

Nnet,s,WOLF (2971keV )
=
Ff,WOLF

Fs,WOLF

·attf,WOLF (2971keV )

atts,WOLF (2971keV )
·

(
b142La(2971keV )C142La

)
eff,f,WOLF(

b142La(2971keV )C142La

)
eff,s,WOLF

(7.4)

The net counts in the 142La (2398 keV) peak were obtained for both fresh and spent fuel samples
directly with HyperLab. The neighbouring 88Kr (2392 keV) peak coincided with the 116mIn peak
at 2391 keV and could not be measured directly. Instead, its net-count area was estimated from
the net-count area of the 142La (2398 keV) peak, using Eq. 7.5, which is a simpli�ed version of
Eq. 7.2. The �ssion rates F cancel out in this case, as the sample, the irradiation time and the
location are all the same. The solid angle and attenuation correction factors att are assumed
to be the same for the two energies 2392 keV and 2398 keV, and thus also cancel out. Eq. 7.5 is
derived for the fresh fuel sample; the same basic relationship was used for the spent fuel sample.

Nnet,f,WOLF (2392keV )

Nnet,f,WOLF (2398keV )
=

(
b88Kr(2392keV )C88Kr

)
eff,f,WOLF(

b142La(2398keV )C142La

)
eff,f,WOLF

(7.5)

Finally, the 84Br (3928 keV) peak could be determined directly in the measured spectra for both
fresh and 36GWd/t samples, albeit with relatively high uncertainties.

Estimated LIFE@PROTEUS net-count areas

Having derived the net-count areas of the new gamma-ray candidates for the case of WOLF-
B, the achievable net-count areas for LIFE@PROTEUS have been obtained as described in
Subsection 7.3.1. The reactor power was set to 800W. Irradiation times of 1, 2 and 3 h were
assumed. In each case, the measurement was assumed to start 5 min after irradiation and to
last about 8 hours in order to detect at least 90% of the gamma-rays from the longest-lived
candidate 88Kr.

The estimated net-count areas are summarised in Table 7.11.

Table 7.11: Estimated net counts for additional gamma-ray lines in LIFE@PROTEUS.

Fresh pin 60GWd/t burnt pin
800W 800W

Gamma-ray line tirr=1h tirr=2h tirr=3h tirr=1h tirr=2h tirr=3h

138Cs (2218 keV) 13780 18550 19960 5590 7520 8090
88Kr (2392 keV) 11170 19920 26770 4140 7380 9920
142La (2398 keV) 7750 12790 15980 4640 7660 9570
142La (2971 keV) 2750 4530 5670 1080 1780 2220
84Br (3928 keV) 810 1030 1090 250 320 340
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7.3.5 Conclusions with respect to achievable count rates

As compared to WOLF-B, the counting statistics obtained during LIFE@PROTEUS will be
impaired because of the much lower (factor of ∼0.1) �ssion rates expected in the individual fuel
pins. For the longer-lived �ssion products 88Kr, 142La and 138Cs (minimum half-life 30min), this
e�ect can be compensated by longer irradiation times. For shorter-lived �ssion products like
89Rb and 95Y (maximum half-life ∼15min), however, this is not possible.

Regarding the gamma-ray lines which were already included in WOLF-B analyses, the two
peaks 142La (2542 keV) and 138Cs (2640 keV) appear very suitable for LIFE@PROTEUS. Among
the additional gamma-ray lines, which had not been included in the analysis of the WOLF-B
measurements, the three peaks 88Kr (2392 keV), 142La (2398 keV), 142La (2971 keV) appear very
promising. To maximise the number of achievable counts per irradiation, long irradiation times
at high power levels should be chosen for LIFE@PROTEUS. As shown in Tables 7.9 and 7.11,
the expected net-count areas for these di�erent gamma-ray lines, recorded after an irradiation
of 3 h at a reactor power of 800W, vary between 2200 and 10000 counts for the spent fuel pin,
and between 5700 and 27000 counts for the fresh fuel pin.

Theoretically, the count rates of the peaks from 142La (T1/2 = 1.5h) and 88Kr (T1/2 = 2.8h)
could be further increased with even longer irradiation times. However, as mentioned above,
longer irradiation times might not be possible because of safety limitations with respect to the
maximum integrated reactor power per week. Therefore, 3 h are assumed to be the maximum
irradiation duration.

The 89Rb (2570 keV), 95Y (3576 keV) and 84Br (3928 keV) peaks appear unsuitable for the
LIFE@PROTEUS measurements because of their insu�cient statistics. The 138Cs (2218 keV)
peak, in spite of showing high count rates, will probably not be easily usable during LIFE-
@PROTEUS because of its interference with the expected 1H(2223 keV) background peak4.

Finally, the �ve gamma-ray lines 88Kr (2392 keV), 142La (2398 keV), 142La (2542 keV), 138Cs
(2640 keV) and 142La (2971 keV) are recommended for the measurement of fresh-to-spent �ssion
rate ratios in LIFE@PROTEUS.

Higher statistics can be reached by repeating the irradiations of one pin and summing the obtai-
ned gamma-ray spectra before analysis. Since the damage of the detector due to the fast neutrons
emitted from the reactor core will not be a problem anymore for the LIFE@PROTEUS measu-
rement set-up, the number of irradiations is not limited theoretically. This number is limited,
however, for practical reasons, and 3 irradiations per pin are currently considered feasible.

In brief, a good example of an appropriate measurement strategy for LIFE@PROTEUS would
be to irradiate each pin for 3 h at a reactor power of 800W, to measure the pins for 8 h and to
repeat the whole procedure 3 times.

4The 1H(2223 keV) peak due to the intrinsic neutron emission of the burnt fuel could possibly be quanti�ed
with the help of suitable background measurements before irradiation, and the net counts of the 138Cs (2218 keV)
peak acquired after irradiation could then be appropriately corrected for.
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7.4 Expected uncertainties and sensitivities of �ssion rate

ratios

In this section, the expected uncertainties and sensitivities of measured �ssion rate ratios bet-
ween fresh and 60GWd/t spent fuel pins in LIFE@PROTEUS are estimated, based on the �ve
gamma-ray lines 88Kr (2392 keV), 142La (2398 keV), 142La (2542 keV), 138Cs (2640 keV), and 142La
(2971 keV). All the presented results are based on the measurement strategy derived in the pre-
vious section, i.e. three irradiations per pin for 3 h at a reactor power of 800W and gamma-ray
measurements for 8 h starting 5min after the end of each irradiation.

7.4.1 Uncertainties on measured �ssion rate ratios

Individual estimates for fresh-to-spent fuel �ssion rate ratios based on single gamma-ray lines are
derived in the same way as for the WOLF-B campaign. A �nal unique �ssion rate ratio result
is then obtained, in terms of the weighted mean of the individual gamma-ray line estimates.

The derivation of measured �ssion rate ratios and their uncertainties has been explained in detail
in Chapter 5 for the WOLF-B campaign. Since in LIFE@PROTEUS the measurement position
will be the same for all fuel pins, the solid angle and attenuation corrections are assumed to be
the same for the fresh and spent fuel pins. Strictly speaking, the solid angle and attenuation
corrections might di�er slightly due to di�erent axial �ssion pro�les in the fuel, but this e�ect is
neglected in this study. Therefore, Eq. 5.4 for the individual estimates of measured �ssion rate
ratio FRR(Eγ), between a fresh (f) and a spent (s) fuel pin for a given gamma-ray line of the
energy Eγ, simpli�es to:

FRRf−s(Eγ) =
Nnet,f

Nnet,s

· (bγ,FPCFP )eff,s
(bγ,FPCFP )eff,f

(7.6)

where Nnet is the net-count area of the given gamma-ray line, and (bγ,FPCFP )eff is the correction
factor taking into account the saturation and decay of the �ssion product during and after
irradiation.

