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Abstract

This thesis deals with models and methods for large scale optimization problems; in
particular, we focus on decision problems arising in the context of seaport container
terminals for the efficient management of terminal operations.

Large-scale optimization problems are both difficult to handle and important in
many concrete contexts. They usually originate from real world applications, such as
telecommunication, transportation and logistics, and their combinatorial complexity
often represents a major issue; therefore, optimization models are crucial to support
the decision making process. In particular, column generation and branch-and-price
schemes currently represent one of the most advanced and efficient exact optimization
approaches to solve large scale combinatorial problems. However, the increasing size
and complexity of practical problems arising in real-world applications motivates the
design of new solution approaches able to tackle current optimization challenges.

In this thesis, we address two complementary research streams where both meth-
ods and applications play an important role. On the one hand, we focus on the specific
application of container terminals: we propose a new model for the integrated plan-
ning of operations and we provide a heuristic and an exact solution algorithm; the
broader objective is to devise solution methods that can be generalized and extended
to other applications and domains. On the other hand, we aim to develop new meth-
ods and algorithms for general large scale problems and, in this context, we investigate
a new column generation framework that exploits the relationship between compact
and extensive formulation. In particular, we focus on a class of split delivery vehicle
routing problems that generalizes a large number of applications arising in the real
world, such as transportation and logistics, including container terminal management.

In the context of container terminals, we propose a model for the integrated plan-
ning of berth allocation and quay crane assignment: the two decision problems are
usually solved hierarchically by terminal planners, whereas in the Tactical Berth Al-
location Problem we optimize the two problems simultaneously. We firstly present
a mixed integer programming formulation that is embedded into a two-level heuris-
tic algorithm based on tabu search and mathematical programming techniques: our
heuristic proves to be very efficient, providing good-quality solutions in a reasonable
time. The problem is reformulated via Dantzig-Wolfe decomposition and solved via
column generation: we propose an exact branch-and-price algorithm and our imple-
mentation, that includes state-of-the-art techniques for the master and the pricing
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problem, outperforms commercial solvers. Furthermore, the exact approach allows
us to provide an interesting experimental comparison between hierarchical and inte-
grated planning: computational tests confirm the added value of integration in terms
of cost reduction and efficient use of resources.

From a methodological point of view, this dissertation investigates a new column
generation concept for difficult large scale optimization problems. In particular, we
study a class of split delivery vehicle routing problems that generalizes some inter-
esting features of Tactical Berth Allocation Problem, which are relevant also to other
applications such as transportation, logistics and telecommunication.

The problem, called Discrete Split Delivery Vehicle Routing Problem with Time
Windows, presents two main modeling features: demand is discrete and delivered in
discrete orders, opposite to the usual assumption of continuously splittable demand;
the service time is dependent on the delivered quantity, opposite to the usual as-
sumption of constant service time, regardless of the quantity. The problem is used to
validate and test the new column generation approach studied in this thesis.

The proposed framework, called Two-stage column generation, represents a novel
contribution to recent advances in column generation: the basic idea is to simulta-
neously generate columns both for the compact and the extensive formulation. We
propose to start solving the problem on a subset of compact formulation variables,
we apply Dantzig-Wolfe decomposition and we solve the resulting master problem
via column generation. At this point, profitable compact formulation variables are
dynamically generated and added to the formulation according to reduced cost ar-
guments, in the same spirit of standard column generation. The key point of our
approach is that we evaluate the contribution of compact formulation variables with
respect to the extensive formulation: indeed, we aim at adding compact formulation
variables that are profitable for the master problem, regardless of the optimal solution
of the linear relaxation of the compact formulation.

We apply two-stage column generation to the Discrete Split Delivery Vehicle Rout-
ing Problem with Time Windows. Computational results show that our approach
significantly reduces the number of generated columns to prove optimality of the root
node. Furthermore, suboptimal compact formulation variables are detected correctly
and a large number of variables is not taken into account during the solution process,
thus reducing the size of the problem. However, the additional effort required by such
a sophisticated approach makes the method competitive in terms of computational
time only for instances of a certain difficulty.

To conclude, two-stage column generation is a promising new approach and we
believe that further research in this direction may contribute to solve more and more
complex large scale optimization problems.

Keywords container terminal, berth allocation, quay crane assignment, integrated
planning, large scale optimization, Dantzig-Wolfe decomposition, branch-and-price,
split delivery vehicle routing, two-stage column generation.



Sommario

Questa tesi si occupa di metodi e modelli per problemi di ottimizzazione su larga
scala; in particolare, trattiamo problemi decisionali che si presentano nei terminal
portuali per una gestione efficiente delle operazioni di movimentazione dei container.

I problemi di ottimizzazione su larga scala sono importanti in molti contesti con-
creti, ma difficili da trattare analiticamente. In genere derivano da applicazioni re-
ali (telecomunicazioni, trasporti, logistica) e la loro complessita pone ostacoli alla
loro risoluzione; per questa ragione i metodi di ottimizzazione risultano fondamen-
tali nel supporto alle decisioni. In particolare, i metodi di generazione di colonne
e branch-and-price sono attualmente tra le tecniche piu avanzate ed efficienti per
I'ottimizzazione esatta di problemi su larga scala. Tuttavia, la crescente dimensione
e complessita di tali problemi derivanti da applicazioni reali motivano 1’elaborazione
di nuovi approcci risolutivi capaci di affrontare le attuali sfide in ottimizzazione.

In questa tesi c¢i occupiamo di due filoni di ricerca complementari tra loro, in cui
sia i metodi che le applicazioni hanno un ruolo fondamentale. Da un lato ci concentri-
amo su applicazioni specifiche dei terminal container: presentiamo un nuovo modello
per la pianificazione integrata delle operazioni e proponiamo due algoritmi risolutivi;
I'obiettivo ultimo e I'elaborazione di metodi che possano essere facilmente estesi ad
altri domini di applicazione. Dall’altro, miriamo ad elaborare nuovi metodi generici
per problemi di ottimizzazione su larga scala ed in tale contesto studiamo un nuovo
schema di generazione di colonne che si basa sulla relazione tra formulazione compatta
e formulazione estesa. In particolare, ci concentriamo su una nuova classe di problemi
di instradamento di veicoli con frazionamento della domanda, che generalizza diverse
applicazioni reali, tra cui alcuni problemi di trasporti e logistica.

Nell’ambito dei terminal container proponiamo un modello per la gestione inte-
grata degli attracchi e delle gru di banchina: in genere questi due problemi vengono
risolti in maniera sequenziale, mentre nell’approccio integrato sono risolti contempo-
raneamente. Presentiamo una formulazione mista intera che viene utilizzata da un
algoritmo euristico basato su tabu search e tecniche di programmazione matematica.
L’euristica proposta e efficiente e produce soluzioni di buona qualita in poco tempo.
Il problema e riformulato tramite decomposizione Dantzig-Wolfe e risolto con gen-
erazione di colonne: l'algoritmo di branch-and-price che ne risulta include lo stato
dell’arte per le tecniche di accelerazione dei problemi di master e di pricing, ed e
superiore a solutori commerciali. Inoltre, I’approccio esatto ci permette di fornire un
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interessante confronto sperimentale tra la pianificazione sequenziale e la pianificazione
integrata: i risultati computazionali confermano il valore aggiunto dell’integrazione
in termini di riduzione dei costi ed uso efficiente delle risorse.

Da un punto di vista metodologico, questa tesi propone un nuovo concetto di
generazione di colonne per problemi difficili di ottimizzazione su larga scala. In par-
ticolare, c¢i concentriamo su una classe di problemi di instradamento di veicoli che
generalizza alcune interessanti caratteristiche del nostro approccio integrato per la
gestione degli attracchi e delle gru di banchina; tali caratteristiche sono rilevanti
anche per altre applicazioni nei settori di trasporti, logistica e telecomunicazioni.

Il problema presenta due peculiarita: la domanda e discreta e recapitata in ordini
anch’essi discretizzati, contrariamente alla classica ipotesi di domanda frazionabile in
maniera continua; il tempo di servizio dipende dalla quantita che viene recapitata
al cliente, contrariamente alla classica ipotesi di tempo di servizio costante, indipen-
dentemente dalla quantita. Il problema e utilizzato per validare e testare il nuovo
approccio di generazione di colonne studiato in questa tesi.

Lo schema proposto, detto generazione di colonne a due fasi, rappresenta un con-
tributo originale nel campo della generazione di colonne: l'idea di base consiste nel
generare contemporaneamente colonne per la formulazione compatta e per la formu-
lazione estesa. Proponiamo di risolvere inizialmente il problema su un sottoinsieme di
variabili compatte, riformuliamo tramite decomposizione Dantzig-Wolfe e risolviamo
il problema di master tramite generazione di colonne. A questo punto, le variabili della
formulazione compatta sono generate dinamicamente ed incluse nella formulazione in
base al valore dei costi ridotti, come per la generazione di colonne standard. Il punto
chiave del nostro approccio consiste nel valutare il contributo di una variabile com-
patta rispetto alla formulazione estesa: infatti, il nostro scopo e generare variabili
compatte che sono vantaggiose per il problema di master, indipendentemente dalla
soluzione ottima del rilassamento lineare della formulazione compatta.

Applicando lo schema di generazione di colonne a due fasi al nostro problema di
instradamento di veicoli otteniamo una riduzione significativa del numero di colonne,
come mostrato dai risultati computazionali. Inoltre, le variabili della formulazione
compatta che sono sub-ottimali per la formulazione estesa sono identificate corretta-
mente e un numero importante di variabili non viene considerato durante il processo
risolutivo, riducendo quindi la dimensione del problema. Tuttavia, il carico com-
putazionale aggiuntivo richiesto da un approccio cosi sofisticato, fa si che il nostro
metodo risulti competitivo a livello di tempi solo su istanze di una certa difficolta.

In conclusione, la generazione di colonne a due fasi € un approccio nuovo e promet-
tente, e crediamo fermamente che ulteriori ricerche in questa direzione possano con-
tribuire a risolvere problemi di ottimizzazione su larga scala sempre piu complessi.

Parole-chiave: terminal container, gestione degli attracchi, assegnazione gru di
banchina, pianificazione integrata, decomposizione Dantzig-Wolfe, branch-and-price,
problemi di instradamento di veicoli, generazione di colonne a due fasi.
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Chapter 1

Outline

Large-scale optimization problems are both difficult to handle and important in many
concrete contexts. They usually arise in real world applications, such as telecommu-
nication, transportation and logistics. The complexity of these problems typically
originates from very complex networks, non-linearities in objectives and constraints,
highly inter-connected decisions and complex feasibility rules. Therefore, optimiza-
tion models are crucial to support the decision making process.

Column generation and branch-and-price schemes represent nowadays the most
successful tool to solve integer large-scale optimization problems that commercial
solvers could never cope with. However, practical problems of growing size and com-
plexity represent a challenge for the research community and the need of further
advances in column generation, both theoretically and algorithmically, is well recog-
nized.

In this thesis, both methods and applications play an important role. In particular,
we focus on decision problems arising in the context of seaport container terminals,
where the efficient management of logistic activities represents a major issue. Not
surprisingly, the optimization of container terminal operations has received increasing
interest in the scientific literature over the last years and large-scale optimization
methods are the most appropriate tool to tackle the complexity of decision problems
involved in maritime transport and logistics.

The research streams addressed by this dissertation are complementary:

e in Part [l we move from the specific application of container terminals to so-
lution methods that aim to be generalized and extended to other large-scale
optimization problems; in particular, we plan to identify and model relevant
decision problems in container terminal management and to provide effective
solution algorithms able to impact on terminal’s productivity and efficiency;

e in Part [[I we move from general methods for large-scale optimization towards
their application to transportation and logistic problems arising in a real-world
context; in particular, we plan to develop advanced solution techniques for
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large-scale optimization problems, able to overcome the current issues of state-
of-the-art column generation and branch-and-price schemes.

1.1 Motivation

The resolution of large scale problems has improved over the last decades thanks to
the advances in combinatorial optimization theory (Nemhauser and Wolsey, 1988).
In particular, column generation (Liibbecke and Desrosiers, 2005; Liibbecke, 2010)
has been intensively used to compute good quality lower bounds for combinatorial
problems reformulated through Dantzig-Wolfe decomposition (Dantzig and Wolfe,
1960). The original problem is decomposed into a number of pricing subproblems,
that are solved independently and coordinated at a higher level by a master problem.

Column generation has been traditionally embedded in a branch-and-bound scheme,
called branch-and-price, to solve large-scale integer programs (Barnhart et al., 1998;
Desaulniers et al., 2005). Branch-and-price currently represents one of the most ad-
vanced and efficient exact optimization approaches to solve large-scale combinatorial
problems. However, their successful implementation requires a very good knowledge
of the problem structure and the development of sophisticated tailor-made acceler-
ating techniques. Furthermore, the increasing size and complexity of practical prob-
lems arising in real-world applications motivates the design of solution approaches
able to overcome current issues that affect column generation, such as instability,
lack of dual information as well as master and pricing problems of unmanageable
size. Recent attempts in this direction include stabilization methods (du Merle
et al., 1999; Ben Amor, 2002; Briant et al., 2008), dynamic aggregation of constraints
(Elhallaoui et al., 2005; Elhallaoui et al., 2008; Elhallaoui et al., 2010) and variable
elimination techniques (Irnich et al., 2010).

Transportation and logistics are a major source of complex optimization problems.
Air transport and the airline industry have greatly benefited from operations research
(OR) methods since the 1950s (Klabjan, 2005), and the models have become more and
more complex, mainly because of the increasing problem size and accuracy. Maritime
transport and seaport logistics represent a more recent OR research field, that has
been mainly pushed forward by the dramatic and rapid growth of containerization over
the last decade and, more in general, of sea-freight transportation (UNCTAD, 2009).

The need for an efficient management of logistic activities at modern container
terminals is well recognized and there exists a rich literature of optimization models
and algorithms conceived for specific operational problems (Steenken et al., 2004;
Stahlbock and Voss, 2008). In particular, current research directions in container
terminal management are pointing towards integrated planning of operations, as al-
ready occurred in the airline sector (Lohatepanont and Barnhart, 2004; Sandhu and
Klabjan, 2007). This yields to significant improvements in terms of efficiency and
productivity for the terminal; however, from a mathematical point of view, the re-
sulting integrated problems are very complex and therefore, advanced techniques for
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solving such difficult large-scale optimization problems need to be designed in order
to cope with this complexity.

Along with specialized algorithms targeted to specific applications, it is equally
important to pursue fundamental research and to make progress in general methods
and algorithms for large scale optimization problems. In particular, the transferability
of algorithms across applications and the need of general results represent a major
challenge that motivates this research stream.

1.2 Research objectives

The objectives of this dissertation are twofold and our research work is organized in
two parallel and complementary streams.

From Applications to Methods We contribute in bridging the gap between the
different research challenges arising in container terminal management, with a
focus on integrated solution approaches. In particular, we study new models
for the integrated planning of berth allocation and quay crane assignment, ad-
dressing the problem at the tactical decision level. The overall objective is to
improve terminal efficiency and provide decisional tools with a significant added
value for terminal managers. Furthermore, we plan to take into account yard
congestion issues related to the transshipment flow of containers.

From a modeling point of view, this involves overcoming the limiting assump-
tions of existing approaches and providing a more realistic problem defini-
tion that includes operational constraints, such as unwritten rules and policies
and /or best practices, in an aggregated fashion.

From an algorithmic point of view, this requires to design efficient solution
methods for the proposed models. We consider both heuristic and exact meth-
ods: the heuristic approach is meant to provide good solutions with the min-
imum computational effort; the exact approach, based on column generation
and branch-and-price, aims to provide good dual bounds and optimal solutions
to the problem.

A broader objective of this research stream is to provide solution methods that
are specifically conceived for our application in container terminals, but that
can be further generalized and applied to other domains.

From Methods to Applications We develop new methods and algorithms for generic
large-scale optimization problems: in this context, a new column generation
framework is investigated.

To this purpose, we identify a new class of split delivery vehicle routing problems
with specific features that allow us to generalize several applications in trans-
portation and other domains. In particular, vehicle routing problems are widely
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studied in the literature and can be considered a well accepted benchmark to
validate and test new methodologies.

Our main objective is to propose a new concept in column generation theory
that is transferable across applications. We consider the global column gener-
ation process with a particular focus on the relationship between compact and
extensive formulation as defined by Dantzig-Wolfe decomposition.

The new framework is designed to tackle complex large scale optimization prob-
lems and aims to reduce the overall computational effort by providing a more
efficient way of handling master and pricing problems. In particular, we focus
on problems that present a large number of compact formulation variables and
that are unmanageable with standard column generation methods.

Concerning algorithmic issues, we are aware that in many applications, and
especially in vehicle routing problems, the pricing represents a major bottleneck
to the overall efficiency of the algorithm; therefore, particular attention is given
to this aspect.

1.3 Contributions

In this section we summarize the main contributions of this dissertation.
Part[l: from applications to methods.

e We propose a new model for the integrated optimization of berth allocation and
quay crane assignment, called the Tactical Berth Allocation Problem (TBAP).
We provide a mixed integer quadratic programming (MIQP) formulation and a
mixed integer linear programming (MILP) formulation for the integrated prob-
lem.

The key feature of our model is the inclusion of a quay crane profile, a deci-
sion variable that represents the number of quay cranes available to a berthed
vessel at each time step. We define the concept of QC profile in order to cap-
ture real-world issues; furthermore, the new concept works well to represent
the control that the terminal has on several aspects of QC assignment during
the optimization process; in particular, it enables us to overcome the limits of
existing models.

We also take into account traffic and congestion issues originated in the yard by
the transshipment flows. In particular, our model aims to minimize relocations
of containers within the yard: we are able to reduce costs with respect to transfer
equipment and traveled distance, but also to reduce traffic and thus congestion
within the yard.

We address the tactical problem in order to support the terminal in its nego-
tiation with shipping companies. During this process, terminal managers must
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be able to evaluate the impact that a certain assignment of resources, such as
berths and cranes, has on the terminal performance.

Computational tests confirm the added value of integration in terms of cost re-
duction and efficient use of resources. We provide an experimental comparison
between the traditional hierarchical approach solving sequentially berth allo-
cation and quay crane assignment, and our proposed integrated TBAP model.
The main outcome of the analysis is that the strong assumptions made by
the sequential approach may prevent to find any feasible solution, whereas the
integrated approach always finds the optimal one. This occurs especially for
congested instances. Furthermore, the additional effort required to solve the
integrated problem is moderate.

We present a new heuristic and a new exact method for solving the TBAP.

Firstly, we propose a specialized heuristic algorithm organized in two stages:
for a given QC profile assignment, we solve the resulting berth allocation plan
using tabu search; the QC profile assignment is then updated using reduced cost
information, and the procedure is iterated. Our heuristic is able to solve very
large instances in a reasonable time: the proposed method clearly outperforms
commercial solvers and provides good-quality solutions.

Secondly, we propose an exact branch-and-price algorithm with the purpose of
proving good-quality bounds and optimal solutions to the problem. We pro-
pose a specific branching scheme and several accelerating techniques both for
the pricing and the master problem. In addition to state-of-the-art techniques,
such as bidirectional dynamic programming and dual stabilization, we present
advanced techniques specifically conceived for our problem. Some of these tech-
niques proved to be very useful and can be easily generalized for other branch-
and-price schemes.

Computational tests prove that our exact algorithm outperforms commercial
solvers: especially on small instances, branch-and-price always provides optimal
solutions relatively fast. Results on larger instances are promising, although the
increased complexity is not completely overcome. However, the improved linear
relaxation bound provided by the Dantzig-Wolfe reformulation of the problem
confirms that our heuristic algorithm produces very good-quality solutions.

An additional key point of our research is represented by the fact that all the
validation phase is conducted on real data provided by MCT container terminal
in the port of Gioia Tauro, Italy. Thanks to this collaboration, we are able to
test our methodologies and algorithms on real data and in a real-world context.
Therefore, the findings of this work aim to have a relevant impact on real-world
applications.
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Part[Il: from methods to applications.

e We introduce a new class of vehicle routing problems with split deliveries that
generalizes some interesting modeling features of TBAP rarely treated in the
literature: (i) discrete demand delivered in discrete orders (while the usual ap-
proach is to model continuous demand that can be delivered in any fraction)
and (ii) service time dependent on the delivered quantity (while the usual ap-
proach is to assume a constant service time, regardless of the quantity delivered
to the customer).

e We propose a new model for the Discrete Split Delivery Vehicle Routing Problem
with Time Windows (DSDVRPTW). The problem definition originates from a
generalization of TBAP into a more general VRP class of problems with discrete
demands that includes applications in logistics and telecommunication.

From a modeling point of view, the introduction of quantity-dependent service
time overcomes the usual assumption of constant service time, that is not always
realistic.

We study the properties of the new problem and we remark that the intro-
duction of quantity-dependent service times modifies some known properties of
split delivery vehicle routing problems that are usually exploited in specialized
solution algorithms.

We present a flow-based mixed integer program for the DSDVRPTW, we re-
formulate it via Dantzig-Wolfe and we apply column generation. We propose
a branch-and-price algorithm that presents extensions of state-of-the-art tech-
niques in order to cope with the additional complexity of quantity-dependent
service times. Computational results on instances based on Solomon’s dataset
confirm that our implementation outperforms commercial solvers by several or-
der of magnitude and by number of solved instances.

Furthermore, we experimentally compare constant service time vs quantity-
dependent service time with respect to complexity, in order to support the
importance of the new modeling feature; in particular we show that additional
complexity comes with potential savings.

e We present a novel framework called Two-stage column generation, specifically
conceived to tackle complex large-scale optimization problems that cannot be
efficiently solved by standard column generation.

In the context of Dantzig-Wolfe (DW) decomposition, we basically propose to
simultaneously generate “columns” both for the compact and the extensive
formulation. The approach is particularly suited for those problems where the
large number of variables in the compact formulation directly affects the pricing
problem and its efficiency.
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We focus our attention on the relationship between compact and extensive for-
mulation. The key point of our method is that we evaluate the contribution
of compact formulation variables with respect to the extensive formulation, in
order to take advantage of the constraints that have been “convexified” in the
reformulation: indeed, we only add compact formulation variables that are prof-
itable for the master problem, regardless of the optimal solution of the linear
relaxation of the compact formulation.

We provide a formal description of the new framework and an example based
on the Resource Constrained Shortest Path Problem to illustrate how two-stage
column generation basically works.

We apply the proposed methodology to the Discrete Split Delivery Vehicle Rout-
ing Problem with Time Windows and we present an extensive computational
campaign that validates our new framework. Furthermore, we give an outline
of how Two-stage column generation could be applied to the Tactical Berth
Allocation Problem and we discuss some major issues.

Computational results show that two-stage column generation significantly re-
duces the number of generated columns to prove optimality of the root node
with respect to standard column generation. Suboptimal compact formulation
variables are detected correctly and a large percentage of variables do not need
to be taken into account during the solution process. However, the additional
effort required by our sophisticated approach makes the method competitive in
terms of computational time only for instances of a certain difficulty.

1.4 Structure

This dissertation is organized in two main parts.

Part [[lis devoted to models and algorithms for container terminal management, with
a specific focus on the application.

Chapter [2] provides an introduction to maritime logistics and container terminals.
The main operations and processes are described and relevant operations re-
search literature is reviewed. A discussion on recent trends in container terminal
optimization is also provided.

Part of this chapter is based on:

Vacca, Bierlaire and Salani (2007). Optimization at Container Terminals: Sta-
tus, Trends and Perspectives. Proceedings of the Swiss Transport Research
Conference (STRC) September 12-14, 2007.

Chapter [3] introduces the Tactical Berth Allocation Problem. Two formulations are
presented: a mixed integer quadratic program and a linearization that reduces to
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a mixed integer program. A heuristic algorithm that combines tabu search and
mathematical programming techniques has been designed to solve the problem.
The proposed method is shown to significantly outperform commercial solvers.
Computational tests are carried out on realistic instances based on the MCT,
port of Gioia Tauro, Italy.

This chapter has been published as:

Giallombardo, Moccia, Salani and Vacca (2010). Modeling and solving the tac-
tical berth allocation problem, Transportation Research Part B: Methodological
44(2): 232-245.

Ranked 16th in the TOP 25 hottest articles of Transportation Research Part B
for January-March 2010.

Chapter [4] proposes an exact algorithm for the TBAP based on column genera-
tion. After a brief introduction to branch-and-price methods, we reformulate
the TBAP via Dantzig-Wolfe decomposition: the extensive formulation, as well
as the master and the pricing problem are derived. The pricing subproblem
is a Resource Constrained Elementary Shortest Path Problem and it is solved
by dynamic programming. The implementation of the branch-and-price algo-
rithm is discussed and computational results are presented. Our exact approach
significantly outperforms commercial solvers and is very efficient especially on
small size instances. A comparative analysis between the traditional hierarchical
solution approach and the integrated TBAP concludes the chapter.

Preliminary results have been presented and published as:

Vacca, Salani and Bierlaire (2010b). Recursive column generation for the Tac-
tical Berth Allocation Problem, Proceedings of the 7th Triennial Symposium
on Transportation Analysis (TRISTAN VII), Tromso, Norway.

Vacca, Salani and Bierlaire (2010a). Optimization of operations in container
terminals: hierarchical vs integrated approaches. Proceedings of the 10th Swiss
Transport Research Conference (STRC), Monte Verita, Ascona, Switzerland.

Part [ is devoted to general models and algorithms for large-scale optimization
problems, with a specific focus on methods.

We propose a new concept in column generation for handling complex large scale
optimization problems, as those identified in Part I. The main objective is to design a
framework that is transferable across applications and to provide general results. The
proposed methodology is validated on a class of vehicle routing problems that general-
izes specific features of the Tactical Berth Allocation Problem and other applications
in transportation, telecommunication and logistics.

Chapter [B] introduces the Vehicle Routing Problem with Discrete Split Deliveries
and Time Windows as a generalization of TBAP. A mixed integer program
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based on arc-flow formulation is presented; the problem is reformulated using
Dantzig-Wolfe decomposition and a branch-and-price algorithm is implemented
to solve the problem. Computational results on instances based on Solomons
data set are presented and discussed. Furthermore, we analyze the impact of
quantity-dependent service time on the resulting solutions.

This chapter is mainly based on:

Salani and Vacca (2009). Branch and Price for the Vehicle Routing Problem
with Discrete Split Deliveries and Time Windows. Technical report TRANSP-
OR 091224. Transport and Mobility Laboratory, Ecole Polytechnique Fédérale
de Lausanne, Switzerland.

submitted to the FEuropean Journal of Operational Research, currently under 3rd
revision for possible publication.

Chapter [6] introduces a new framework called Two-stage column generation. A
formal description is provided and major theoretical issues are discussed. An
example based on the Resource Constrained Shortest Path Problem illustrates
the overall methodology. The two-stage scheme is applied to the Discrete Split
Delivery Vehicle Routing Problem and extensive computational results are pro-
vided. Furthermore, the application of the method to the Tactical Berth Allo-
cation Problem is outlined and further research directions are discussed.

The chapter is mainly based on:

Salani, Vacca and Bierlaire (2010). Two-stage column generation. Technical
report TRANSP-OR 101130. Transport and Mobility Laboratory, Ecole Poly-
technique Fédérale de Lausanne, Switzerland.

Finally, Chapter [7| provides conclusions and future research perspectives.

Detailed computational results are provided in Appendix [Al for the Discrete Split
Delivery Vehicle Routing Problem with Time Windows and in Appendix for
Two-stage column generation.






Part 1

From Applications to Methods

11






13

Part [l of this dissertation is devoted to models and algorithms for container terminal
management, with a specific focus on the application.

We introduce the context of maritime transportation and logistics and we provide
an overview of container terminal operations. A discussion on current research chal-
lenges in container terminal management identifies promising research directions, that
include integrated planning of operations, analysis of congestion and tactical aspects
of the decision making process.

We contribute in bridging the gap between the different research challenges by
proposing the integrated planning of berth allocation and quay crane assignment, ad-
dressing the problem at the tactical decision level.

We present models and algorithms that are specifically conceived for this applica-
tion, with the broader objective of providing methods that can be further generalized

to solve large scale optimization problems in other domains.






Chapter 2

Contalner terminals

2.1 Introduction

Containerized sea-freight transportation has grown dramatically over the last two
decades, much faster than other sea transportation modes. Container traffic increased
about 9.5% per year between 2000 and 2008, while the average annual rate for cargo
traffic was 5.3% (ISL, 2009). The share of containerized trade in the world’s total
dry cargo increased from 5.1% in 1980 to 25.4% in 2008 (UNCTAD, 2009).

This rapid growth is explained by several factors, such as reduced transit time,
reduced shipping costs, increased reliability and security, multi-modality. Containers
are nowadays the main type of equipment used in intermodal transport: any con-
tainer has a standardized load unit that is suitable for ships, trucks and trains and
can be transferred very quickly from one transport mode to another. In this context,
container terminals are crucial connections between different transportation modes
and cargo handling represents a critical point in the transportation chain. Moreover,
they also represent the site where several market players involved in maritime trans-
portation (such as the terminal itself, the port authority, the shipping companies)
trade for their business.

Due to the dramatic increase of container traffic, terminals are reaching their ca-
pacity limits, leading to traffic and port congestion. In particular, the costs associated
with port congestion affect not only the terminal (extra manpower, yard congestion,
re-handling) but also the shipping lines (ship delays, missed connections, extra-costs)
and the other market players.

One solution to congestion is to increase capacity with bigger yards and new equip-
ments, although this way is often precluded due to lack of physical space and budget
constraints. Furthermore, whenever the port can afford the additional investment, it
may take years to make the new infrastructure operational. Therefore, improvements
in port efficiency and productivity are nowadays more and more needed and effective
operational systems can significantly help to make the best use of port infrastructure
and resources.

15
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Terminal managers should take into primary consideration the interests of actors
that are most critically involved in container transportation (Vanelslander, 2005).
Competition and competitiveness are strong in the current shipping market (Notteboom,
2004; Tongzon and Heng, 2005): besides competing with terminals in other ports,
terminal managers are faced against competition issues even among terminals of the
same port. The biggest ports in the world often consist of several terminals: just
to mention a few examples, the port of Hong Kong consists of 9 container terminals
operated by 5 companies and the port of Hamburg has 4 dedicated container ter-
minals and 8 multi-purpose terminals able to handle containers. Competitiveness is
therefore a crucial issue to survive in the market, as a shipping company that decides
to serve a certain port with regular services has the possibility to choose among sev-
eral terminals the most appropriate for its business; typical performance indicators in
container terminals are the vessel turn-around time, the crane productivity and the
total throughput.

The need for an efficient management of logistic activities at modern container
terminals is well recognized and the management of container terminal operations
can greatly benefit from operations research methods.

In the remainder of this chapter we provide a brief description of operations and
decision problems in container terminals (section 2.2]) and we review the most sig-
nificant literature in the field (section 2.3]). In section 2.4 we discuss the status of
research, with a particular focus on recent promising trends.

2.2 Operations and decision problems

A container terminal is the zone of the port where vessels dock on a berth and
containers are loaded, unloaded and stored in a buffer area called yard. The terminal
can be ideally divided into three areas: the quayside, the yard and the gate (Figure
2.1). A real container terminal (CTA Hamburg) is illustrated in Figure 2.2 where
we can clearly identify the quayside in the upper part of the picture, the yard in the
middle part and the gate in the bottom part.

The quayside is made up of berthing positions along the quay and quay cranes
(QCs) that load /unload containers from vessels calling at the berth (Figure2.3)). Con-
tainers are commonly transferred to the yard by automatic guided vehicles (AGVs,
Figure 2.4)), straddle carriers (SCs, Figure 2.0) or internal trucks. The transportation
equipment is also used to move containers from yard to gate and, when needed, to
relocate containers within the storage area.

The yard serves as a buffer for loading, unloading and transshipping containers
and it is typically divided into blocks: each container block is served by one or
more yard cranes, such as rubber-tired or rail-mounted gantry cranes (RTG/RMG),
illustrated in Figure 2.6l Another possible yard configuration is composed of lanes
served by straddle carriers (Figure [27)). The equipment used to operate the yard
makes the difference between an intensive and extensive yard utilization: intensive
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Figure 2.1: Schematic representation of a container terminal (Steenken et al., 2004).

yard terminals require a high storage capacity and are mainly operated by RMGs
or RTGs, that can store approximately 1000-1100 TEU per hectare when container
stacks are 4-5 levels high (they can stack up to 8); extensive yard terminals require a
lower storage capacity and are typically operated by straddle carriers, that can store
approximately 500-750 TEU per hectare when container stacks are 2-3 levels high
(KALMAR, 2010).

Figure 2.2: The Container Terminal Altenwerder (CTA) in Hamburg, Germany.
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Figure 2.6: Yard operated by RTGS. Figure 2.7: Yard operated by SCs.
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Figure 2.8: The main processes at a container terminal.

In import/export terminals, the flow of containers continues inland and containers
are picked-up and delivered by trucks and trains in a area called gate. Gate congestion
represents a critical issue and it limits the efficiency of the whole intermodal logistics
system; the recognized direct reason is often the unmanaged container truck arrivals.

Recently, container transport has evolved towards a particular case of single-mode
transportation, called transshipment, mainly motivated by the reduction of trans-
portation costs: shippers seek to increase economies of scale, building ever larger
container ships for long-haul routes, and demanding terminals with facilities and
technologies able to handle them (mega-terminals). The resulting system is known as
hub and spoke and is analogous to the way airlines route their traffic: deep sea contain-
erships (mother vessels) operate among a limited number of transhipment terminals
(hubs), and smaller vessels (feeders) link the hubs with the other ports (spokes). In
this context, many of the multi-modality issues typical of import/export terminals
are concentrated within the terminal along the quayside. In particular, congestion
issues raise when mother vessels and feeders are performing simultaneously loading
and unloading operations.

The typical processes of a container terminal are illustrated in Figure 2.8 and
refer to the flow of import containers; all the processes can be executed in the reverse
order, when export containers are loaded onto a ship.

Container terminal operations can be grouped in four main classes, that are associ-
ated with specific processes and stages in the container flow (Vis and de Koster, 2003).
We mainly focus on the transshipment flow of containers and the associated decision
problems that usually originate between the quayside and the yard.

Berth allocation and scheduling These decisions are associated with the vessel
arrival. The berth allocation problem (BAP) consists of assigning and scheduling
ships to berths (discrete case) or to quay locations (continuous case) over a given
time horizon. A schematic representation of a berth plan for 5 vessels is provided in
Figure 2.9(a): vessels are scheduled over time (x axis) according to their expected
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handling time and assigned to different berthing positions on a quay of 600 meters
(y axis) according to their length. Additional constraints usually include vessel’s
draft, time windows on the arrival /departure time of vessels, priority ranking, favorite
berthing areas.

Quay crane allocation and scheduling These decisions are associated with the
loading and unloading operations. An efficient use of quay cranes is crucial, since
quay cranes are highly expensive and represent one of the most scarce resources in
the terminal. The quay crane allocation problem (QCAP) aims to efficiently assign
quay cranes to vessels that must be operated over a given time horizon. The allocated
cranes must be sufficient to complete the workload within the given time window,
although many configurations are possible. The loss of productivity due to crane
interference is also taken into account. The quay crane scheduling problem (QCSP)
is more operational: planners must assign specific quay cranes to specific tasks (set
of containers) and produce a detailed schedule of the loading and unloading moves
for each quay crane. Issues related to interference among cranes, precedence and
operational constraints, such as no overlapping, are also taken into account.

Figure 29(b) represents a schematic representation of a quay crane assignment
and scheduling plan, built on the berth allocation plan sketched in (a). For every time
step, a certain number of cranes is allocated to vessels; the number of cranes may vary
(as for vessels 2 and 3) or remain constant (as for vessels 1, 4 and 5) during vessel’s
stay-at-the-port. Furthermore, not only the amount but specific cranes (identified by
an index) are assigned to vessels; finally, the assignment must not exceed the total qc
capacity, that is of 4 quay cranes in the example.

(a) (b)
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Figure 2.9: Space-time representation of a berth plan (a) and quay crane assignment
(b) (Bierwirth and Meisel, 2010).
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Transfer Operations Containers are usually transferred inside the terminal by in-
ternal trucks, straddle carriers and automated guided vehicles. The transfer originates
decision problems such as vehicle routing and dispatching strategies. Typical objec-
tives aim to minimize the vehicle fleet size, the total distance traveled to complete
the tasks, the fleet operating costs or the total operations delay. Some optimiza-
tion strategies may also include deadlock prevention and real-time conflict avoidance
for automated guided vehicles. We distinguish between quayside transfer operations
(from quay to yard, from yard to quay) and landside transfer operations (from yard
to gate, from gate to yard).

Yard operations These decisions are associated with container storage and stack-
ing. The management of yard operations involves several decision problems. The yard
allocation problem refers to the design of storage policies at the block level according
to the specific features of the container (size, weight, destination, import/export etc.).
At the operational level, the plan becomes more detailed and a specific position in the
block (identified by the row, bay and tier) is assigned to each container. Another in-
teresting problem is the yard crane deployment, that concerns the allocation of cranes
to blocks, their routing and the scheduling of the tasks based on the container load-
ing sequence. Finally, advanced methods for container stacking are investigated, such
as the design of re-marshalling policies for export containers. In fact, the container
retrieval process of export containers can be optimized via relocation and rehandling
strategies performed in advance, in order to speed up the loading operations; this
policy is also referred to as housekeeping.

So far, we have mostly mentioned operational decision problems arising in container
terminal management. More generally, decisions mainly concern planning and con-
trolling, and depending on the time frame we can distinguish three decision levels,
illustrated in Figure .10l The strategic level involves long-term decisions regard-
ing terminal layout and infrastructure; the time horizon usually covers several years.
Typical decisions are terminal location, terminal equipment, terminal infrastructure,
multi-modal interfaces as well as strategic alliances with shipping companies. The
tactical level involves mid-term and short-term decisions regarding the allocation of
resources, such as berth and yard templates, storage policies, human resources man-
agement, etc. At this level, the experience of planners plays an important role in
decision making, that is currently based in large part on “rules of thumb”. The op-
erational level involves daily and real-time decisions concerning both the quayside
(e.g. quay cranes scheduling) and the landside (e.g. AGV routing, yard crane deploy-
ment). Additional decision problems, not mentioned so far, concern the ship stowage
planning and the repositioning of empty containers.
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DECISION TYPES DECISION LEVELS TYPICAL DECISIONS
Terminal location
Strategic Terminal equipment
Strategic alliances
Planning
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Figure 2.10: Decision levels and operations in container terminal management.

2.3 Literature review

Container terminal operations and maritime logistics have received increasing interest
in the operations research (OR) community over the last years. In this section we
review relevant contributions to the main container terminal operations. The list is
not exhaustive, but we rather cite the papers that had a major impact in the research
community. Specific literature will be further discussed in every chapter, according
to the studied problem and proposed methodology.

The first survey on container terminal management is by Vis and de Koster (2003),
where authors illustrate the main logistic processes in a container terminal reporting
about 50 references up to 2001. Steenken et al. (2004) present an exhaustive overview
of optimization methods in container terminal management, reviewing more than 200
references up to 2004, and also provide a detailed description of terminal structure
and handling equipment. This survey has been recently updated and extended with
the state-of-the-art (Stahlbock and Voss, 2008). Christiansen et al. (2004) review
operations research methods in the more general field of maritime logistics, focusing
on ship routing and scheduling, while Crainic and Kim (2007) provide a general
discussion on intermodal freight transportation and container-based systems.

In the past years, research focused on very specific problems and there exists many
contributions dedicated to sophisticated models for single operational problems at
container terminals.

The berth allocation problem was firstly modeled as a discrete problem by Imai
et al. (1997): the authors represent the quay as a finite set of berths and propose a
multi-objective approach to solve the problem. Lim (1998) introduces the continu-
ous BAP and proves that it is NP-Hard; the problem is further investigated by Imai
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et al. (2005). Both papers propose a heuristic method to solve the problem. The
dynamic arrival of vessels is studied by Imai et al. (2001), that propose a heuris-
tic solution approach based on Lagrangian relaxation; the model is further extended
(Imai et al., 2003) to consider service priorities and solved by a genetic algorithm.
Cordeau et al. (2005) model the discrete BAP as a multi-depot vehicle routing prob-
lem with time windows and solve the problem with a tabu search metaheuristic;
their model is further solved by Mauri et al. (2008) using a column-generation-based
heuristic algorithm. Recently, Buhrkal et al. (2009) have presented a generalized set-
partitioning model for the discrete BAP where all columns are enumerated a-priori:
the formulation outperforms existing models and guarantees optimality. However,
authors recognize that a branch-and-price algorithm should be implemented in order
to solve larger instances.

The quay crane scheduling problem was introduced by Daganzo (1989) as a mixed
integer programming model and solved by Peterkofsky and Daganzo (1990) through
a branch-and-bound algorithm. Kim and Park (2004) introduce in the model prece-
dence relationships between tasks and non-interference constraints between cranes;
solution algorithms proposed for this advanced model include branch-and-cut (Moccia
et al., 2006), tabu search (Sammarra et al., 2007) and genetic algorithms (Lee et al.,
2008). Recently, Bierwirth and Meisel (2009) have relaxed some limiting assumptions
of previous models by introducing a new set of constraints for crane interference; the
problem is solved by a heuristic branch-and-bound algorithm. Finally, crane-double
cycling and its effects on loading and unloading operations have been investigated by
Goodchild and Daganzo (2006; 2007).

The literature devoted to transfer operations can be distinguished based on the
means of transport, mainly AGVs and straddle carriers. Kim and Bae (2004) propose
a model for dispatching AGVs solved by a heuristic algorithm: their main objective
is to reduce delay in ship operations. Liu et al. (2004) analyze the effect of different
yard configurations on AGVs deployment: the authors propose a simulation model
to compare the two terminals and results show that yard layout has an effect on the
number of AGVs used and on their performance. The issue of deadlocks in AGV
systems is discussed by Moorthy et al. (2003) and Kim et al. (2007), who propose
efficient strategies for predicting and avoiding deadlocks in large-scale systems; the
proposed methods are validated through simulation. Cheng et al. (2005) present
a network flow based model for deadlock prediction and prevention, while M6hring
et al. (2005) study the real-time problem: a method based on shortest paths with time
windows and re-adjustment proves to be efficient and to outperform the static routing
approach. The routing of straddle carriers is discussed by Steenken et al. (1993), with
a particular focus on internal moves: the objective is to reduce the no-load traveled
distance and simulation results are provided. Kim and Kim (1999) study the routing
of a single straddle carrier and propose a heuristic beam-search solution approach.
Recently, Ndiaye et al. (2008) have proposed a reformulation based on DC (Difference
of Convex functions) programming, solved by cutting plane techniques.

Research on yard operations concerns space allocation, stacking and retrieval poli-
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cies and yard crane deployment. The seminal papers by de Castilho and Daganzo
(1993) and Taleb-Ibrahimi et al. (1993) analyze container handling strategies in termi-
nals operated by yard cranes. The storage space allocation problem is further studied
by Zhang et al. (2003), that propose a two-level solution approach based on math-
ematical programming. Dekker et al. (2006) compare different policies for stacking
containers in the yard using simulation, in order to provide a decision support system
to automated terminals. Lee et al. (2006) study the specific case of yard management
in transshipment hubs: a mixed integer programming model is provided and solved by
heuristic procedures. Kim et al. (2000) investigate location rules for export containers
by using dynamic programming; a decision tree on the set of optimal solutions is also
developed to support real-time decisions. Kang et al. (2006) propose an algorithm
based on simulated annealing to derive good stacking strategies when information on
container’s weight is uncertain. Container reshuffling strategies are investigated by
Kim and Bae (1998), Lee and Hsu (2007) and Yang and Kim (2006): all papers sug-
gest a solution approach based on heuristic algorithms. Several optimization methods
have been proposed for yard crane deployment: Zhang et al. (2002) solve the problem
by Lagrangian relaxation, while Linn and Zhang (2003) develop a least-cost heuristic.
Simulation studies are provided by Kim et al. (2003; 2006). Ng and Mak (2005) model
the yard crane scheduling problem as a mixed integer program; a branch-and-bound
algorithm solves the problem exactly. Crane interference is further considered by Ng
(2005): the resulting model is solved by a a dynamic programming based heuristic.

Finally, simulation models and methods have been used to study the terminal
as a global system and to analyze the entire flow of containers. Gambardella et al.
(1998) present a decision support system for resource allocation in intermodal con-
tainer terminals: solutions provided by the optimization module are validated via
discrete event simulation. The scheduling of loading and unloading operations is
further included by Gambardella et al. (2001). Legato and Mazza (2001) present a
queuing network model for the arrival, berthing and departure of vessels; authors
develop a simulation tool that provides a practical support for decision making. The
same approach is adopted by Canonaco et al. (2008) for the management of berth
crane operations. Recently, Legato et al. (2010) have proposed an optimization-based
simulation approach for loading and unloading operations, that relies on simulated
annealing and discrete event simulation. Finally, multi-agent based simulation for
evaluating the management of container terminal operations has been proposed by
Henesey (2006).

From the reviewed contributions we can conclude that decision problems in con-
tainer terminals are very complex. Most solution approaches rely on heuristic meth-
ods to provide fast solutions; furthermore, assumptions and relaxations are made
to maintain the problem tractable. However, exact approaches for these large scale
optimization problems should be further investigated.
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2.4 Research trends

In this section we discuss what are, in our opinion, the current trends and challenges
in container terminal management.

2.4.1 Integration of operations

A promising research track is represented by the integrated optimization of decision
problems that are highly interdependent, yet usually solved hierarchically by termi-
nal’s planners. With respect to quayside operations, a recent survey by Bierwirth
and Meisel (2010) reviews contributions on integrated solution approaches for the
berth allocation problem and quay crane scheduling problem; with respect to land-
side operations, transfer and storage planning are two important problems affecting
the efficiency of the operations and a few contributions investigate the integration
of yard truck scheduling and storage allocation (Bish et al., 2001; Bish, 2003; Lee
et al., 2009).

In particular, the simultaneous optimization of berth allocation and quay crane
assignment is a critical issue in terminal management, since the two problems are
strictly correlated. An integrated solution approach is therefore more appropriate and
should be preferred to the traditional sequential decision-making process illustrated
in Figure .11l The integrated planning of BAP and QCAP, introduced by Park
and Kim (2003), has been recently investigated by Imai et al. (2008) and Meisel
and Bierwirth (2009). The resulting models are a good starting point for tackling
such a complex problem; however, they still present some unrealistic assumptions
and limits. In fact, the relationship between the number of quay cranes and the
handling time is ignored (Imai et al., 2008) or the crane productivity is assumed to
be proportional to the number of QCs (Park and Kim, 2003), although it is known that
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Figure 2.11: Sequential planning of quayside operations (Bierwirth and Meisel, 2010).
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quay cranes interference reduces the marginal productivity. Also, no hard constraints
are imposed on berthing times. Furthermore, in all the approaches the quay crane
assignment is made hour by hour, without any control on the final outcome, and this
may result in plans not acceptable or applicable in practice. In particular, existing
models cannot incorporate specific requirements and “unwritten rules” that terminal
planners usually control: for instance, cranes should be moved only at the end of
the shift because of manpower-related issues; also, for a given vessel, the number of
assigned quay cranes should not vary too much during its stay-at-the-port; a break
in the service during operations, i.e., zero quay cranes assigned to a vessel, may be a
solution suggested by the existing models that perform hourly assignment of cranes,
although it would be unacceptable in practice. Therefore, we think that a good
integrated model should overcome these unrealistic assumptions.

2.4.2 Tactical decision level

In the current practice, many tactical problems are still solved by rules of thumb by
terminal planners: it is therefore likely that improvements in terms of efficiency and
productivity can be reached by using more quantitative solution approaches at the
tactical decision level. Furthermore, taking into account operational constraints (in
terms of rules, common policies and best practices) in the definition of the tactical
problems would allow to introduce the concept of robustness in the tactical planning.

Most papers in the literature study operational problems, whereas only a few
contributions on tactical planning are available. Moorthy and Teo (2006) address the
design of a berth template, a tactical planning problem that arises in transshipment
hubs and that concerns the allocation of favorite berthing locations (home berths) to
services periodically calling at the terminal. The authors propose two procedures able
to build good and robust templates and evaluate their performance via simulation.
Cordeau et al. (2007) introduce the service allocation problem, a yard-related decision
problem that occurs at the tactical planning level. The authors provide a berth and
yard template able to minimize the container rehandling operations in the context of
a transshipment container terminal.

Although both papers deal with tactical problems, the interaction and the ne-
gotiation aspects with market players, especially with shipping companies, that are
typical of this decision level are not taken into account. Furthermore, no contributions
address the tactical level for integrated decision problems.

2.4.3 Congestion and traffic

Congestion issues in container terminals are becoming more and more relevant, espe-
cially because of the volume increase in container traffic. Although congestion is often
disregarded in the planning, operations are usually slowed down because of overloaded
areas, such as the yard, and congestion rapidly spreads to the whole system.
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A few papers have investigated this aspect in the very recent past. Lau and Lee
(2007) analyze the quayside traffic condition of a very busy container port in Hong
Kong. The authors use simulation to study the effects of deployment strategies for
trucks on traffic congestion and quay crane utilization and it results that a traffic
reduction also reduces the performance of quay cranes. Han et al. (2008) focus on
transshipment hubs, where loading and unloading operations are highly concentrated
and yard activity is heavy: in order to minimize traffic congestion, the authors propose
a storage strategy using a high-low workload balancing protocol.

However, an analytical description of congestion is lacking; this represents, in our
opinion, another promising research direction.

2.5 Conclusions

In this chapter we have provided an introduction to maritime logistics and to the
main operations and processes that arise in container terminal management.
Relevant operations research literature has been reviewed and current research
trends and challenges have been discussed.
We believe that future research directions should focus on bridging the gap be-
tween the different research challenges arising in container terminal management,
with a focus on integrated solution approaches.






Chapter 3

The Tactical Berth Allocation
Problem

In this chapter we propose a new model for the integrated planning of container
terminal operations, called the Tactical Berth Allocation Problem, that combines
berth allocation and quay crane assignment into a unique optimization model.

The studied problem contributes to bridge the gap between the different research
challenges arising in container terminal management, with a specific focus on inte-
grated solution approaches. In particular, we address tactical planning aspects and
we take into account yard congestion issues related to the transshipment flow of con-
tainers.

3.1 Introduction

Among the several problems addressed in the literature, one of the most relevant is
the well known Operational Berth Allocation Problem (OBAP), which consists of
assigning and scheduling ships to berthing positions along the quay, with the aim of
minimizing ships’ turnaround time. The OBAP typically covers a planning horizon
of at most one week, due to the uncertainties of maritime traveling times.

This chapter deals with a new model for the integration, at the tactical level, of the
berth allocation problem with quadratic yard costs and the quay crane assignment
problem. Our specific motivation in building a Tactical Berth Allocation Problem
(TBAP), is not simply the obvious one of considering a longer planning horizon, but
mainly that of supporting decisions made by terminal managers in the negotiation
process with shipping lines. During this process, terminal managers need to evaluate
the impact on the performance of the terminal of assigning certain operating resources,
i.e., berths and quay cranes, to the shipping lines. Drawing inspiration from the actual
negotiation process, the key feature of our model is the inclusion of a Quay Crane
(QC) profile. This profile, which represents the number of quay cranes available to a
berthed vessel at each time step, is explicitly modeled as a decision variable. While

29



30 CHAPTER 3. THE TACTICAL BERTH ALLOCATION PROBLEM

this will be clarified later in the chapter, for the remainder of this section we highlight
the main features of TBAP assuming the reader to be familiar with existing OBAP
formulations.

Basically, both the tactical and the operational problems deal with assigning and
scheduling ships to berthing positions, i.e. deciding where and when the ships should
moor. Both the TBAP and the OBAP aim to balance terminal costs and service qual-
ity. However, as already noted, the different decision levels and time frames induce
different problems. In the TBAP service quality depends upon the negotiation be-
tween the terminal and the shipping lines regarding the terminal resources. A higher
service quality occurs when the terminal can accommodate shipping lines requests
in terms of expected berthing times, assigned quay cranes, and expected handling
times. In the TBAP, for a given amount of requested QC hours, it could be possible
to create different QC profiles. For example, assume that we have a request for a
vessel that requires six QCs work shifts, and the customer is potentially willing to
accept either an intensive profile (for example three QCs on two work shifts) or a
longer one (two QQCs on three work shifts). The terminal managers want to know the
trade-off between the two profiles. The faster one will be likely more satisfying for
the customer because of the smaller handling time; while the slower one will put less
pressure on the quay cranes availability, which could be a bottleneck in some periods.
However, the problem is more complicated because if the QC availability is not a
limiting factor, then a faster handling time is advantageous for the terminal, because
it augments berth availability. This shows why the Quay Crane Assignment Problem
(QCAP), i.e. deciding how many QCs to assign and for how long, has an impact on
the berth allocation.

The TBAP, thanks to the longer planning horizon, can optimize the terminal’s
total costs in a more comprehensive way. In a transshipment terminal, containers
arrive and depart on vessels while being temporarily stored in the yard. When un-
loading a vessel, the discharged containers must be allocated to yard positions close
enough to the vessel berthing point in order to speed up the vessel handling. However,
when the departure position of a container is far from its yard position, the container
must be reallocated before the arrival of the outbound vessel. In the OBAP, since
the planning horizon is shorter than the average container dwell time inside the yard,
one can assume that the majority of the outbound containers are already in the yard,
and disregard the effects of transshipment flows inside the yard. In the TBAP, the
yard costs cannot be simplified by this assumption, and a quadratic term must be
considered to account for the simultaneous assignment of vessels to berths.

The remainder of this chapter is organized as follows. Specific literature is re-
viewed in Section The problem description as well as two formulations for the
TBAP are presented in Section 3.3 A heuristic solution algorithm based on tabu
search and mathematical programming is proposed in Section [3.4. While the mathe-
matical model is not addressable by a state-of-the-art solver, the proposed heuristic
proves its efficacy as documented by the computational experiments reported in Sec-

tion



3.2. LITERATURE REVIEW 31

3.2 Literature review

The operational berth allocation problem has received so far a larger attention than
the tactical one in the scientific literature. In this section we discuss in more detail
only the articles relevant to the TBAP.

Cordeau et al. (2007) provides an initial introduction for the basis of the TBAP.
The paper deals with the Service Allocation Problem (SAP), a tactical problem arising
in the yard management of a container transhipment terminal. A service, also called
port route, is the sequence of ports visited by a vessel. Shipping companies plan their
port routes in order to match the demand for freight transportation. A shipping
company usually asks the terminal management to dedicate specific areas of the yard
and the quay (home berths) to their services. The SAP objective is the minimization
of container rehandling operations inside the yard through choosing the home berth
for each service. The SAP is formulated as a Generalized Quadratic Assignment
Problem (GQAP, see e.g. Cordeau et al. (2006), and Hahn et al. (2008)) with side
constraints, and solved by an evolutionary heuristic. The SAP can be seen as a relaxed
TBAP when collapsing the temporal dimension, and disregarding the choice of QC
profiles. The SAP output consists of reference home berths that planners consider
when drawing the berth template.

Park and Kim (2003) are the first to integrate the BAP in the continuous case with
the QCAP, also considering the scheduling of quay cranes. The integrated problem
is formulated as an integer program and a two-phase solution procedure is presented
to solve the model. In the first phase, the berthing time and position of vessels and
the number of quay-cranes assigned to each vessel at each time step are determined
using Lagrangian relaxation and a subgradient optimization technique; the objective
is to minimize the sum of penalty costs over all ships. In the second phase, cranes are
scheduled along the quay via dynamic programming, with the objective of minimizing
the number of setups. With respect to the problem formulation, the authors take
into account some practical aspects such as favourite berthing positions of vessels,
maximum and minimum number of cranes to be assigned to each vessel, penalty
costs due to earlier or later berthing time, and later departure time (with respect to
previously committed time).

Meisel and Bierwirth (2006) investigate the simultaneous allocation of berths and
quay cranes, focusing on the reduction of QCs idle times, which significantly impact
on terminal’s labor costs. A heuristic scheduling algorithm based on priority-rules
methods for resource-constrained project scheduling is proposed and tested on in-
stances based on real data. Preliminary results, compared to the manually generated
schedules which have been used in practice, are encouraging. In this approach, each
vessel represents an activity which can be performed in 8 different modes, each mode
representing a given (QC-to-Vessel assignment over time. The concept of “mode”
seems analogous to the concept of profile we have introduced so far; however, no
detailed description of these modes is available in the paper.
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Imai et al. (2008) address the simultaneous berth-crane allocation and scheduling
problem, taking into account physical constraints of quay cranes, which cannot move
freely among berths as they are all mounted on the same track and cannot bypass
each other. A MIP formulation which minimizes the total service time is proposed
and a genetic algorithm-based heuristic is developed to find an approximate solution.
As authors recognize, the relationship between the number of cranes and the handling
time is not investigated in the paper; indeed, a reference number of cranes needed by
each ship is assumed to be given as input of the problem.

Meisel and Bierwirth (2009) study the integration of BAP and QCAP with a focus
on quay crane productivity. An integer linear model is presented and a construction
heuristic, local refinement procedures and two meta-heuristics are developed to solve
the problem. Authors compare their approach to the one proposed by Park and Kim
(2003) over the same set of instances and they always provide better solutions. An
analysis of quay crane’s productivity losses, mainly due to interference among QCs
and to the distance of the vessel berthing position from the yard areas assigned to this
vessel, is also presented and their impact on the terminal’s service cost is evaluated.

3.3 Mathematical Models

In this section we provide a compact description of the problem and motivate our
modeling choices. In particular, we illustrate the concept of QC assignment profiles
in Section B.3.1] and we provide additional details regarding yard costs related to
transshipment flows among ships in Section The described cost figures and
operational parameters are provided by the Medcenter Container Terminal (MCT),
port of Gioia Tauro, Italy. We present a mixed integer quadratic programming for-
mulation (MIQP) for the TBAP with integrated QCs assignment in Section B.3.3] as
well as a linearization of the MIQP model which reduces to a mixed integer linear
program (MILP) in Section B34

With respect to the BAP, we consider the discrete case. As described in Section
[B.1], the fundamental modeling tool of our formulation is the quay crane profile, rep-
resenting the number of quay cranes assigned to the ship at each time step. Given n
ships, m berths, and a particular time horizon, we aim to assign a home berth and a
QC profile to each ship, as well as schedule incoming ships according to time windows
on their arrival time and on berths’ availabilities. These decisions are made to maxi-
mize the total value of chosen QC assignment profiles and minimize the housekeeping
costs generated by transshipment flows between ships.

The integrated problem presents increased complexity because the ship handling
time is not constant but depends on the number of quay cranes assigned to the ship.
With respect to the classical OBAP, this implies additional decision variables and
constraints.
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3.3.1 QC assignment profiles

The use of QC profiles to handle the assignment of quay cranes to ships is firstly
motivated by the needs of terminal managers during negotiations with shipping com-
panies. In particular, managers need to be aware of the trade-off among the different
QC profiles they may propose to the shippers.

Concerning the mathematical model, the concept of QC profiles can capture real-
world issues, and works well to represent the control that the terminal has on several
aspects of QC assignment during the optimization process. These are the main reasons
why we have explicitly introduced this feature in the formulation.

We assume to have a set of feasible QC profiles P; for every ship 1 € N, which
are defined by the terminal according to the specific amount of QQC hours requested
by the ship, internal rules and good practices related to the efficiency of terminal
operations, and legal contracts.

Our approach differs from the traditional modeling choice present in the literature,
e.g. Park and Kim (2003), Imai et al. (2008), Meisel and Bierwirth (2009), which
usually assigns quay cranes hour by hour, without any control on the final outcome in
terms of QC profiles. As mentioned, the concept of “mode” in Meisel and Bierwirth
(2006) is somehow similar to our concept of QC profile, but the authors do not provide
enough details to allow comparisons.

For a given vessel, feasible QC profiles usually vary in length (number of shifts)
as well as in the distribution of QC cranes over the active shifts, in order to ensure
the requested amount of QC hours.

Some operational constraints, which are usually not taken into account by other
models, can be directly integrated in the definition of the set of feasible profiles. A
common rule, for instance, is that quay cranes are assigned to vessels and placed on
the corresponding quay segment shift by shift. This means that a quay crane cannot
be moved from one vessel to another at any arbitrary moment, but only between
two shifts. This constraint can be easily handled by forcing profiles to maintain a
constant number of quay cranes during a shift. Another good practice is to keep
the distribution of quay cranes as regular as possible among active shifts; a variance
of one or at most two (QCs can be considered acceptable, although high variability
should be avoided as much as possible. Also this feature can be included in our profile
set definition easily.

In addition to these general rules, the terminal can manage more directly some
priority-related issues. Since the set of feasible QC profiles is defined for every ship,
managers can assign different minimum and maximum handling times not only de-
pending on the ship’s size and the traffic volume but also depending on the ship’s
relative importance for the terminal. This also applies for the minimum and maxi-
mum number of quay cranes allowed to be assigned to a given ship. We would like to
remark that this is an important advantage provided by our approach, compared to
other models in the literature where handling time is either considered an input of the
problem or barely controlled by time windows on the vessel’s arrival and departure,
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TIME ws=1 ws=2 ws=3 ws=4 ws=5 ws=6 ws=7 ws=8
berth 1 ship 1 ship 2
berth 2 ship 3 ship 4
e “

QCs 3 6 10 3 7 9 10 8

Figure 3.1: Example of a Berth & Quay Cranes Allocation Plan.

in addition to some priority-related weights in the objective function, which usually
aim to serve faster vessels with high priority. Furthermore, each QC profile has an
associated “value” which reflects technical aspects (such as the resources utilized) but
which is also computed by taking into account the specific vessel which will use the
profile. In other words, the same QC profile can have different values when applied
to different ships, according to their priority or importance.

We can also include productivity losses due to quay crane interference, recently
studied by Meisel and Bierwirth (2009), in the definition of the feasible set of profiles.
Indeed, we can use the approach suggested by the authors to compute, for each profile,
the actual quay crane productivity instead of the theoretical one.

In order to improve understanding of the QC profile concept, and its relation with
the integration between Berth and QC Allocation planning, we provide in Figure B.1]
an example of such a plan. The example is for the scheduling and assignment of 5
vessels to 3 berths over a time horizon of 8 working shifts. Consider, for instance,
the Ship 1: it berths at shift 1, and three QCs are allocated to it for carrying out
operations during the same shift; next, at working shifts 2 and 3, Ship 1 remains
berthed, but one QC is de-allocated, with only two QCs remaining allocated to the
ship. At the end of shift 3 operations terminate and the ship is released.

3.3.2 Transshipment-related yard costs

When loading (or unloading) a vessel, the containers must be at (or allocated to) yard
positions close enough to the vessel berthing point to maintain the required speed of
quay crane operation. Usually, at the Medcenter Container Terminal (MCT) of the
port of Gioia Tauro, a yard position is evaluated as satisfyingly close to a berth
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if the distance along the quay axis is less than 600 meters. This maximal close
distance value can be lowered for higher priority workloads. Furthermore, when we
estimate yard-related transshipment costs induced by berth allocation, we do not
consider the real yard position of the loading and unloading containers. In fact,
we assume that the expected travelled distance along the quay axis is given by the
distance between the incoming and outgoing berths. If this distance is lower than the
threshold value of 600 meters, then a container will likely move from the quay to its
assigned yard position when unloading and from this yard position to the quay when
loading. However, in a large transshipment terminal, such as the one at the Gioia
Tauro port, the distance between the unloading berth and the loading one is often
larger than 600 meters. Therefore, containers are moved before the arrival of the
outgoing vessel from their current yard positions to new ones closer to the outgoing
berth. This process is called housekeeping and requires a dedicated management in
order to accommodate operational constraints like the capacity of the yard positions,
the maximum container handling workload for a given work shift, etc. In synthesis,
the yard management deals with a dynamic allocation of containers through their
duration-of-stay inside the terminal, see Moccia et al. (2009). A rule motivated by
cost minimization enforces that whenever the distance along the quay axis is larger
than 1100 meters, the yard-to-yard transfer is operated by deploying multi trailer
vehicles instead of straddle carriers. Therefore we have a yard cost function that
depends upon the distance between the incoming and outgoing berths according to
three transport modalities:

e the distance is below 600 meters: no housekeeping is performed, the unitary
transport cost, euro/(meter x container), depends upon straddle carriers cost
figures only;

e the distance is between 600 and 1100 meters: a housekeeping process is activated
by deploying straddle carriers only, however we face a transport cost larger than
in the previous distance range;

e the distance is larger than 1100 meters: the housekeeping is performed by us-
ing the less expensive multi trailer vehicles (higher capacity than the straddle
carriers).

The qualitative pattern of this piecewise linear cost function is given in Figure [3.2]
where we indicate by SC the direct transfer with straddle carriers, by HK SC the
housekeeping with straddle carriers, and by HK MT the housekeeping with multi
trailer vehicles.

3.3.3 MIQP Formulation

In this section we present a mixed integer quadratic programming formulation for the
TBAP with QCs assignment. Input data for this problem are:
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Figure 3.2: Yard costs according to the distance between the incoming and outgoing

berths.
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set of vessels, with [N| = n;

set of berths, with [M| = m;

set of time steps (each time step h € H is submultiple of the work shift length);
set of the time step indexes {1, ..., s} relative to a work shift; s represents the
number of time steps in a work shift;

subset of H which contains all the time steps corresponding to the same time
step s € S within a work shift;

set of feasible quay crane assignment profiles for the vessel i € N when vessel
arrives at a time step with index s € S within a work shift;

set of quay crane assignment profiles for the vessel 1 € N, where P; = UgesP;;
handling time of ship i € N under the QC profile p € P; expressed as multiple
of the time step length;

the value of serving the ship i € N by the quay crane profile p € Py;

number of quay cranes assigned to the vessel 1 € N under the profile p € P;
at the time step u € (1,...,t7), where u =1 corresponds to the ship arrival time;
maximum number of quay cranes available at the time step h € H;

number of containers exchanged between vessels 1,j € N;

unit housekeeping cost between yard slots corresponding to berths k,w € M,
[earliest, latest] feasible arrival time of ship 1 € N;

[start, end] of availability time of berth k € M;

[start, end] of the time step h € H.
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We define a graph G* = (V¥*, A¥) Yk € M, where V* = N U{o(k), d(k)}, with
o(k) and d(k) additional vertices representing berth k, and A* C V¥ x V¥ The
following decision variables are defined:

o x € {0,1} Vk € M, V(i,j) € A¥, set to 1 if ship j is scheduled after ship i at
berth k, and 0 otherwise;

ey €{0,1} Vk € M, Vi € N, set to 1 if ship 1 is assigned to berth k, and 0
otherwise;

e Yy € {0,1} Vh € H,Vi € N, set to 1 if ship i arrives at time step h, and 0
otherwise;

e N €{0,1} Vp € P, Vi € N, set to 1 if ship i is served by the profile p, and 0
otherwise;

e oMM €{0,1} ¥p € Pi,Yh € H,Vi € N, set to 1 if ship 1 is served by profile p
and arrives at time step h, and 0 otherwise;

e T >0 Vk € M, Vi € N, representing the berthing time of ship i at the berth
k, i.e. the time when the ship moors;

° T(])‘(k) > 0 Vk € M, representing the starting operation time of berth k, i.e. the
time when the first ship moors at the berth;

° Tclf(k) > 0 Vk € M, representing the ending operation time of berth k, i.e. the
time when the last ship departs from the berth.
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The TBAP with QC assignment can therefore be formulated as follows:
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Yk € M, Vi e NU{o(k),d

3.8
3.9

)
~— ~— ~— ~— ~— ~—

(
(
(3.1
(3.11
(3.12
(3.13

(3.14)

(3.15)

(3.16)
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where M1, M2, M3 and M4 represent large positive constants.

The objective function (B.1]) maximizes the difference between the sum of the
values of the chosen quay crane assignment profiles over all the vessels and the yard-
related housekeeping costs generated by the flows of containers exchanged between
vessels. Constraints (B.2)) state that every ship 1 must be assigned to one and only one
berth k. Constraints (3.3]) and (B.4]) define the outgoing and incoming flows to the
berths, while flow conservation for the remaining vertices is ensured by constraints
(B3). Constraints (3.6) state the link between variables x¥ and yf, while precedences
in every sequence are ensured by constraints (3.7) and (B.8]), which coherently set
time variables T¥. Time windows on the arrival time are stated for every ship by
constraints (3.9) and (B.I0), while time windows on berths’ availabilities are stated
by constraints (8.11]) and (8.12). Constraints (3.13) ensure that one and only one QC
profile is assigned to every ship. Constraints (£.41]) define the link between variables
v and Al while constraints (3.I5) and (3.I0) link binary variables y! to the arrival
time T*. Observe that constraints (BI0) imply T* = 0 when ship i € N does not
moor at berth k € K. Variables pfh are linked to variables A and y!' by constraints
BI7): in particular, pfh is equal to 1 if and only if AT =y = 1. Finally, constraints
(BI]) ensure that, at every time step, the total number of assigned quay cranes does
not exceed the number of quay cranes which are available in the terminal.

To better illustrate capacity constraints ([B.I8]), we come back to the example
shown in Figure 3.1l which refers to the scheduling and assignment of |[N| =5 vessels
to [M| = 3 berths over a time horizon of |H| = 8 time steps. Here we assume that a
time step corresponds to one working shift. From the plan we can infer the following
non-zero data:

i=1 p"=1 V=3 " =3, q*=2, ¢V’ =2

i=2 p’=1 th=4 q) =4, g =4 q) =5 q} =
i=3 p=1 t)=2 q) =4, ¢ =5
i=4 pEGZ] tE: q21:3) q32=3> q§3:3

i=5 pP=1 t8=5 q0'=3,q*=3,q¢’=3, q¢"' =2, q¢° =2
For each time step h = 1,...8, the corresponding constraint in (B.I8) counts the
number of active quay cranes. Let us consider the case h = 3: the index u changes
its range for each vessel, because, starting from h = 3, it goes backwards until the
beginning of the profile. Therefore we have:

i=1 u=123

i=2 u=1273

i=3 u=23

i=4 u=1,2,3

i=5 u=123
We remark that vessels i = 2,4 do not contribute to the sum, since pb" = pi" =

0 Vu =1,2,3 and this is coherent with the plan. For the remaining vessels, p'™ is
not zero only for one value u*:
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i=1 w=1 =" =q’=2

i=3 w=2 =" =q?=5

i=5 w=3 ="V =qg'=3
Therefore the sum in ([3.I8) reduces to:

a7’ + 5 + 45 =2+5+3=10

which is indeed the total number of quay cranes that are active at time step h = 3.