The combined uncertainty on a measured �ssion rate ratio σFRR(Eγ) is derived from the statistical
uncertainties on the two net-count areas Nnet,f and Nnet,s and on the ratio of saturation and
decay correction factors (bγ,FPCFP )eff,s/(bγ,FPCFP )eff,f using the error propagation law:

σFRR(Eγ) =
√
σ2
Nnet,f

+ σ2
Nnet,s

+ σ2
(bγ,FP CFP )eff,s
(bγ,FP CFP )eff,f

(7.7)

The individual estimates FRR(Eγ) of the fresh-to-60GWd/t �ssion rate ratios are combined to
yield the weighted mean FRR. In contrast to WOLF-B, however, the individual estimates based
on the di�erent gamma-ray lines are not independent of each other. Three of them originate
from the same �ssion product 142La. As a �rst approximation, however, the weighted mean may
be used, neglecting the correlation between the three 142La estimates:

FRR =

∑
1

σ2
FRRi(Eγ )

· FRRi(Eγ)∑
1

σ2
FRRi(Eγ )

, σ2
FRR =

1∑
1

σ2
FRRi(Eγ )

(7.8)

130



Chapter 7. Analysis and recommendations for the LIFE@PROTEUS measurement station

The uncertainties on the individual estimates FRR(Eγ) related to the saturation and decay
corrections are calculated as described in Section 5.3 via the Matlab routine used for the WOLF-
B analysis. The ratios of the correction factors between the 60GWd/t spent and fresh fuel pins,
along with their uncertainties, are summarised in Table 7.12.

Table 7.12: Ratios of saturation and decay correction factors and their uncertainties as calculated
for LIFE@PROTEUS.

60GWd/t
fresh

Gamma-ray line (bγ,FPCFP )eff,s
(bγ,FPCFP )eff,f

88Kr (2392 keV) 0.55 (1.4%)
142La (2398 keV) 0.89 (1.2%)
142La (2542 keV) 0.89 (1.1%)
138Cs (2640 keV) 0.91 (1.3%)
142La (2971 keV) 0.89 (1.2%)

In contrast to the case of the saturation and decay correction factors, the uncertainty on the net-
count areas can only be broadly estimated. As a �rst approximation, the uncertainty σNet,LIFE on
the net-count area of a given gamma-ray line may be estimated on the basis of the corresponding
uncertainty σNet,WOLF derived during WOLF-B with HyperLab. To this aim, σNet,WOLF values,
as obtained in Subsection 5.2.3, have been modi�ed using Eq. 7.9 to account for the di�erent count
rates Nnet,LIFE and Nnet,WOLF , and for the di�erent dead times < n >LIFE and < n >WOLF :

σNet,LIFE = σNet,WOLF ·

√
Nnet,LIFE· < n >LIFE

Nnet,WOLF · < n >WOLF

(7.9)

The derived σNet,LIFE values are somewhat overestimated as the uncertainty σNet,WOLF , which
was obtained by �tting the distorted gamma-ray peaks within HyperLab, also accounts for the
degradation of the detector resolution during WOLF-B. No degradation of the detector resolution
is expected in LIFE@PROTEUS and, consequently, the uncertainty should be lower. This is
specially true for the fresh fuel pins, as measurements of the fresh fuel sample were conducted
with a much degraded detector resolution during the WOLF-B campaign. In particular, the
degraded detector resolution led to di�culties in deconvolving the 142La (2398 keV) peak from
the 88Kr (2392 keV) and the 116mIn (2391 keV) peaks, resulting in arti�cially high uncertainties.

Considering the half-lives of the �ssion products, most of the counts in the gamma-ray peaks will
be acquired when the system dead time has reached its background level and is only due to the
intrinsic activity of the measured pin. As shown in Subsection 7.2.3, the estimated typical dead
time due to the intrinsic activity of a 60GWd/t pin is about 30%. The dead time for a fresh fuel
pin (before irradiation) is negligible. Consequently, a conservative average dead-time correction
of 35% for the 60GWd/t pin and 5% for the fresh fuel pin is assumed. This leads to correction
factors < n >LIFE of 1.24 and 1.03, respectively, for the two pin types. The various estimated
net-count areas and their related uncertainties, for the sum of counts from 3 irradiations of 3 h
at a reactor power of 800W, are summarised in Table 7.13.
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Table 7.13: Estimated net counts and uncertainties for LIFE@PROTEUS.

Fresh pin 60GWd/t burnt pin
Gamma-ray line Counts Counts

88Kr (2392 keV) 80320 (2.4%) 29760 (1.9%)
142La (2398 keV) 47940 (2.6%) 28700 (2.0%)
142La (2542 keV) 52540 (1.0%) 21140 (1.8%)
138Cs (2640 keV) 35340 (2.6%) 14290 (4.4%)
142La (2971 keV) 17000 (2.0%) 6660 (3.8%)

7.4.2 Sensitivities of measured and calculated �ssion rate ratios

During the analysis of the WOLF-B experiments, the measured �ssion rate ratios have been found
to be very sensitive to the assumed axial elevation of the spent fuel samples in their measurement
positions. In addition, the results based on 89Rb were very sensitive to the assumed spent fuel
composition and to the measured cooling time between the end of irradiation and the beginning
of the gamma-ray counting.

In the following, the corresponding sensitivities of the LIFE@PROTEUS results, in relation to
measurements of the �ve gamma-ray lines 88Kr (2392 keV), 142La (2398 keV), 142La (2542 keV),
138Cs (2640 keV) and 142La (2971 keV), are discussed.

• Sensitivity to axial position of fuel pins

The position of the samples is needed to calculate the solid angle and attenuation correction
factors used for the derivation of measured �ssion rates. The high sensitivity to the spent
fuel measurement position during WOLF-B was caused by the fact that the samples were not
measured directly in front of the detector but in an axial position below the detector. In this
position, a slight change in sample elevation had a large impact on the amount of attenuating
material between sample and detector, as well as on the solid angle between them.

One main di�erence to the WOLF-B campaign is that during LIFE@PROTEUS, the spent and
the fresh fuel pins will be measured at the same position in front of the detector. Shifting the pins
axially will therefore not change signi�cantly the distance and the solid angle between detector
and pin. Thus, the sensitivities towards the axial elevation are comparable to those related to
the fresh fuel measurement position during WOLF-B, which were in the order of less than 0.8%
for a relatively large displacement of 5mm.

• Sensitivity to assumed spent fuel composition

Saturation and decay corrections used for the derivation of measured �ssion rates require one
to calculate e�ective �ssion yields, i.e. average �ssion yields weighted by the contributions ai of
the major �ssioning actinides (235U, 238U, 239Pu and 241Pu) to the total number of �ssions. The
contributions ai are obtained with MCNPX calculations and depend on the modelled composition
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of the fuel. Consequently, the saturation and decay correction factors, for �ssion products
which have very di�erent �ssion yields for �ssions in 235U, 238U, 239Pu and 241Pu, are highly
dependent on the assumed fuel composition. For example, in WOLF-B, the measured �ssion
rate ratio obtained using the 89Rb peak changed by 1.6% when using the calculated CASMO-4E
composition of the 36GWd/t sample instead of the measured one (see Subsection 5.3.4). In
comparison, the results based on 138Cs and 142La were a�ected by less than 0.2%, because their
�ssion yields are nearly independent of the �ssioning isotope.