Finally, we observe that the TBAP formulation ([B.I)—(3.24]) can be interpreted
as a Multi-Depot Vehicle Routing Problem with Time Windows (MDVRPTW), see
e.g. Cordeau et al. (2005), with an additional quadratic component in the objective
function and side constraints.

3.3.4 MILP Formulation

The quadratic objective function (B can be linearized by defining an additional
decision variable 2" € {0, 1} Vi,j € N, Vk,w € M, which is equal to 1 if yf =y’ =1
and 0 otherwise. Variables zfjw are linked to variables y* by the following additional

constraints:

Z ZZEW = gij \V/l,) €N, (325)

keK wekK
zg" <y¥  Vi,je N,Vk,weM (3.26)

i

zg" <yl  VijeN,vk,weM (3.27)

where gj; is a constant which is equal to 1 if f;; > 0 and 0 otherwise.
TBAP can therefore be formulated as a mixed integer linear program as follows:

max VAP — ! fii iz 3.28
Z Z 1o 2 ZZ Z Z ) 1 ( )

ieN peP; ieEN jEN keM weM

5.t B.2) - B2, B.2) - B.21).

3.4 A two-level heuristic for TBAP

Solving the TBAP model with a general-purpose solver is difficult, using either the
MIQP or MILP formulation, as shown by computational results in Section 3.5 A
specialized heuristic is therefore needed. We propose a two-level heuristic algorithm
for solving the TBAP, which is illustrated in this section.

Our heuristic is organized in two stages: first, we identify a QC profiles’ assignment
for the ships; second, we solve the resulting berth allocation problem for the given
QC assignment. This procedure is repeated for several QC profiles, which are chosen,
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Algorithm 1: TBAP Bi-level Heuristics

Initialization : Assign a QC profile to each ship.
repeat

1. solve BAP via tabu search;

2. update the QC profiles” assignment by using reduced costs.

until stop criterion ;

Figure 3.3: Scheme of the heuristic algorithm for TBAP.

iteration by iteration, using the traditional reduced costs arguments of mathematical
programming. A scheme of the heuristic algorithm for TBAP is outlined in Figure[3.3

The initialization consists of assigning a QC profile to each ship. The maximum
value profile is chosen for each ship (ties are broken arbitrarily). This is equivalent
to assign binary values to variables A such that equations (BI3]) are satisfied. Once
the first QC profiles” assignment has been done, the two-level procedure starts.

Given a QC assignment, the TBAP reduces to the berth allocation problem, with
additional constraints due to the QC total capacity. We develop a tabu search algo-
rithm that solves the BAP (step 1 in Figure[3.3]), aiming to minimize the yard-related
transshipment housekeeping costs:

% Z Z ' Z Z fijdiowy;” (3.29)

ieN keM  jeN weM

We remark that we take into account only the quadratic term of the TBAP ob-
jective function in (B.]) since, for a given QC profiles’ assignment, the total value of
profiles is constant. The tabu search algorithm for the BAP is illustrated in Section
B.41

In step 2, the QC profiles” assignment vector is updated. The new set of profiles
is determined using the reduced costs of variables A, whose estimation is illustrated
in Section 3.4.2]

3.4.1 Tabu search for the berth allocation

Our tabu search heuristic is an adaptation of the one of Cordeau et al. (2005) for the
OBAP. However, while in Cordeau et al. (2005) the function to be minimized is the
weighted sum for every ship of the service time in the port, our heuristic minimizes
the yard-related housekeeping costs generated by the flows of containers exchanged
between vessels. Another difference is the handling of the side constraints concerning
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the QC availability—for a given assignment of QC profiles (vector A), our tabu search
must take into account the QC capacity constraints (3.18]).

Denote by S the set of solutions that satisfy constraints (3.2) — (8.9) and (B.I1J).
The heuristic explores the solution space by moving at each iteration from the current
solution s to the best solution in its neighborhood N(s). Each solution s € S is
represented by a set of m berth sequences such that every ship belongs to exactly one
sequence. This solution may, however, violate the time window constraints associated
with the ships and the berths, and the QC availability. The time window constraint
on ship 1 on a berth k is violated if the arrival time TF of the ship is larger than the
time window’s upper bound b;. Berthing before a; is not allowed; in other words,
T¥ > @;. Similarly, the time window of berth k is violated when the completion time
of a ship 1 assigned to berth k is larger than the berth time window’s upper bound
bk.

Let c(s) denote the cost of solution defined in (3:29]), and let wy(s) denote the total
violation of ships’ time window constraints, equal to the sum of the violations on the
n ships. We indicate as w;(s) the total violation of berths’ time window constraints,
equal to the sum of the violations on the m berths. Finally, let w3(s) be the total
violation of QC availability for each time step of the planning horizon. Solutions are
then evaluated by means of a penalized cost function f(s) = c(s)+aywi(s)+oow;(s)+
azws(s), where the & values are positive parameters. By dynamically adjusting the
value of these parameters, the relaxation mechanism facilitates the exploration of the
search space and is particularly useful for tightly constrained instances.

The tabu search method is based on the definition of attributes used to character-
ize the solutions of S. They are also used to control tabu tenures and to implement
a diversification strategy. An attribute set B(s) = {(i,k): ship i is assigned to berth
k} is associated with each solution s € S. The neighborhood N(s) of a solution s is
defined by applying a simple operator that removes an attribute (i, k) from B(s) and
replaces it with another attribute (i,k’), where k#k’. When ship 1 is removed from
berth k, the sequence is simply reconnected by linking the predecessor and successor
of the ship. Insertion in sequence k' is then performed between two consecutive ships
so as to minimize the value of f(s). When a ship i is removed from berth k, its
reinsertion in that berth is forbidden for the next 0 iterations by assigning a tabu
status to the attribute (i, k).

An aspiration criterion allows the revocation of the tabu status of an attribute if
that would allow the search process to reach a solution of smaller cost than that of the
best solution identified having that attribute. To diversify the search, any solution
s € N(s) such that f(s) > f(s) is penalized by a factor proportional to the addition
frequency of its attributes, and by a scaling factor. More precisely, let & be the
number of times attribute (i,k) has been added to the solution during the process
and let ¢ be the number of the current iteration. A penalty p(s) = Bc(s)&w/C is
added to f(5). The scaling factor c(s) introduces a correction to adjust the penalties
with respect to the total solution cost. Finally, the parameter 3 is used to control the
intensity of the diversification. These penalties have the effect of driving the search
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process toward less explored regions of the search space. For notational convenience,
assume that p(s) = 0 if f(s) < f(s).

In order to generate a starting solution, the algorithm assigns the ships to the
berths at random. This initial solution is constructed by relaxing the time window
and QC availability constraints, and therefore it is usually infeasible. However, this
is not an issue for the tabu search heuristic.

The search starts from this initial solution and selects, at each iteration, the best
non-tabu solution s € N(s). After each iteration, the value of parameters «;, «;, and
a3 are modified by a factor 1+ 8, where & > 0. For example, if the current solution is
feasible with respect to ships’ time window constraints, the value of «; is divided by
1+ §; otherwise, it is multiplied by 1+ 8. Analogously for the berths’ time window
and QC availability constraints, i.e. parameters &, and «j3, respectively. This process
is repeated for 1 iterations and the best feasible solution s* is updated throughout
the search.

3.4.2 Profile update via mathematical programming

The profiles’ updating procedure represents step 2 in the algorithm’s scheme illus-
trated in Figure 3.3l It relies on the MILP formulation for TBAP illustrated in
Section [3.3.4l The basic idea of this step is to use the information of reduced costs
in order to be able to update vector A of QC profiles’ assignment in a smart way.
Let s* = [X,U, T] be the BAP solution provided by tabu search for a given QC
profile assignment A. In particular, we are interested in reduced costs of variables
A, which we denote ¢(A). We remark that a BAP solution plus a QC assignment
represent a feasible solution for TBAP. At each iteration, we solve the linear relaxation

of the MILP formulation, with the additional constraints:

XxX—e <x< X+e€ (3.30)
y—e <y< y+e (3.31)
T—e <T< T+e (3.32)
A—e <A< Ate (3.33)

As remarked, e.g., by Desrosiers and Liibbecke (2005), the shadow prices of con-
straints (3.30)-(B.33) are the reduced costs of original variables x, y, T and A. At

each iteration, we identify the 7\?: variable with the maximum reduced cost:

(i*,p*) = arg max{c(A")} (3.34)
ieN,peP;

If 6(7\]5:) > 0, profile p* is assigned to vessel i*, i.e. 7\?: =Tland Al. =0 Vp #p*. We
remark that this update, concerning a single vessel, results in a new vector A of QC
profiles’ assignment, which differs from the previous one only for two components.
Step 2 of the algorithm is now completed. The updated QC profiles’ assignment
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vector is passed back to the BAP tabu search (step 1) and a new BAP solution is
computed.

The whole procedure terminates when all reduced costs are non-positive, or other
additional stopping criteria are reached, such as the maximum number of iterations
or the time limit.

In order to prevent cycles, a tabu mechanism has been implemented, keeping track
of the last 1 updates in the form (i, p). The tabu list (TL) is updated at each iteration
and its length has been fixed to P = 0.5n X p, where p = max;ien [Pi|. According to
this mechanism, the pair (i*, p*) is therefore chosen as (i*,p*) = argmax {¢(A])}.

ieN,pePi:(i,p)¢TL

It may happen that the tabu search returns a BAP solution which is infeasible
for TBAP with respect to time windows and/or the QC availability. In this case the
profiles’ update via mathematical programming cannot be performed. We therefore
update the set of profiles by randomly assigning a new QC profile to each ship.

3.5 Computational results

In this section we first illustrate how realistic test instances have been generated, then
we present results obtained through a general-purpose solver and we compare them
with our heuristic algorithm.

3.5.1 Generation of test instances

Our tests are based on real data provided by MCT. We have access to historical
berth allocation plans and quay cranes assignment plans concerning about 60 vessels
per week over a time horizon of one month; specific information on vessels such as
the arrival time and the total number of containers to be handled is also provided.
Furthermore, data referring to the flows of containers exchanged between ships as
well as a study on the yard-related transshipment costs is available.

Instances generated to validate our models rely on these real data. The quay,
which is 3395 m long, is partitioned in 13 berthing points, which are equipped with
25 quay cranes (22 gantry cranes and 3 mobile cranes). The matrix of distances
[dyw] is a 13x13 matrix that takes into account the costs estimated by the terminal
to move containers between two berthing positions. Several matrices of lows [fij] are
generated according to the distributions of containers reported in the historical data.
As usual, we distinguish between feeders and mother vessels: the traffic volume is
mostly influenced by the proportion between these two classes, since mother vessels
present a number of loading/unloading containers on average higher than feeders.
Time windows for the ships’ arrival are generated according to the historical data.
Berths are assumed to be available for the whole time horizon, which we set to one
week. A working day is divided in 4 shifts of 6 hours each, for a total of 56 time steps
of 3 hours.
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The sets of feasible profiles are synthetically generated in accordance with opera-
tional rules and good practices in use at the MCT terminal. As illustrated in Table
[B.11 we fix a set of parameters for each ship class to which a profile must comply with
in order to be feasible: namely, the minimum and the maximum number of QCs to be
assigned to each vessel per shift as well as the minimum and the maximum handling
time (HT) allowed for each class. We use a crane productivity of 24 containers per
hour and we therefore obtain, per each class, a minimum and a maximum number
of containers (column “volume” in the table): vessels’ traffic volumes must comply
with these ranges, according to the class they belong to. Furthermore, for all classes,
a variation of at most 1 QC is allowed between a shift and the subsequent; profiles
can start either at the beginning of the shift or in the middle of the shift.

Once the whole feasible set is generated for each class, profiles are assigned to
vessels according to the QC hours they need to be operated. At this point, a monetary
value is associated with the couple (vessel,profile) with respect to the number of
containers to be handled. This value is then adjusted by taking into account the
profile’s length and the utilized resources with respect to the average case.

To validate our model, we consider 6 classes of instances:

- 10 ships and 3 berths, 1 week, 8 quay cranes;

- 20 ships and 5 berths, 1 week, 13 quay cranes;

- 30 ships and 5 berths, 1 week, 13 quay cranes;

- 40 ships and 5 berths, 2 weeks, 13 quay cranes;
- 50 ships and 8 berths, 2 weeks, 13 quay cranes;
- 60 ships and 13 berths, 2 weeks, 13 quay cranes.

For each class, we generate 12 instances, with high (H) and low (L) traffic volumes.
Each scenario is tested with a set of p = 10, 20, 30 feasible profiles for each ship. We
remark that, by construction, instances of size p = 10 are included in instances of size
P = 20, which are included in instances of size p = 30. Thus, any feasible solution

for p =10 is also feasible for p = 20,30 and so on.

3.5.2 CPLEX computational results

The MIQP and MILP formulations are tested with CPLEX 10.2, with emphasis on
the feasibility of the solution.

Class min QC max QC min HT max HT volume (min,max)
Mother 3 5 3 6 (1296, 4320)
Feeder 1 3 2 4 (288, 1728)

Table 3.1: Parameters for the profile set’s generation.
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Time limit for instances 10x3 is 1 hour; instances 20x5 and 30x5 have a time limit

of 2 hours; instances 40x5, 50x8, 60x13 have a time limit of 3 hours.

Results are illustrated in Table We report only instances for which CPLEX
has found a feasible solution, at least. Surprisingly, no feasible solution is found for

classes 30x5, 50x8 and 60x13; however, an upper bound is always provided.

Table 3.2: Scaled objective function of the best feasible solutions found by CPLEX in

10x3 10x3
Instance MILP MIQP | Instance MILP MIQP
H1_10 99.17 98.90 | L1-10 97.68 100.00
H1.20 97.91 97.96 | L1-20 100.00  99.76
H1.30 97.98 98.76 | L1.30 98.64  99.99
H2_10 98.87 99.26 | L2_10 98.82  99.63
H2_20 96.97 96.91 | L220 99.42  99.06
H2_30 96.79 - L2.30 99.08 100.00

20x5 40x5
Instance MILP MIQP | Instance MILP MIQP
H1_10 94.33 - L1.10 94.92 -
H1.20 93.74 - L1.20 94.47 -
H2_10 93.52  96.66 | L220 94.93 -
L2:10 93.87 96.74 | L2_30 94.61 -

the allowed time limit.

30x5 60x13
Instance MILP UB MIQP UB | Instance MILP UB MIQP UB
H1_10 1754291 2288451 | H1_10 3227 542 5939 357
H1_20 1754 633 2288793 | H1-20 3228 422 6 038 925
H1.30 1754 669 2288 829 | H1.30 3228 709 5941 943
H2_10 1708 485 2256 299 | H2_10 3130 833 5 965 539
H2_20 1709 020 2256 834 | H2_20 3131431 5966 137
H2_30 1709230 2257044 | H2_30 3131 677 5 966 383
L1.10 1420 485 1787983 | L1-10 3014 276 5 668 646
L120 1420 713 1817824 | L1.20 3014 877 5 669 247
L1.30 1420 819 1842700 | L1-30 3015054 5669 424
L210 1613252 1948 130 | L2_10 3084415 5749 854
L220 1613769 1973914 | L220 3085121 5 750 560
L2.30 1613 805 2008 053 | L2-30 3 085364 5 750 803

Table 3.3: Upper bounds provided by CPLEX using MILP and MIQP formulations.
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The objective function value is scaled to 100 with respect to the upper bound via

the formula:
obj * 100

UB
A value of 100 means that the solution is certified to be optimal.

Within class 10x3, 3 out of 12 instances are solved at optimum; both MILP and
MIQP formulations provide near-optimal solutions, with an average of 98.44 and 99.11
respectively.

Within class 20x5, a feasible solution is found for 4 instances out of 12 with the
MILP formulation, while, using the MIQP formulation, we get a feasible solution
only for 2 instances. The quality of the solution is lower, with an average of 93.87 for
MILP and of 96.70 for MIQP.

Class 40x5 is only solved using the MILP formulation; a feasible solution is found
for 4 instances out of 12, with an average quality of the solution of 94.73.

With respect to the upper bounds, we remark that the MILP formulation provides
far better upper bounds than MIQP, as illustrated in Table B.3

scaled obj = (3.35)

3.5.3 Heuristic’s computational results

The heuristic algorithm is implemented in C++ using GLPK 4.31 and tested on the
same set of instances.

Experiments are run for n x p iterations and a time limit of 1 hour for classes
10x3, 20x5, 30x5 and 3 hours for classes 40x5, 50x8, 60x13. The internal tabu search
has a maximum of 1 = 30 x n iterations, and the other parameters are set as follows:

e 0 : tabu duration equal to |7.5logn]|;
e [3 : diversification intensity parameter equal to 0.015y/nm,;
e § : penalty adjustment parameter equal to 2.

Results are compared to the best solution found by CPLEX for either the MILP or
MIQP formulation and illustrated in Tables [3.4] and 3.6l The heuristic is able to
find feasible solutions in 70 out of 72 instances, whereas CPLEX succeeds at finding
feasible solutions on only 20 of the smaller instances. The two instances where the
heuristic fails at finding a feasible solution are characterized by a high number of
profiles per vessel (p = 30). We observe that with a lower number of profiles per
vessel (p = 10, and p = 20) the heuristic always succeeds in reaching feasibility.
Furthermore, our algorithm is up to 2 order of magnitude faster, especially on small
instances.

Class 10x3 is the only one where CPLEX performs slightly better than the heuris-
tic, with an average of 99.00 and 98.59, respectively, and 3 optimums found by
CPLEX. However, the heuristic is much faster, solving the problem in less than 30
seconds against the time limit of 1 hour set for CPLEX.
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Class 20x5 is always solved by the heuristic in less than 5 minutes, with an average
quality of the solution of 97.29, while CPLEX only solves 4 instances out of 12, in 2
hours, with lower quality (95.37 on average).

Remarkably, our heuristic performs very well also on the instances of larger size,
where CPLEX generally fails. For the solved instances the quality of the solutions is
always greater than 94.11 (instance 60x13:H2_20), with an average value of 96.06.

10x3 20x5
Instance CPLEX HEUR Time (sec) | Instance CPLEX HEUR Time (sec)
H1_10 99.17 98.52 7 H1.10 - 97.26 81
H1_20 97.96 98.36 15 H1.20 94.33 97.19 172
H1.30 98.76 98.33 27 H1.30 93.74 97.37 259
H2_10 99.26 98.92 7 H2_10 - 97.27 82
H2_20 96.97 98.48 16 H2_20 96.66 97.38 173
H2_30 96.79 98.17 28 H2_30 - 97.26 274
L1.10 100.00  99.12 6 L1.10 - 97.30 74
L1.20 100.00  99.01 15 L1.20 - 97.25 158
L1.30 99.99 98.29 26 L1.30 - 97.06 254
L2.10 99.63 98.92 6 L2.10 - 97.55 80
L2220 99.42 98.68 15 L2220 96.74 97.39 170
L2_30 100.00  98.22 27 L2.30 - 97.25 295

Table 3.4: Heuristic’s computational results on classes 10x3 and 20x5.

30x5 40x5
Instance CPLEX HEUR Time (sec) | Instance CPLEX HEUR Time (sec)
H1_10 - 95.67 340 H1.10 - 97.38 1104
H1_20 - 95.31 677 H1.20 - 97.38 2234
H1_30 - 95.54 1009 H1.30 - 97.25 3387
H2_10 - 95.88 316 H2_10 - 97.40 1095
H2_20 - 95.81 684 H2_20 - 97.33 2198
H2_30 - 95.30 969 H2_30 - 97.27 3296
L1.10 - 96.55 324 L1.10 94.92 97.41 1421
L1.20 - 96.43 652 L1.20 94.47 97.14 2996
L1.30 - 96.18 966 L1.30 - 96.20 4862
L2:10 - 95.68 308 L2_10 - 97.41 1382
L220 - 95.12 614 L220 94.93 97.34 3144
L2230 - - 920 L2.30 94.61 96.60 4352

Table 3.5: Heuristic’s computational results on classes 30x5 and 40x5.
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50x8 60x13
Instance CPLEX HEUR Time (sec) | Instance CPLEX HEUR Time (sec)
H1_10 - 96.52 3291 H1_10 - 95.40 6332
H1.20 - 96.37 6020 H1_20 - 95.07 10809
H1.30 - 96.21 9432 H1_30 - 94.76 10807
H2_10 - 96.03 3066 H2_10 - 95.54 6397
H2_20 - 95.64 6180 H2_20 - 94.11 10803
H2_30 - 95.16 9501 H2_30 - - 10806
L1-10 - 95.97 2752 L1-10 - 95.67 5807
L1-20 - 96.04 6467 L120 - 95.40 10803
L1-30 - 95.80 9119 L1.30 - 94.45 10806
L2:10 - 96.18 3157 L2:10 - 95.63 59986
L2220 - 95.96 5857 L2220 - 95.64 10809
L2.30 - 96.27 8783 L2.30 - 95.34 10804

Table 3.6: Heuristic’s computational results on classes 50x8 and 60x13.

3.6 Conclusions

We have studied the integration, at the tactical level, of the berth allocation problem
with the assignment of quay cranes from the point of view of a container terminal, in
the context of a negotiation process with shipping lines.

We have characterized this new decision problem and illustrated the concept of
QC assignment profiles. Two mixed integer programming formulations have been
presented, with a quadratic and a linearized objective function respectively. Both
models have been validated on instances based on real data using a commercial solver.

These tests show that the problem is hardly solvable already on small instances;
furthermore, we noticed that instances present symmetries that slow down the so-
lution process. Hence we have tackled the computational complexity of TBAP by
devising a two-level heuristic algorithm able to provide good feasible solutions in a
reasonable amount of time.

As a next step, we are interested in developing an exact methods to provide
optimal solutions and tighter upper bounds to the problem; decomposition methods
seem to be a promising way to face the problem.






Chapter 4

An exact algorithm for the TBAP

This chapter is organized in two main sections that address both algorithmic and
modeling aspects of the Tactical Berth Allocation Problem.

In Section [4.1l we propose an exact branch-and-price algorithm for Tactical Berth
Allocation Problem and we present several accelerating techniques for the pricing
and the master problem devised for this specific problem. In particular, some of
these techniques can be easily generalized for other branch-and-price schemes.

In Section we present a comparison between hierarchical and integrated plan-
ning models. The exact algorithm developed for the TBAP enables us to perform a
comparative analysis of hierarchical vs integrated solution approaches for berth al-
location and quay crane assignment, and we show the added value of integration in
terms of cost reduction and efficient use of resources.

4.1 Branch-and-price for the TBAP

In this section we introduce the basic concepts of column generation and branch-and-
price schemes. The TBAP is reformulated via Dantzig-Wolfe in section and the
column generation scheme is illustrated in section L.I.3l The implementation of the
branch-and-price algorithm and the devised accelerating techniques are described in
section [.1.4], while computational results are discussed in section

4.1.1 Introduction

Dantzig-Wolfe (DW) decomposition was introduced by Dantzig and Wolfe (1960) in
their seminal paper on decomposition principles for linear programs. The basic idea
is to break the problem into smaller subproblems that can be solved independently at
the lower level: solutions (columns) are then coordinated and combined at the upper
level by a linear program called master problem, that can be seen as a centralized
decision-maker. The solution method, called column generation, allows to cope with
a huge number of variables, since only promising columns are added to the master
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Applications References

bin packing and cutting stock Vance et al. (1994), Valerio de Carvalho (1999),
Vanderbeck (1999), Alves and Valerio de Carvalho (2008);
integer multicommodity flows Barnhart et al. (2000),Holberg and Yuan (2003);

location problems Diaz and Fernandez (2002), Ceselli and Righini (2005),
Senne et al. (2005);
vehicle routing Desrochers et al. (1992), Ribeiro and Soumis (1994),

Desaulniers et al. (1998), Salani (2006),
Dell’Amico et al. (2006), Fukasawa et al. (2006);

crew scheduling Desrochers and Soumis (1989), Vance et al. (1997),
Cohn and Barnhart (2003), Huisman (2007);
airline operations Gamache et al. (1999), Klabjan (2005),
Lan et al. (2006), Eggenberg (2009);
railways operations Ceselli et al. (2008), Peeters and Kroon (2008);
maritime transport Hwang et al. (2008), Brgnmo et al. (2010),

Grgnhaug et al. (2010).

Table 4.1: Column generation and branch-and-price applications.

problem: decision is based on the reduced cost of columns, that are priced out in the
subproblem (pricing).

Authors give credit to Ford and Fulkerson (1958), who propose a method to solve
a multicommodity flow problem by treating variables only implicitly in the solution
process. This technique was firstly used by Gilmore and Gomory (1961; 1963) to
solve the cutting-stock problem, and was successfully embedded in a branch-and-
bound algorithm by Desrosiers et al. (1984) for solving a vehicle routing problem
with time windows.

Over the last two decades, Dantzig-Wolfe decomposition and column generation
for integer programs have been widely studied (Vanderbeck and Wolsey, 1996; Barn-
hart et al., 1998) and applied to a variety of problems. A non-exhaustive list of major
applications and references, with emphasis on transportation problems, is reported in
Table 4.1l The general framework for solving integer programs is called branch-and-
price and combines column generation and branch-and-bound techniques. At each
node of the search tree, the master problem is initialized with a restricted number of
columns (restricted master problem) such that a feasible solution of the linear relax-
ation exists. Assuming to solve a minimization problem, at each iteration the pricing
subproblem provides the minimum reduced cost column with respect to the current
dual master solution: if this column has a non-negative reduced cost, then the current
master solution is proved to be optimal and we stop; otherwise, the column is added
to the master and we iterate the column generation process. The method has proved
to be very efficient and presents several advantages.

The Dantzig-Wolfe reformulation usually yields to better linear-relaxation bounds.
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The main assumption to apply DW decomposition is that the original or compact
formulation has a special constraint-matrix structure that can be exploited. Consider
the following integer linear program:

zp=min  c'x (4.1)
s.t.  Ax>b, (4.2)

x € X, (4.3)

x binary . (4.4)

with X bounded. We assume that set X* = {x € X : x binary } has a particular
structure that can be “convexified”: it means that x can be expressed as a convex
combination of the extreme points of the convex hull conv(X*). The DW reformu-
lation is usually referred to as extensive formulation. The linear relaxation of the
extensive formulation is then solved via column generation: the objective function
min ¢'x and constraints Ax > b are taken into account in the master problem, where
they are expressed in terms of extreme points of conv(X*); the pricing subproblem
accounts for the generation of extreme points (columns) according to reduced cost
arguments.

As mentioned, the linear relaxation of the DW reformulation, i.e., the optimal
master problem, typically provides better bounds than the linear relaxation of the
original formulation. The gain in terms of bounds is due to convexification, since
the subproblem takes into account the integrality requirements on x. In fact, it is
desirable to have a subproblem without the integrality property in order to have the
potential to exploit the integrality gap (Liibbecke and Desrosiers, 2005); otherwise
the reformulation doesn’t yield any improvement on the bound. This also holds
for Lagrangian relaxation (Geoffrion, 1974); a typical example is the shortest path
problem. We recall that an integer program satisfies the integrality property if the
optimal solution is unchanged when the integrality requirements on the variables are
relaxed.

One may argue that the complexity is simply moved from the original formulation
to the subproblem, since we are still solving an integer program. On the contrary, one
of the main advantages of column generation is to enhance the solution process by
identifying subproblems with special structures, that are well studied in the literature
and for which efficient (pseudo-polynomial) specialized algorithms are available. We
can identify two main classes of subproblems.

Knapsack subproblems Typically originated by cutting stock, bin packing and
location problems. The Knapsack Problem is NP-hard but it can be solved in pseudo-
polynomial time via dynamic programming (Martello and Toth, 1990). Furthermore,
many efficient algorithms are available nowadays that show linear computing time in
practice (Martello et al., 2000; Pisinger, 2005).
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Shortest path subproblems with resource constraints Usually associated
with vehicle routing and crew scheduling problems. The Resource Constrained Short-
est Path Problem (RCSPP) is NP-Complete even in the case of one resource (Garey
and Johnson, 1979; Handler and Zang, 1980) but it can be solved in pseudo-polynomial
time via dynamic programming. However, many applications require elementarity of
paths to be satisfied, i.e., no nodes must appear more than once in the path. Op-
posite to the non-elementary case, the Resource Constrained Elementary Shortest
Path Problem (RCESPP) is strongly NP-Hard when negative cost cycles may ap-
pear (Dror, 1994). Dynamic programming represents the dominant solution method
for the RCESPP, and effective accelerating techniques have improved the label al-
gorithm in the recent years (Boland et al., 2006; Righini and Salani, 2006; Righini
and Salani, 2008). However, when long paths with respect to the number of visited
nodes are feasible for the problem, dynamic programming can be very time consum-
ing. We remark that resources allow to model many real-world features of problems,

such as complex costs structures, operational rules and constraints, non-linearities
(Irnich, 2008).

4.1.2 Dantzig-Wolfe reformulation

Our reformulation of the Tactical Berth Allocation Problem is mainly based on the
concept of berth sequence, a sequentially ordered subset of ships in a berth with an
assigned quay crane profile.

The MILP formulation introduced in section [3.3.4 represents the original or com-
pact formulation, that we decompose according to Dantzig-Wolfe. In particular, for
every berth k € M we convexify the subset R* = {(x,y, A, T,y, p) such that (3.3) —
BI17), BI9) — ([B3:24) is satisfied for k}. The set R* is represented by a finite set of
vectors QF, that are the extreme points of its convex hull conv{R*}. Each extreme
point 1, € QF represents a sequence of vessels moored at berth k, feasible with respect
to time windows constraints and with a unique quay crane profile assigned to each
vessel.

As mentioned in the introduction, the basic concept of the Dantzig-Wolfe refor-
mulation is that every point (x,y,A, T,y,p) € R* can be represented as a convex
combination of extreme points 1, € QF.

In order to reformulate the problem, we define the following additional notation:

Xijr, binary coefficient equal to 1 if vessel j follows vessel 1 in sequence Ty;

Yir, binary coefficient equal to 1 if vessel 1 is moored at berth k in sequence ry;
Afrk binary coefficient equal to 1 if profile p is assigned to vessel i in sequence Ty;
q?k counts the number of quay cranes used by sequence 1, at time step h;

vy value of sequence 7y, defined as vy, =Y, \ Zpep. AP P
1

k ire Vit

By applying Dantzig-Wolfe decomposition to the original formulation for TBAP,



4.1. BRANCH-AND-PRICE FOR THE TBAP 25

we obtain the following extensive formulation:

min Z Z fijdeZ!fjW— Z Z Vi Sy (45)

ijeN k,weM keM 1 eQk
D D Yisn, =1 WeN, (4.6)
keM TkEQk
> ) ais, <Q" VheH, (4.7)
keM T‘kEQk
Y s, <1 VkeEM, (4.8)
reQk
2 D 2 =gy VijeN, (4.9)
keM weM
> Y~z 20 Wije N, Vk,we M,|(4.10)
reQk
> Ypese, 25 >0 VA e N,V w e M(4.11)
TWEQW

> Xignsn, =x5 Vi,jeEN,VkeM, (4.12)

TkEQk
> Y, =yf VieNvkeM,  (4.13)

reQk
> ) Als, =N VieNVpeP, (414)

kEMrker

Sty >0 VrkEQ VkeM
xk €{0,1} Vke M, V(i Ak (4.16

(4.15)
(4.16)
y¥ €{0,1} VkeM, VlEN (4.17)
A €{0,1} VpeP,LEN,  (4.18)
(4.19)

zg" €{0,1} Vi,j € N,Vk,w e M.(4.19

where s,, are the decision variables associated with sequences 1, € Q.

The objective function (A5 is equivalent to (B.28]) and maximizes the total value
of sequences, i.e., the total value of selected profiles, while minimizing the total house-
keeping cost generated by the berth allocation plan. Constraints (4.6]) ensure that
every ship is assigned to exactly one sequence, and thus to one berth, while con-
straints (A7) ensure that the quay crane capacity is not violated. Constraints (4.8))
select at most one sequence for each berth, while (£9)-(4I1)) express the lineariza-
tion constraints (3.25)-(3.27) in terms of decision variables s, . As mentioned, the
decision variables of the original formulation are expressed as a convex combination
of extreme points of conv{R¥} in constraints (EI12)-(4£I5). Finally, the integrality of
the solution is ensured by constraints (4.16])-(4.19).
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4.1.3 Column generation

We solve the linear relaxation of the extensive formulation via column generation, by
the means of a master problem and a pricing subproblem.

Master problem

The linear relaxation of the extensive formulation (&3)-(£I9) usually yields to bet-
ter bounds than the original formulation. In particular, if we relax the integrality

requirements (£.I6)-[@I9), constraints (AI2)-(@I4) also become redundant and we
obtain the following master problem:

min Z Z fijdszlfjw— Z Z Vi Sty (420)

1,jeN k,weM keEM 1 cQk
DD UYmsn =1 ViEN, (4.21)
kEMrkGQk
> Y qbs, <Q" VheH, (4.22)
kEMrkGQk
> s, <1 VkeM, (4.23)
T €EQkK
D > =gy VijeN, (4.24)
keM weM
D Yisn —25 >0 ¥ije N,Vk,we M, (4.25)
TkGQk
> Yprase, =2 >0 Vi,j e N,Vk,we M, (4.26)
TWEQW

Z" >0 ¥i,j € N,Vk,w e M, (4.27)
vr € QX vk e M. (4.28)

The resulting linear program usually involves a huge number of variables (columns).
Therefore, the column generation scheme starts solving a restricted master problem,
defined on a subset of columns and, at each iteration, it generates new profitable
columns to be added to the formulation, if any.

Pricing subproblem

Let 7, u, & 6 and n be the dual vectors associated with constraints (E21]), (£22]),
(@23), (4£25) and (4.26]), respectively. Given an optimal solution of the restricted
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master problem, the reduced cost of sequence r € Q is given by:

{)Tk = "Vr. — Z TWYir, — Z }‘th!rlk — & — Z Z 61] Yire — Z Z T]'L] Yirw:

ieN heH i,jeEN weM i,jeEN weM

The pricing subproblem identifies, for every berth k € M, the column 1} with the
minimum reduced cost and can be formulated as follows:

min — Y VA +my) = > > uWgIA - g - Y Y (050 y +nfyy)

ieN ieN peP; h=1..47 1,jeEN weM
(4.29)
> xej=1, (4.30)
jeNU{d}
Z Xia = 1, (4.31)
ieNU{o}

Z Xy — Z Xji = 0 Yie N, (432)

jeNU(d} jeENU{o}
Z Xij = Ui Yie N, (433)

jeNU{d}
Tit+ ) I — —xi;)M1  VieN,¥je Nu{dk), (4.34)

peP;

T,— T < (1—%;)M2  VjeN, (4.35)
aiyi < Ti Vie N, (436)
Ti<byi VieN, (4.37)
a* < T, (4.38)
Ty < bY (4.39)
D> M=y WVieN, (4.40)

pEP:
> yF=) N VieN,Vses, (4.41)

heHs pePs

T,—b"<(1—yMM3 VheH,VieN, (4.42)
A"~ <(1—y"Y)M4 VheH VieN, (4.43)
xi €{0,1}  V(i,j) € A, ( )

y; €{0,1}  VieN, (4.45)

Yre{0,1} VheH,VieN, (4.46)

AN e{0,1} VpeP,VieN, (4.47)

T, >0 VieNu{o,d} (4.48)
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where M1, M2, M3 and M4 represent large positive constants.