Among the three �ssion products 138Cs, 88Kr and 142La which are recommended for the LIFE@-
PROTEUS experiments, only 88Kr has very di�erent �ssion yields, varying from 3.45% for 235U
to 1.25% for 239Pu and 1.01% for 241Pu (see Table 7.10). This is comparable to the di�erences in
the �ssion yields of 89Rb, so that a sensitivity similar to that of 89Rb can be expected for 88Kr.

• Sensitivity to cooling time

The cooling time between the end of irradiation and the beginning of measurement is needed for
the calculation of the saturation and decay correction factors used in the derivation of measured
�ssion rates.

The cooling time during WOLF-B was 5min. A sensitivity study showed that a discrepancy of
as small as 1 second between the measured and the real cooling time would result in a bias of
the �ssion rates derived from 89Rb of about 1.6% (see Subsection 5.3.5). This high sensitivity
is mainly caused by the decay of the parent isotope 89Kr, which has a very short half-life of
189 seconds. In comparison, the �ssion products 138Cs and 142La and their parent isotopes have
relatively long half-lives (at least 10min), so that an error in the cooling time of 1 second had
only a marginal impact (less than 0.2%) on the measured �ssion rate ratios.

The cooling time for LIFE@PROTEUS is also assumed to be 5min. Fission rates will be derived
from 138Cs, 142La and 88Kr activities. 88Kr has a half-life of 2.8 h and no parent isotope which has
to be considered in the analysis. Consequently, the sensitivity to uncertainties in the measured
cooling times is expected to be negligible.

7.4.3 Results for uncertainties and sensitivities

The combined uncertainties on the individual gamma-ray line estimates of measured fresh-to-
60GWd/t �ssion rate ratios in LIFE@PROTEUS, as well as on their weighted mean, are given
in Table 7.14. The uncertainties are also split into contributions from the net-count areas and
from the nuclear data. Compared to WOLF-B, there is not any contribution from the MCNPX
calculation of the solid angle and attenuation correction factors, because the ratio of these
correction factors in LIFE@PROTEUS is equal to unity and cancels out in the �ssion rate ratio
(see Eq. 7.6).

The combined 1σ uncertainties on the measured �ssion rate ratios are between 2 and 3.5% for
the gamma-ray peaks 88Kr (2392 keV), 142La (2398 keV) and 142La (2542 keV), and between 4.5
and 5.5% for 138Cs (2640 keV) and 142La (2971 keV). The 1σ uncertainty on the weighted mean
is 1.6%.

The uncertainties on the net-count areas are the main contributions (3 to 5%) to the combined
uncertainties of the individual gamma-ray line estimates. The uncertainties due to the nuclear

133



Chapter 7. Analysis and recommendations for the LIFE@PROTEUS measurement station

Table 7.14: Estimated uncertainties and sensitivities for experimental fresh-to-60GWd/t �ssion
rate ratios in LIFE@PROTEUS.

88Kr
(2392 keV)

142La
(2398 keV)

142La
(2542 keV)

138Cs
(2640 keV)

142La
(2971 keV)

weighted
mean

Total uncert. 3.3% 3.5.% 2.3% 5.3% 4.4% 1.6%

Statistical uncert. 3.0% 3.3% 2.0% 5.1% 4.2%
Nuclear data uncert. 1.4% 1.2% 1.1% 1.3% 1.2%

Sensitivities to an axial displacement of 5mm of spent fuel pin during measurements:
<0.8% <0.8% <0.8% <0.8% <0.8%

Sensitivities to assumed burnt fuel composition:
high low low low low

Sensitivities to an increase of cooling time by 1 sec:
<0.2% <0.2% <0.2% <0.2% <0.2%

data are 1.1% to 1.4%, and are mainly due to di�erences in the e�ective �ssion yields for fresh
and spent fuel.

It should be pointed out that the quoted statistical uncertainties could only be broadly estimated
and are most likely overestimated, whereas the contributions from the nuclear data uncertainties
are accurately calculated. Moreover, the statistics of the measurements can be improved, if
needed, in a relatively easy way by conducting more irradiations per measured fuel pin. The
uncertainties on the measured �ssion rates due to the nuclear data uncertainties, however, will
stay the same as they are related to di�erences in the fuel compositions.

For comparison with WOLF-B, Table 7.14 also contains the sensitivities of the measured �ssion
rate ratios to the axial position of the measured fuel pins, to the burnt fuel composition, and to
the assumed cooling time between the end of irradiation and the beginning of data acquisition.
These sensitivities are largely reduced in the LIFE@PROTEUS measurements as compared to
WOLF-B.

The only signi�cant sensitivity is expected for the �ssion rate ratios derived from the 88Kr
(2392 keV) line; this is with respect to the assumed spent fuel composition. As mentioned
earlier, the �ssion yields of 88Kr for 235U, 238U, 239Pu and 241Pu are very di�erent one from
another (see Table 7.10). Thus, the e�ective �ssion yield in this case will strongly depend on the
assumed sample compositions, and so will the derived �ssion rate ratio.

7.5 Further optimisation possibilities

Several measures for improving the counting statistics in the context of the preliminary design of
the LIFE@PROTEUS measurement station are discussed in this section. The �rst two measures
represent optimisations of the current set-up without changing the general concept of the mea-
surement station. These are a di�erent detector position within the lead shielding and the use
of a HPGe detector with a larger germanium crystal. Compared to these, the last two measures
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are less easy to implement as they would require large modi�cations of the measurement station
set-up. These are an alternative measurement geometry for the fresh fuel pins as compared to
the burnt ones and the use of several detectors.

Typically, measures to increase counting statistics also involve an undesired increase of system
dead time during measurement. Using a detector with a pre-ampli�er designed for very high
count rates could help to mitigate the problem of excessive dead times. Nonetheless, the �nal
measurement station will always be a compromise between counting statistics and system dead
time.

• Moving the detector closer to the pin within the lead shielding

In the preliminary design, the distance between the detector and the pin is about 22 cm, contai-
ning a �lter of about 12 cm lead and 5.5 cm water.

Higher count rates in the measured gamma-ray lines could be obtained by moving the detector
closer to the fuel pin within the lead. This would increase the solid angle between pin and
detector, as well as decrease the attenuating material between them. The drawback is that the
system dead time due to the intrinsic activity of the spent fuel pin also increases during the
measurement.

As an example, a measurement set-up was modelled where the distance between pin and detector
was only about 21 cm, reducing the lead �lter by 0.95 cm to 11.05 cm. With this set-up, the net-
count areas of the high-energy peaks obtained for an irradiation of 3 h at 800W could be increased
by about 75%. On the other hand, the total gamma-ray �ux due to the intrinsic activity of a
spent fuel pin would double. For a 60GWd/t pin, this would correspond to a system dead time
of about 50% (compared to about 30% for the preliminary set-up).

In general, a smaller amount of lead �lter increases the total (i.e. uncollided and collided)
gamma-ray �ux in the detector (which determines the system dead time) more than it increases
the count rates of the high-energy peaks. E�ectively, the achievement of higher count rates in
the high-energy peaks is always paid for with an even higher increase of undesired low energy
counts. Nonetheless, further optimisation of the lead �lter between pin and detector should be
carried out for the �nal measurement station.