We remark that the index k has disappeared from decision variables x, y and T
with respect to the notation introduced in section [3.3.3] since the pricing subproblem
is solved for a fixed berth k. For the description of constraints and decision variables,
we refer the reader to section 3.3.3l

At each iteration of column generation, we solve m subproblems, one for every
berth k € M. If v,z < 0 for some k, we add column s,: to the restricted master
problem and we iterate the process; otherwise, the current solution of the master
problem is proven to be optimal and we stop.

Dynamic programming The pricing subproblem (£29)-(248) can be cast to a
Resource Constrained Elementary Shortest Path Problem, where the resource is rep-
resented by time, and it is solved by the means of dynamic programming. The
underlying network G(V,A) has one vertex for every vessel i € N, for every profile
p € P;i and for every time step h € H, and transit time on arcs equal to the length of
profile p assigned to vessel i. Vertex (i, h,p) represents vessel i berthed at time step
h and operated by quay crane profile p. The graph has two additional vertices o, d
associated with the specific berth k € M for which the pricing is solved, representing
the origin and the destination of the path.

The RCESPP aims to find a minimum-cost elementary path from o to d that
satisfies the constraints on resources: the objective function of the RCESPP associ-
ated with the pricing subproblem corresponds to ([@.29)), while the resource constraint
requires not to exceed the given time horizon. We remark that the resulting graph
presents negative arc costs, as we are minimizing the reduced cost.

The dynamic programming (DP) algorithm iteratively extends states. A state for
vertex (i, h,p) represents a path from o to (i, h,p); many states are associated with
the same vertex (i, h,p), representing different paths. Each state is encoded by a label
of the form (S, T, C,1i, h,p), that is a path from o to (i, h,p) with time consumption
T and cost C; furthermore, to ensure elementarity, set S keeps tracks of vessels visited
along the path (Beasley and Christofides, 1989). The optimal solution is given by the
minimum cost state associated with the destination vertex d.

At vertex o, time consumption T is initialized at 0 and S = {o}; cost C is initialized
to &, according to the berth k for which the pricing problem is being solved. When
extending state (S, T, C, 1, hi, p;) to another feasible state (S’, 7, C',j, hj, p;), the label
is updated according to the formula:

S = S+{j} (4.49)
T o= h+t) (4.50)

h +tp‘

C' = C—vy, — Z uhg! pj(h—h;) Z Z (05 4+ 1) (4.51)

neN weM
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The extension is feasible if j ¢ S (elementarity), T < [H| (total duration) and h;
satisfies time windows [a;, b;].

The efficiency of dynamic programming strongly depends on the effectiveness of
dominance rules that are used to fathom feasible, yet non-optimal states. In partic-
ular, dominated states are not extended further.

State (S, 7, C',j, hj, p;) dominates (S”,7", C",j, hy, p;) if:

ST < 187 (4.52)
v < 1 (4.53)
C < (4.54)

and at least one of these inequalities is strictly satisfied.

4.1.4 Implementation

In order to obtain integer solutions, we implement a branch-and-price algorithm where
column generation is applied at every node of the search tree. The search tree is
explored according to a best-first strategy with respect to the lower bound associated
with the node. The algorithm makes use of a column pool that keeps track of all
columns generated in different nodes of the search tree.

In the remainder of this section we illustrate the branching rules as well as accel-
erating techniques both for the pricing and the master problem.

Branching scheme

In the search tree, branching is required when the master problem is solved at opti-
mality and the corresponding solution in terms of original formulation’s variables is
not integer. We implement a branching scheme consisting of four hierarchical levels:

1. if the total number of berths K = 2 keM Zrker Sy, is fractional, then branching
requires an additional constraint to be added in the master problem:

° Z Z Sr, < UZJ on the first child node;

keM Tk EQk

° Z Z Sr, > ﬂZ} on the second child node.

keM Tk EQk

This branching requires the dual value associated with the additional constraint,
denoted by 7y, to be collected and accounted in the pricing subproblem. We
remark that 7y is a constant, regardless of the berth. In particular, the addi-
tional constraint in the master problem modifies the objective function of the
pricing subproblem as follows:

minv,, — Z T Yir, — Z th?k — & — Z Z (ezwyirk +n§WUjrw) — Tl

ieN heH i,jEN weM
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if some vessel 1 € N is assigned fractionally to some berth k € M, i.e., quantity
YE = 2 ricox Yi“sr, is fractional, then the branching requires an additional
constraint to be added to the master problem for the given vessel i and berth
k:
3 Z yi*s;, = 0 on the first child node;
T EQK
. Z yi*sy, = 1 on the second child node.

TkGQk

This branching requires the dual value associated with the additional constraint,
denoted by @F, to be taken into account in the pricing subproblem. We remark
that @¥ is collected in the pricing for berth k if vessel 1 is visited by the se-
quence. In particular, the additional constraints in the master problem modify
the objective function of the pricing subproblem as follows:

min Vrk_Z ﬂiyirk_z th}rlk—ﬁk— Z Z (GEwyukJrn‘fjwyjrw)—ﬂo—Z (P]fyirk-

ieN heH ijeEN weM ieN

. if some profile p € P; is assigned fractionally to some vessel i € N, i.e., quantity

AP =3 em > r.cax M *sy, is fractional, then branching is handled directly in
the pricing subproblem by modifying the set P; of feasible profiles for vessel 1i.
On the first node child, we enforce profile p to be assigned to vessel i by removing
all other feasible profiles from set P;; this branching corresponds to enforce
AP =1 in the original formulation. On the second child node, we prevent profile
p to be used by removing it by set P;; this branching corresponds to enforce
A =0 in the original formulation. We remark that neither the master nor the
pricing formulation is modified by this branching in terms of objective function
and additional constraints. However, infeasible columns must be removed from
the master problem, accordingly to the branching decision associated with the
analyzed node.

. if none of the above conditions holds, then there exist some vessel i € N such

that the quantity T' = DKM 2 cOk T'"*s, is fractional for some h* € H,

where Tih " is a binary coefficient equal to 1 if vessel 1 arrives at time step h
in sequence 1. In this case, branching is handled in the pricing subproblem,
by modifying the time windows [a;, b;] associated with vessel i (Gélinas et al.,
1995). We denote as t!f the arrival time associated with time step h*. On
the first child node, we enforce the vessel to arrive before time step h*: the
new time windows for vessel i are therefore [ai, t{ — €] and this corresponds to
enforce yI' = 0 Vh > h* in the original formulation. On the second child node,
we enforce the vessel to arrive at or after time step h*: the new time windows
for vessel i are therefore [tf, b;] and this corresponds to enforce y{l =0Vh <
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h* in the original formulation. We remark that neither the master nor the
pricing formulation is modified by this branching in terms of objective function
and additional constraints. However, infeasible columns must be removed from
the master problem, accordingly to the branching decision associated with the
analyzed node.

The order of branching is determined by the increasing complexity of the branching
rules for what concerns additional constraints in the master problem or additional
complexity of the pricing problem.

Accelerating techniques

Solving exact dynamic programming We implement state-of-the-art techniques
for solving the RCESPP such as bounded bidirectional dynamic programming and
decremental state space relaxation.

Bounded bidirectional DP (Righini and Salani, 2006) consists of two steps: firstly,
states are extended in forward and backward direction until half of the so-called
critical resource (time, in our case) is consumed; secondly, forward and backward
paths are joined to produce feasible sequences. Bounding is used to discard non-
dominated non-optimal states.

The basic idea of decremental state space relaxation (Righini and Salani, 2008) is
to start checking elementarity only on a subset S of S. If the final solution is non-
elementary, one or more vertices violating the constraint are added to S and DP is
executed again.

The implemented search policy takes into account time windows (Liberatore et al.,
2010). At every iteration of dynamic programming, states are explored according to
the vertices (vessels) they are associated with. We decide to order vessels according to
the starting time a; of their time windows; this search strategy proves to be important
for the effectiveness of the algorithm in our tests.

Furthermore, we design an additional technique for accelerating the exact pricing,
that is specifically conceived for our pricing subproblem.

Domination of (h,p) pairs. Unlike RCESPP subproblems arising in vehicle routing,
where customers are visited one right after the other, in our problem it may be conve-
nient to wait some time between the departure of a vessel and the arrival of the next
one. This is due to the quay crane capacity constraint, that control the interactions
between berths at the master problem level; in particular, these interactions are cap-
tured by dual vectors 8 and 1. More specifically, when extending a label to the next
vessel j, we have as many new states as the number of feasible arrival time steps h;
furthermore, we may have more than one profile p; associated with a single time step
h; and viceversa. In order to reduce the number of states, preprocessing is performed
at the beginning of the DP algorithm: we populate a list of non-dominated (h;, p;)
pairs for every vessel j and we refer to this list when extending a label to vessel j.
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We remark that in the special case of 8 = 0 and 1 = 0, the list has at most one pair
(hy, p;) for every profile p;j.

Heuristic pricing The pricing subproblem is firstly solved heuristically. An exact
solution is computed only if needed.

The heuristic dynamic programming algorithm (Liberatore et al., 2010) is based
on a relaxed dominance rule that allows to eliminate much more states during the
comparison of labels. The final solution is an elementary shortest path that satisfies
resource constraints; however, optimality is no longer guaranteed. When using relaxed
dominance, we have that state (S', 7', C',j, h;,p;) dominates (S”, ", C",j, h;, p;) if:

v (4.55)
C” (4.56)

and at least one of these inequalities is strictly satisfied. In other words, we do not
compare anymore the number of vertices |S'|,|S”| visited by the partial paths. As the
dominance is weaker, the number of eliminated labels is greater. This results in a
reduced computational effort to solve the pricing.

Furthermore, the following accelerating techniques are implemented with the main
purpose of avoiding the call to exact pricing as much as possible.

Multiple pricing strategy. At every iteration of column generation, we firstly solve a
pricing subproblem for every berth k € M using the heuristic dynamic programming
algorithm; exact DP is called only if heuristic pricing cannot provide a negative
reduced cost column. As soon as we find a negative reduced cost column for some
berth k*, the pricing terminates. However, columns generated for k* are evaluated
for all berths k # k*, k € M: if a column is feasible for another berth, say k, and its
reduced cost re-computed for berth k is negative, then the column is duplicated and
added to the master problem also for berth k.

Incremental heuristic dynamic programming. The basic idea is to incrementally
strengthen the relaxed dominance rule introduced for the heuristic pricing, in order
to increase the probability of finding a negative reduced cost column and therefore
avoid calling exact DP. We define the set of critical vertices N C N for which ex-
act dominance is required, similarly to decremental state space relaxation (Righini
and Salani, 2008); the set N is initialized with the empty set, and it is iteratively
incremented until a given percentage 0 of vertices is reached. At each iteration, BN
critical vertices are chosen among those visited more than once by the resulting path
and added to N. The dominance rule is the one described in section [L.1.3] except for
the definition of set S: a vertex j belongs to S if it is visited by the partial path and if
j € N. The first iteration, when N = {{}}, corresponds to the heuristic DP algorithm
outlined at the beginning of this subsection; the special case of & =1 corresponds to
exact dynamic programming. In our tests, we fix 3 = 0.2 and & = 0.4.
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Dual stabilization Column generation is known to suffer slow convergence (tailing-
off effect) mainly due to stability problem. Degeneracy of the master problem implies
an infinite number of dual optimal solutions: the simplex method typically provides
an extreme dual optimal vector, whereas interior dual vectors could be more suit-
able for generating good paths in the pricing subproblem. Stabilization methods try
to overcome this issue by providing a better approximation of optimal dual values
(du Merle et al., 1999; Rousseau et al., 2007).

Our stabilized version of column generation is inspired by Addis et al. (2009). The
basic idea is the following: a dual optimal solution 7t to the restricted master problem
can be either feasible, and thus optimal, or infeasible for the dual of the complete
master problem. We are mainly interested in pricing out with a dual vector close to
the optimal dual, thus close to feasibility.

We define the stability center 7 that represents our current best guess for the
optimal dual. At each iteration of column generation, we modify the dual vector
provided by the restricted master problem and we obtain a new vector 7t that we use
in the pricing problem. The update formula is clear and simple:

= an+ (1— o) (4.57)

where « is a parameter between 0 and 1. If no negative reduced cost columns are
found with a given 7, the value of « is increased by step oy; furthermore, the current
7t is feasible and improving, therefore we update the stability center. The process is
repeated until « = 1 and no negative reduced cost columns can be found.

In our experiments, we set &« = 0.5 and o = 0.1.

Primal heuristic Integer feasible solution are rarely produced in column genera-
tion, as the optimal solutions of restricted master problems are typically fractional.
Therefore we implement a primal heuristic in order to identify feasible integer solu-
tions during the search process: the main purpose is to improve the primal bound,
and thus increase the pruning in the search tree.

The heuristic algorithm takes as input a fractional optimal solution to a restricted
master problem and identifies the variable sy with the highest fractional value strictly
lower than 1; variable sy is set equal to 1 and the linear program is solved again. The
procedure is repeated until either a integer solution is found or the linear problem
becomes infeasible.

Although very simple, the primal heuristic has proved to be helpful in finding
integer solutions especially for larger instances.

4.1.5 Computational results

In this section we provide computational results for the Tactical Berth Allocation
Problem.
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The branch-and-price algorithm for the TBAP is implemented in C++ and com-
piled with gce 4.1.2. All restricted master problems are solved using ILOG CPLEX
version 12. Computational experience is run under a linux operating system on a
2Ghz Intel processor equipped with 2GB of RAM.

Although in this chapter the TBAP is formulated as a minimization problem
for simplicity of illustration, the results are expressed in terms of a maximization
problem, in order to be consistent with the original formulation presented in Chapter

Bl

Instances

Computational experiments are performed on instances derived by the test set intro-
duced in Chapter [3l

As already remarked, those instances present symmetries and this usually slows
down the convergence of exact algorithms, as proving optimality may be very difficult.
We observe that a source of symmetry is given by the cost structure associated with
berths (dy,). The cost matrix, for an illustrative example of [M| = 3 berths, shows
the following structure:

dkw ‘
1
2

3

O T |
T ® TN
®» T O|W

with a < b and b < c¢. Indeed, this cost matrix only takes into account relative
distances between couples of berths and it originates a lot of symmetries in the prob-
lem. Therefore we break the symmetry in order to speed up the solution process. In
particular, without loss of generality, we perturbate the diagonal of the cost matrix in
order to give priority to the first berth, then to the second berth, and so on. This can
always be imposed when the time windows [a¥, b¥] on berths are equivalent, since it
means that berths are identical. The resulting perturbated matrix has the following
structure:

diw | 1 2 3
1| a b C
2|b a+e b
3|c b a+2e

In order to maintain equivalence of optimal solutions, it is sufficient to ensure that
a+ (JM| —1)e < b by choosing an appropriate positive small value for €.

The effects of perturbation on symmetry are illustrated by the example in Figure
4.1l where four optimal solutions for TBAP are defined. Configurations A, B, C and
D are equivalent with respect to the original cost matrix. On the contrary, with the
perturbated cost matrix, solutions C and D are discarded a priori, since the couple
of berths (1,2) is always preferred to the couple (2,3). Furthermore, depending on
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CONFIGURATION A

TIME h=1 h=2 | h=3 h=4 h=5 h=6 | h=7 h=8
ship 1 ship 2
berth 1
3 2 | 2 4 4 | 5 5
ship 3 ship 4
berth 2
4 5 3] 3] 3]
berth 3
QCs 3 6 7 0 4 7 8 8
CONFIGURATION B
TIME h=1 h=2 | h=3 h=4 h=5 h=6 | h=7 h=8
ship 3 ship4
berth 1
4 | 5 3 | 3 3
ship 1 ship 2
berth 2
3] 2 2 4 4 9 9
berth 3
QCs 3 2 2 0 4 4 5 5
CONFIGURATION C
TIME h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8
berth 1
ship 1 ship 2
berth 2
3] 2 2 4 4 9 9
ship 3 ship 4
berth 3
4 5] 3 3 3
QCs 3 6 7 0 4 7 8 8
CONFIGURATION D
TIME h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8
berth 1
ship 3 ship 4
berth 2
4 5 3] 3] 3]
ship 1 ship 2
berth 3
3 2 2 4 4 5] 5]
QCs 3 6 7 [} 4 7 8 8

Figure 4.1:

TBAP equivalent solutions with the original cost matriz.
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the flow matrix, either configuration A or B can be dominated. To this purpose, we
define the following quantities: Fi; = 17+ f124+ 121 + 22 and Fzq = f334+f34 + fa3+f344.
If Fi; > F34, then it is more convenient to assign vessels 1 and 2 to berth 1, and
only configuration A is optimal. Otherwise, if F;; < F34, configuration B dominates
configuration A.

In order to maintain a fair comparison, all the results presented in the next sec-
tions, both for the MIP formulation solved by CPLEX and the heuristic algorithm,
have been re-performed with respect to Chapter Bl

Results

Table provides a comparison between the upper bound of the linear relaxation of
the original MILP formulation (z;p) and the upper bound obtained via Dantzig-Wolfe
reformulation (zpw), i.e., the optimal value of the master problem at the end of the
root node, for instances with 10 vessels and 3 berths over a time horizon of one week.
Computational times are not reported, as they are negligible for both cases. Column
"% zpw’ reports the percentage of the bound improvement, that is always less than
0.5%, thus not very significant. However, the DW formulation proves to be much
stronger than MILP when embedded into a branch-and-bound framework. Indeed,
we notice that, after one hour of computation, the CPLEX bound is unchanged,
despite of the depth of the search tree and the several branching decisions that have
been made. On the contrary, it is often sufficient to perform a few branching decisions
to see an improvement in the bound provided by the master problem.

The superiority of our approach is clearly shown in Table [4.3] that compares
our branch-and-price algorithm to the general-purpose MIP solver on instances with
10 vessels; for completeness, we also report experimental results obtained with the
heuristic algorithm. The branch-and-price algorithm is very efficient, as it always
provides the optimal solution (opt_sol) relatively fast; column t(s) reports the com-
putational time expressed in seconds. The best feasible solutions (best_sol) and the
gap with respect to the optimal solution value are provided both for CPLEX and the
heuristic algorithm. The time limit is set to one hour for the CPLEX MIP solver,
while the heuristics stops according to the termination criteria explained in Chapter
Bl The branch-and-price algorithm clearly outperforms CPLEX: it always provides
the optimal solution in a few seconds, whereas the MIP solver often produces fea-
sible solutions within a gap of 3%. In three cases, the MILP formulation cannot
find a feasible solution in one hour. Furthermore, we remark that CPLEX fails to
prove optimality for instances L1_p10 and L2_p10 because of the poor linear relax-
ation bound, that cannot be improved during the search in the branch-and-bound
tree. Remarkably, for this class of instances, our branch-and-price shows computa-
tional times comparable (or even smaller) than the heuristic algorithm, while ensuring
optimality of the solutions.

Tables [4.4] and report the results for instances with 20 vessels and 5 berths
over a time horizon of one week. We start analyzing the case of p = 10, i.e., instances
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10 x 3 Instance Zip zow % zZpw
H1_p10 | 800614 | 797594 0.38%
H1_p20 | 800890 | 797870  0.38%
H1_p30 | 800924 | 798136  0.35%

H2_pl0 | 740947 | 738540 0.32%
H2_p20 | 741487 | 739190 0.31%
H2_p30 | 741523 | 739417 0.28%

L1.pl0 | 519319 | 518334 0.19%
L1.p20 | 519354 | 518750  0.12%
L1.p30 | 519389 | 518785  0.12%

L2pl0 | 568152 | 566976  0.21%
L2.p20 | 568188 | 567012 0.21%
L2_p30 | 568224 | 567146 0.19%

Table 4.2: Linear relaxation results for 10 ships and 3 berths over 1 week.

10 x 3 B&P CPLEX (1h) HEUR
Instance | opt_sol t(s) | best_sol GAP | best_sol GAP t(s)
H1_pl0 790735 21 X 00 786439  0.54% T
H1_p20 791011 25 X 00 785460 0.70% 21

H1_p30 791045 10 780722  1.30% | 784658 0.81% 39

H2_p10 733276 2 712669 2.81% | 732101 0.16% 8
H2_p20 735646 7 X 00 729472 0.84% 20
H2_p30 735682 9 723818  1.61% | 727443 1.12% 33

L1.pl0 515902 7 515902  0.00% | 513941 0.38% 7
L1.p20 518049 d 515991  0.40% | 513847 0.81% 18
L1.p30 518084 27 513731  0.84% | 509617 1.63% 37

L2pl10 564831 9 564831  0.00% | 560915 0.69% 8
L2p20 264867 7 561504  0.60% | 559595 0.93% 18
L2_p30 564903 8 559389  0.98% | 556998  1.40% 36

Table 4.3: Branch-and-price results for 10 ships and 3 berths over 1 week.

with 10 feasible quay crane assignment profiles per ship.

In Table [4.4] we can observe that the improvement in terms of linear relaxation
bound has slightly increased (from 0.5% to about 1% on average) for this class of
instances. However, the computational effort required by column generation is not
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20 x 5 Instance Zip Zbw % zpw  t(s)
H1_pl10 | 1383614 | 1369818 1.00% 721
H2_p10 | 1474082 | 1459341 1.00% 504
L1_pl0 | 1298356 | 1287080 0.87% 520
L2_pl0 | 1103212 | 1094480 0.79% 640

Table 4.4: Linear relazation results for 20 ships and 5 berths over 1 week.

20 x 5 B&P (3h) CPLEX (3h) HEUR
Instance | best_sol GAP | best_sol GAP | best_sol GAP t(s)
H1_p10 X 00 X 00 1335625 2.50% 94
H2_pl10 X 00 X 00 1428890 2.09% 84
L1.pl0 1256529  2.37% | 1221191 5.12% | 1258098 2.25% 100
L2 pl0 1059231  3.22% X 00 1070543  2.19% 89

Table 4.5: Branch-and-price results for 20 ships and 5 berths over 1 week.

negligible, as it takes about 10 minutes on average to close the root node. On the
contrary, the MILP linear relaxation is solved in fractions of a second.

Table compares our branch-and-price algorithm to CPLEX: in both cases, the
time limit is set to three hours. Branch-and-price still performs better in terms of
number of feasible solutions found (2 vs 1) and quality. Expectedly, the heuristic
algorithm performs well: good quality solutions, with a gap of about 2% on average,
are provided in less than 2 minutes.

We clearly notice that the increased size of the problem has a significant impact
on the algorithm efficiency, and in three hours of computation no instance is solved
at optimality.

Additional tests

In order to further investigate the sources of complexity of the problem, we design
additional instances.

Firstly, we study an intermediate class of instances between the easy class (10
vessels, 3 berths) and the difficult class (20 vessels, 5 berths), by defining a new set
of instances composed of 15 vessels and 3 berths, over a time horizon of one week.
These instances are obtained by considering the first 15 vessels and the first 3 berths
of the class 20 x 3. Computational results are reported in Tables and .71 The
improvement of the linear relaxation bound is comparable to the one obtained for
class 10 x 3 (‘about 0.5%), and the computational time, although not negligible, is
still reasonable (except for instance L2_p10). The branch-and-price algorithm always
finds the optimal solution, opposite to CPLEX that is able to provide a feasible
solution only for instance H2_p10 within 3 hours of computational time. However,
the branch-and-price algorithm requires a significant effort in terms of computational
time (about 2 orders of magnitude higher than for class 10 x 3). Surprisingly, the
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15 x 3 Instance Zip Zbw % zpw  t(s)
H1_p10 | 1189962 | 1183344 0.56% 11
H2_p10 | 1292357 | 1285075 0.56% 11
L1_pl0 | 1110159 | 1105395 0.43% 7
L2_pl0 | 899876 | 896483  0.38% 320

Table 4.6: Linear relaxation results for 15 ships and 3 berths over 1 week.

15x 3 | B&P (3h) | CPLEX (3h) HEUR
Instance | opt_sol t(s) | best_sol GAP | best_sol GAP t(s)
H1_pl0 | 1170783 3507 X 00 1163063 2.26% 34
H2 pl0 | 1272247 3787 | 1250124 3.27% | 1265782 2.06% 32
L1pl0 | 1098411 1203 X 00 X o0 27
L2pl0 890211 8975 X 00 888112 1.31% 28

Table 4.7: Branch-and-price results for 15 ships and 3 berths over 1 week.

heuristic algorithm fails at finding a solution for instance L1_p10 with the default
settings; however, by allowing a higher number of iterations, a near-optimal solution
(0.06% gap with respect to the optimal solution) is found in about 20 minutes. For
the remaining three instances, the heuristic performs well, providing relatively good
quality solutions in less than one minute.

In the second set of instances we shorten the time horizon of class 20 x 5, from
seven to four working days. In order to maintain feasibility, time windows are relaxed
for every vessel; this new class is denoted by the suffix 4d in the instance name.

Computational results are reported in Tables [£.8 and The linear relaxation
bound is improved on average by 2%; remarkably, the MILP linear relaxation bound
is unchanged, despite of the time horizon reduction and modified time windows. This
gives an insight of how much “fractional” the MILP linear relaxation solution is. The
root node is closed in about half the time needed previously for class 20 x 5 over
one week. In Table we report the best solutions found by the exact methods
in three hours of computation: CPLEX is not able to provide any feasible solution,
whereas the branch-and-price algorithm always provides solution with a gap between
3% and 5%. As previously, the heuristic performs well, although no feasible solution
is provided for instance H2_p10.4d with the default settings; by allowing a higher
number of iterations, a solution with a gap of 3.5% is found in about 10 minutes.

Discussion of results

Computational experiments show that our specialized branch-and-price algorithm
outperforms the general-purpose solver in terms of quality of solutions and computa-
tional time.

The results confirm that designing sophisticated algorithms and exploiting the
problem structure is crucial when tackling large-scale optimization problems as the
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20 x 5 Instance Zip Zbw % zpw  t(s)
H1_p10.4d | 1383614 | 1356460 1.96% 315
H2_p10.4d | 1474082 | 1444042 2.04% 136
L1_pl0.4d | 1298356 | 1274821 1.81% 483
L2 pl10.4d | 1103212 | 1084936 1.66% 373

Table 4.8: Linear relazation results for 20 ships and 5 berths over jdays.

20 x 5 B&P (3h) CPLEX (3h) HEUR
Instance | best_sol GAP | best_sol GAP | best_sol GAP t(s)
H1.p10-4d | 1293184 4.66% X 00 1305216  3.78% 65
H2_p10-4d | 1379208 4.49% X 00 X 00 63
L1.pl0.4d | 1224458 3.95% X 00 1230409 3.48% 66
L2.pl10.4d | 1045778 3.61% X 00 1050171  3.20% 70

Table 4.9: Branch-and-price results for 20 ships and 5 berths over 4days.

TBAP. However, the instances’ size still represents an issue and additional advanced
techniques should be further investigated to overcome the complexity of the problem.

Most of the implemented accelerating techniques concern the pricing problem.
This is motivated by the fact that preliminary results produced with a “basic” im-
plementation of the branch-and-price algorithm (that included only heuristic pricing
as accelerating technique) point out that about 99% of the computational time was
spent in the pricing. The development of sophisticated and specialized techniques for
the pricing problem is extremely successful: we reduced the computational time by
90% on average, as shown in Table .10l

We are currently working on a new method that solves the problem on a reduced-
size space maintaining optimality. The framework is introduced and discussed in
Chapter

Furthermore, we think that future research should focus more on improving the
master problem. Our guess is that linearization variables z]fjw significantly slow down
the master problem as soon as the problem size increases; alternative linearizations
should be investigated.

Finally, cutting planes for the problem should be studied, in order to improve the
linear relaxation bound. A candidate class of valid inequalities are the so called lifted
cover inequalities (Kaparis and Letchford, 2010) conceived for knapsack polytopes.
Indeed, constraints (£.22]) can be seen as knapsack constraints when variables s,, take
binary values.

The addition of valid inequalities to the master problem generates new dual vari-
ables to be accounted in the pricing problem. Some attempts in this direction ex-
ist in literature for the multicommodity flow problem solved via column generation
(Barnhart et al., 2000).

Preliminary investigation for the TBAP shows that the fractional solution of the
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10 x 3 Basic B&P Improved B&P
Instance | t(s) % pricing | t(s) % pricing | speed up(%)

H1._p10 114 97% 21 10% 82%
H1_p20 995 97% 25 12% 97%
H1p30 257 99% 10 18% 98%
H2_p10 12 82% 2 10% 83%
H2_p20 29 90% 7 11% 76%
H2_p30 25 92% 9 13% 65%
L1.pl0 | 4054 99% 7 42% 100%
L1_p20 761 99% S 62% 99%
L1_p30 470 99% 27 93% 94%
L2_pl10 | 4697 99% 9 54% 100%
L2_p20 | 1573 99% 7 62% 100%
L2_p30 | 2680 99% 8 63% 100%

Table 4.10: Reduction of computational time obtained with the accelerating techniques.

root node provided by the column generation scheme actually violates some lifted
cover inequalities. Therefore, our insight is that cuts would help in closing the gap
faster, as up to now the linear relaxation bound improves slowly throughout the search
tree.

4.2 Hierarchical vs integrated planning models

The branch-and-price algorithm introduced in the previous section enables us to per-
form a comparative analysis between hierarchical and integrated optimization ap-
proaches for the Tactical Berth Allocation Problem.

The aim of this study is to experimentally analyze the impact of integrated plan-
ning in terms of quality of the solutions and increased complexity. For this purpose,
the Tactical Berth Allocation Problem represents the perfect case study, as it di-
rectly arises from the integration of two highly related decision problems, the berth
allocation and the quay crane assignment, that are currently solved hierarchically in
container terminals.

The hierarchical solution approach is composed of two models that are introduced
in the next section. Computational results are presented and the potential benefits
of integration are discussed.
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4.2.1 The hierarchical BAP + QCAP approach

In the hierarchical approach, the berth allocation and the quay crane assignment
are solved sequentially. The main assumption concerns the handling time of vessels,
that is assumed to be known in advance. In practice, the expected handling time
is provided by terminal planners, that base their estimations on quantitative data
such as vessel’s workload, average QC productivity, availability of transfer equipment,
vessel’s priority, as well as on their experience. In particular, some extra time can also
be included in the estimation in order to guarantee more robustness and flexibility to
the schedule.

The expected handling time of vessels is the necessary input of the whole hierar-
chical optimization process, that consists of the following two sequential steps:

1. Berth Allocation Problem (BAP)
In this step, every vessel is assigned to a berth. For every berth, vessels are
scheduled over the time horizon according to their time windows and expected
handling times. The objective function aims to minimize the yard housekeeping
costs generated by the resulting berth template.

2. Quay Crane Assignment Problem (QCAP)
In this step, a quay crane profile (representing the number of quay cranes op-
erating on the vessel during the working shifts associated with the allocated
handling time) is assigned to every vessel. The main constraint is represented
by the total quay crane capacity of the terminal, that is limited and must not
be exceeded, especially when two or more vessels are serviced simultaneously.
The berth allocation plan and scheduling determined at step 1 is therefore a
necessary input for solving the QCAP. The objective function aims to maximize
the monetary value associated with the quay crane profiles assigned to vessels.

The hierarchical approach is based on two separated models for the BAP and
the QCAP. The objective functions of the two models are consistent with the global
objective of the integrated TBAP model, in order to allow for comparison between
the two approaches.

BAP model

The BAP model minimizes the housekeeping costs generated by the berth allocation
and it requires as input the expected handling time t{? for every vessel i € N. The
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formulation is the following:

min % Z Z y]f Z Z Ty dkwij (4.58)

iEN keM  jeN weM

st. Y yb=1 WVieN, (4.59)
keM
Y xSy =1 VkeM, (4.60)
jENU{d(k)}
Y A =1 VkeM, (4.61)
ieNU{o(k)}
Y o oxk— Y xk=0 VkeM,VieN, (4.62)
jeNU(d(k)} jeNU{o(k)}
Y x=yf VkeM,VieN, (4.63)
JENU{d(k)}

TEHET —TF< (1 —x§M1 Vke M, ¥ie N,¥j e NU{d(k)}, (4.64)
Tclf(k) - Tjk <(1 —Xlé(k),j)MZ vk € M, Vj € N, ( )
ay¥ < T  VkeM,VieN, (4.66)

TE<by* VkeM,VieN, (4.67)

< Ty VkeEM, (4.68)

T(]f(k) <b* VkeM, (4.69)

x5 €{0,1}  Vk e M, V(i,j) € A¥, (4.70)

yk€{0,1} VkeM,VieN, (4.71)

TE>0 VkeM,VieNujo(k),d(k). (4.72)

where M1 and M2 represent large positive constants.

We remark that decision variables A, y, p are not needed anymore, since the profile
assignment and the quay crane capacity constraint are not taken into account at this
stage. Furthermore, constraints (£64]) rely on the estimation of the handling time
t7P, that must be provided as input.

The BAP model can be linearized and reformulated via Dantzig-Wolfe, similarly to
the procedure previously illustrated for the TBAP model. In particular, the resulting
master problem differs from (€20)-(@.28) for the QC capacity constraint (4.22]), that
is not taken into account in the BAP model. Furthermore, the network associated
with the BAP pricing subproblem is reduced, having one node for every vessel i € N
and for every arrival time step h € H. In other words, the dimension associated
with the quay crane profiles disappear. Similarly, the branch-and-price algorithm for
TBAP can be easily adapted to solve the berth allocation problem.



74 CHAPTER 4. AN EXACT ALGORITHM FOR THE TBAP

QCAP model

The QCAP model relies on the output of the BAP model, especially on the arrival
time T*" of vessels i € N. Furthermore, some preprocessing of data is needed,
according to the berth allocation plan; in particular, only profiles of length t7 < ¢
are feasible for the QCAP. We define the following additional notation:
P; subset of profiles p € P, i € N such that ty < 0P
T"  berthing time associated with profile p € 131, ie N.
The parameter TP is computed according to the starting time step of the profile
within a shift (sets P{, s € S defined in section B.3.3]), and to the arrival time T™.
The QCAP model can be formulated as follows:

max ) > VAP (4.73)

EN pep,
st.) A =1 VieN, (4.74)
pEPy
Y Y g™ <t vheH, (4.75)

N ep,
0<h—TP<t?

AP e (0,1} Vie N,Vp € P.. (4.76)

As observed by Bierwirth and Meisel (2010) the quay crane assignment problem
is relatively easy to solve compared to the berth allocation problem, that is NP-Hard
(Lim, 1998).