• Bigger detector crystal

The detector used in the preliminary design of the LIFE@PROTEUS measurement station is the
ORTEC HPGe detector model GEM-15180-P (3600V), which was employed in the WOLF-B
�nal measurements (see Table 4.1). The crystal of the detector has a length of 57.2mm and a
radius of 50.0mm; the relative detection e�ciency of the model is 18%5.

The detection e�ciency of an HPGe detector is mainly determined by its crystal size. ORTEC
o�ers HPGe detectors having the same outer dimensions but di�erent crystal sizes. The maxi-
mum relative detection e�ciency, for a detector with the same outer dimensions which could be
�tted into the preliminary design of the measurement station, is 35% [ORT 03b].

5The detection e�ciency of germanium detectors is generally expressed relative to that of a standard 3 inch x 3 inch (7.62 cm x

7.62 cm) cylindrical NaI(Tl) scintillation crystal [Knoll 00].

135



Chapter 7. Analysis and recommendations for the LIFE@PROTEUS measurement station

Generally speaking, bigger detector crystals lead to higher detection e�ciencies than smaller
ones. This is specially true for high-energy gamma-rays. In other words, implementing a bigger
detector would increase the net-count areas more in the high-energy gamma-ray lines than in
the lower energy range corresponding to the intrinsic activity of the spent fuel pins. In addition,
the probability to fully deposit the gamma-ray energy in the crystal is enhanced leading to an
improved peak-to-Compton ratio which would ease the peak �tting process.

A detector with a bigger germanium crystal clearly represents an attractive measure to optimise
the measurement station.

• Di�erent measurement geometry for fresh fuel pins

For LIFE@PROTEUS, it is foreseen to measure both fresh and spent fuel pins in the same
position in front of the detector. This has the advantage to minimise the sensitivity of the
�ssion rate ratios to errors in the solid angle and attenuation correction factors, as well as to
errors in the positioning of the measured sample. In addition, it simpli�es the design of the
measurement set-up.

However, a �lter of 12 cm of lead is only required for spent fuel measurements, where the sys-
tem dead times due to the intrinsic gamma-ray activity need to be kept reasonably low. For
measurement of fresh fuel pins, this �lter is clearly oversized.

Higher count rates could be obtained by measuring the fresh fuel pin in a di�erent position with a
less strongly attenuating �lter, as was done during the WOLF-B experiments. The measurement
geometry for the fresh fuel should only be optimised to prevent any large dead time due to the
induced gamma-ray activity in the fuel. As the freshly induced activity, however, is low and
decreases fast, it is much less problematic than the intrinsic activity of burnt fuel.

• Several detectors

In PROTEUS, a gamma-ray scanner with two back-to-back HPGe detectors was routinely used
to derive �ssion rate ratios in fresh fuel pins during the LWR-PROTEUS programme. Using two
detectors back-to-back, with the pin in their middle, has the advantage to average any angular
dependencies of the �ssion rate, smooth out any error in the pin position and also increase the
counting statistics without increasing the measurement time [Murphy 99].

In principle, the use of several detectors is very attractive because, as opposed to the previous
three measures, it would increase the counting statistics without a�ecting the system dead time.
It should be possible, for example, to �t two gamma-ray detectors of the same kind next to
each other inside the lead shielding of the LIFE@PROTEUS measurement station, in a way
that the solid angle and attenuation between detector(s) and pin are comparable to that in
the preliminary design. In this way, the number of conducted irradiations could be decreased
drastically. Two independent estimates could be obtained for each measured �ssion rate ratio
and later be combined to decrease the uncertainty.

However, each detector would need its own cooling device, its own high voltage supply and
its own multi-channel analyser. Given the limited space in the measurement station for LIFE-
@PROTEUS, the use of two detectors may be di�cult to implement.
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7.6 Chapter summary

A preliminary design of the measurement station for the LIFE@PROTEUS programme has been
presented and analysed. The measurement station features a distance between measured pin and
detector of about 22 cm, of which 12 cm are lead and 5.5 cm water. The detector is positioned
about 1.2m above the active test zone of the reactor and is shielded against the reactor fuel by
more than 100 cm of water and 12 cm of lead.

As a �rst prerequisite, it has been demonstrated that the detector position o�ers su�cient
neutron shielding against the fast neutron background from the reactor core during irradiation.
This means that no constraints due to fast neutron damage in the detector crystal are expected
during LIFE@PROTEUS. As a second prerequisite, the axial resolution of the detection system
has been demonstrated to be in the required range (∼50 cm), such that axial heterogeneities in
the �ssion rate due to spacers can be minimised. As a third prerequisite, it has been shown that
the lead �lter between pin and detector adequately limits the dead time of the detection system
(30%). Low dead times are desirable for the future experiments, since the dead-time correction
increases the uncertainties on the measured net-count areas.

Having demonstrated that neither neutron nor gamma-ray background would constrain the
conducted experiments, the achievable accuracy of measured �ssion rate ratios between fresh
and 60GWd/t spent fuel pins has been estimated. In terms of achievable number of net counts,
�ve gamma-ray lines are found particularly suitable for LIFE@PROTEUS: 88Kr (2392 keV), 142La
(2398 keV), 142La (2542 keV), 138Cs (2640 keV) and 142La (2971 keV). Compared to WOLF-B, the
�ssion rates in the fuel pins of the LIFE@PROTEUS test lattice are about 10 times lower and
result in lower count rates in the gamma-ray lines of the observed �ssion products. The gamma-
ray line count rates could be increased by longer irradiation times of up to 3 h, except for the
short-lived 89Rb and 95Y. Therefore, the two peaks 89Rb (2570 keV) and 95Y (3576 keV), which
had been used in WOLF-B, will not be suitable anymore in LIFE@PROTEUS.

For LIFE@PROTEUS, a recommended measurement strategy is to irradiate and measure each
pin three times. Each irradiation should last 3 h at a reactor power of 800W and the results
should be analysed on the sum of the three measured spectra. Following this measurement
strategy, the obtained net-count areas are estimated to be between 17000 and 80000 counts for
the fresh fuel pin, and between 7000 and 30000 counts for the 60GWd/t fuel pin. Fresh-to-
60GWd/t �ssion rate ratios based on these results are estimated to have �nal uncertainties of
about 1.6%.

The �ssion rate ratios measured in WOLF-B showed considerable sensitivities towards the axial
position of the spent fuel sample during the measurement. In addition, the results based on
the 89Rb (2570 keV) peak were very sensitive with respect to the assumed spent fuel composition
and the cooling time between the end of irradiation and the beginning of measurement. These
sensitivities are almost entirely ruled out in the proposed LIFE@PROTEUS measurements.

As all fuel pins will be measured in front of the detector in the same position, the geometrical
correction factors will be almost identical for all pins, and small shifts in the axial position
will not have signi�cant impact on the measurements. Furthermore, because all selected �ssion
products have half-lives longer than 30min, a shift in the cooling time of some seconds will not
change the derived �ssion rate ratios. Finally, only the �ssion rate ratios derived from 88Kr are
sensitive to the spent fuel composition. This is because of the strongly di�ering �ssion yields of
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88Kr for the major �ssioning actinides. The use of the 88Kr (2392 keV) peak is therefore only
recommended in cases where the burnt fuel composition is well known. In comparison, the,
142La (2398 keV), 142La (2542 keV), 138Cs (2640 keV) and 142La (2971 keV) peaks do not have this
limitation.

The presented measurement station being a preliminary design proposal, several possibilities
have been discussed for further improving the counting statistics of the measured gamma-ray
lines. These are the amount of �lter between pin and detector, the detector crystal size, an
optimised measurement geometry for fresh fuel pins and the use of several detectors.