4.2.2 Comparative analysis

The branch-and-price algorithm for TBAP presented in section[4.1.4lis further adapted
to solve the BAP model in the hierarchical approach. The QCAP model is solved
using a general-purpose MIP solver.

Handling time estimation

As mentioned, the hierarchical approach requires an estimation of the handling time,
usually provided by the terminal’s planners. Among the available TBAP data, we
are given the set of feasible quay crane assignment profiles defined for every vessel
and known in advance; in particular, we know the duration in terms of working shifts
of every feasible QC profile.

In order to start the entire hierarchical optimization process, we produce two
different estimations for the handling time, both motivated by the practice:
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Scenario A for every vessel, the handling time is given by the longest feasible quay
crane assignment profile;

Scenario B for mother vessels, the handling time is given by the shortest feasible
quay crane assignment profile whereas for feeders, the handling time is given by
the longest feasible quay crane assignment profile.

Scenario A is very conservative and somehow represents the worst-case scenario,
when all vessels are serviced at the lowest rate. However, this handling time estima-
tion may be useful to produce robust schedules.

Scenario B can be considered more realistic, since mother vessels typically have
higher priority than feeders. In particular, we expect the terminal to operate as fast
as possible mother vessels in order to minimize their stay at the port.

We remark that both scenarios are realistic and reasonable in practice.

Computational results

Computational experiments are performed on the set of perturbated instances intro-
duced in section 4.1.5

Table [A.11] compares the optimal solutions for the hierarchical approach under
scenarios A and B to the integrated TBAP approach. We consider instances with 10
vessels and 3 berths over a time horizon of one week. For all solutions we report the
value of the objective function (optsol), the number of used berths (K) and the com-
putational time in seconds (t(s)). Columns '%(A)’, '%(B)’ indicate the improvement
of the integrated solution with respect to the hierarchical approach under scenarios
A, B respectively. We remark again that the global objective function refers to a
maximization problem.

As expected, the integrated TBAP provides better solutions, although it seems
that these specific instances do not allow for a significant gain in terms of objective
function. The average improvement is 0.68% over scenario A and 0.36% over sce-
nario B. Surprisingly, the computational effort required by the integrated approach is
comparable to the hierarchical approach: optimal integrated solutions are therefore
produced in a fast and efficient way.

These results seem to indicate that the tested instances are not very tight. There-
fore, we perform additional tests by defining more congested instances. Such instances
are obtained by reducing the time horizon from seven to four working days; in order
to maintain feasibility, vessels’ time windows are also relaxed and the quay crane
capacity increases from Q =8 to Q = 10.

Results for instances with a time horizon of four days are illustrated in Table .12l
As soon as instances become more congested, the hierarchical approach clearly shows
its drawbacks: first of all, the hierarchical approach is not always able to provide a
feasible solution. More specifically, the quay crane assignment may not be feasible for
a given berth allocation plan, due to the QC capacity constraint; this is often the case
for scenario B, where the shortest handling time is assigned to mother vessels, and
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10 x 3 Scenario A Scenario B Integrated TBAP
Inst. | optsol K t(s) | optsol K t(s) | optsol K t(s) %(A) %(B)

H1.10 | 786841 2 14 789478 2 19 790735 2 21 049% 0.16%
H1.20 | 787689 14 789754 2 14 791011 2 25  042% 0.16%
H1.30 | 787723 2 9 789788 2 8 791045 2 10 0.42% 0.16%

[\)

H2_.10 | 730702 2 3 733276 2 2 733276 2 2 0.35%  0.00%
H2.20 | 730418 2 6 732659 2 6 735646 2 7 0.72% 0.41%
H2.30 | 730454 2 4 732695 2 6 735682 2 9 0.72% 0.41%

L1.10 | 513661 2 ) 515017 2 ) 515902 2 7 0.44% 0.17%
L1.20 | 513696 515052 2 6 518049 2 ) 0.85% 0.58%
L1.30 | 513731 2 7 515087 2 4 518084 2 27 0.85% 0.58%

\V)
ot

L2.10 | 559683 2 7 561705 2 7 564831 2 9 0.92% 0.56%
L2.20 | 559719 2 4 561741 2 10 564867 2 7 0.92% 0.56%
L2.30 | 559755 2 4 561777 2 6 564903 2 8 0.92% 0.56%

Table 4.11: Optimal solutions for 10 vessels and 3 berths over 1 week.

10 x 3 Scenario A Scenario B Integrated TBAP
Inst. opt_sol K t(s) | optsol K t(s) | optsol K t(s) %(A) %(B)

H1.10.4d X X 777398 3 39 00 00
H1.204d | 776331 3 10 X 779674 3 47 0.43% 00
H1.304d | 776365 3 13 X 782300 3 66  0.76% 00
H2.104d | 718900 3 8 X 722431 3 28 0.49% 00
H2.204d | 719987 3 11 X 724345 3 36 0.61% 00
H2.304d | 719701 3 13 X 725585 3 28 0.82% 00

L1.10-4d | 507422 3 5) 508657 3 7 512533 2 4 1.01% 0.76%
L1.20-4d | 507304 3 508505 3 6 512533 2 19  1.03% 0.79%
L1.30-4d | 507339 3 4 508540 3 6 512991 2 10 1.11% 0.88%

W~

L2.104d | 553971 3 X 958750 2 16 0.86% 00
L2.204d | 554380 3 5956272 3 4 958786 2 25 0.719% 0.45%
L2.30-4d | 554380 3 6 556280 3 4 55H8822 2 6 0.80% 0.46%

[erINeN

Table 4.12: Optimal solutions for 10 vessels and 3 berths over 4 days.

therefore a higher number of cranes is used. In particular, the hierarchical approach
fails in providing a solution for all the high-load instances (H1 and H2) under scenario
B. On the contrary, the integrated approach finds the optimal solution for all tested
instances in a reasonable time (always less than one minute).

The gain in terms of objective function is still modest (at most 1%); however, it
is interesting to notice that the integrated solution makes use, in some cases, of one
berth less than the solution provided by the hierarchical approach.
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10 x 3 Housekeeping Profiles

Inst. HKA HKB HKTB %(A) %(B) PVA PVB PVTB %(A) %(B)
H1.10 | 118713 117138 115881 -2.4% -1.1% | 906616 905554 906616  0.0% 0.1%
H1.20 | 118713 117138 115881 -2.4% -1.1% | 906892 906402 906892  0.0% 0.1%
H1.30 | 118713 117138 115881 -2.4% -1.1% | 906926 906436 906926 0.0% 0.1%
H2_.10 | 108806 106232 106232 -2.4%  0.0% | 839508 839508 839508 0.0% 0.0%
H2.20 | 108806 107261 104402 -4.0% -2.7% | 840048 839224 839920 0.0% 0.1%
H2.30 | 108806 107261 104402 -4.0% -2.7% | 840084 839956 839956  0.0% 0.0%
L1.10 74805 73449 < 72564  -3.0% -1.2% | 588466 588466 588466 0.0% 0.0%
L1-20 74805 73449 70386  -5.9% -4.2% | 588435 588501 588501  0.0% 0.0%
L1.30 74805 73449 70386  -5.9% -4.2% | 588470 588536 588536  0.0% 0.0%
L2_10 84145 82123 78997 -6.1% -3.8% | 643828 643828 643828 0.0% 0.0%
L2.20 84145 82123 78997 -6.1% -3.8% | 643864 643864 643864 0.0% 0.0%
L2.30 84145 82123 78997 -6.1% -3.8% | 643900 643900 643900 0.0% 0.0%

Table 4.13: Housekeeping and profiles’ value for 10 vessels and 3 berths over 1 week.

10 x 3 Housekeeping Profiles
Inst. HKA HKpg HKtg %(A) %(B) PVa PVg PV1e %(A) %(B)
H1.10.4d | 129717 127524 127218 -1.9% -0.2% X X 906616
H1.20.4d | 129717 127524 127218 -1.9% -0.2% | 906054 X 906892  0.1%
H1.30.4d | 129717 127524 124626 -3.9% -2.3% | 906134 X 906926  0.1%
L2.104d | 119666 117077 117077 -2.2% -0.0% | 838566 X 839508 0.1%
L2204d | 119666 117077 115702 -3.3% -1.2% | 839653 X 840048  0.0%
L2.304d | 119666 117077 114371 -44% -2.3% | 839367 X 839956  0.1%
H2.104d | 80511 79809 75933 -5.7% -4.9% | 587933 588466 588466 0.1% 0.0%
H2.20.4d | 80820 79809 75444 -6.7% -5.5% | 588124 588314 588435 0.1% 0.0%
H2.30.4d | 80820 79809 75444 -6.7% -5.5% | 588159 588349 588470 0.1% 0.0%
L1.104d | 89137 87430 85078 -4.6% -2.7% | 643471 X 643828  0.1%
L1.20.4d | 89137 87430 85078 -4.6% -2.7% | 643598 643702 643864 0.0% 0.0%
L1.304d | 89137 87430 85078 -4.6% -2.7% | 643598 643710 643900 0.0% 0.0%

Table 4.14: Housekeeping and profiles” value for 10 vessels and 3 berths over 4days.

We remark that the global objective function is composed of two terms, the value
of profiles and the housekeeping costs. In Tables [4.13] and [4.14] we report the ab-
solute values of housekeeping costs (HK) and profiles’ total value (PV) for scenario
A, scenario B and the TBAP integrated approach (denoted by subscript TB). We
also provide the percentage improvement of the integrated approach on scenario A
(%(A)) and scenario B (%(B)) for the two components of the objective function. In
particular, TBAP reduces the housekeeping costs and increases the profiles’ value.
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We can observe that housekeeping costs are decreased by 4% on average with
respect to scenario A and by 2% on average with respect to scenario B. On the
contrary, profiles’ total value is rarely improved. Unfortunately, the improvement
obtained by the integrated approach is almost completely hidden when considering
the global objective function, since for these specific instances the profiles value is
about 8 times higher than housekeeping costs in the final objective function. Our
insight is that, depending on data, the improvement would be much more emphasized.

To conclude, we think that the additional computational effort required by the
integrated solution approach is worth it, especially for congested instances (that are
those closer to reality). In particular, the integrated TBAP provides a more efficient
use of terminal’s resources.

4.3 Conclusions

In this chapter we have presented a branch-and-price algorithm for the Tactical Berth
Allocation Problem. We have reformulated the problem via Dantzig-Wolfe decompo-
sition and applied column generation. In order to obtain integer solutions, a branch-
and-price scheme has been implemented and algorithmic details and accelerating tech-
niques are discussed.

In particular, we presented advanced techniques specifically conceived for our
problem, that proved to be very useful and that can be easily generalized for other
branch-and-price schemes in various applications.

Computational tests prove that our exact algorithm outperforms commercial solvers:
especially on small instances, branch-and-price always provides optimal solutions rel-
atively fast.

However, the computational complexity of TBAP is not completely overcome and
new exact solution approaches are worth being investigated to tackle difficult large-
scale optimization problems, such as TBAP.

Finally, the developed branch-and-price algorithm enables us to provide an experi-
mental comparison between the traditional hierarchical approach solving sequentially
berth allocation and quay crane assignment, and our proposed integrated TBAP
model. Computational tests confirm the added value of integration in terms of cost
reduction and efficient use of resources.
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From Methods to Applications

79






81

Part[Il is devoted to general models and algorithms for large-scale optimization prob-
lems, with a specific focus on methods.

In Part I we have seen that solving complex problems, such as the Tactical Berth
Allocation Problem, is difficult even for sophisticated large scale optimization tech-
niques such as standard column generation and branch-and-price.

In the second part of this dissertation we propose a new concept in the context
of column generation and Dantzig-Wolfe decomposition able to handle such complex
problems. We design a framework that s transferable across applications and that
provides general results for large scale optimization problems.

The novel approach, called two-stage column generation, represents a major con-
tribution of our work. The proposed methodology is validated on a new class of split
delivery vehicle routing problems that generalizes specific characteristics of the Tactical
Berth Allocation Problem and other applications in transportation, telecommunication
and logistics.

This generalization results in the definition of the Discrete Split Delivery Vehicle

Routing Problem with the following modeling features:

e discrete demand delivered in discrete orders: in the TBAP, the demand is rep-
resented by the amount of quay cranes (discrete items) needed to complete the
workload of a wvessel; quay cranes are “delivered” as discrete combinations of

items, called quay crane profiles (discrete orders);

e service time dependent on the delivered quantity: in the TBAP, a handling time
1s associated with every quay crane profile; according to the amount of cranes
that are operating the vessel, the service has a different length (service time)

that depends on the “delivered quantity” of cranes;

o we remark that the TBAP can be formulated as a multi-depot vehicle routing

problem, according to Section [3.3.3.

The mentioned modeling features are relevant also to other domains of application,
such as telecommunication. In particular, we have found interesting similarities with
the Field Technician Scheduling Problem (Xu and Chiu, 2001) and the Technician
and Task Scheduling Problem (Cordeau et al., 2010).






Chapter 5

The Discrete Split Delivery
VRPTW

5.1 Introduction

The capacitated Vehicle Routing Problem (VRP) consists of designing the optimal
routes for a set of vehicles with given capacity in order to serve a set of customers.
Customer’s demand must be delivered by exactly one vehicle and vehicles’ capacity
cannot be violated. In the VRP with Time Windows (VRPTW) the service at any
customer must start within a given time interval.

The Split Delivery Vehicle Routing Problem (SDVRP) is a relaxed version of the
capacitated VRP in which the number of visits to customer locations is no longer
constrained to be exactly one. In the SDVRP each customer can be visited by more
than one vehicle which serves a fraction of its demand. It has been shown that this
relaxation could yield to substantial savings on the total traveled distance, up to 50%
in some instances, as well as on the number of required vehicles (Archetti, Savelsbergh
and Speranza, 2006; Archetti, Savelsbergh and Speranza, 2008; Nowak et al., 2009).
However, Gulczynski et al. (2009) have remarked that continuous splitting of the
delivery may be not acceptable under a certain amount.

In the Discrete Split Delivery Vehicle Routing Problem (DSDVRP) the demand
of a customer consists of several items that cannot be split further. The problem
belongs to the class of split delivery problems since each customer’s demand can be
fractionated and each customer can be visited by more than one vehicle.

In this chapter we study the Discrete Split Delivery Vehicle Routing Problem
with Time Windows (DSDVRPTW). We assume that demand can be split in pre-
determined discrete orders, i.e., feasible combinations of items (the unit request of
a customer), that each vehicle can serve at most one order per customer and that
service time at customer’s location depends on the delivered combination of items.
Remarkably, this is a modeling feature rarely found in literature, where service times
are usually assumed to be independent of the delivered quantities. We refer e.g., to
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Gendreau et al. (2006) and Desaulniers (2010), who make the simplifying assump-
tion of constant service times: although it may be acceptable in applications where
the unloading time is negligible, this is not an appropriate modeling assumption for
applications where the unloading time is largely affected by the size of the delivery.
Furthermore, discrete orders are particularly suited to specify any (possibly non-
linear) relation among items, such as complicating constraints, incompatibilities and
cost functions depending on orders.

Our main contribution is the definition of a new model for the Split Delivery
VRPTW that takes into account discrete demands and delivery-dependent service
times. Our model provides a more realistic representation of logistic problems, es-
pecially when deliveries cannot be treated as continuous quantities. Furthermore,
delivery-dependent service times allow to understand to what extent delivery split-
ting can be advantageous in real cases: in our experiments we observe that delivery
splitting into small fractions is rarely used in optimal solutions. The assumption
of delivery-dependent service times affects some properties of optimal solutions with
respect to known properties of Split Delivery VRPs that have been exploited in the
literature to design and implement optimization algorithms. In particular, when
column generation is used to solve the problem, as in our case, constant service
times imply that no two split customers are shared among two vehicles’ routes and
therefore columns generated by the pricing problem have at most one split customer
(Desaulniers, 2010). This is no more the case in our pricing subproblem. We study
the properties of the DSDVRPTW and design a branch-and-price algorithm that ex-
ploits its specific structure. We extend state-of-the-art algorithms to cope with the
additional complexity of the problem and manage to solve to optimality instances
with up to 50 customers and a total of 350 orders. To provide a qualitative com-
parison, we recall that a DSDVRPTW instance is comparable, in terms of size of
the associated network, to a VRPTW instance with as many customers as the total
number of orders. To the best of our knowledge, instances of the VRPTW with up
to 200 customers are solved to optimality. Our implementation largely outperforms
a general-purpose commercial solver in terms of computational time and number of
instances solved.

The increased difficulty of delivery-dependent service times is confirmed by com-
putational experiments. Solving the same set of instances assuming constant service
times, it results that those instances are much easier to solve. In particular, when
service time is constant, several delivery splittings are easily dominated or unfeasible
because of time windows limitations. Remarkably, considering delivery-dependent
service time allows to produce some savings. In our experiments the solution of 14
instances is improved when delivery-dependent service times are considered.

The remainder of this chapter is organized as follows. In Section we review
scientific contributions relevant to the DSDVRPTW. In Section [(.3] we recall some
known properties of split deliveries and show how they extend to the DSDVRPTW
case. Section [0.4] provides an arc-flow formulation for the DSDVRPTW. In Section
we reformulate the problem using Dantzig-Wolfe decomposition and we illustrate
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the column generation scheme. The branch-and-price implementation is presented in
Section and computational results are discussed in Section 5.7

5.2 Literature review

The idea of obtaining some savings thanks to delivery splitting was introduced by
Dror and Trudeau (1989), further developed by Dror and Trudeau (1990), who also
provided some fundamental properties of optimal solutions of the SDVRP, exploited
by other contributions to design effective optimization algorithms. Next, Dror et al.
(1994) introduced a mathematical formulation based on integer programming, solved
through a cutting plane approach able to provide bounds within 9% gap from opti-
mum for instances with up to 20 customers. Lower bounds obtained by additional
valid inequalities have been proposed by Belenguer et al. (2000); further exact meth-
ods (Gueguen, 1999; Jin et al., 2007) as well as heuristic algorithms (Archetti, Sper-
anza and Hertz, 2006; Chen et al., 2007; Jin et al., 2008; Archetti, Speranza and
Savelsbergh, 2008) have been proposed.

Gendreau et al. (2006) and Desaulniers (2010) address the problem with time win-
dows (SDVRPTW) and present exact approaches based on column generation and
branch-and-bound techniques. In particular, the method by Desaulniers (2010) ex-
ploits some known properties introduced by Dror and Trudeau (1989). In his column
generation scheme, the author could limit the exploration of the pricing to columns
visiting at most one split customer. The key idea of this paper is to allow so-called
skip customers to be included in each route. The convex combination of such routes
which is performed by the master problem can successfully lead to feasible integral
solutions.

In all column generation schemes reviewed so far the decision of the amount to
be delivered to each customer is left to the master problem. Ceselli et al. (2009b)
propose lower bounds for the SDVRPTW based on a different formulation in which
the amount to be delivered is left to the pricing. This bound is neither dominated
nor dominates those of Gendreau et al. (2006) and Desaulniers (2010).

Integral solutions for instances with up to 100 customers have been provided by
Ho and Haugland (2004) using tabu search. Finally, we refer the reader to the surveys
by Archetti and Speranza (2008) and Chen et al. (2007).

We remark that in the papers reviewed so far, the following assumptions hold:
firstly, the amount of demand to be delivered to each customer can be split into any
fraction; secondly, for the problems with time windows, the service time to customers
is assumed to be fixed and thus delivery independent. However, these assumptions
may be unrealistic in real applications and this has motivated us to include in our
model features such as discrete demand and orders, as well as delivery-dependent
service time.

A first attempt to partially relax these assumptions is made by Gulezynski et al.
(2009), who define a lower limit on the amount delivered to each customer motivated
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by practical applications. Authors discussed the implications of such limit on the
properties of optimal solutions of SDVRP. Beyond that limit the delivery can be split
in any fractional manner.

Discrete demands have been introduced by Nakao and Nagamochi (2007), who
present the discrete version of the SDVRP and propose a dynamic programming
based heuristic able to solve real world instances with up to 77 customers. The
algorithm is compared to other existing heuristics for the VRP. Indeed, many real
world applications often present discrete split delivery characteristics: Ceselli et al.
(2009a) present an exact approach to a real-world VRP in which customers’ orders
can be split among several vehicles in a discrete fashion. The authors propose a three
level order aggregation that ends up, at the last level, in considering any possible
combination of items.

Predetermined discrete orders and delivery-dependent service time are particularly
suited to model real applications, such as the Field Technician Scheduling Problem
(Xu and Chiu, 2001; Cordeau et al., 2010). A set of tasks of different types and
requiring different skills must be assigned to technicians; every technician is able to
deliver only the subset of tasks for which he is specialized. As each technician has
different skills, the processing time of each task depends on the final task assignment.
However, authors do not specifically relate their problems to the DSDVRP. Other
contributions on real world routing with delivery splitting can be found in Belfiore
et al. (2009) and Bolduc et al. (2010).

Finally, Giallombardo et al. (2010) describe a real-world problem in container ter-
minal management where a non-linear monetary value is associated with combination
of items. In this application, “orders” represent feasible assignments of quay cranes
to vessels over time.

We relax the limiting assumption of continuous delivery splitting exploited in the
literature and we model delivery dependent service times. We show that state-of-the-
art techniques can be appropriately adapted to cope with this additional complexity
and that the designed algorithm is able to compete in terms of solved instances with
the best known algorithms.

5.3 Known properties of SDVRP extended to DS-
DVRPTW

In this section we recall some known properties of the VRP with Split Deliveries,
firstly introduced by Dror and Trudeau (1990), extended to the variant with time
windows by Gendreau et al. (2006). In particular, we discuss the implications of the
new modeling feature introduced in this chapter, the delivery-dependent service time.

Property 1 The SDVRP(TW) is a relaxation of the corresponding VRP(TW).
The proof is given by Dror and Trudeau (1990). Let z} be the value of the optimal
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solution for the SDVRP(TW) and let z§ be the value of the optimal solution for the
corresponding VRP(TW). Property 1 states that zf < zf. Clearly, z! % z} for any
problem instance since any VRP(TW) solution (and in particular, the optimal one)
is a feasible solution for the corresponding SDVRP(TW). Furthermore, there exists
instances such that z; < zf, as for the following example.

Dror and Trudeau’s example We consider three demand points with d; = 3,
d; =4 and d3 = 3; the distances between the points including the depot (node 0) are
Coi = 2M for 1 = 1,2,3; ¢1; = ¢33 = € and cy3 = 2€. All vehicles have a capacity of
five units. The VRP solution has a total cost of 12M and requires 3 vehicles, whereas
the SDVRP solution has a total cost of 8M + 2e and requires only 2 vehicles (cf. Fig.

B.T).

Property 1.1 The DSDVRP(TW) is a relaxation of the corresponding VRP(TW)
when the unsplit order is defined for each customer. We define the unsplit order as the
order in which all items requested by a customer are delivered in a unique order. The
proof easily derives from property 1 as any VRP(TW) solution is a feasible solution

for the corresponding DSDVRP(TW).

Property 2 Both SDVRP(TW) and DSDVRP(TW) are NP-Hard in the strong
sense. The NP-Hardness of SDVRPTW has been proven by Gendreau et al. (2006)
who proposed a polynomial reduction from the Traveling Salesman Problem to the
SDVRPTW. The same reduction applies for DSDVRPTW. An alternative proof can
be obtained observing that the VRP(TW) is a special case of the DSDVRP(TW)
when the unsplit order is defined for each customer. Therefore, DSDVRP(TW) is as
hard as the VRP(TW), that is NP-Hard (Toth and Vigo, 2002).

VRP SDVRP

. @G\@

Figure 5.1: Dror and Trudeau’s example.
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Figure 5.2: Dror and Trudeau’s two-route two-split example.

Property 3 When the cost matrix satisfies the triangular inequality, there exists
an optimal solution of the SDVRP in which no two routes have more than one split
demand in common. The proof is given in Dror and Trudeau (1990). Consider an
optimal SDVRP solution where two customers p and q are serviced by the same two
routes k and w with split deliveries df, dy, df and dy (cf. Fig. B.2). Without
loss of generality, we assume that d]r‘, = min{dlp‘, dy, dz, dg”}. It is always possible
to modify the quantities delivered by k and w to drop out customer p from route
k, such that demands are still fulfilled, vehicles’ capacity is not violated and the
objective function does not increase its value. In particular, the new quantities are
& =0, @y = ay e dh, o = dh+ s and @y = ay —

Property 3 is extended to the SDVRP with Time Windows by Gendreau et al.
(2006) under the assumption of constant service times. In particular, since route w
still visits customers p and q, service times are unchanged and time windows are not
affected. With respect to route k, since customer p is not visited anymore, the vehicle
may reach some subsequent customer earlier that allowed; in this case, the vehicle
will just wait at customer’s location until it is allowed to start the delivery.

While properties 1 and 2 can be extended to the DSDVRPTW, property 3 does
not apply because of the assumption of delivery-dependent service times. In this
case, the increased quantity delivered by route w to customer p implies an increased
service time at location p. As a consequence, the arrival and the delivery to the next
customers may not comply with the time windows constraints anymore.

5.4 Arc-flow formulation

In this section we present a mixed integer linear program for the DSDVRPTW based
on arc-flow formulation. Let G(V,E) be a complete graph with V = {0} U N, where
vertex {0} represents the depot and N = {1,...,n} is the set of customers to be
served. Each arc (i,j) € E has a cost ¢y and a travel time ti;. The set of available
vehicles with identical capacity Q is denoted by K. The set of items R is defined as
R = Jicn Ri, where R; represents the set of items to be delivered to customer i € N.
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Furthermore, Ry NR; = 0 Vi #j, 1,j € N, meaning that any item r € R is univocally
associated with a customer i € N. Each item r € R has a size q" and a service time
t". Items are delivered in orders, i.e., combinations of items. The set of orders C
is given and defined as C = J;. Ci, where C; represents the set of feasible orders
for customer i € N. Furthermore, C; N C; = 0 Vi # j, 1,j € N, meaning that any
order ¢ € C is univocally associated with a customer i € N. Each order ¢ € C has
a size qc = ) _..pe€tq’ and a service time t.. Although t. may incorporate any non-
linear specification, for illustration purposes we assume that order’s service time is
equal to the sum of item’s unloading times plus some constants administrative paper
work time, i.e., tc = ) g ett" +v, where parameter ef is used to identify the items
composing the order ¢ and equals 1 if item r € R is delivered in order ¢ € C and 0
otherwise and 7y is a constant service time related to the administrative paper work.
Interval [a;, b;] denotes the time window for customer i € N. We define the following
decision variables:

x]fj binary, equal to 1 if arc (i,j) € E is used by vehicle k € K;
y~  Dbinary, equal to 1 if vehicle k € K delivers order ¢ € C;
TF >0, represents the arrival time of vehicle k € K at customer i € N.

The discrete split delivery VRPTW can be formulated as follows:

Zip Zman Z CijX 1] (5.1)

keK (i,j)€E
> xh=1 Vkek, (5.2)
jev
Y xE—) xk=0 VkeK VieV, (5.3)
jev jev
> xE=) uf VkeK VieN, (5.4)
jev ceCy
Z Z elyk = Vr e R, (5.5)
keK ceC
S yi<1  VkeK VieN, (5.6)
CEC{_
T4+ ) tyf+t—T < (1—x)M  VkeK,HeN,WeV, (5.7)

CEC{_

TF+(1—x§M >ty VkeK,VieN,

TE>a ) xf  vkeK VieN, (5.9)
jev
TE+ ) tys<bi) x§ VkeK, VieN, (5.10)

ceCy jev
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D> quyE<Q  VkeK, (5.11)
ceC
x5 €{0,1}  Vk e K, V(i,j) € E, (5.12)
yke{0,1} VkeK,VveecC, (5.13)
T*>0 VkeK,VieN. (5.14)

where M is a sufficiently large positive constant. The objective function (5.]) min-
imizes the total traveling costs. Flow conservation is ensured by constraints (5.2])—
(540, which also link x and y variables. Demand satisfaction is ensured by constraints
(E5): all items must be delivered (but not all combinations). Constraints (5.6]) en-
sure that every vehicle delivers at most one order per customer. Precedence, time
windows and capacity constraints are ensured by constraints (5.7)—(5.8)), (5.9)—(E.10)
and (B.I11)). Finally, the domain of variables is defined by (5.12), (5.13]) and (5.14)).

We remark that the service time at customer location depends on the selected
order. This feature is modeled by the term 3 . tcys in constraints (5.7): it increases
the complexity of the model, with respect to the same type of precedence constraints
in classical VRP formulations with time windows.

5.5 Column generation

In this section we reformulate the DSDVRPTW model (5.1)-(5.14) via Dantzig-Wolfe
decomposition and provide the formulations of the master problem and pricing sub-
problem. The master problem is solved by means of column generation.

5.5.1 Master problem

Let (5.2)-(5.4) and (5.6)-(5.14) be the constraints that define the feasible region of the
subproblem and let D* = conv{(x*,y*, T*) | (x¥, y*, T*) satisfies (5.2)) — (5.4); (5.6) —
(514) for k} be the feasible bounded domain of the subproblem associated with ve-
hicle k € K. Let P* be the set of extreme points of D*. Each extreme point
pr = (xE,yE,T;‘), p* € P represents a feasible route for vehicle k with respect to
vehicle’s capacity and customers’ time windows, delivering a unique order to every
customer visited by the tour.

Since vehicles k € K present identical restrictions (in this case, the same capacity),
all subproblems are identical and can therefore be aggregated into a single subprob-
lem. We denote as D = conv{(x,y, T) | (x,y, T) satisfies (5.2]) — (&.4); (5.6) — (5.14)}
the feasible domain of the subproblem and P the set of extreme points of D. Each
extreme point p = (Xp,Yp, Ip), P € P represents now a feasible route that can be
covered by any vehicle among the |K| available.

The definition of the master problem requires the following additional notation:
we denote ¢, the cost of a route p € P, defined as ¢, = Z(i’j)ep cij, while o denotes
a binary parameter equal to 1 if route p € P delivers item r € R. We also define
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oc]iD as a binary parameter equal to 1 if route p € P visits customer i and used
later in additional constraints for the master. After some standard adjustments and
aggregation, the master problem can be formulated as follows:

min ) cpA, (5.15)

peP
> oA, =1 VreR (m) (5.16)
peP
> A <K (70) (5.17)
peP
A, >0 VpeP. (5.18)

where A, are the decision variables associated with paths p € P. The dual variables
associated with constraints (5.I6]) are denoted as 7, while 7y is the dual variable
associated with constraint (5.I7)). The objective function (5.15) minimizes the total
traveling cost. Constraints (5.16) ensure that all items are delivered to customers,
while constraint (5.17) ensures that the number of chosen routes does not exceed the
number of available vehicles.

We remark that constraints (5.16]) need to be modeled as partitioning constraints
in the DSDVRPTW, unlike common reformulations for routing problems that gener-
ally make use of covering constraints. This is due to the fact that, for every customer
i € N, the set of orders C; does not necessarily contain all subsets of items r € Ry, but
only the subsets that are considered feasible with respect to the problem definition
(incompatibilities between specific items, restrictions on the order size, etc.). As a
consequence, a partitioning solution equivalent to the optimal covering solution may
not exist.

5.5.2 Pricing subproblem

We denote by ¢, := ¢, — ZreR 7'troqj — 1 the reduced cost of a route p € P. In a
column generation scheme, given a dual solution of the (restricted) master problem,
the pricing subproblem identifies the route p* with the minimum reduced cost:

p*=arg rglei]gl{ép} = arg rglei]gl{cp — ; Tt 04, — oo} (5.19)

The subproblem formulation relies on variables x, y and T defined in Section [5.4]
(without index k, since we have aggregated the subproblems) and can be written as

follows:
min Z CijXij — Z ﬂT(Z yCQZ) — 70 (520)

(i,j)€E TeER ceC
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> xg=1 (5.21)

jev
ZXij — Zin =0 Yie \/, (522)
jeV jeV
Y x=) yo VieN, (5.23)
jev ceCy
Y ye<1l WieN, (5.24)
CEC{_
Tit ) tyetty—T<(T—xy)M  VieN,¥eV, (5.25)
CGCi
T, + (] — XOi)M > toi Vie N, (526)
Ti > q ZXU' Vie N, (527)
jev
T + Z teyc < b; ZXU' Vie N, (528)
ceCy jev
> gy <Q (5.29)
ceC
Xij € {0,1} V(i,j) € E, (530)
y. €{0,1} Ve e C, (5.31)
>0 WieN. (5.32)

Analyzing the objective function, we can observe that two major decisions are
made in the subproblem:

a) the sequence of visited customers i € N (cost component cj);

b) for each customer in the route, the order ¢ € C to be delivered, and therefore
the subset of items T € R delivered by the route (cost component el).

The pricing problem (5.20)-(5.32) can be cast to an Elementary Shortest Path Prob-
lem with Resource Constraints (ESPPRC) on a network that has one node for every
order ¢ € C and whose arcs have transit time equals to (ty + tc).

5.6 Branch-and-price implementation

For solving the DSDVRPTW we implement a branch-and-price algorithm adapting
state-of-the-art solution techniques for the pricing and the master problem.

The pricing problem is solved using bounded bi-directional dynamic program-
ming (Righini and Salani, 2006) with decremental state space relaxation (Righini
and Salani, 2008). The algorithm is initialized by a preprocessing phase, used to
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identify and remove trivially dominated combinations, and by a simple greedy algo-
rithm used to find a feasible solution to the problem. Such solution allows to compute
an upper bound on the cost of the solution and on the number of vehicles. The search
tree is explored using a best-first strategy.

5.6.1 Branching scheme

In the search tree, branching is required when the master problem is solved at op-
timality and the corresponding solution of the arc-flow formulation is not integer.
We have implemented a branching scheme consisting of four hierarchical levels of in-
creasing complexity for what concerns additional constraints in the master problem
or additional complexity of the pricing problem:

K), branching is per-

1. if the total number of vehicles is fractional (3 p p =
A, < |K] on the first child node

formed on constraint (5.I7) by enforcing 3 _p
and 3 _p A, > [K] on the second child node.

2. if the number of vehicles visiting some customer i € N is fractional (Zpep ocp7\ =
]~<i), branching requires additional constraints to be added to the master problem
for customer i: 3, oAy < |Ki] on the first child node and 2 pep oAy > [K]
on the second child node. This branching requires the dual values associated
with the additional constraints to be collected and accounted in the pricing.

3. if there is an arc (i,j) € E visited a fractional number of times (), .« 1‘] Xij),
branching requires additional constraints in the master problem: xj < |Xij] on
the first child node and x;; > [Xy;] on the second child node. This branching
requires the dual values associated with the additional constraints to be collected
and accounted in the pricing; however, the pricing structure is not affected.

4. if none of the above conditions holds, then there exist two consecutive arcs
(i,j) € E and (j,1) € E visited consecutively a fractional number of times:
Zper Ap = Zij1, where Py, denotes the set of paths containing arc (j, 1) imme-
diately after arc (i,j). In this case, branching requires additional constraints
to be added to the master: zij < [Zi] on the first child node and zij > [Zy;]
on the second child node. This branching requires the dual values associated
with the additional constraints to be collected and accounted in the pricing, it
also requires modifying the pricing as one additional resource must be added to
the state of the dynamic programming algorithm for each additional constraint
added to the master problem. However, this last branching is rarely needed
(<1% of instances in our tests). See Ryan and Foster (1981) and Desrochers
and Soumis (1989) for additional details.
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5.6.2 2-Path Cuts

At the root node we try to identify valid 2-path inequalities that are violated by the
current linear relaxation solution.

The basic idea of k-path inequalities (Kohl et al., 1999) is to identify a subset of
customers that is visited by less than k vehicles in the current fractional solution,
although it requires, in the optimal solution, at least k vehicles to be serviced. For
any subset of customers S C N, |S| > 1 we define the flow into S, denoted x(S), as
X(S) =2 ics Z]. s Xij where S =N\ S. Given the smallest number of vehicles needed
to service all the customers in S, denoted by k(S), a valid k-path inequality is defined
by x(S) > k(S).

Since calculating k(S) is very time consuming, we have limited the search to the
2-path inequalities. This reduces to identify some set S such that x(S) < 2 and
k(S) > 1. To determine whether k(S) > 1, we solve a Traveling Salesman Problem
with Time Windows (TSPTW) for S: if a TSPTW solution cannot be found, then
k(S) > 1. Since the number of sets S grows exponentially, in our search we limited
the size of S to twice the average number of customers per vehicle. Sets are chosen
heuristically in a first phase, then, if no valid inequality is found, sets are enumerated.
All 2-path inequalities that are violated by more than a predetermined threshold value
(0.2 for our tests) are added to the master problem, defining a new linear relaxation
to solve.

5.7 Computational results

Algorithms are coded in ANSI C and compiled with gce 4.1.2. Computational expe-
rience is run under a linux operating system on a 2Ghz Intel processor equipped with
2GB of RAM. All restricted master problems are solved using CPLEX version 10.2.

5.7.1 Instances

To the best of our knowledge there is no standard dataset used in the literature for
the DSDVRPTW. The most related contribution is that of Nakao and Nagamochi
(2007) for which the instances are not available.

We generate our test bed from the well-known Solomon’s data set (Solomon, 1983).
For all instances of classes R1, C1 and RC1 we consider the first n = 25,50 customers
and we discretize the demand of each customer in 12 items (|Ri| = 12 Vi € N). For
each customer, we generate 7 orders to represent a meaningful set of possible delivery
splittings: 1 full order (containing 12 items); 2 complementary orders 50%-50% (con-
taining 6 items each, partitioned); 2 complementary orders 75%-25% (containing 9
and 3 items respectively, partitioned); 2 complementary 90%-10% orders (containing
11 and 1 items respectively, partitioned). We remark that order complementarity is
necessary as we are searching for possible item partitions, thus any order without its
complement can be eliminated in a preprocessing phase as it would never be part of a
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feasible solution. To build instances of increasing complexity, we consider 3 possible
scenarios:

A:  full order + 50-50% orders (|C;| = 3);
B: full order 4+ 50-50% orders + 75-25% orders (|Ci| = 5);
C: full order + 50-50% orders + 75-25% orders 4+ 90-10% orders (|C;| = 7).

The full order is always included in order to allow the comparison of the DSDVRPTW
with the classical VRPTW. The unsplittable case, which is trivially composed of
the full order only (|C;| = 1), is denoted as scenario O; detailed results including
scenario O are provided in the appendix. We limit the presentation of the results to
|Ci| = 7 because it is the limit for which our current implementation is able to provide
some optimal solutions. In order to enhance splitting, we consider more restrictive
capacities than Solomon’s, as already done by Gendreau et al. (2006) and Desaulniers
(2010). Instances are tested with Q = 30,50 and 100.

From the 29 original Solomon’s instances (12 for class R1, 9 for class C1 and 8 for
class RC1), we derive 174 instances: 29 x 2 (25 and 50 customers) x 3 (30, 50 and
100 for vehicle’s capacity). Each instance is tested under the 4 scenarios A, B, C and

0.

5.7.2 Branch-and-price results for the DSDVRPTW

The flow-based formulation (B.))—(514]) is implemented and solved by Gurobi 3.0. In
two hours of computation, it is able to solve to optimality 3 out of 87 instances with
25 customers, scenario A, whereas our algorithm can solve 66 of them. For the 3
instances solved by Gurobi, our algorithm is faster by four orders of magnitude. For
the remaining instances, Gurobi solves 34 instances with an average gap greater than
20% and for the 40 instances no gap is provided in two hours of computation because
the solver is not able to produce an integral solution. These results motivate the
design of a more targeted solution approach. The efficiency of our branch-and-price
algorithm is confirmed by the following results.

Table [B.1] presents a summary of the instances solved by the branch-and-price
within 1 hour of computational time. Instances are grouped by the number of cus-
tomers (n) and the capacity (Q). The number of instances of each class is also
provided (nb_inst). For each group, the table provides the number of instances solved
at optimality (nb_solved) and the average computational time in seconds (t) for each
DSDVRPTW scenario.

We are able to solve 88, 67 and 47 out of 174 instances for scenarios A, B and C,
respectively. The difficulty of solving the instances increases with the size of |C|: 75,
125 and 175 orders with 25 customers and 150, 250, and 350 orders with 50 customers
for scenarios A, B and C, respectively. This difficulty also increases with the number
of customers: we were able to solve 76% (A), 60% (B) and 48% (C) of instances with
n = 25, whereas only 25% (A), 17% (B) and 6% (C) of instances with n = 50 were
solved at optimality. The average computational time is also affected by the size of
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scenario A scenario B scenario C

n class nb_inst Q | nb_solved t | nb_solved t | nb_solved t
25 R1 12 30 12 7 12 75 8 466
50 12 6 12 60 12 430

100 12 9 12 41 12 113

25 C1 9 30 4 1108 0 X 0 X
50 9 37 4 2137 0 X

100 7 706 4 705 2 1876

25 RC1 8 30 2 1988 0 X 0 X
50 0 X 0 X 0 X

100 8 3 8 11 8 35

50 R1 12 30 1 1010 0 X 0 X
50 3 1572 1 385 0 X

100 3 1035 2 167 2 535

50 RC1 8 30 0 X 0 X 0 X
50 7 54 6 902 0 X

100 8 529 6 809 3 2832

Table 5.1: Summary of the results on delivery-dependent service time instances.

|C|] and the number of customers.

For n = 25 customers, instances of class R1 are the easiest to solve. There are 36
(A), 36 (B) and 32 (C) solved instances out of 36 for class R1; 20 (A), 8 (B) and 2
(C) solved instances out of 27 for class C1; 10 (A), 8 (B) and 8 (C) solved instances
out of 24 for class RC1. On average, 96% of instances are solved in class R1, 37% in
class C1 and 36% in class RC1.

For n = 50 customers, class RC1 seems easier to solve than class R1 (on average,
42% versus 11% of solved instances), while no instance in class C1 is solved.

Surprisingly, for class RC, we solve more instances with 50 customers and capacity
50 than with 25 customers and the same capacity. This is due to better upper
bounds found earlier in the search tree in the 50 customer case which helped to prune
more rapidly the tree. The same feasible vehicles’ routes are not present for the 25
customers case.

Detailed results for all instances solved are provided in Appendix [Al From these
results, we observe that split deliveries are more frequent for instances with small Q
values, although they also occur for certain instances with Q = 100. In some cases,
split deliveries not only decrease the total traveling costs but also allow to save one
vehicle. This is relevant for real world logistic problems: indeed, being able to serve
the same demand with a reduced size of the fleet implies important savings in terms
of fixed investments.

We can also observe that advantageous split deliveries occur with instances of
scenarios A and B. The optimal solutions of these scenarios are rarely improved by
solutions of scenario C (we recall that the set of feasible solutions of scenario A is a
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subset of feasible solutions of scenarios B and C and the same holds for solutions of
scenario B w.r.t scenario C). Thus, the improvement that can be obtained by delivery
splitting in real logistic problems is to some extent limited and extreme fractional
splitting is never convenient. Moreover, discrete splitting with small quantities makes
the problem too hard to solve as already noticed by Ceselli et al. (2009a). We conclude
that the splitting options considered by scenario B are a good compromise between
solution’s quality and instance’s complexity.

5.7.3 Delivery-dependent service times vs. constant service
times

In this section we show that the more realistic assumption of delivery-dependent
service times leads to a more difficult problem. In particular, a comparison with the
assumption of constant service times is provided.

We test our branch-and-price algorithm on the same set of instances described in
section L.7.1], but assuming constant service time, i.e, the same fixed service time for
every order delivered to a customer, disregarding quantity. The service time for each
customer equals the nominal service time defined in the original Solomon’s instances
and every partial order has the same service time of the full order. This is also the
assumption made by Gendreau et al. (2006) and Desaulniers (2010).

A summary of the computational results is reported in Table B.2] where a com-
parison between delivery-dependent service time (DDST) and constant service time
(CST) is provided in terms of number of instances solved (nb) and average computa-
tional time (¢). The figures highlighted in bold denote an increased number of solved
instances for CST. Since many more instances are solved under the assumption of
constant service times, we also report the average computational time with respect
to the subset of instances solved under the assumption of delivery-dependent service
time (tqir), in order to allow a fair comparison in terms of computational time.

We observe that instances with constant service time are easier to solve: 247 out
of 522 instances (47%) solved to optimality for CST against 202 out of 522 (38%) for
DDST. Furthermore, the algorithm is faster for CST, up to one order of magnitude
for several classes of instances.

However, the trade-off is clear: considering constant service times makes the prob-
lem easier to solve but may also result in a loss of efficiency of the solution, as shown
in the detailed results provided in Appendix A. From these results, we observe that
considering delivery-dependent service time may lead to savings in terms of total
costs, especially when the number of customers and the vehicle’s capacity increase.
We infer that savings mainly occur when many customers can be served by the same
vehicle with respect to capacity but time windows constraints become more stringent.
In this case, splitting under the delivery-dependent service time assumption can be
convenient, since the decreased service time can reduce the cost of the solution.

On tested instances, improvements in terms of costs are limited within 1%. Further



scenario A scenario B scenario C
DDST CST DDST CST DDST CST
n class nb_inst Q | nb t nb t  tfair | Db t nb t  tfair | Db t nb t  trair
25 R1 12 30 | 12 7 12 2 21 12 75 12 18 18 8 466 11 570 87
50 | 12 6 12 1 1112 60 12 11 11 | 12 430 12 34 34
100 | 12 9 12 3 3|12 41 12 12 12 | 12 113 12 35 35
25 C1 9 30 4 1108 5 521 164 0 X 0 X T 0 X 0 X T
50 9 37 9 12 12 4 2137 6 765 223 0 X 0 X T
100 7 706 8 135 48 4 705 7 294 25 2 1876 5 497 120
25 RC1 8 30 2 1988 4 1175 507 0 X 0 X T 0 X 0 X T
50 0 X 0 X T 0 X 0 X T 0 X 0 X T
100 8 3 8 <1 <1 8 11 8 3 3 8 35 8 15 15
50 R1 12 30 1 1010 4 698 65 0 X 0 X T 0 X 0 X T
50 3 1572 6 813 148 1 385 6 1134 39 0 X 1 65 x
100 3 1035 6 1334 41 2 167 3 189 11 2 535 3 695 29
50 RC1 8 30 0 X 0 X z 0 X 0 X z 0 X 0 X z
50 7 54 7 12 12 6 902 8 95 92 0 X 6 1754 T
100 8 529 8 43 43 6 809 8 231 148 3 2832 6 787 145

Table 5.2: Summary of the comparison of delivery-dependent service time (DDST) vs constant service time (CST) in-
stances.
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research can be done to asses potential savings, especially on instances with a large
number of customers.

5.8 Conclusions

In this chapter we have modeled a Split Delivery VRPTW with new additional fea-
tures such as discrete splits and delivery-dependent service times. A branch-and-price
algorithm has been implemented by adapting state-of-the-art techniques to the spe-
cific structure and properties of the problem. Computational results have shown that
our algorithm is efficient and it largely outperforms commercial solvers.

The new additional modeling features, i.e., discrete splits and delivery-dependent
service times, allow to model with much more realism real logistic problems in which
continuous demand splitting is not acceptable and the processing time depends on
delivered quantities. Our realistic assumptions lead to additional complexity to solve
the problem to optimality, as confirmed by the experimental comparison with in-
stances assuming constant service time. However, an efficient adaptation of state of
the art techniques allowed us to solve real sized instances in a reasonable amount of
time.

Analyzing the computational results, we can conclude that the problem is complex;
nevertheless, we managed to solve instances with up to 50 customers and 7 orders
per customer, i.e., a total of 350 orders. Although more efficient solution techniques
could be explored, we consider these results satisfactory and a good starting point
for investigating more sophisticated approaches in the future.






Chapter 6

Two-stage column generation

6.1 Introduction

Column generation is nowadays the most successful tool to solve large-scale in-
teger optimization problems arising in real-world applications. Branch-and-price
codes are able to solve problems that commercial MIP solvers could never cope
with. However, practical problems of growing size and complexity represent a chal-
lenge for the research community and the need of further advances in column gen-
eration, both theoretically and algorithmically, is well recognized (Liibbecke and
Desrosiers, 2005; Liibbecke, 2010).

In the last decade, different research directions have been explored, aiming to
design accelerating techniques for the master and the pricing problem, and to cope
with instability issues that affect column generation.

Stabilized column generation, introduced by du Merle et al. (1999) and Ben Amor
(2002), has been devised to overcome drawbacks such as slow convergence and gen-
eration of irrelevant columns in the first iterations (Vanderbeck, 2005). The main
reason is due to the unstable behavior of dual variables, that do not follow a spe-
cific pattern throughout the iterations. Stabilization aims therefore to reduce these
effects by controlling dual variables. A review of different stabilization techniques for
column generation and numerical comparison on five applications can be found in
(Briant et al., 2008).

Dynamic constraint aggregation is a method proposed by Elhallaoui et al. (2005;
2008; 2010) to reduce the master problem size by aggregating set partitioning con-
straints. The main objective is to speed up the solution of the master problem,
often slowed down by high primal degeneracy. Optimality is guaranteed by dynam-
ically adjusting the set of aggregated constraints. The crucial point of the method
is that aggregated dual master variables need to be disaggregated; remarkably, the
proposed disaggregation strategy is specifically designed to satisfy a large number of
dual constraints and therefore to speed up convergence. The methodology has been
recently extended to cope with general degenerate linear programs and is referred to

101
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as Improved Primal Simplex (Raymond et al., 2010).

Irnich et al. (2010) have proposed an exact method for arc variable elimination
based on path reduced costs, in the context of column generation with shortest path
pricing subproblems. The technique is based on a well known property in integer
programming: if the reduced cost of a non-negative integer variable exceeds a given
optimality gap, the variable must be zero in any optimal integer solution (Nemhauser
and Wolsey, 1988). The authors investigate the relationship between reduced costs
of the compact and the extensive formulation, and extend the method proposed by
Walker (1969) to compute reduced costs of original formulation variables starting
from a dual feasible solution to the master problem. The technique allows to signifi-
cantly reduce the size of the expanded network underlying the pricing, while keeping
optimality.

All the mentioned techniques confirm that good dual information is crucial to
enhance column generation schemes. Furthermore, the relationship between compact
formulation and column generation is worth investigating, as it may represent an
important source of information; in particular, branching rules based on the compact
formulation variables have been studied by Villeneuve et al. (2005).

In this chapter we propose a novel framework for complex large-scale optimiza-
tion problems called two-stage column generation where we simultaneously generate
columns both for the compact and the extensive formulation. The approach is par-
ticularly suited for problems where the large number of variables in the compact
formulation directly affects the pricing problem and its efficiency; specifically, we find
this structure in the DSDVRPTW, where the expanded network of the pricing sub-
problem depends not only on arcs and customers, but also on discrete orders. As
mentioned, this structure is common to different real-world applications, such as the
Tactical Berth Allocation Problem and the Field Technician Scheduling Problem.

The basic idea of two-stage column generation is simple: we propose to start solv-
ing the problem on a subset of compact formulation variables, we apply Dantzig-Wolfe
decomposition and we solve the resulting master problem via column generation. At
this point, either profitable compact formulation variables are dynamically generated
and added to the formulation; or we prove that the current solution is optimal, in
the same spirit of standard column generation. The key point of our approach is that
we evaluate the contribution of compact formulation variables with respect to the
extensive formulation, in order to take advantage of the constraints that have been
“convexified” in the DW reformulation: indeed, we aim at adding compact formula-
tion variables that are profitable for the master problem, regardless of the optimal
solution of the linear relaxation of the compact formulation. At the end of this pro-
cedure we possibly consider a smaller subset of original variables and, furthermore,
suboptimal variables are detected and eliminated.

We remark that our new framework differs from nested column generation, where
basically both the master and the pricing problem are solved via column generation
and dual information is available for both problems. This approach was proposed by
Vanderbeck (2001) for the 3stage 2dimensional cutting stock problem, and recently
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applied to the crude oil tanker routing and scheduling in the context of maritime
transport (Hennig, 2010).

6.2 Standard column generation

In this section we recall the terminology for standard column generation. Consider
the following integer linear program, the original or compact formulation (CF):

zp =min  c'x (6.1)
s.t.  Ax>b, (6.2)

Dx > d, (6.3)

x € Z. (6.4)

We assume that constraints {Dx > d} present a particular structure that can be
“convexified”. Let P = conv{x € Z% : Dx > d} # 0 be a bounded polyhedron. We
can represent each x € P as a convex combination of extreme points {pq}qeq) of P:

Xx=Y P Y Ag=1, AeRY. (6.5)
qeQ qeQ

The equivalent extensive formulation (EF) of (6.1)—-(6.4) is:

Zip = min Z Cq}\q (66)
qeQ
st. ) AgAg>b, (6.7)
qeQ
> Ag=1, (6.8)
qeQ
A>0, (6.9)
X=Y Pqgrg, (6.10)
qeQ
x € Z". (6.11)

where ¢y = ¢'pq and Ay = Apq Vq € Q. Constraints (6.10) are usually referred to
as coupling constraints. If we relax the integrality of x in (6.11]), coupling constraints
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also become redundant and the resulting master problem (MP) is:

Zyp =min Y celq (6.12)
qeQ

st. ) Agdg>b, (6.13)
qeQ

D> Ag=1, (6.14)
4€Q

A>0. (6.15)

Typically, A variables are in a large number and cannot be enumerated explicitly.
Column generation allows for implicit enumeration, and profitable variables are dy-
namically added to the master problem.

Specifically, we repeatedly solve a restricted master problem (RMP) on a subset
of variables A and, at each iteration, we add negative reduce-cost variables not yet in
the formulation, if any, by solving the pricing subproblem:

min Cq := mincy — A, — T 6.16
qe0 (9T eg q (6.16)
where 7t > 0 is the dual vector associated with constraints (6.13)), 7o € R is the dual
variable associated with the convexity constraint (6.14]) and ¢4 denotes the reduced
cost of variable A4.

6.3 Two-stage column generation

In this section we formally describe our new framework and we introduce some specific
notation and terminology. Furthermore, methods to evaluate the contribution of
compact formulation variables to the master problem are discussed.

6.3.1 General framework

Let X be the set of compact formulation variables, |X| = n. The basic idea of our
approach is to start with a subset X C X,|X| = 7. such that the linear relaxation
of (CF) is feasible; the problem is reformulated and the master problem is solved
via column generation. At this point, either profitable variables in X = X \ X are
dynamically added to the problem, or we prove that the current solution is optimal,
in the same spirit of standard column generation.

The clear benefit of this approach is that the associated pricing problem is solved
over a smaller set of variables. Furthermore, not all the variables x; € X will eventually
need to be added.

Without loss of generality and for simplicity of notation we assume that x = [X|X],
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c=I[c|C], A= [A|A] and D = [D|D]. The partial compact formulation (PCF) is
defined as follows:

Zp=min C'X (6.17)
st. Ax>b, (6.18)

Dx > d, (6.19)

X €ZL. (6.20)

We remark that zip > zip, since we are solving the problem on a subset X c X

Let P = conv{x € Z! |Dx > d} # (. Again, we can represent each X € P as a
convex combination of extreme points {pq}4eq; of P:

X=Y Pghgy > Ag=1, AeRY (6.21)

qeQ qeQ

By substituting ¢, = ¢'pq and Aq = Ap, Vq € Q, we can define the equivalent
partial extensive formulation (PEF) and its linear relaxation, called the partial master
problem (PMP):

Zyp =min Y Celq (6.22)
q€Q

st. ) AAg>b, (6.23)
q€Q

> A=1, (6.24)
q€Q

A > 0. (6.25)

The partial master problem is solved via standard column generation, and the
resulting pricing subproblem is:

min €4 := min ¢q — A4 — 7. (6.26)
qeQ qeQ

As soon as ¢q > 0 for all q € Q, the current partial master problem is proved to be
optimal. However, we still have to determine whether the current partial compact
formulation is optimal or not. Therefore, we “price out” compact formulation vari-
ables x € X in order to identify those that are profitable to be added to the (PCF).
Indeed, a correct estimation of the contribution of compact formulation variables to
the master problem is necessary to make the overall two-stage column generation
methodology consistent; we address this specific issue in the next section.

A sketch of the two-stage column generation procedure is outlined in Figure
In the inner loop (denoted by CG1) we apply standard column generation to solve
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Algorithm 1: Two-stage column generation

input set X

repeat

repeat
CG1: generate extensive variables A for partial master

problem (PMP)
until optimal partial master problem (PMP) ;

CG2: generate compact variables x for partial compact
formulation (PCF)

until optimal master problem (MP)

Figure 6.1: Pseudo-code for two-stage column generation.

the partial master problem; in particular, the dual optimal vector 7t is known at every
iteration and thus reduced costs ¢q :=Cq — ﬂAq — 1, of A variables can be computed
exactly; negative reduced-cost columns are provided by the pricing subproblem, if
any. In the outer loop (denoted by CG2), compact formulation variables x; € X are
dynamically added to the partial compact formulation in the same spirit of standard
column generation, until optimality is reached.

6.3.2 Contribution of compact formulation variables

Consider the linear relaxation of the compact formulation (G.I))-([64) and denote by
o and B the dual vectors associated with constraints (6.2)) and (6.3]) respectively. The
reduced cost of x is defined by:

Cer(x) :i=c" —bTax — d"B. (6.27)

Within the two-stage column generation framework, we will refer to Ccr(x) as compact-
formulation reduced cost.

In the scientific literature, a few contributions have investigated the computation
of reduced cost of the compact formulation variables in the context of Dantzig-Wolfe
decomposition and column generation.

Walker (1969) illustrates a method that can be applied only if the pricing problem
can be solved as a pure linear program, since it makes use of the final tableau to read
the dual variables of the pricing. The author provides a formula to compute the
reduced cost of compact formulation variables given an optimal dual solution to the
master problem and an optimal dual solution to the pricing subproblem. As observed
by Irnich et al. (2010), when the pricing subproblem is a shortest path problem, it
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can be formulated as a linear program only if the network is acyclic.

Poggi de Aragao and Uchoa (2003) investigate the possibility of adding cuts ex-
pressed in terms of compact formulation variables to the master problem, without
modifying the pricing structure. They propose keeping explicitly the coupling con-
straints in the master problem, introducing an alternative Dantzig-Wolfe reformula-
tion, called Explicit Master. The reduced costs of compact formulation variables are
therefore represented by the dual variables associated with the coupling constraints
in the master problem. However, Irnich et al. (2010) observe that there exists a fea-
sible solution for such a master problem where the reduced costs associated with the
coupling constraints are all zero; furthermore, even adding a perturbation does not
guarantee the output control and the proposed approach may result in poor reduced
cost information.

In two-stage column generation, we need at some point to determine which com-
pact formulation variables x € X are worth to be added to (PCF). At first, a decision-
making rule based on compact reduced cost Ccr(x) would appear the most intuitive
choice; however, the information provided by Ccr(x) is myopic, since it does not take
into account the DW decomposition nor the optimal master problem solution, that
is the final goal of our two-stage column generation scheme. Indeed, reduced costs
Ccr(x) would be negative for all variables x that are part of the optimal solution of
the linear relaxation of (CF).

On the contrary, we are interested in evaluating the contribution of compact for-
mulation variables in the extensive formulation. In order to achieve this goal, we
introduce the concept of extensive-formulation reduced cost for compact formulation
variables, denoted by Cgr(x), that should guide the column generation process in
(CG2) according to the optimal master problem solution.

A recent work by Irnich et al. (2010) investigates the relationship in terms of
reduced costs between a compact arc-flow formulation and a path-based DW refor-
mulation. In the context of arc-flow variable elimination, the authors prove that
arc-reduced costs can be computed from path-reduced costs and propose an efficient
bidirectional search technique to compute path-reduced costs.

In our framework, the method for computing the extensive reduced cost Cep(x) is
devised according to the specific structure of the pricing subproblem. In particular,
we identify two main classes of subproblems:

e pricing problem with the integrality property: when the integrality prop-
erty holds, we can solve the pricing as a linear program and therefore reduced
costs of compact formulation variables can be computed straightforwardly using
the method by Walker (1969); in this special case, we have that Ccp(x) = Cer(x).
An example of how to apply the two-stage column generation framework when
the pricing problem satisfies the integrality property is illustrated in Section
6.4.1]

e pricing problem without the integrality property: in column generation,
one generally aims at having pricing problems without the integrality property,
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in order to obtain a better bound than the one provided by the linear relaxation
of the compact formulation; although this type of pricing problems can be
often formulated as an integer program, it is typically solved by more efficient
combinatorial algorithms, such as dynamic programming. In particular, many
problems, such as those studied in this dissertation, present a path-based pricing
structure: in this case, extensive reduced costs Cep(x) of compact formulation
variables can be computed using and/or adapting the method by Irnich et al.
(2010). An example of how to apply the two-stage column generation framework
when the pricing problem doesn’t have the integrality property is illustrated in
Section

6.4 Illustration of two-stage column generation

In this section, we illustrate how to apply two-stage column generation and how the
contribution of compact formulation variables to the extensive formulation can be
estimated. In particular, we distinguish between pricing subproblems with integral-
ity property, that can be solved as pure linear programs, and pricing subproblems
without the integrality property that present a path-based structure. For this pur-
pose, we adapt the well-known primer example on resource constrained shortest paths
introduced by Desrosiers and Liibbecke (2005).

6.4.1 Pricing problem with the integrality property

Consider a network G(N,A,c,t), where s € N denotes the origin and t € N the
destination. Every arc (i,j) € A has a cost ¢y and a resource consumption t;;. The
available amount of resource is denoted by T. The Resource Constrained Shortest
Path Problem (RCSPP) aims to find the minimum-cost path that satisfies the resource
constraint.

The RCSPP can be formulated as an integer program:

Zip = min Z CijXij (6.28)
(i)€A
d>oxg =1, (6.29)
jils,j)eA
D oxi— Y oy o= 0 VieA, i#st, (6.30)
G, €A ji(bj)eA
> oxw =1, (6.31)
L(i,t)EA
Z tyxy < T, (6.32)
(i)€A

Xy = {0,1} V(I,J) € A. (633)
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where x;; is a binary decision variable, equal to 1 if arc (i,j) is in the path and 0
otherwise. Formulation (6.28))-(6.33]) represents our compact formulation.

The Dantzig-Wolfe reformulation proposed by Desrosiers and Liibbecke (2005)
relies on the convexification of constraints (6.29)-(6.31]). Consider X = {x;; binary :
(629) — (631)}. An extreme point x, of the polytope defined by the convex hull of X
corresponds to a path p € P in the network (Ahuja et al., 1993). Therefore, we can
express any arc-flow variable x;; as a convex combination of extreme points of P:

Xij = ZpeP Xiijp \V/(l,]) e A; ZpEP Ap =1, Ap > O\V/'p eP

where A, represents the amount of flow on path p € P and x;j, is a coefficient equal
to 1 if arc (i,j) € A belongs to path p € P.

Now, if we relax the integrality requirements on x5, the coupling constraints xi; =
Zpep XijpAp become redundant and the resulting master problem is:

Zvp =min ) cph, (6.34)
pep
Dty < T (6.35)
peP
YA =1 (6.36)
peP
A, > 0 VpeP (6.37)
where ¢, = Z(i’j)eA CijXijp s the cost associated with path p € P.

We denote 7ty and 71 the dual variables associated with constraints (6.35) and
([630]) respectively. The pricing subproblem is formulated as a Shortest Path Problem:

min Z (Cij _ﬂTtij)Xij — T (638)
(i,j)eA
- ) x5 = —1 (6.39)
ji(s,j)eA
Z Xji — Z xy = 0 Vi#s,t (6.40)
0,1 €A j(ihj)eA
> oxw =1 (6.41)
t(iL,t)EA
Xy = {O,]} V(l,]) € A. (642)

We remark that formulation (6.38))-(6.42]) has the integrality property: it means
that even if we solve the linear relaxation of (6.38])-(6.42), we still obtain an integer
solution. Indeed, the shortest path problem can be expressed as a transshipment
problem with one origin and one destination: by shipping one unit from the origin to
the destination, the solution determines the shortest path throughout the network.
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Dual variables associated with the pricing constraints (6.39)-(6.41]) are denoted
by s, Wi and p respectively.

Reduced costs via Walker’s method

In this example, the integrality property holds and the pricing is solved as a pure linear
program. Therefore, the (CF) linear relaxation and the master problem provide the
same optimal solution: it means that, in this special case, the contribution of compact
formulation variables to the master problem corresponds to the compact reduced cost
of variable xjj, i.e., Ccr(Xy) = Cerlxy).

In this case, the compact reduced cost Ccr(xyj) can be computed exactly using the
method proposed by Walker (1969). This method applies when the pricing problem
is linear and it computes exactly the reduced cost of a variable x;; in the compact
formulation given an optimal dual solution to the master problem and an optimal
dual solution to the pricing subproblem.

We recall the method briefly. We consider the linear relaxation of (6.28])-(6.33])
and denote by s, &, oy and ot the dual variables associated with constraints (6.29]),
©30), [©31) and (632) respectively. The dual problem of the linear relaxation of

the compact formulation is:

Zpp = Max o — o + Tor (6.43)
o — o +tjxr < ¢y Y(i,j) €A (6.44)

a € R VieN (6.45)

ar < 0. (6.46)

Walker proves that an optimal solution to (6.43)-(6.46]) is given by (uf, uf, ug, ),
where (ui, uf, uy) is an optimal dual solution to the pricing problem and 7t} is the
optimal dual solution to the master problem associated with constraint (6.35]). Fur-
thermore, the reduced cost Ccr(xij) of xi can be computed as:

Cerlxy) = cyj + Wi — Wy — ty7rr. (6.47)

Two-stage column generation We start solving the problem on a reduced net-
work G(N, A, c,t) such that subset A C A ensures that a feasible solution exists, and
we denote by A the set of arcs that are not taken into account in the solution process.
The associated formulation is the partial compact formulation.

At every iteration, we compute the reduced cost Ccr(x;j) of variables x;; not in the
formulation, associated with arcs (i,j) € K, using Walker’s method.

If Cep(xw) < O for some arc (u,v) € K, the correspondent “column” x,,, is added
to the partial compact formulation and A = A U (u,v); otherwise, the current partial
compact formulation is proved to be optimal.
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Figure 6.2: RCSPP with one resource.

G)

Example

We consider the problem of finding a shortest path from s =1 to t = 6 such that the
total traversal time of the path does not exceed T = 14 time units. The network is
illustrated in Figure

We can easily enumerate all the paths of this small network:

path cost time
1-2-4-6 3 18
1-2-5-6 5 15
1-2-4-5-6 14 14
1-3-5-6 24 8
1-3-4-6 16 17
1-3-4-5-6 27 13
1-3-2-4-6 13 13
1-3-2-4-5-6 24 9
1-3-2-5-6 15 10

© 00~ O Uk W =T

Some paths are not feasible with respect to the resource constraint (p = 1,2,5).
The minimum cost integer solution for the problem is given by path 13246 with cost
z{p = 13 and resource consumption 13.

The optimal value of the linear relaxation of the compact formulation is z{, =7
and the optimal fractional solution is:

xj, =0.8 xj; =0.2 x;, =0.2 X35 =1 Xz = 1.

Standard column generation The iterations of standard column generation are
reported in the following table:
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it master obj s My pricing obj added path
1 100 0 100 -97 1-2-4-6

2 24.555 -5.38889 100 -32.8888 1-3-5-6

3 11.4 -2.1 40.8 -4.8 1-3-2-5-6
4 9 -1.5 30 -2.5 1-2-5-6

5 7 -2 35 0 STOP

The master problem is initialized by an artificial variable yo with cost 100. For
more details, we refer the reader to Desrosiers and Liibbecke (2005).

Since the integrality property holds, z3p = z{p = 7 and the fractional optimal
solutions are equivalent:

Alyse = 0.8 Alsa56 = 0.2

Two-stage CG: contribution of non-optimal arcs We start solving the problem
on the reduced network G(N, A, c,t) where A ={(1,2), (1, 3),(2,5), (3,2), (4,5), (4,6)
,(5,6)) )

In this example, the set A ={(2,4),(3,4),(3,5)} is composed of arcs that are all
non-optimal for the linear relaxation of the compact formulation and for the master
problem.

We apply column generation to the reduced problem and we solve a (restricted)
partial master problem via standard column generation.

The first iteration of CG2 is reported in the following table:

it master obj st My pricing obj added path

1.1 100 0 100 -95 1-2-5-6
1.2 11.3333 -6.333 100 -21.6667 1-3-2-5-6
1.3 7 -2 35 0 STOP

At this point, we have a partial master problem that is optimal. Now, we want to
determine whether the current partial compact formulation is optimal. We therefore
compute the reduced cost Ccr(xy5) of compact formulation variables x;; associated with

~

not-yet-considered arcs (i,j) € A using Walker’s method.
The optimal dual solutions associated with the master and pricing problems are:

uy =—16 w=>5 ;=0 wy =4 p: =13 e =19 =2

Using Walker’s procedure we obtain:

Cu=Cut+m—wm—tynmr=14+5-4-1-(-2)=4
Cu=Cu+Mm—W—tynmr=5+0-4—-7-(=2)=15
635=C35+H3—H5—t357TT=]2—1—0—]3—3-(—2)=5

Indeed, Ccr(xij) > 0 V(1,j) € A: it means that the current partial compact formu-
lation is optimal and the two-stage column generation scheme terminates with only
one iteration of CG2.
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Comparing the inner column generation scheme CG1 to standard column gener-
ation, we remark a smaller number of iterations (3 vs 5) and a smaller number of
generated columns (2 vs 4). Furthermore, the example shows that non-optimal arcs
are detected and not added to the problem.