In conclusion, it can be stated that it will be possible to measure �ssion rate ratios between fresh
and 60GWd/t spent fuel pins during LIFE@PROTEUS with a satisfactory accuracy of 1 to 2%.
The main part of the uncertainties is statistical. However, nuclear data related uncertainties are
signi�cant (1-1.4%) and represent an important constraint.

The presented design for the measurement station should be optimised further to improve the
measured count rates per irradiation. In particular, employing a detector with a bigger ger-
manium crystal should be considered. Nonetheless, it is pointed out that the main limitation
remains the relatively low �ssion rates in the LIFE@PROTEUS test lattice. Consequently, long
irradiation times and repetitions of irradiations appear to be the most adequate measures to
increase the statistical accuracy.

138



BIBLIOGRAPHY

Bibliography

[Fassbind 09] M. Fassbind, O. Köberl & M. Murphy. Betriebsvorschriften PROTEUS,
Phase III der LWR-Experimente. Internal Report AW-41-06-01, Rev. 3,
PSI, 2009.

[Grimm 07] P. Grimm. CASMO-4E Calculations of the Isotopic Inventories of the
LWR-PROTEUS Phase II Irradiated Fuel Samples from KKG. Internal
Report TM-41-07-07, PSI, 2007.

[Grimm 09] P. Grimm. Zusammensetzung von abgebranntem Brennsto� für die Aus-
legung der LIFE-Experimente. Internal Report TM-41-09-09, PSI, 2009.

[Jordan 09] K.A. Jordan. Dosimetry Calculations of the PROTEUS Reactor Upgrade.
Internal Report TM-41-10-06, PSI, 2009.

[Knoll 00] G.F. Knoll. Radiation Detection and Measurements. Third edition, page
450, ISBN 0-471-07338-5, 2000.

[Murphy 99] M.F. Murphy. The LWR-PROTEUS Fuel Pin γ-Scanning Machine. Pro-
ceedings of the Annual Meeting on Nuclear Technology'99, Karlruhe, Ger-
many, page 425-428, 1999.

[Murphy 10] M.F. Murphy, G. Perret, O. Köberl, K.A. Jordan, P. Grimm, H. Kröhnert
& M. Zimmermann. Large-scale Irradiated Fuel Experiments at PRO-
TEUS Research Program. PHYSOR Conference 2010, Pittsburgh, Penn-
sylvania, USA, CD-ROM, ISBN 978-89448-079-9, 2010.

[ORT 03b] ORTEC. GEM Series Coaxial HPGE Detector, Product Con�guration
Guide, 2003.

[Perret 10a] G. Perret. personal communication. PSI, 2010.

139





Chapter 8

Summary and conclusions

The present doctoral research has involved the development of a novel measurement technique to
determine �ssion rates in fresh and burnt nuclear fuel. The new technique has been developed in
view of the future experimental programme LIFE@PROTEUS, where interfaces between lattices
of fresh and burnt fuel pins are planned to be studied in the zero-power reactor PROTEUS. To
discriminate against the high intrinsic activity of the burnt fuel, the investigated approach uses
gamma-ray lines above 2200 keV, emitted by short-lived �ssion products, instead of the commonly
used lower-energy lines.

This chapter concludes the presented work. A summary of the thesis is given in Section 8.1. The
main achievements and �ndings are reviewed in Section 8.2. Recommendations for future work
are given in Section 8.3, while Section 8.4 provides the concluding remarks.

8.1 Summary

Chapter 1 is the introduction to the thesis and presents the motivation behind the current
research. The chapter starts with a general overview of present-day nuclear power generation
and describes recent and anticipated developments in modern light water reactors, as also the
associated challenges. The main goals of the envisaged LIFE@PROTEUS programme are then
presented, and followed by a description of the scope and outline of the thesis.

Chapter 2 provides more speci�c background information. It gives the current status of mea-
surement techniques using gamma-rays emitted from �ssion products, as well as a description
of the PROTEUS reactor and its recent experimental programmes. Furthermore, the planned
LIFE@PROTEUS programme is described in detail, focusing on the required refurbishment of
the reactor and on the planned test zone con�gurations. At the end of the chapter, the two
computer codes mainly used in this work, MCNPX and HELIOS, are brie�y introduced.

Chapter 3 to Chapter 7 deal with the actual work carried out in the framework of the present
research. Chapter 3 is devoted to three preliminary measurement campaigns which were carried
out to establish an extensive database of gamma-ray spectra from short-lived �ssion products.
In the �rst campaign, fresh UO2 pellets were irradiated at the Belgian BR1 reactor. Using the
fast rabbit system of the reactor, the measurements focused on extremely short half-lives in the
range of seconds and minutes. The second preliminary measurement campaign took place at the

141



Chapter 8. Summary and conclusions

PROTEUS reactor. Following irradiation, the measurement of a fresh fuel sample was carried
out on top of the reactor shielding, the aim being to investigate longer-lived �ssion products
with half-lives of up to several hours.

The third preliminary campaign, the so-called WOLF-A campaign, was the �rst which also
included burnt fuel samples with burn-ups up to 80GWd/t. For this measurement campaign,
the samples were loaded into a special sample changer made of steel, which was placed on top
of the reactor inside the reactor shielding and was used to introduce the samples into the test
lattice of the reactor. The gamma-ray detector was placed below the sample changer, and the
fuel samples were measured in front of it.

Chapter 4 describes the main measurement campaign carried out during the present research.
This was the WOLF-B campaign, during which freshly induced gamma-ray activity was mea-
sured in both fresh and burnt fuel samples. For the WOLF-B campaign, the sample changer had
been modi�ed to allow the fuel samples to be introduced into di�erent positions of the test lattice
and to allow the gamma-ray detector to be placed inside the steel body of the sample changer. A
fresh and three burnt 40 cm long fuel samples (nominal burn-ups of 36, 46 and 64GWd/t) were
employed in the campaign. One by one, they were irradiated and their gamma-ray activities
after irradiation were measured inside the sample changer. The fresh fuel sample was measured
in front of the detector with about 12 cm of steel as �lter. Given their intrinsic background
activity, the burnt fuel samples were measured further away, to avoid too high system dead
times.

The main focus of the campaign was on the investigation of the fresh and the 36GWd/t burnt
fuel samples, irradiated in di�erent positions of the PROTEUS test lattice. Due to the fast
neutron �ux which reached the detector during reactor operation and damaged the detector
crystal, irradiation times were kept relatively short in order to protect the detector as much as
possible; they were 15min for the spent fuel sample and 30min for the fresh fuel sample. After
the main measurements, using the fresh and the 36GWd/t samples in three di�erent lattice
positions, additional irradiations were carried out using the 46 and the 64GWd/t samples.

Chapter 5 describes the analysis of the WOLF-B campaign, i.e. the derivation of experimental
�ssion rate ratios based on the measured short-lived �ssion product gamma-rays. Inter-position
and inter-sample �ssion rate ratios have been derived. Inter-position �ssion rate ratios compare
the same sample in di�erent irradiation positions, and have been obtained for the fresh and for
the 36GWd/t samples. Inter-sample �ssion rate ratios compare di�erent samples in the same
irradiation position and have been obtained between the fresh and the 36GWd/t samples, as
well as between the fresh and the 46GWd/t samples. Individual estimates of the �ssion rate
ratios were derived separately for each of the gamma-ray lines of interest, and then combined
into a single weighted mean to yield the �nal result.