Two-stage CG: contribution of optimal arcs We start solving the problem on
the reduced network G(N, A, c,t) where A = {A\ {(1,3),(2,5)}.
In this example, the set A= {(1,3),(2,5)}is composed of arcs that are all optimal
for the linear relaxation of the compact formulation and for the master problem.
The first iteration of CG2 is reported in the following table:

it master obj 1 Ty, pricing obj added path

1.1 100 0 100 -97 1-2-4-6
1.2 24.5555 -5.389 100 -10.5555 1-2-4-5-6
1.3 14 -6.143 100 0.00004 STOP

The optimal dual solutions associated with the master and pricing problems are:

uy =—100 W, = —37.57 pu; =0 wy =—30.43 ur =—14.28 ue =0
Using Walker’s procedure we obtain:

Cor(x13) = ci3+ W — w3 — tizmr = 10— 100 — (0) —3-(—6.143) = —-71.57
Ccr(Xz5) = ¢o5 + M2 — w5 — tysmiy = 2 — 37.57 — (—14.28) — 3 - (—6.143) = —2.857
We add to the partial compact formulation the variable with the most negative

reduced cost, i.e., x;3 and we iterate. In particular, A = {A U (1,3)}.
The second iteration of CG2 is reported in the following table:

it master obj s Ty pricing obj added path
2.1 14 -6.14286 100 -26.857 1-3-5-6
2.2 114 -2.1 40.8 -0.5 1-3-2-4-6
2.3 11 -2 39 0 STOP

The optimal dual solutions associated with the master and pricing problems are:
w=-l6 =5 w=0 =8 wu=18 =2 m=-2
Using Walker’s procedure we obtain:
Corlxas) =cos+ 2 —ps —tsmr =2+5—-18—-3-(-2) =5

As expected, Ccr(xz5) < 0, therefore variable x5 is added to the partial compact
formulation and A = {A U (2,5)}. We remark that, since A = A, the third CG2
iteration is the final one, since it corresponds to a run of standard column generation;
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therefore, two-stage column generation has required an additional computational ef-
fort in this special case. However, the example shows that optimal arcs are detected
correctly. Furthermore, the number of CG2 iterations may be reduced by implement-
ing smarter strategies for adding columns. This analysis is out of the scope of this
example, but will be treated later in the chapter.

Two-stage CG: simultaneous contribution of optimal and non-optimal arcs
We start solving the problem on the reduced network G(N,A,c,t) where A =
{(1,2),(1,3),(3,2),(4,5),(4,6), (5,6)}-

In this example, the set A = {(2,4),(2,5), (3,4),(3,5)} is composed of arc (2,5)
that is optimal for the linear relaxation of the compact formulation and the master
problem, plus three arcs that are non-optimal.

Furthermore, the initial network is disconnected. Therefore, the first iteration of
CG2 stops in one iteration, with the artificial variable yo equal to one in the optimal
solution.

it master obj mr my pricing obj added path
1.1 100 0 100 0 STOP

The optimal dual solutions associated with the master and pricing problems are:
uy =0 w; =0 u3; =10 W =929 ps =98 ue =100 mr =0

Using Walker’s procedure we obtain:

Corl(x) =cu+ 1 — Wy —tyumr =14+0—-99—-1-(0) =98
Corl(xs) =cos+Hp — U5 —tysmr =24+0—-98—3-(0) = —96
Cor(xas) =c3g + U3 — g —tyer =5+10—-99 -7 (0) = -84
Corl(xss) =cC35+ 3 — s —t3smr =12410—-98 -3 - (0) = —76

_ Therefore, variable x4 is added to the partial compact formulation and A =
{AU(2,4)}.
The second iteration of CG2 is reported in the following table:

it master obj 71 My pricing obj added path

2.1 100 0 100 -97 1-2-4-6
2.2 24.55 -5.38 100 -27.5 1-3-2-4-5-6
2.3 12.33 -2.33 45 -1.67 1-3-2-4-6
24 11 -2 39 0 STOP

The optimal dual solutions associated with the master and pricing problems are:

w=-le w=>5 w=0 =8 pus=20 =2 m=-2
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Using Walker’s procedure we obtain:

cr(x2s) =cos + My — s —tysmtr =2+5—-20—-3 - (-2) =7
cF(X3s) =cas+ M3 — Wy —tyumr =54+0—-8—7-(=2) =11
Corlxss) = ¢35+ U3 — U5 —t35mtr =124+0—-20—-3 - (—2) =2

oy

Therefore, variable x5 is added to the partial compact formulation and A =

{AU(2,5)}.
The third iteration of CG2 is reported in the following table:

it master obj Tr My, pricing obj added path

3.1 11 -2 39 -4 1-2-5-6
3.2 8.16 -3.16  52.5 -5.9 1-3-2-5-6
3.3 7 -2 35 0 STOP

The optimal dual solutions associated with the master and pricing problems are:

Using Walker’s procedure we obtain:

Cor(xzs) =cas+ M3 — Mg —tyumr =54+0—4—-7-(=2)=15
Cer(xss) = €35 + U3 — U5 — t357t7 = 124013 -3 - (-2) =5

We see that ccr(xij) > 0 V(1,j) € A: it means that the current partial compact
formulation is optimal and the two-stage column generation scheme terminates. We
remark that 3 iterations of CG2 have been performed: 2 out of 4 arcs have been
added, one optimal and one non-optimal.

6.4.2 Pricing problem without the integrality property

Consider the Resource Constrained Shortest Path Problem introduced in the pre-
vious section, with the addition of one resource, that is capacity Q. The compact
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formulation therefore presents an additional resource constraint and becomes:

Zip = min Z CijXyj (6.48)
(i,j)eA
Y oxg =1, (6.49)
jis)j)eA
Z Xji — Z Xy = 0 ViEA, i%s,t, (650)
0,0 €EA i(ij)eA
> oxw =1, (6.51)
(i, t) €A
Z dyxy < Q, (6.52)
(ij)eA
> oty < T, (6.53)
(,j)eA
xi = 10,1} V(i,j) € A. (6.54)

Since we are interested in obtaining a pricing problem without the integrality
property, we propose to “convexify” the set of constraints (6.49)- ([6.52), i.e., we handle
resource T in the master problem and resource Q in the pricing subproblem. We
remark that this is not a “smart” way to convexify the resource constraints, since
they would typically be handled together in the pricing subproblem (combinatorial
algorithms such as dynamic programming are particularly suited to take into account
resources); however, we introduce this decomposition for illustration purposes.

The formulation of the master problem is unchanged with respect to the previous
example:

Zyp =min ) cph, (6.55)
peP
Yot < T (6.56)
peP
DA, =1 (6.57)
peP
A, > 0 ¥peP. (6.58)

On the contrary, the pricing subproblem now takes into account resource Q and
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is therefore formulated as a Resource Constrained Shortest Path Problem:

min Z (Cij —TITti]')Xij — Tl (659)
(i,j)eA

— ) xg = -1 (6.60)

ji(s,j)EA
Z Xji — Z Xy = 0 Vi;zés,t (661)

30,1 €A J(ih,j)eA
> oxu =1 (6.62)

i(it)eA
Z giyxy < Q (6.63)

(i,j)eA

Xy = {0,]} \V/(l,]) € A. (664)

Reduced costs via Irnich’s method

The pricing subproblem is based on shortest paths, therefore we can use the method
by Irnich et al. (2010) to estimate the contribution Cgr(xy) of compact formulation
variables x;; to master problem.

We denote by ¢, the reduced cost of path p € P and by F; the set of all paths
that use arc (i,j) € A. In other words Fij ={p € P : xjp = 1}.

According to Irnich et al. (2010), we can estimate the extensive reduced cost
Cer(xy) of arc-flow variable x;; as follows:

6EF(Xij) = 1?61%1, 6p. (665)

In other words, Cgr(xy;) is given by the minimum reduced cost of any path passing

by arc (i,j). If Fyj = {0}, i.e., if there is no path using arc (i,j), then the contribution
of arc (i,j) in the master problem solution is null and therefore we set Cgr(xi;) = 0.

Two-stage column generation As in the previous example, the initialization is
given by a subset of arcs A C A such that the problem is feasible. We start solving
the problem on the reduced network G(N, A, c,t), and we denote by A the set of arcs
that are not taken into account in the solution process. The associated formulation
is the partial compact formulation.

At every iteration, the extensive reduced cost Cer(xy) of variables x;; associated
with arcs (i,j) € A not in the formulation is estimated according to (6.65]).

If Cer(xw) < O for some arc (u,v) € 8, the correspondent “column” x,,, is added
to the partial compact formulation and A = A U (u,Vv); otherwise, the current partial
compact formulation is proved to be optimal.
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Figure 6.3: RCSPP with two resources.

Example

We consider the problem of finding a shortest path from s = 1 to t = 6 such that
the total traversal time of the path does not exceed T = 14 time units and the total
capacity of the path does not exceed Q = 10. The network is illustrated in Figure
6.3

We can easily enumerate all the paths of this small network:

P path cost time capacity
1 1-2-4-6 3 18 10
2 1-2-5-6 5 15 10
3 1-2-4-5-6 14 14 13
4 1-3-5-6 24 8 6
5 1-3-4-6 16 17 5
6 1-3-4-5-6 27 13 6
7 1-3-2-4-6 13 13 12
8 1-3-2-4-5-6 24 9 15
9 1-3-2-5-6 15 10 12

Some paths are not feasible with respect to the time and/or capacity constraint. The
min-cost integer solution for the problem is given by path 1356 with cost zj, = 24,
time consumption 8 and capacity consumption 6.

The optimal value of the linear relaxation of the compact formulation is zj, =
7.2941 and the optimal fractional solution is:

X =082 x5 =018 x5 =09  x, =012 x=006 xi=1

corresponding to paths 1-2-5-6 (flow 0.82), 1-3-2-5-6 (flow 0.12) and 1-3-5-6 (flow
0.06).
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Standard column generation The iterations of standard column generation are
reported in the following table:

it master obj mt  pricing obj added path

1 100 100 0 -97.00 1-2-4-6
2 24.5 100 -5.39 -32.88 1-3-5-6
3 114 40.8 -2.10 -4.3 1-2-5-6
4 7.71 45.7 -2.71 0.0 STOP

The master problem is initialized by an artificial variable yo with cost 100. For
more details, we refer the reader to Desrosiers and Liibbecke (2005).

The optimal value of the master problem is zy,, = 7.71 and the optimal fractional
solution consists of two paths:

Ao = 0.86 Al = 0.14.

We remark that, since the integrality property does not hold, zy;p > z{p.

Two-stage CG: contribution of non-optimal arcs We start solving the problem
on the reduced network G(N, A, c,t) where A ={A\ (4,6)}.

In this example, arc (4,6) € A is non-optimal both for the linear relaxation of the
compact formulation and for the master problem.

We apply column generation to the reduced problem and we solve a (restricted)
partial master problem via standard column generation.

The first iteration of CG2 is reported in the following table:

it master obj Ty mr  pricing obj added path

1.1 100.00 100.00  0.00 -95.00 1-2-5-6
1.2 11.33 100.00 -6.33 -25.33 1-3-5-6
1.3 7.71 4571  -2.71 0.00 STOP

The pricing subproblem is solved by enumeration, due to the small size of the
network.

At this point, we have a partial master problem that is optimal. Now, we want to
determine whether the current partial compact formulation is optimal. We therefore

estimate the contribution of arc (4,6) to the master problem using Irnich et al.’s
(2010) method.

All the paths and the associated contributions are reported in the following table:
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path C, (p note
1-2-4-6 6.14 10
1-2-5-6 0.00 10
1-2-4-5-6  6.29 13 qp,>Q
1-3-5-6 0.00 6
1-3-4-6  16.43 5
1-3-4-5-6  16.57 6
1-3-2-4-6 257 12 q,>Q
1-3-2-4-5-6 271 15 qp,>Q
1-3-2-5-6  -3.57 12 q,>Q

We remark that only feasible paths with respect to capacity are considered. Ac-
cording to (6.65), the extensive reduced cost of x46 is given by:

Cer(X46) = min{Cre2, C1346} = Cr1246 = 6.14. (6.66)

Indeed, Cgp(x4) > 0: it means that the current partial compact formulation
is optimal and the two-stage column generation scheme terminates with only one
iteration of CG2.

Comparing the inner column generation scheme CG1 to standard column gener-
ation, we remark a smaller number of iterations (3 vs 4) and a smaller number of
generated columns (2 vs 3). Furthermore, the example shows that non-optimal arcs
are detected and not added to the problem.

Two-stage CG: contribution of optimal arcs We start solving the problem on
the reduced network G(N, A, ¢, t) where A ={A\ (5,6)}.

In this example, arc (5,6) € A is optimal both for the linear relaxation of the
compact formulation and for the master problem.

We apply column generation to the reduced problem and we solve a (restricted)
partial master problem via standard column generation.

The first iteration of CG2 is reported in the following table:

it master obj 7t pricing obj added path
1.1 100.00 100 0.00 -97.00 1-2-4-6
1.2 24.55 100 -5.39 0.00 STOP

At this point, we have a partial master problem that is optimal. Now, we want to
determine whether the current partial compact formulation is optimal. We therefore
compute the contribution of arc (5,6) € A to the master problem using Irnich et al.’s
(2010) method.

All the paths and the associated contributions are reported in the following table:
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path Cp qp  note
1-2-4-6 0.00 10
1-2-5-6  -14.17 10
1-2-4-5-6  -10.56 13 ¢, > Q
1-3-5-6  -32.89 6
1-3-4-6 761 5
1-3-4-5-6 -294 6
1-3-2-4-6  -16.94 12 ¢, >Q
1-3-2-4-5-6  -27.50 15 ¢, >Q
1-3-2-5-6  -31.11 12 ¢, >Q

We remark that only feasible paths with respect to capacity are considered. Ac-
cording to (6.65), the extensive reduced cost of xs6 is given by:

Cer(Xs56) = min{Cizs6, C1356, C13456) = C1356 = —32.89. (6.67)

As expected, Cer(xsg) < 0, therefore variable xs¢ is added to the partial compact
formulation and A = {A U (5,6)}. We remark that, since A = A, the second CG2
iteration is the final one, since it corresponds to a run of standard column generation;
therefore, two-stage column generation has required an additional computational ef-
fort in this special case. However, the example shows that optimal arcs are detected
correctly.

Two-stage CG: contribution of an arc that is optimal for the relaxed LP
and non-optimal for the master problem We start solving the problem on the
reduced network G(N, A, c,t) where A ={A\ (3,2)}.

In this example, arc (3,2) € A s optimal for the linear relaxation of the compact
formulation but is non-optimal for the master problem.

We apply column generation to the reduced problem and we solve a (restricted)
partial master problem via standard column generation.

The first iteration of CG2 is reported in the following table:

it master obj Ty mt  pricing obj added path

1.1 100.00 100.00  0.00 -97.00 1-2-4-6
1.2 24.55 100.00 -5.39 -32.89 1-3-5-6
1.3 11.40 40.80 -2.10 -4.30 1-2-5-6
1.4 7.71 45.71  -2.71 0.00 STOP

At this point, we have a partial master problem that is optimal. Now, we want to
determine whether the current partial compact formulation is optimal. We therefore
compute the contribution of arc (3,2) € A to the master problem using Irnich et al.’s
(2010) method.

All the paths and the associated contributions are reported in the following table:
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path C, (p note
1-2-4-6 51.86 10
1-2-5-6  45.71 10
1-2-4-5-6  52.00 13 qp,>Q
1-3-5-6  45.71 6
1-3-4-6 62.14 5
1-3-4-5-6  62.28 6
1-3-2-4-6 4828 12 q,>Q
1-3-2-4-5-6 4843 15 qp,>Q
1-3-2-5-6 42,14 12 q,>Q

No path that make use of arc (3,2) is feasible with respect to the capacity con-
straint. Therefore, F3, = {0} and the extensive reduced cost is Cgr(x32) = 0.0.

Since Cgr(x32) > 0, the current partial compact formulation is optimal and the
two-stage column generation scheme terminates with only one iteration of CG2.

Remarks The last example is very interesting, since it clearly shows how extensive
reduced costs for compact formulation variables are able to guide the optimization
towards the optimal solution of the master problem, and not towards the optimal
solution of the linear relaxation of (CF).

Remarkably, arc (3,2) is not added to the partial compact formulation, in spite
of the fact that it is optimal in the (CF) linear relaxation. This result is not trivial.

As observed by Desrosiers and Liibbecke (2005), an alternative procedure to obtain
reduced costs of compact formulation variables is to directly keep coupling constraints
in the formulation (Poggi de Aragao and Uchoa, 2003) and impose x > € for a small
€ > 0. The shadow prices of these constraints are the reduced costs of x.

Indeed, using this technique for variable x3; we obtain a reduced cost of —3.57143:
therefore, using this estimation, arc (3,2) would have been added.

6.5 Application to DSDVRPTW

In this section, we illustrate how the two-stage column generation framework can be
applied to the Discrete Split Delivery Vehicle Routing Problem with Time Windows
introduced in Chapter

The arc-flow model presented in Section [5.4] for the DSDVRPTW represents our
compact formulation. We apply Dantzig-Wolfe decomposition and we obtain the
master problem and the pricing subproblem introduced in Section 5.5l In particular,
the pricing subproblem is a Resource Constrained Shortest Path Problem that is
solved by bidirectional bounded dynamic programming (Righini and Salani, 2006).

Computational results have confirmed that the problem is complex and the branch-
and-price algorithm is not able to converge for large-size instances. In particular, as
soon as the number of orders increase, the problem becomes much more difficult to
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solve, despite the advanced and sophisticated techniques that we implemented for
accelerating the master and the pricing problem.

The problem structure is particularly suited to apply two-stage column generation
and we attempt to overcome the intrinsic complexity of the problem by exploiting
our new framework.

The main issue is typically represented by the estimation of extensive reduced
costs in the CG2 step of the two-stage scheme. Given the structure of the pricing
problem for the DSDVRPTW, we can adapt Irnich et al.’s (2010) method to esti-
mate the contribution of compact formulation variables to the extensive formulation.
Their technique is based on bidirectional dynamic programming without bounding
and has been proposed and successfully applied to arc-flow variables. For the specific
implementation details, we refer the reader to (Irnich et al., 2010; Irnich, 2010).

In order to avoid confusion, we refer to the dynamic programming algorithm devel-
oped for computing extensive reduced costs as CG2 dynamic programming, according
to the fact that this computation occurs at the CG2 step of two-stage column gener-
ation. Although the implementation proposed by Irnich et al. (2010) relies on exact
dynamic programming, we also propose a relaxed version of the CG2 DP, mainly
motivated by efficiency reasons and reduction of the computational effort. Further
details are provided in section [6.6.11

The contribution of variables x;; associated with arcs (i,j) € E to the master
problem solution is computed as follows. Let ¢, be the reduced cost of route p € P
as defined in section £.5.2, and let Fi; C P be the set of all routes that make use of
arc (i,j) € E. The extensive reduced cost of variable x;; is estimated by:

6EF(Xij) = 1?61%1, 6p, (668)
that is the minimum reduced cost among any route passing by arc (i,j).

In two-stage column generation, we start considering a subset of arcs E C E such
that a feasible solution exists, and we define E=F \ E the set of arcs not yet taken
into account in the solution process. During two-stage column generation, variables
xij associated with arcs (i,j) € E are dynamically added to the problem according to
their extensive reduced cost, until no variable with negative reduced cost exists.

At every step of the algorithm, we assume to have an upper bound ub available
(typically obtained with primal heuristics) and a valid 1b. The quantity ub — lb
is referred to as optimality gap. According to their status, we can always classify
compact formulation variables in three groups:

e active variables: with this term, we refer to variables x;; that are in the
formulation, i.e., variables associated with the subset of arcs (i,j) € E; active
variables are either in the formulation since the initialization, or they have been
added during the two-stage column generation process;

e inactive variables: with this term, we refer to variables x;; that are not in
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the formulation, i.e., variables associated with the subset of arcs (i,j) € E;
inactive variables present a positive reduced cost, therefore they are not taken
into account in the formulation and the correspondent arcs are removed from
the underlying network; the more active variables, the more the problem size is
reduced and we gain in speed-up;

e suboptimal variables: with this term, we refer to variables x;; that are not
in the formulation, i.e., variables associated with the subset of arcs (i,j) € /E\,
and that are proved to be suboptimal, according to their reduced cost: indeed,
if a variable has a reduced cost greater than the optimality gap, this variable
is suboptimal and can be definitely eliminated from the formulation. The dis-
tinction between inactive and suboptimal variables make sense in the context of
a branch-and-price algorithm, where two-stage column generation is applied at
every node of the search tree: in this case, all the variables that are suboptimal
at the end of the root node can be eliminated from the problem and not taken
into account in the child nodes; on the contrary, variables that are inactive at
the end of the root node, are still candidate to be added to the formulation in
the child nodes.

We also apply two-stage column generation to another type of compact formula-
tion variables, since our framework is defined for a general variable belonging to the
compact formulation, and not only to arc-flow variables. In particular, we analyze
order-selection variables y. associated with orders ¢ € C.

We extend the method proposed by Irnich et al. (2010) for arc-flow variables to
handle also order-selection variables: the extension requires to modify the domination
rule in the CG2 dynamic programming, in order to obtain a least reduced cost path
for every arc (i,j) € E and for every order ¢ € C.

The extensive reduced cost of y. is computed as follows. Let F. C P be the set of
all routes that deliver order ¢ € C. The reduced cost of variable y. is estimated as:

Cer(Ye) = ran Cps (6.69)

that is the minimum reduced cost among any route delivering order c.

As for arc-flow variables, we start considering a subset of orders C c C such that
a feasible solution exists, and we define C = C \ C the set of orders not yet taken
into account in the solution process. During two-stage column generation, variables
Y. associated with orders ¢ € C are dynamically added to the problem according to
their extensive reduced cost. Furthermore, throughout the solution process we can
distinguish among active, inactive and suboptimal variables.
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6.6 Computational experiments

In this section, we present the computational experiments that we have carried out
on the Discrete Split Delivery Vehicle Routing Problem, with the primary purpose
of validating our two-stage column generation framework. Problems belonging to the
class of vehicle routing, such as the DSDVRPTW, represent indeed a well accepted
benchmark for testing new approaches in column generation and branch-and-price
schemes.

In this analysis, we mainly focus on the root node and on the optimal master prob-
lem solution, and we compare standard column generation to our two-stage scheme.
The validity of our framework is confirmed by the fact that we obtain the same
lower bound at the end of the root node; furthermore, by applying two-stage column
generation we expect to generate a lower number of columns (namely, only “good”
columns) and to significantly speed-up the solution process.

Two-stage column generation for the DSDVRPTW is implemented in ANSI C
and compiled with gec 4.1.2. All restricted master problems are solved using ILOG
CPLEX version 10.2. Computational experience is run under a linux operating system
on a 2Ghz Intel processor equipped with 2GB of RAM.

Computational tests are performed on a subset of instances described in Chapter
Bl section B.7.Il We start the analysis of 25 customers by selecting instances of class
R1.25_C_100, in order to deal with the maximum number of orders (scenario C); for
the analysis of 50 customers, we start with instances of class R1_50_A_50, since the
increased number of customers makes the instances complex already with scenario A.
The time limit is set to one hour for all tests.

We test three possible initialization strategies for the two-stage framework:

e opt_basis: we initialize E and C according to the arcs and orders that compose
the optimal basis for the master problem; this corresponds to the “best case
analysis”, since in principle it shouldn’t be profitable to add more arcs and
orders to the compact formulation.

e opt_master: we initialize E and C according to the arcs and orders that belong
to columns with positive flow in the optimal master solution; this corresponds
to the “best guess” that we may have of the optimal solution; it is reasonable
to assume that such a good solution may be provided by a fast primal heuristic,
that is nowadays a standard component of state-of-the-art solvers based on
column generation and branch-and-price.

e opt_lp: we initialize E and C according to the arcs and orders taken with
positive value in the optimal solution of the linear relaxation of the compact
formulation; this corresponds to a “bad initialization” but that we assume to
be easily available.

The computation of 2-path inequalities is deactivated, in order to ensure a fair
comparison between standard and two-stage column generation.
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In this section we present a summary of the computational experiments. Detailed
computational results are provided in Appendix Bl

6.6.1 Exact CG2 dynamic programming

Table provides a summary of the comparison between standard column generation
and two-stage column generation at the root node. For each tested class we report the
total number of instances (nr) and, for each method, the number of instances solved
(sol), the average number of generated columns (cols) and the average computational
time in seconds (t). The two-stage framework has been tested using three initializa-
tions (opt_basis, opt-master, opt_lp) and exact CG2 dynamic programming for
the computation of extensive reduced costs.

The reduction of generated columns is huge and amounts to 42% on average:
opt-master is the initialization that reaches the higher average reduction (62%),
while surprisingly opt_basis only allows for 46% of reduced columns: although the
result is still significant, opt_basis was supposed to be the best initialization. On
the contrary, we remark that in general opt_master outperforms opt_basis in terms
of columns and computational time, although opt_basis requires a lower number of
CGQG2 iterations to prove optimality. The behavior of the LP initialization is unstable
and the number of generated columns is even increased for instance r101_.50_A_50; as
expected, it proves to be the worst initialization for our method. Class R1_25_C_100
obtains a higher reduction on average than class R1_.50_A_50 (58% vs 26%): we explain
this result by the fact that scenario C presents a higher number of order partitions
per customer than scenario A. Two-stage CG has therefore the possibility to keep out
of the formulation a higher number of order partitions and only “good” columns are
generated.

Unfortunately, the proposed method requires a huge computational effort with
respect to standard column generation and not all instances can be solved within the
time limit of one hour. Therefore, although efficient in terms of reduced number of
columns, this implementation of two-stage column generation is not competitive in
terms of computational time.

In particular, we remark that almost 100% of time is spent for computing the

Stand.CG Two-stage column generation (exact CG2 DP)
opt_basis opt_master opt_lp
Class nr | sol cols t | sol cols t | sol cols t | sol cols t

R1.25.C_.100 12 | 12 3165 18 8 943 1386 8§ 778 T13 2 689 135

R1.50_.A50 12| 12 1789 37 3 887 834 3 525 593 1 1143 185

Table 6.1: Standard vs Two-stage column generation: summary of results for exact
CG2 dynamic programming.
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reduced cost of compact formulation variables, that corresponds to the dynamic pro-
gramming algorithm adapted from Irnich et al. (2010). We explain this behavior by
the modified domination rule: indeed, a much higher number of states survive in the
label extension step, and this usually slows down significantly the overall dynamic
programming algorithm. Therefore, we target our attempts to speed up the CG2
step of our two-stage column generation scheme.

6.6.2 Relaxed CG2 dynamic programming

In order to speed up the CG2 step and the whole two-stage column generation,
we implemented a relaxed CG2 dynamic programming algorithm to compute the
extensive reduced cost of compact formulation variables. Specifically, we remove the
elementarity requirement on paths and we solve a RCSPP instead of a RCESPP. As a
consequence, we obtain a lower bound to LB(Cgr(+)), that is still valid and consistent
with our method.

Table provides a summary of the results using the relaxed CG2 dynamic pro-
gramming implementation. We remark at a glance the huge speed up yielded by
the proposed relaxation with respect to the exact approach. All tested instances are
solved within the time limit, opposite to roughly 35% instances solved by the exact
CG2 DP.

Table allows for a better comparison between exact and relaxed CG2 dynamic
programming for two-stage column generation. The average number of CG2 iterations
(it), the average reduction of columns (%col) with respect to standard CG, the
average percentage of active orders (%ord) and active arcs (%arc) at the end of the
root node are reported. Expectedly, a higher number of compact formulation variables
is active in the final formulation, and a higher number of CG2 iterations is required
to prove optimality. However, we don’t lose so much in terms of quality: surprisingly,
the reduction of generated columns is comparable to the exact case, except for the
opt_lp initialization, where we observe a poorer performance.

Concerning the opt_basis initialization, the percentage of active variables in-
creases from 62% to 88% for orders and from 13% to 24% for arcs on average for class
R1.25_.C_100. Generated columns are reduced steadily both for exact and relaxed

Stand.CG Two-stage column generation (relaxed CG2 DP)
opt_basis opt_master opt_lp
Class nr | sol cols t | sol cols t | sol cols t | sol cols t

R1.25.C_.100 12| 12 3165 18| 12 1061 72| 12 971 88| 12 1619 140

R1.50_.A50 12| 12 1789 37| 12 931 24| 12 667 28 | 12 1690 192

Table 6.2: Standard vs Two-stage column generation: summary of results for relaxed
CG2 dynamic programming.
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exact CG2 DP relaxed CG2 DP
Class | %col it %ord %arc | %col it %ord %arc

opt_basis
R1.25_C_100 | -70% 6.75 62% 13% | -66% 11.25 88% 24%
R1.50_A_50 | -50% 6.67 96% 7% | -48% 13.50 98% 9%

opt-master
R1.25_.C_100 | -75% 9.75 59% 13% | -69% 14.83 85% 23%
R1.50_A 50 | -71% 6.33 86% 6% | -63% 14.92 92% 9%

opt_lp
R1.25_C_100 | -78% 10.00 45% 7% | -49% 15.25 88% 24%
R1.50_A_50 | -36% 16.00 100% ™% -6% 26.50 100% 11%

Table 6.3: Comparison between exact and relaxed CG2 dynamic programming.

DP by more than 50%. The computational time of two-stage CG with relaxed DP
is often higher than standard column generation, although within the same order of
magnitude. For class R1.50_A_100, relaxed DP appears to be competitive in terms
of quality with exact DP: indeed, the number of active variables as well as the num-
ber of generated columns is almost unchanged. Furthermore, the two-stage approach
allows for time savings (36% on average) and 48% of column reduction with respect
to standard column generation. These results are promising, since in addition to the
validation of our framework, we are also able to reduce the computational time.

The opt_master initialization confirms the same behavior and slightly improves
the results obtained by opt_basis. In particular, the column reduction increases from
66% to 69% for class R125_C_100 and from 48% to 63% for class R1_50_A_100; also,

the number of active variables decreases.

The opt_lp initialization is less efficient than the previous ones with respect to
column reduction (49% for class R1.25.C_100 and only 6% for class R1.50_A_100)
and computational time, that is much higher than opt_basis and opt_master; fur-
thermore, this initialization is not competitive with standard column generation.

To sum up, the computational time is reduced significantly when using relaxed
DP; still, two-stage column generation is often slower than standard CG. However, a
stable pattern is not recognized yet, since for some instances we remark time savings;
furthermore, we are able to reduce substantially and steadily the number of generated
columns. Therefore, we proceed with a deeper computational study of our method,
enlarging the test case and performing different sensitivity analysis.

In particular, we remark a high number of CG2 iterations in all tests and this is
computationally expensive. Our attempts go therefore in the direction of reducing
the CG2 iterations by analyzing the best strategy for adding columns.
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6.6.3 Sensitivity analysis: strategies for adding CG2 columns

In standard column generation, it is well known that adding one column per iteration
is not efficient. When using a combinatorial algorithm for solving the pricing sub-
problem, such as dynamic programming, it is typically a set of negative reduced cost
columns that is added to the master problem, in order to reduce the callings to the
pricing subproblem, that is usually very expensive to solve in terms of computational
effort.

Similar strategies must be investigated for the CG2 step of two-stage column
generation, that appears to be the more expensive; the primary objective is the
reduction of CG2 iterations, and thus of computational time.

For this purpose, we analyze the following strategies for adding columns in the
CG2 step:

e 10ord-10arc: it consists of adding at most 10 new orders and 10 new arcs
per iteration to the partial compact formulation, among those with negative
reduced cost; this was the default strategy in our implementation, and all the
computational results shown so far have been obtained using this rule.

e 50ord-50arc: it consists of adding at most 50 new orders and 50 new arcs
per iteration to the partial compact formulation, among those with negative
reduced cost;

e 10ord-100arc: it consists of adding at most 10 new orders and 100 new arcs
per iteration to the partial compact formulation, among those with negative
reduced cost;

e 10ord-150arc: it consists of adding at most 10 new orders and 150 new arcs
per iteration to the partial compact formulation, among those with negative
reduced cost;

e 50ord-150arc: it consists of adding at most 50 new orders and 150 new arcs
per iteration to the partial compact formulation, among those with negative
reduced cost.

Computational analysis is now extended to more difficult instances: we include
class C1.25_C_100 for 25 customers and class C1_.50_A_100 for 50 customers.

Since the opt_basis initialization has shown similar performance to opt_master,
from now on we will only compare the opt_master and the opt_lp initializations.

A summary of the computational results is provided by Table [6.4l

With respect to standard column generation, the complexity of classes C1_25_C_100
and C1_50_A_100 is confirmed by the increased average computational time. Further-
more, two instances cannot be solved at the root node within the time limit of one
hour.

Concerning 25 customers, the strategy “50ord — 150arc” yields the highest re-
duction in terms of computational time and CG2 iterations; although it generates



Stand.CG Two-stage column generation
10ord-10arc 500rd-50arc 10ord-100arc 10ord-150arc 500rd-150arc
Class nr | sol col t | sol col t | sol col t | sol col t | sol col t | sol col t
opt_master
R1.25_C_100 12 12 3165 18 12 971 88 12 1402 25 12 648 51 12 689 58 12 1129 24
C1.25_C_100 9 8 3953 596 7 881 326 8 1223 872 7 906 823 7 805 720 7 997 610
R1.50_A_50 12 12 1789 37 12 667 28 12 681 9 12 704 16 12 703 19 12 721 12
C1.50_A_100 9 8 2910 501 8 852 30 8 1034 17 8 892 79 8 872 123 8 1082 18
opt_lp
R1.25_C_100 12 12 3165 18 12 1619 140 12 3074 72 12 922 84 12 898 78 12 1855 52
C1.25_C_100 9 8 3953 596 3 1683 215 2 3817 146 3 1226 146 3 1180 142 4 2646 939
R1.50_A_50 12 12 1789 37 12 1690 192 12 1989 91 12 1578 97 12 1525 123 12 1970 89
C1.50_A_100 9 8 2910 501 8 2894 268 8 3610 179 8 2438 267 8 2281 213 8 3991 102

Table 6.4: Comparison of different strategies for adding columns in the CG2 step.
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a little more columns than strategies that add only 10 orders per iteration, the re-
duction with respect to standard column generation is still significant (about 65%
of reduced columns when using the opt_master initialization, and about 30% with
opt_lp). As a general remark, we clearly see that the number of CG2 iterations is
strongly affected by the chosen strategy, varying from an average of 4 iterations for the
“500rd — 150arc” strategy up to an average of 15 iterations for the “10ord — 10arc”
strategy (detailed results are provided in Appendix[Bl). As expected, the opt-master
initialization performs better than the LP initialization: in addition to a longer com-
putational time, opt_lp also generates a higher number of columns.

At first glance, our two-stage approach does not yield time savings for easy in-
stances of class R1_25_C_100: indeed, the root node is always efficiently solved by stan-
dard CG in less than one minute for this class. On the contrary, applying two-stage
column generation to the more difficult instances of class C125_C_100 is beneficial:
we reduce the computational time for some instances, and the result is encouraging,
in addition to the substantial reduction of columns that we constantly obtain with
our approach.

The overall behavior for 50 customers confirms the results obtained for 25 cus-
tomers: strategy “50ord —150arc” is the best option in terms of computational time
and CG2 iterations, and the number of CG2 iterations is strongly affected by the
chosen strategy. Opposite to 25 customers, the time reduction for 50 customers is
significant, especially when using the opt_master initialization: the average compu-
tational time is decreased already for the easier class R1.50_A_50, from 37 seconds
of standard CG to 12 seconds of two-stage CG with the “50ord — 150arc” strategy.
Remarkably, for class C1_.50_A_100, the average computational time is reduced from
501 seconds to about 18 seconds.