The di�erent steps of the analysis, which are described in detail, are the deconvolution of the
gamma-ray spectra to obtain the net-count areas of the gamma-ray peaks, the correction for the
saturation and decay of the �ssion products during and after irradiation, and the correction for
the solid angle and attenuation between the samples and the detector. A detailed uncertainty
analysis and sensitivity studies have been described as well.

Chapter 6 presents calculated results of the �ssion rate ratios as obtained using an MCNPX
whole-reactor model of PROTEUS. The Monte Carlo analysis carried out includes an assessment
of the sensitivities of the results towards di�erent parameters such as the burnt fuel composition
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and its modelling, and the axial position of the fuel samples. The chapter also gives the compar-
ison of the calculated �ssion rate ratios with the experimental values presented in the previous
chapter.

In Chapter 7, as the �nal part of the current research, a preliminary set-up for a measurement
station for the LIFE@PROTEUS programme is presented and evaluated. The achievable accu-
racy for the envisaged �ssion rate measurements in fresh and burnt fuel has been estimated, and
recommendations are made for an appropriate measurement strategy.

8.2 Main achievements and �ndings

This section reviews the main achievements of the present research work, together with the most
relevant �ndings.

• Measurement of freshly induced �ssion products in burnt fuel

During the WOLF-B campaign, it has been possible, for the �rst time in a zero-power research
reactor, to measure the freshly induced �ssion products in burnt fuel after short re-irradiation
at low power. As illustration, Fig. 8.1 shows two spectra of the 36GWd/t burnt fuel sample, one
before and the other after irradiation in the PROTEUS reactor.

The measurement of freshly produced �ssion products in burnt fuel samples in itself represents
a considerable challenge, because of the intrinsic gamma-ray and neutron activity of the burnt
fuel. The large intrinsic activity requires the operator and experimentalist to be shielded from
the measurement station. Furthermore, an appropriate �lter between sample and detector has
to be employed to limit the dead time of the detection system due to the intrinsic gamma-ray
background of the measured burnt fuel.

To address the �rst issue, at PROTEUS, the measurements had to be carried out inside the
reactor shielding. There, however, the detector had to be shielded against neutron and gamma-
ray background from the reactor core. This was done by placing the detector within the steel
�ask of the sample changer, which also served to introduce the fresh and burnt fuel samples into
the reactor core for irradiation. Inside the sample changer, the detector was su�ciently shielded
from both gamma-ray and neutron backgrounds from the core during the data acquisition period
following the irradiation. However, the relatively high fast neutron �ux (about 8.5 · 105s−1cm−2

at 800W) reaching the detector during the irradiation itself damaged the detector crystal and
remained problematic. In fact, this was the main limitation in the measurements, preventing
long irradiation times and limiting the number of possible irradiations.

As regards the �lter between the measured fuel and the detector inside the sample changer, two
di�erent positions were used for the measurements of the fresh and burnt fuel samples. The
fresh fuel could be measured directly next to the detector with about 12 cm of steel as �lter,
whereas the burnt fuel samples had to be moved further down, i.e. away from the detector. The
distance between the top of the measured burnt fuel sample and the detector was about 26 cm.

Given the short half-lives of the investigated freshly induced �ssion products, the dead time of
the detection system varied signi�cantly during the measurements. Therefore, for a su�ciently
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Figure 8.1: Gamma-ray spectra of the 36GWd/t burnt sample before and after irradiation in
PROTEUS.

accurate quantitative analysis of the acquired spectra, the detection system was required to
properly correct for the changing dead times. In this work, the deployed EG&G ORTEC DSPEC
Plus digital multi-channel analyser ful�lled this requirement.

• Identi�cation of suitable gamma-ray lines

With the help of the preliminary measurements on fresh fuel, a list of gamma-ray lines with
potential for being used for the derivation of experimental �ssion rates in fresh and burnt fuel
was established and is shown in Table 8.1. The selection of the gamma-ray lines was made based
on several criteria. The main requirement was an energy above 2200 keV, in order to be able to
extract the gamma-ray line from the intrinsic background of the burnt fuel. A second requirement
was the potential for good counting statistics resulting from a high cumulative �ssion yield for
the corresponding �ssion product and a high gamma-ray intensity. Furthermore, the counting
statistics is favoured for energies relatively close to 2200 keV, because of the higher detection
e�ciency of HPGe detectors at lower energies. To ease the analysis of the spectra, a third
requirement for the gamma-ray line has been a minimal interference with other peaks. Finally,
considering the derivation of measured �ssion rate ratios, a last requirement for the �ssion
product has been to have similar �ssion yields for the di�erent �ssioning isotopes (mainly 235U,
238U, 239Pu and 241Pu). This is desirable to avoid high sensitivities of the derived experimental
results to the fuel composition.
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Table 8.1: Potential gamma-ray lines for the derivation of �ssion rates in fresh and burnt fuel.

Fission Cumulative �ssion yields [%]

product Half-life Yth,U5 Yth,P9 Gamma-ray lines (intensity)

88Kr 2.84 h 3.54 (1.8%) 1.25 (2.8%) 2392 keV (35%)
142La 1.52 h 5.86 (1.7%) 4.97 (1.1%) 2398 keV (13.3%), 2542 keV (10%),

2971 keV (3.2%)
138Cs 33.4min 6.69 (1.7%) 5.94 (2.7%) 2218 keV (15.2%), 2640 keV (7.6%)
89Rb 15.4min 4.69 (1.2%) 1.68 (1.9%) 2570 keV (10.2%)
95Y 10.3min 6.47 (1.1%) 4.82 (2.0%) 2632 keV (4.8%), 3576 keV (6.4%)

84Br 31.8min 1.01 (1.9%) 0.45 (4.3%) 3928 keV (6.8%)
90mRb 4.3min 1.36 (14.1%) 0.71 (14.0%) 2753 keV (11.5%), 3317 keV (14.3%)
90Rb 2.6min 4.37 (3.0%) 1.27 (5.4%) 3383 keV (6.7%) , 4135 keV (6.7%),

4365 keV (8%)

As can be seen in Table 8.1, not all of the listed gamma-ray lines ful�ll these requirements
equally well. The two �ssion products 142La and 138Cs (bold in Table 8.1) emerge as the most
universally applicable candidates, having several gamma-ray lines in the energy range between
2200 to 3000 keV and having similarly high �ssion yields for the di�erent �ssioning isotopes.
However, the �nally chosen subset of the gamma-ray lines listed in Table 8.1, which should be
used for the derivation of �ssion rate ratios in a given situation, will always depend on the
particular measurement conditions.

For the WOLF-B campaign, only �ve of the listed gamma-ray lines have been included in the
quantitative analysis, namely 142La (2542 keV), 89Rb (2570 keV), 95Y (2632 keV), 138Cs (2640 keV)
and 95Y (3576 keV). The other gamma-ray lines either did not have su�ciently high count rates
or su�ered from interference with background peaks.

Because of their rapid saturation,89Rb and 95Y have been found to be advantageous in situ-
ations in which only short irradiations are possible, as was the case in WOLF-B. The �ssion
products 90Rb and 90mRb, however, are extremely short-lived and were therefore not suitable for
the WOLF-B campaign, where the time needed to bring the fuel sample into its measurement
position after irradiation was 2 to 5min.

As regards the observed background peaks, these mainly originated from activated materials
surrounding the detector crystal. The main activation products were 56Mn in the steel of the
sample changer and 116mIn in the detector mount. In particular, the two gamma-ray lines 88Kr
(2392 keV) and 142La (2398 keV) su�ered from interference with the 116mIn (2391 keV) coincidence
sum peak of its gamma-rays at 1097 keV and 1293 keV. With increased degradation of detector
resolution due to the fast neutron damage, the 142La (2971 keV) line su�ered interference with
the 56Mn (2960 keV) peak. Furthermore, the 138Cs (2218 keV) line interfered with the prompt
1H (2223 keV) gamma-rays emitted from (n,γ) reactions in the polyethylene �lter around the
detector, caused by the intrinsic neutron activity of the burnt fuel.
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• Derivation of experimental �ssion rate ratios in fresh and burnt fuel samples

Based on the gamma-ray measurements carried out during the WOLF-B campaign, �rst-of-
their-kind experimental results have been obtained for inter-position and inter-sample �ssion
rate ratios for fresh and burnt fuel samples.

Regarding the deconvolution of the gamma-ray spectra to determine the net-count areas of
the peaks, one challenge has been the lack of calibration sources to cover the energy range
up to 3600 keV. Another challenge, particular to the WOLF-B campaign, has been the non-
Gaussian peak shapes caused by the neutron damage in the detector crystal. The analysis
software Hyperlab has been found to be specially suitable in this context, since it does not
required any a priori energy and resolution calibrations and is able to �t even highly distorted
peaks.

The saturation and decay corrections for 89Rb have been found to be particularly sensitive to
the fuel sample composition because the �ssion yield strongly depends on the �ssioning isotope.
Fission rate ratios based on gamma-rays emitted by 142La, 138Cs and 95Y are less dependent on
the fuel composition of the measured sample, since the �ssion yields of these are quite similar
for the di�erent �ssioning isotopes. This is of course particularly important for burnt fuel, the
composition of which is often estimated via depletion calculations rather than being measured.

The solid angle and attenuation correction factors in WOLF-B have been found to be particularly
sensitive to the axial positioning of the fuel sample (1.5%/1mm). This resulted from the burnt
fuel samples having to be positioned below the detector, rather than in front of it.

The 1σ uncertainties on the obtained inter-position �ssion rate ratios were almost purely due
to the counting statistics. They were about 0.6% for the fresh sample and about 2.3% for the
36GWd/t burnt sample.

The 1σ uncertainties on the inter-sample �ssion rate ratios between the fresh and the 36GWd/t
samples, and between the fresh and the 46GWd/t samples, were about 1.7-2.0% and 3.4%,
respectively. Again, these were mainly due to the counting statistics. However, in this case, the
contribution of nuclear data uncertainties in estimating the e�ective �ssion yields in the burnt
fuel sample amounted to 1.0-1.4%. It has been pointed out that, in contrast to the statistical
uncertainties, these nuclear-data related uncertainties will not to be easy to reduce in the future,
unless new, more accurate �ssion yield measurements are carried out.

• First C/E values for �ssion rate ratios in fresh and burnt fuel samples

As discussed previously, the main goal of the LIFE@PROTEUS programme is to experimentally
validate neutronics codes for the calculation of power, i.e. �ssion rate, distributions across
interfaces between fresh and highly burnt fuel regions. The calculation-to-experiment (C/E)
comparisons, which have currently been presented for �ssion rate ratios in fresh and burnt fuel,
are clearly �rst-of-their-kind in this context. The calculational results were obtained via whole-
reactor modelling of PROTEUS using MCNPX.

In general, the agreement between calculations and measurements has been good with a maxi-
mum deviation of about 4.5%. The uncertainties on the C/E values mainly consisted of those on
the measured results. As mentioned above, the 1σ uncertainties on the measured inter-position
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�ssion rate ratios for the fresh and the 36GWd/t samples were about 0.6% and 2.3%, respec-
tively. Those for the inter-sample �ssion rate ratios were about 2% for the fresh-to-36GWd/t
comparison and 3.4% for the fresh-to-46GWd/t comparison. Thus, the calculations have been
found to agree with the experiments within 1-3 standard deviations.

• Design of improved measurement station for LIFE@PROTEUS

As a �nal part of this thesis, a measurement station for the LIFE@PROTEUS programme
has been presented and evaluated. An optimised measurement strategy for �ssion rate ratios
between fresh and burnt fuel pins irradiated during LIFE@PROTEUS has been elaborated and
the expected accuracy of the measurements has been estimated. The principal �ndings in this
context are included in the following section.

8.3 Recommendations for future work

This section summarises the recommendations for future work. These are related mainly to
future measurement set-ups and strategies, in particular those to be employed in the envisaged
LIFE@PROTEUS experiments. Additional recommendations address the analysis of the mea-
surements, as well as the calculation of �ssion rate ratios using MCNPX. Finally, additional
potential applications of the new measurement technique are brie�y presented.

• Measurement set-up and strategy

Two main requirements for future measurement set-ups are an adequate neutron shielding against
the neutrons emitted by the reactor core to prevent any neutron damage of the detector crystal,
and an appropriate �lter between the measured fuel and the detector to limit the detection
system dead time. An additional requirement for the LIFE@PROTEUS measurements is an
axial detection resolution better than 50 cm while measuring full-length fuel pins. The latter
requirement is mainly aimed at avoiding the need to account for axial inhomogeneities in the
fuel composition and in the �ssion rate pro�le, introduced by spacers during irradiation in the
power plant and in PROTEUS.

In the proposed preliminary LIFE@PROTEUS measurement set-up (see Fig 7.2), a su�cient
neutron shielding from the reactor core is guaranteed by a large amount of water (more than
1m) between the measurement station and the core. A �lter of about 12 cm of lead is suggested
to keep the system dead time due to the intrinsic gamma-ray background of a 60GWd/t burnt
fuel pin at about 30%. Additional lead shielding on top of the detector is necessary to ensure a
reasonable axial detection resolution.

Although the presented preliminary measurement station has been demonstrated to ful�ll the
main requirements, it is recommended to investigate further optimisations to increase the count-
ing statistics. These could be an optimised �lter between pin and detector, an optimised detector
crystal size (i.e detection e�ciency), the use of two di�erent measurement positions for fresh and
burnt fuel, and the use of multiple detectors. The use of a detector with a bigger crystal is the
preferred option, since this could be easily implemented and also because this preferentially
favours high-energy gamma-ray lines.
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Once the measurement station is designed, the net-count rates of the high-energy gamma-ray
lines depend on the reactor power, the irradiation time and the number of repeated irradiations.
The �ssion rates in the LIFE@PROTEUS test lattice will be relatively low compared to those
in the WOLF-B campaign. Consequently, the measurements will have to emphasise longer-lived
�ssion products (142La, 88Kr and 138Cs), the count rates of which can be increased by long
irradiation times. The suggested measurement strategy consists in irradiating each pin at 800W
for 3 h, repeating each measurement 3 times and then carrying out the analysis on the sum of
the 3 acquired spectra.

Regarding the data acquisition, as the system dead time is expected to be about 30% for burnt
fuel measurements and to change during the measurements, it is highly recommended to use an
acquisition system allowing for zero-dead-time corrections, e.g. the DSPEC Plus from ORTEC.
Using the DSPEC Plus, both the spectrum corrected for the system dead time (ZDT spectrum)
and its variance spectrum (ERR spectrum) should be recorded in parallel. Thus, the true
variance of the net-count areas of the gamma-ray lines can be known directly and does not have
to be estimated separately as done in this work. In addition, to limit the system dead time, the
use of a faster preampli�er than the one used in WOLF-B should be investigated.

• Gamma-ray spectrum analysis and �ssion rate ratio derivation

Currently, the software HyperLab was used for the gamma-ray line deconvolution and for the
determination of net-count areas. HyperLab was particularly suitable because of its capability to
�t non-Gaussian peaks. In the LIFE@PROTEUS measurements, the fast neutron �ux reaching
the detector is negligibly small. Therefore, neither severe degradation of the detector resolution
nor distortion of the Gaussian peaks is expected. Nonetheless, HyperLab may still be a very
good option because it does not require any energy or resolution calibration.

If the detector resolution is not su�cient to deconvolve neighbouring peaks with reasonable
uncertainties, it is advisable to sum such peaks and to derive a unique single �ssion rate ratio.
This was done in the present research work for the two peaks 95Y (2632keV) and 138Cs (2640 keV).
The same approach should be considered for the two adjacent peaks 88Kr (2393kev) and 142La
(2398keV).

If hydrogen is present in large amounts close to the measurement station, as currently planned
for LIFE@PROTEUS, the 138Cs (2218keV) peak is likely to su�er interference from the prompt
capture gamma-ray peak of 1H at 2223 keV. The latter would be caused by the intrinsic neutron
background emitted by the burnt fuel during the measurement, or by delayed neutrons emitted
from the reactor core and the measured fuel pin shortly after irradiation. Since the measure-
ments will start about 5min after irradiation, the contribution to the 1H peak due to delayed
neutrons is expected to be negligible during the LIFE@PROTEUS measurements. As regards
the contribution due to the intrinsic neutron activity of the burnt fuel, this could possibly be
quanti�ed to a su�cient degree of accuracy by measuring the burnt fuel pin before irradiation
in PROTEUS. The observed counts in the 138Cs (2218kev) peak could then be appropriately
corrected for.

To minimise the uncertainty on the measured �ssion rate ratios between fresh and burnt fuel pins
due to nuclear data, it is recommended to conduct all experiments with the same irradiation,
cooling and measurement times. However, even with identical timing, the contributions from
the uncertainties on the �ssion yields will never compensate entirely for two fuel pins which have
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very di�erent isotopic compositions. If there are signi�cant doubts about the exact composition
of the burnt fuel samples, the use of �ssion products for which the �ssion yields strongly depend
on the �ssioning isotopes (e.g. 89Rb and 88Kr) is not recommended.

• Calculation of MCNPX �ssion rate ratios

As stated earlier, the measured �ssion rate ratios in the present experiments have been com-
pared to calculational results obtained with an MCNPX whole-reactor model of PROTEUS.
The quoted uncertainties on the �ssion rates calculated with MCNPX only accounted for the
statistical Monte Carlo uncertainties. Sensitivity studies have been conducted with respect to
the axial elevation of the fuel and the modelled composition of the burnt fuel, but there has not
been any systematic quanti�cation made of the corresponding uncertainties.

In future work, the uncertainty analysis for calculated values of the measured �ssion rate ratios
should be carried out more systematically, considering the uncertainties on the burnt fuel com-
position, on the geometry of the measurement set-up, as also on the position of the fuel during
irradiation.

• Synergy with the delayed neutron technique

As mentioned earlier, in addition to the presented measurement technique based on gamma-rays
from short-lived �ssion products, a second independent technique is being developed at PSI. This
is based on the measurement of delayed neutrons emitted from the fuel after irradiation. The
delayed-neutron technique has been successfully applied to derive �ssion rate ratios between fresh
and burnt fuel samples with burn-ups of 36 and 46GWd/t. The achieved uncertainties on inter-
position and inter-sample �ssion rate ratios are about 1% and 3-5%, respectively [Jordan 10a].
The large uncertainties on the inter-sample �ssion rate ratios mainly come from the rather large
quoted uncertainties on delayed neutron yields and the relative abundances of the delayed neu-
tron groups. First comparisons between experimental and calculated results suggest, however,
that these uncertainties are overestimated.

In the future, e�orts should be undertaken to combine the gamma-ray and the delayed neutron
techniques in an appropriate manner, considering that the systematic errors in the two di�erent
experimental approaches are quite independent of each other. Clearly, a signi�cant reduction of
net uncertainties on measured �ssion rate ratios can be expected to results from such synergy.

• Additional possible applications of the new measurement technique

It should be noted that the achieved measurements of freshly induced gamma-ray activity in
burnt fuel samples, being the �rst of their kind, could be of high interest to other research activi-
ties. For example, as mentioned in the Section 2.1, the use of short-lived �ssion products has been
suggested in connection with safeguards applications but has not been pursued further because
of experimental di�culties. The main interest in such work is the derivation of the plutonium
content of unknown burnt fuel on the basis of measuring short-lived �ssion product activity. In
this context, the currently obtained gamma-ray spectra could serve as a �rst database.

In the future, additional types of measurements could be considered. For example, the burnt fuel
could be irradiated under di�erent moderator conditions (i.e. using di�erent neutron spectra),
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and the ratio between the �ssioning isotopes could be determined based on the measured count
rates in certain gamma-ray lines using an iterative approach. Here, short-lived �ssion products
with very di�erent �ssion yields for the di�erent �ssioning isotopes, e.g. 89Rb and 88Kr, would
be clearly of advantage.

8.4 Concluding remarks

The present research work has successfully demonstrated the feasibility of measuring �ssion rate
ratios between fresh and burnt fuels irradiated in a zero-power facility such as PROTEUS. The
presented technique is based on the measurement of high-energy gamma-ray lines from freshly
induced, short-lived �ssion products. To the author's knowledge, such measurements in burnt
fuel samples have been performed for the very �rst time.

The derived �rst-of-their-kind fresh-to-burnt fuel �ssion rate ratios have a 1σ accuracy of 1.7
to 3.4%, the main contribution to the uncertainties being statistical. The improvement of the
statistics and a better shielding against the fast neutron background from the reactor have been
noted as the major challenges for future experiments.

The recommendations for future work have been elaborated focusing on a proposed measurement
station for the envisaged LIFE@PROTEUS experiments. It has been demonstrated that, during
these experiments, it will be possible to measure �ssion rate ratios between fresh and highly
burnt fuel pins with a satisfactory accuracy of 1 to 2%, using a measurement set-up which
is adequately shielded from the reactor core. It has been pointed out that the contribution
of nuclear-data related uncertainties (∼1.1 to 1.4%) could prove to be the main constraint to
the achievable accuracy in future experiments. Combining the presented gamma-ray technique
with the delayed neutron technique, which is being developed in parallel at PSI, would be an
important measure towards further reduction of net experimental uncertainties.

In conclusion, the presented research has led to the development of a key experimental tool for
measuring �ssion rates in mixed lattices of fresh and highly burnt fuel in zero-power research
reactors. The work has also pointed out further optimisations which are needed to fully exploit
the technique's potential in the future. Using the developed gamma-ray technique in combination
with the delayed neutron technique, the LIFE@PROTEUS programme will be able to provide
important experimental data which are needed for the validation of neutronics code predictions,
if the trends to higher discharge burn-ups and higher initial fuel enrichments in modern LWRs
are to be continued.
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Appendix A

Nuclear Data

This appendix summarises the nuclear data related to all gamma-ray lines used in the present
research work. All nuclear data shown are extracted from JEFF3.1.

153



Appendix A. Nuclear Data

Table A.1: Nuclear data of short-lived �ssion products investigated in the present thesis.
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Table A.2: Nuclear data of considered precursors and isomeric states of �ssion products investi-
gated in the present thesis.
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