Surprisingly, the “bad” LP initialization (Table [B.8]) also yields to substantial
savings for class C1.50_A_100: the average computational time for these difficult in-
stances decreases from 501 seconds to 102 seconds. Unfortunately, for class R1_-50_A_50
we do not observe a time reduction but a slight increase.

To sum up, strategy “50ord — 150arc” results to be the best choice for two-stage
column generation; in particular, it allows to significant reduce the computational
time with respect to standard column generation, especially with difficult instances.
However, a good guess of the optimal master solution is required for the initialization,
in order to obtain the best performance in terms of time and number of columns.

According to the results of this section, we continue our computational analysis
by testing only strategy “50ord — 150arc” for adding columns in the CG2 step.

6.6.4 Sensitivity analysis: increasing number of orders

In this test, we are interested in analyzing how two-stage column generation performs
when the number of orders increases. We focus on the instances with 50 customers
seen so far, and we compare our approach over scenarios A (150 orders), B (250
orders) and C (350 orders). A summary of the computational results is provided in
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Stand.CG Two-stage column generation
opt_master opt_lp
Class nr | sol cols t | sol cols t | sol cols t

R1.50_.A 50 12| 12 1789 371 12 721 12| 12 1970 89
R1.50.B50 12 | 11 3331 292 | 11 1247 269 | 10 2897 541
R1.50.C.50 12| 10 4612 980 8 1624 949 6 3243 997

C1.50_A_50 9 8§ 2910 501 8§ 1082 18 8 3991 102
C1.50_.B_50 9 6 4882 1099 6 1804 739 4 5054 888
C1.50_C_50 9 4 6443 1937 3 2320 545 1 7063 2479

Table 6.5: Summary of results for increasing number of orders.

Table [6.5]

Concerning class R1, expectedly, the computational time increases with the prob-
lem size, and so the number of generated columns, both for standard and two-stage
CG. Time savings are constant when using the opt_master initialization for scenarios
A and B, while we observe an increase of computational time for some instances of sce-
nario C, that results in 8 instances solved within one hour instead of 10. Remarkably,
two-stage column generation is able to solve the root node within the time limit for
instances 1108_.50_B_50 and r111.50_C_50, whereas standard CG fails (cf. Appendix
B). The column reduction is stable for opt_master, that generates on average 60%
less columns than standard CG. The LP initialization performs differently: under
scenario A, a higher number of columns is generated, whereas for scenarios B and C
we notice a reduction that increases with the number of orders. As mentioned, this
behavior is explained by the fact that, as soon as a higher number of order partitions
is available, two-stage CG has the possibility to keep out of the formulation a higher
number of orders and therefore only “good” columns are generated. As remarked in
the previous section for scenario A, the opt_lp initialization does not allow for time
savings on these instances, and this behavior is confirmed also for scenarios B and
C; in particular, a lower number of instances can be solved within one hour with this
initialization.

Computational experiments for class C1 confirm the behavior already observed for
class R1: remarkably, two-stage column generation appears to be even more beneficial
for the difficult instances of class C1. The time and column reduction yielded by the
opt_master initialization is remarkable: even for scenarios B and C, the computa-
tional time is more than halved and the number of generated columns is decreased on
average by 60%. Only for scenario C, one instance solved by standard column gener-
ation cannot be closed by opt_master within one hour. On the contrary, the opt_lp
initialization presents an unstable behavior: while a time reduction is obtained for
scenario A, the computational time suddenly increases for scenarios B and C, result-
ing in a much lower number of solved instances; furthermore, the number of generated
columns is always greater than in standard column generation. We attribute this fact
to the bad quality of the initialization provided by the LP relaxation.
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Variable Elimination Two-stage column generation
Class | %|Csubl  %|Esupl t | %lCsubl %|Cinal  %lEsunl  %lEinal t

FExzact CG2 DP
R1.25_C_100 18% 47% 364 17% 23% 2% 84% 713

R1_.50_A_50 0% 33% 463 0% 14% 0% 94% 593
Relaxzed CG2 DP
R1_.25_C_100 0% 21% 22 4% 11% 1% 7% 88

R1.50_A_50 0% 26% 38 0% 8% 0% 91% 28

Table 6.6: Comparison between variable elimination (Irnich et al., 2010) and two-
stage column generation with the opt-master initialization.

6.6.5 Variable elimination

Our two-stage column generation framework allows for an additional feature: compact
formulation variables, such as orders and arcs, can be eliminated as soon as their
reduced cost exceeds the current optimality gap, that is the difference between a
valid upper bound and a valid lower bound.

We adapt the method proposed by Irnich et al. (2010) for arc-flow variable elimi-
nation to order-selection variables too and we compared the performance of two-stage
column generation with respect to the variable elimination method.

We remark that Irnich et al.’s (2010) approach differs from our two-stage column
generation approach: while variable elimination is applied by Irnich et al. (2010)
at the end of the root node in order to speed-up the overall branch-and-price algo-
rithm in the child nodes, in two-stage CG we dynamically add compact formulation
variables; however, we take advantage of the computational effort required for the
computation of reduced costs in the CG2 step by including variable elimination as a
“bonus” in our framework. In addition to the set of suboptimal variables, in two-stage
column generation we also have a set of inactive variables that are not in the com-
pact formulation, but that cannot be proved suboptimal due to a positive reduced
cost that does not exceed the optimality gap. While the speed-up provided by Irnich
et al. (2010) only concerns detected suboptimal variables, the speed-up provided by
two-stage column generation originates from suboptimal and inactive variables, since
both types of variables are not taken into account in the compact formulation and,
more in general, in the problem resolution.

Table provides a summary of the comparison between standard variable elim-
ination and two-stage column generation in terms of detected suboptimal variables.
For every class, the average percentage of suboptimal orders (%|Csypl), suboptimal
arcs (%|Esupl), inactive orders (%|Cing|) and inactive arcs (%|Einql), as well as the
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average computational time (t) is reported.

Concerning Irnich et al.’s (2010) variable elimination, the exact DP provides better
results than relaxed DP, as expected: on average, 18% of orders and 47% of arcs are
proved to be suboptimal for class R125_C_100, while relaxed DP only detects 21%
of suboptimal arcs and no orders at all. For class R1_.50_A_50, the performance is
almost unchanged: from 33% to 26% of suboptimal arcs detected on average, and
zero orders. We notice a different behavior with different type of variables: while
suboptimal arcs are easily detected, only a few orders are proved to be suboptimal.
This may be due to a different behavior of the reduced costs: in fact, we remark that
arc-flow variables appear in the objective function and order-selection variables do
not.

Two-stage column generation cannot prove suboptimality as much as Irnich et al.’s
(2010) variable elimination; however, if we consider also the inactive variables, the
number of variables not taken into account throughout the solution process is higher
(41% of orders and 86% of arcs for class R1.25_C_100, 14% of orders and 94% of arcs
for class R1.50_A_50). The percentages are lower when using relaxed DP and/or the
opt_lp initialization (cf. Appendix [B]).

Finally, the computational time of two-stage column generation is higher: this is
an expected result, since in variable elimination method the reduced costs of compact
formulation variables are computed only once, at the end of the root node, and this
corresponds to only one CG2 iteration in the two-stage approach.

6.7 Application to TBAP

In this section, we discuss how the two-stage column generation framework can be
applied to the Tactical Berth Allocation Problem studied in Chapters [3 and [l

The MILP model presented in Section [3.3.4] represents our compact formulation.
We apply Dantzig-Wolfe decomposition and we obtain the master problem and the
pricing subproblem introduced in Section T3l

Profile-assignment variables AP associated with quay-crane profiles p € P; for
vessels 1 € N are particularly suited to be treated by two-stage column generation.

The basic idea is to start with a subset of feasible profiles p € P; C P; for every
vessel 1 € N, such that a feasible solution exists. Profitable profiles p € P; = P; \ P;
are dynamically added to the problem according to the extensive reduced cost of
compact formulation variables A}.

The contribution of compact formulation variables A to the master problem is
computed similarly to that of order-selection variables y. in the DSDVRPTW. Let
Vy, be the reduced cost of sequence T, € QF for berth k € M as defined in section
413 We define .7-"1]; C OF as the set of all sequences that operate vessel i with quay

crane profile p for berth k. The extensive reduced cost of variable A?, is estimated
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as:

{’EF(}\?) = Eéiz\l/[lojk = géll\l/ll Tg% Vs (6.70)
that is the minimum reduced cost among any sequence that operates vessel i with
quay crane profile p, over all berths k € M.

The implementation of CG2 dynamic programming for the computation of exten-
sive reduced costs is more complicated than for the DSDVRPTW, since we must take
into account the specific features of the TBAP problem in terms of reformulation and
pricing structure.

In particular, the following issues need to be addressed:

e the reformulation for TBAP relies on multiple pricing, one for every berth
k € M, that are solved at the CG1 step of the two-stage column generation
framework; analogously, the CG2 step could be implemented by computing the
extensive reduced cost for every berth (v} ) and take the minimum over all
berths. As a consequence, we would have multiple pricing at the CG2 step too,
and this would be highly inefficient, since we saw that CG2 dynamic program-
ming is very expensive. A smarter way to compute the extensive reduced costs
should be investigated, in order to minimize the additional computational effort
required by two-stage column generation.

e the dynamic programming algorithm implemented for TBAP includes many
acceleration techniques that have been specifically conceived for the problem
(cf. section ELT4]). This corresponds to the CG1 step in the two-stage column
generation framework. Adapting this algorithm for the CG2 step would require
to remove some of these techniques, such as the domination of (h,p) pairs,
and as a consequence the algorithm would be further slowed down. Specific
accelerating techniques and domination criteria should be studied in order to
obtain an efficient implementation of CG2 dynamic programming.

The study of these issues and the actual implementation of two-stage column
generation for TBAP is the objective of future research.

6.8 Conclusions

In this chapter we introduce a novel framework called two-stage column generation,
specifically conceived to tackle complex problems that cannot be efficiently solved
by standard column generation. We focus our attention on the relationship between
compact and extensive formulation with the objective of exploiting the information
provided by the DW reformulation when dealing with compact formulation variables.

In two-stage column generation, we start solving the problem on a subset of com-
pact formulation variables, we apply Dantzig-Wolfe decomposition and we solve the
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resulting master problem via standard column generation. Furthermore, compact for-
mulation variables are also dynamically added to the formulation according the their
reduced cost. In particular, we introduce the concept of extensive reduced cost, that
allows to estimate the contribution of compact formulation variables to the master
problem.

A formal description of the new framework is provided and an example based on
the Resource Constrained Shortest Path Problem illustrates how two-stage column
generation basically works when the pricing subproblem satisfies or not the integrality
property.

We apply the proposed methodology to the Discrete Split Delivery Vehicle Routing
Problem with Time Windows and we perform intensive computational experiments
in order to validate our new framework and analyze the effects especially on very
complex instances.

Computational results show that two-stage column generation significantly re-
duces the number of generated columns to prove optimality of the root node. Fur-
thermore, suboptimal compact formulation variables are detected correctly and a large
percentage of variables is inactive and therefore not taken into account during the
solution process. However, the method is sensitive to initialization and a significant
reduction of computational time is obtained only for the most complex instances that
we tested. Indeed, the result is promising, since the primary objective of two-stage
column generation is to deal with complex instances, and it proves to be successful
within this context. The additional effort required by our sophisticated approach
makes the method competitive in terms of computational time only for instances of
a certain difficulty.

To conclude, the two-stage column generation framework is a promising new ap-
proach to investigate more and more complex problems. Clearly, there are many
aspects that need to be further investigated by future research. The computation
of extensive reduced costs for compact formulation variables still represents a ma-
jor issue in terms of computational time, that could be overcome by more efficient
implementations for CG2 dynamic programming or new approaches for estimating
the contribution of original variables to the extensive formulation. Also, results show
that the strategy chosen for adding compact formulation variables at every CG2 step
and the number of CG2 iterations are strictly correlated: smart techniques are worth
being investigated in order to reduce the number of CG2 iterations and thus the com-
putational effort. We may think of heuristic strategies based on the current optimality
gap, as well as problem-specific strategies that take into account the actual objects
modeled by compact formulation variables. Finally, we remark that the initialization
of compact formulation variables represents a crucial point for the overall efficiency
of the two-stage framework, therefore good initialization strategies and their effect on
the overall performance of the algorithm need to be further analyzed.



Chapter 7

Conclusion

In this chapter we summarize the main results of this dissertation and we discuss
some directions and perspectives for future research.

Part [Il of the dissertation is devoted to container terminal management. We propose
models and algorithms that are specifically conceived for this application and we
discuss the advantages of integrated planning of operations. The broader objective is
to provide methods that can be further generalized to solve large scale optimization
problems in other domains.

In Chapter 2] we introduce the context of maritime transportation and logistics,
and we provide an overview of container terminal operations. The main processes
associated with the flow of containers within the terminal are described and we discuss
what are the critical bottlenecks in the system. We review the state-of-the-art in
container terminal management, with a particular focus on operations research and
optimization techniques. We discuss the current research challenges and promising
research directions are suggested.

In Chapter [B] we propose a new model for the integrated planning of berth allo-
cation and quay crane assignment, addressing the problem at the tactical decision
level. From a modeling point of view, we overcome the limiting assumptions of ex-
isting approaches and we provide a more realistic problem definition that includes
operational constraints, unwritten rules and best practices. We propose a heuristic
approach that is able to produce good-quality solutions with the minimum compu-
tational effort: computational results confirm that our method clearly outperforms
commercial solvers.

In Chapter [ the contribution is twofold. The first part of the chapter is mainly
algorithmic: we propose an exact branch-and-price algorithm for Tactical Berth Allo-
cation Problem and we present several accelerating techniques for the pricing and the
master problem devised for this specific problem. In particular, some of these tech-
niques can be easily generalized for other branch-and-price schemes. The proposed
method outperforms commercial solvers and computational results are promising.
Clearly, the problem is complex and difficult to solve: this motivates the design of
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new solution approaches for difficult large scale optimization problems, such as TBAP,
addressed in the second part of the dissertation. The chapter also contributes from
the modeling point of view: we provide an experimental comparison between the hi-
erarchical approach, that solves the berth allocation and the quay crane assignment
sequentially, and our integrated modeling approach, and we show the added value of
integrated planning in terms of cost reduction and efficient use of resources.

Part [[T] of the dissertation is devoted to the design of new concepts and methods for
difficult large scale optimization problem mainly based on Dantzig-Wolfe decomposi-
tion and column generation. We propose a novel framework, called two-stage column
generation, that represents a major contribution of our work. In particular, we study
a class of split delivery vehicle routing problems that generalizes some interesting
features of TBAP that are relevant also to other applications such as transportation,
logistics and telecommunication.

In Chapter [l we introduce the Discrete Split Delivery Vehicle Routing Problem
with Time Windows and we study some properties of the new problem. The pro-
posed arc-flow model is reformulated via Dantzig-Wolfe decomposition and solved via
column generation. We implement an exact branch-and-price algorithm that clearly
outperforms commercial solvers and we provide an interesting comparison between
constant service time vs quantity-dependent service time, in order to support the
importance of the new modeling feature; in particular, we show that additional com-
plexity comes with potential savings.

In Chapter [6] we propose the Two-stage column generation framework, a new ap-
proach that extends the well known concepts in column generation by exploring the
relationship between compact and extensive formulation. We aim to exploit the in-
formation provided by the DW reformulation when dealing with compact formulation
variables. The broader objective is to design a framework able to tackle complex prob-
lems that cannot be efficiently solved by standard column generation. We provide
a formal description of the new approach and we apply the proposed methodology
to the Discrete Split Delivery Vehicle Routing Problem with Time Windows. The
results are promising: we can significantly reduce the number of generated columns
and, for the most complex instances that we tested, also the computational time.

Research perspectives. The presented models and methodologies show promis-
ing results for container terminal management and, more in general, for large scale
optimization problems.

In particular, the proposed Two-stage column generation framework is a general
approach that is particularly suited for those problems where the large number of
variables in the compact formulation directly affects the pricing problem and its
efficiency; we remark that this structure is common to different real-world applications
in transportation, telecommunication and logistics.

We believe that Two-stage column generation is a promising new approach to
investigate more and more complex problems. However, many aspects are worth
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being investigated in future research. The computation of extensive reduced costs for
compact formulation variables still represents a major issue in terms of computational
time, that could be overcome by more efficient implementations or new approaches
for estimating the contribution of original variables to the extensive formulation.
Also, as a next step, we may improve the overall performance of the framework by
designing smart strategies for adding compact formulation variables and by defining
good initializations. We expect future contributions to this research stream to have
a relevant impact on the optimization of difficult large scale optimization problems.

With respect to the specific application of container terminals, the integrated
planning of operations certainly represents the current research challenge in the field.
The resulting problems are typically complex, but also yield to significant improve-
ments in terms of efficiency, productivity and cost reduction, as they allow for a
better control of terminal resources and operations. Therefore, further research in
this direction, both in terms of models and specialized solution algorithms, may have
a relevant impact in the practice of container terminal management.

Finally, a challenging research stream is represented by the analysis of congestion
in container terminal management. Indeed, traffic and congestion issues are becoming
more and more relevant, especially because of the volume increase in container traf-
fic. Although congestion is often disregarded in the planning, operations are usually
slowed down because of overloaded areas, such as the yard, and congestion rapidly
spreads to the whole system. We believe that an analytical description of congestion
may highly contribute to design specific solutions and therefore improve terminal ef-
ficiency, and we expect this to become a major research topic in container terminal
management in the near future.






Appendix A

Discrete Split Delivery VRPTW:
computational results

Branch-and-price for the DSDVRPTW In Section 6.7.2] we have reported a
summary of the computational results that were obtained by the branch-and-price al-
gorithm for the DSDVRPTW. In this appendix, we present the corresponding detailed
results for each instance that was solved to optimality within one hour of computa-
tional time. The results are given in Tables[A.Ilto[A.5l For each instance, we provide
the capacity (Q), the name (id), the value of the optimal integer solution (zip), the
number of vehicles (veh) and the computational time in seconds (¢). The three DS-
DVRPTW scenarios A, B, C and compared to the unsplittable VRPTW scenario O:
figures highlighted in bold denote savings due to split deliveries. Instances that are
not feasible for the unsplittable case because of insufficient capacity are denoted by
”Q < d”. Instances not solved at optimality within one hour of computational time
are denoted by “z”. A global discussion about these results can be found in Section
B.7.2]

Delivery-dependent service times vs. constant service times In Section
(.73 we have reported a summary of the computational results that were obtained by
the branch-and-price algorithm when the assumption of constant service time is made
for the DSDVRPTW. In this appendix, we present the corresponding detailed results
for each instance that was solved to optimality within one hour of computational time.
Only instances for which considering delivery dependent service times has produced
an improvement of the solution are reported. The results are given in Table[A.6l For
each instance, we provide the name (id), the number of customers (n), the vehicle’s
capacity (Q) and the considered scenario (scen). Delivery-dependent service time
instances are denoted by DDST while constant service time is denoted by CST. For
both DDST and CST, we provide the value of the optimal integer solution (zpp),
the number of vehicles (veh) and the computational time in seconds (). A global
discussion about these results can be found in Section B.7.3
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scenario O scenario A scenario B scenario C
Q id zip veh t zip  veh t zip  veh t zip  veh t
30 rl01 | 795.6 13 0] 795.1 13 1| 782.5 13 3| 782.5 13 11
rl02 | 789.1 13 0| 772.3 13 4| 765.9 12 161 | 761.2 12 291
r103 | 759.6 12 0| 759.6 12 19 | 751.7 12 176 | 745.3 12 70
r104 | 759.6 12 0| 759.6 12 33 | 747.0 12 32 | 745.3 12 140
rl05 | 775.7 12 0| 775.3 12 3| 773.2 12 47 | 773.2 12 558
rl06 | 772.6 13 0] 763.7 12 4| 756.6 12 50 | 753.4 12 115
r107 | 748.5 12 0| 7485 12 3| 744.1 12 57 X
r108 | 748.5 12 0| 7485 12 4| 744.1 12 100 X
rl09 | 754.6 12 0| 754.6 12 1| 750.2 12 20 | 750.2 12 1041
rl110 | 748.5 12 0| 748.5 12 4| 744.1 12 37 | 744.1 12 1498
rll1l | 754.6 12 0| 754.6 12 2 | 750.2 12 102 X
rl12 | 748.5 12 0| 748.5 12 5| 744.1 12 118 X
50 rl101 | 635.0 9 0] 631.5 8 0| 631.5 8 1] 631.5 8 1
r102 | 580.7 8 0| 580.7 8 7| 580.7 8 35 | 580.7 8 221
r103 | 534.3 7 0| 534.3 7 3| 534.3 7 65| b534.3 7 333
rl04 | 527.3 7 0| 527.3 7 7| 527.3 7 76| 527.3 7 437
rl05 | 596.1 8 0 | 588.9 8 1| 585.4 8 4 | 585.4 8 13
rl06 | 543.3 7 0| 542.5 7 4| 542.3 7 52| 542.3 7 233
r107 | 527.7 7 0| b27.7 7 14| 5277 7 187 | 527.7 7 1309
r108 | 521.6 7 0] 521.6 7 16 | 521.6 7 185 | 521.6 7 2175
r109 | 524.6 7 0| 524.6 7 1| 524.6 7 5| 524.6 7 11
r110 | 536.7 7 01 529.1 7 3] 526.0 7 17 | 526.0 7 119
rl1l | 521.6 7 0| 521.6 7 7| 521.6 7 45| 521.6 7 178
rl12 | 515.8 7 0] 515.8 7 8| 515.8 7 46 | 515.8 7 135
100 r101 | 617.1 8 0] 617.1 8 0| 617.1 8 1] 617.1 8 1
rl02 | 547.1 7 0] 547.1 7 1| 547.1 7 7| 547.1 7 15
r103 | 454.6 5 0| 454.6 5 2 | 454.6 5 8 | 454.6 5 14
rl04 | 416.9 4 0| 416.9 4 5| 416.9 4 14 | 416.9 4 58
r105 | 530.5 6 0] 530.5 6 1| 530.5 6 3| 530.5 6 5
rl06 | 465.4 5 0| 4654 5 7| 465.4 5 55 | 465.4 5 201
r107 | 428.4 4 0| 428.4 4 7| 428.4 4 32| 4284 4 87
r108 | 403.2 4 0| 403.2 4 10| 403.2 4 28 | 403.2 4 111
r109 | 441.3 5 0| 441.3 5 2 | 441.3 5 7| 441.3 5 12
r110 | 444.1 5 0| 444.1 5 13| 444.1 5 96 | 444.1 5 229
rl11 | 428.8 4 0| 42838 4 6 | 428.8 4 30| 428.8 4 101
r112 | 401.7 4 11 401.3 4 59 | 401.3 4 209 | 401.3 4 519

Table A.1: Optimal solutions for class R1, n =25 customers.
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scenario O scenario A scenario B scenario C
Q id Zip veh t Zip veh t Zip veh t Zip veh t
30 «cl01 Q<d 825.3 16 532 X X
cl05 Q<d 825.7 16 985 X X
c106 Q<d 826.4 16 630 X X
cl07 Q<d 825.7 16 2285 X X
50 ¢101 | 516.9 10 0| 516.8 10 51| 516.8 10 1242 X
cl02 | 516.6 10 0| 516.5 10 29 X X
cl03 | 516.6 10 0| 516.5 10 56 X X
cl04 | 516.6 10 0| 516.4 10 142 X X
cl05 | 516.9 10 0| 516.8 10 9| 516.8 10 2030 X
cl06 | 516.9 10 0| 516.8 10 7 | 516.8 10 1721 X
¢107 | 516.9 10 0| 516.8 10 17 | 516.8 10 3555 X
cl08 | 516.8 10 0| 516.7 10 29 X X
cl09 | 516.8 10 0| 515.9 10 42 X X
100 ¢101 | 291.9 5 0] 291.9 5 17 | 291.9 5 175 | 291.9 5 1858
cl02 | 291.9 5 10 291.9 5 1010 X X
cl05 | 291.9 5 1| 291.9 5 47 | 291.9 5 687 X
cl06 | 291.9 5 1| 291.9 5 24 | 291.9 5 231 | 291.9 5 1894
cl07 | 291.9 5 1| 291.9 5 86 | 291.9 5 1726 X
cl08 | 291.9 5 2| 291.9 5 530 X X
c109 | 289.5 5 15| 289.5 5 3226 X X
Table A.2: Optimal solutions for class C1, n =25 customers.
scenario O scenario A scenario B scenario C
Q id Zip veh t Zip veh t Zip veh t Zip veh t
30 rclOl Q<d 1438.0 18 453 X X
rcl106 Q<d 1438.0 18 3523 X X
100 1rclOl | 534.3 6 0 534.3 6 1| 534.3 6 6| 534.3 6 19
rcl02 | 523.7 6 0 523.7 6 2 | 523.7 6 11 | 523.7 6 34
rcl03 | 514.7 6 0| 513.7 6 3| 513.7 6 11| 513.7 6 54
rcl04 | 506.7 6 0 506.7 6 3| 506.7 6 18 | 506.7 6 34
rcl05 | 527.5 6 0 527.5 6 3| 5275 6 6| 527.5 6 32
rcl06 | 515.6 6 0 515.6 6 1| 515.6 6 4| 515.6 6 12
rcl07 | 505.7 6 0 505.7 6 3| 505.7 6 13| 505.7 6 39
rcl08 | 505.7 6 0 505.7 6 4 | 505.7 6 16 | 505.7 6 56

Table A.3: Optimal solutions for class RC1, n = 25 customers.
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scenario O scenario A scenario B scenario C
Q id zip  veh t zirp  veh t zirp  veh t zip  veh t
30 rl101 Q<d 1664.6 26 1010 X X
50 rl101 | 1222.0 16 1| 1211.1 16 127 | 1198.7 15 385 X
r102 | 1134.9 16 2| 1125.1 16 3404 X X
r105 | 1166.3 16 17 | 1148.5 16 1185 X X
100 rl101 | 1044.0 12 0| 1044.0 12 9 | 1040.6 12 22 | 1040.6 12 54
r102 913.2 11 1 913.2 11 58 911.9 11 311 911.9 11 1016
r105 918.2 9 7 918.2 9 3038 X X
Table A.4: Optimal solutions for class R1, n =50 customers.
scenario O scenario A scenario B scenario C
Q id Zip veh t Zip veh t Zip veh t Zip veh t
50 rclO1 | 1713.2 20 0 | 1708.9 20 13| 1708.3 20 594 X
rcl02 | 1704.3 20 0 | 1700.5 20 62 | 1700.5 20 1938 X
rcl03 | 1703.4 20 1| 1696.8 20 37 | 1696.8 20 427 X
rcl04 | 1702.2 20 1 | 1696.7 20 54 | 1696.7 20 677 X
rcl05 | 1703.9 20 0 | 1700.1 20 73 | 1700.1 20 1132 X
rcl07 | 1704.1 20 1| 1698.6 20 58 X X
rcl08 | 1702.2 20 2 | 1696.7 20 83 | 1696.7 20 645 X
100 rcl01 994.6 10 2 993.8 10 257 984.4 10 524 X
rcl102 961.0 10 1 960.2 10 2657 X X
rcl03 936.2 10 4 936.2 10 837 X X
rcl04 | 915.9 10 4 915.9 10 198 915.9 10 2140 X
rcl05 957.4 10 2 957.4 10 82 957.4 10 536 | 957.4 10 2940
rc106 937.0 10 1 937.0 10 58 937.0 10 742 X
rcl07 915.1 10 1 915.1 10 33 915.1 10 515 | 915.1 10 2064
rcl08 911.9 10 3 911.9 10 110 911.9 10 398 | 911.9 10 3491
Table A.5: Optimal solutions for class RC1, n =50 customers.
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DDST CST

id n Q scen zip  veh t zip  veh t
rl05 25 50 C 585.4 8 12.91 588.0 8 1.50
r110 25 50 C 526.0 7 118.96 529.1 7 9.70
rcl03 25 100 A 513.7 6 2.94 514.7 6 1.18
rcl03 25 100 B 513.7 6 11.43 514.7 6 3.72
rl01 50 30 A | 1664.6 26 1009.71 | 1676.7 26 64.39
rl01 50 50 A | 1211.1 16 127.27 | 1211.8 16 9.15
r102 50 50 A | 1125.1 16 3403.82 | 1127.7 16 121.27
rcl07 50 50 A | 1698.6 20 57.84 | 1699.0 20 5.07
rcl01 50 100 B 984.4 10 524.38 990.5 10 101.87
rl01 50 50 B | 1198.7 15 384.96 | 1207.7 15 39.01
rl02 50 100 B 911.9 11 311.12 913.2 11 19.14
r101 50 50 C | 1198.7 15 384.96 | 1203.3 15 64.83
rl01 50 100 C | 1040.6 12 54.21 | 1044.6 12 4.59
rl02 50 100 C 911.9 11  1016.34 913.2 11 53.24

Table A.6: Constant service time vs delivery dependent service time (optimal solu-
tions).






Appendix B

Two-stage column generation:
computational results

Two-stage column generation for the DSDVRPTW In Section [6.60] we have
reported a summary of the computational results that were obtained by standard and
two-stage column generation for the DSDVRPTW. In this appendix, we present the
corresponding detailed results for each instance that was solved to optimality within
one hour of computational time. The results are given in Tables [B.1] to [B.12

Table [Bl provides a comparison between standard column generation and two-
stage column generation at the root node. For standard column generation we report
the number of generated columns (cols) and the total computational time in sec-
onds (t). For the two-stage framework, three initializations (opt_basis, opt_-master,
opt_lp) were tested and we report for each one of them the number of iterations
of CG2 (it), the total computational time (tio;) and the amount of time spent in
the CG2 step (tcgz). The reduction of columns with respect to standard column
generation is denoted by %cots.

A comparison between exact and relaxed CG2 dynamic programming for two-stage
column generation with different initializations is provided in Tables[B.2 (opt_basis),
B.3 (opt-master) and B.4] (opt-lp). With respect to the previous table, we report
additional information on the percentage of orders (%ord) and arcs (%arc) that are
active at the end of the root node.

Tables [B.3 [B.6, B.7] and [B.8 provide a comparison for different strategies for
adding CG2 columns.

Tables [B.9] and [B.I0 provide a sensitivity analysis with respect to the increasing
number of orders. The reduction of number of columns generated the end of the root
node is denoted by %.ols.

Finally, variable elimination is compared to two-stage column generation in Tables
B.11] and B.12l For every instance, the total number of orders (|C|) and arcs (|E|),
the number of suboptimal orders (|Cgyp| and suboptimal arcs (|Egyp|), the number of
inactive orders (|Cinql) and inactive arcs (|Eing|), as well as the total computational
time (tyot) is reported.
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Stand.CG 2stage - init:opt_basis 2stage - init:opt_master 2stage - init:opt_LP

Instance | cols t | cols Dcors it tiot tcg2 | cols  %eots it tiot tcg2 | cols  Teots it tior  tca2
R101.25_C_100 990 1 616 -38% 8 10 9 425 5% 9 10 10 531  -46% 9 20 20
R102_25_C_100 | 2567 5 945 -63% 9 109 108 825 -68% 10 350 350 X X X X
R103.25_C_100 | 3629 13 949  -74% 5 2381 2380 | 1078 -70% 11 1356 1355 X X X X
R104_25_C_100 | 4021 33 X X X X X X X X X X X X
R105.25_C_100 | 1475 5 780  -47% 6 44 43 653  -56% 10 54 53 846  -43% 11 250 249
R106_25_C_100 | 3656 14 991 -73% 8 2456 2454 665 -82% 9 322 322 X X X X
R107_25_C_100 | 4367 27 X X X X X X X X X X X X
R108_.25_C_100 | 4434 34 X X X X X X X X X X X X
R109_25_C_100 | 2916 16 975  -67% 7 161 160 | 1136  -61% 10 209 207 X X X X
R110.25_C_100 | 2546 24 945 -63% 5 2890 2888 645  -75% 9 1966 1964 X X X X
R111.25_.C_100 | 3754 23 X X X X X X X X X X X X
R112_25_C_100 | 3630 27 | 1346  -63% 6 3041 3039 798  -78% 10 1433 1432 X X X X
R101.50_A_50 | 1035 2 859 -17% 6 16 15 458  -56% 6 14 14 | 1143 10% 16 185 184
R102_.50_A_50 | 1746 9| 1027 -41% 7 2421 2419 X X X X X X X X
R103_.50_A_50 | 1975 22 X X X X X X X X X X X X
R104.50_A_50 | 2287 68 X X X X X X X X X X X X
R105.50_.A_50 | 1201 6 74 -36% 7 65 64 546  -55% 6 69 68 X X X X
R106_50_A_50 | 1930 16 X X X X X X X X X X X X
R107_.50_A_50 | 1995 33 X X X X X X X X X X X X
R108_50_A_50 | 2280 83 X X X X X X X X X X X X
R109.50_A_50 | 1392 12 X X X X 570  -59% 7 1696 1695 X X X X
R110.50_A_50 | 1475 29 X X X X X X X X X X X X
R111.50_A_50 | 1950 82 X X X X X X X X X X X X
R112.50_A_50 | 2205 it X X X X X X X X X X X X

Table B.1: Standard column generation vs Two stage column generation: exact dynamic programming and 3 initializations.
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Stand.CG Exact 2stage - init:opt_basis Relaxed 2stage - init:opt_basis

Instance | cols t | cols it %ord %arc tiot tcg2 | cols it %ord %arc tior tcg2
R101.25_C_100 | 990 1 616 8 55% 6% 10 9| 504 6 51% 6% 0 0
R102.25_C_100 | 2567 51 945 9 73% 16% 109 108 | 798 7 76% 15% 5 5
R103.25_C_100 | 3629 131 949 5 42% 9% 2381 2380 | 958 12 91% 28% 66 65
R104.25_C_100 | 4021 33 X X X x | 1236 10 91% 25% 44 42
R105.25_.C_100 | 1475 5| 780 6 46% 8% 44 43 | 671 9 83% 16% 2 2
R106_25_C_100 | 3656 14| 991 8 7% 17% 2456 2454 | 1192 14 93% 29% 33 31
R10725_.C_100 | 4367 27 X X X x | 1593 23 97% 47% 410 401
R108.25_C_100 | 4434 34 X X X x | 1384 9 92% 23% 84 70
R109.25_C_100 | 2916 6] 975 7 49% 10% 161 160 | 750 12 98% 26% 17 16
R110-25_.C_100 | 2546 24| 945 5 7% 18% 2890 2888 | 974 12 95% 27% 63 59
R111.25_.C_100 | 3754 23 X X X x | 1410 11 95% 28% 62 59
R112.25.C_100 | 3630 27 | 1346 6 74% 16% 3041 3039 | 1265 10 96% 24% 78 75
R101.50_A_50 | 1035 2| 89 6 97% 6% 16 15| 733 5 97% 6% 1 0
R102_50_.A_50 | 1746 9| 1027 7 97% 7% 2421 2419 | 920 7 97% ™% 4 3
R103.50_A_50 | 1975 22 X X X X X x| 996 19 97% 12% 31 25
R104_50_A_50 | 2287 68 X X X X X x | 1078 17 97% 11% 47 40
R105.50_A_50 | 1201 6| 7714 7 95% 6% 65 64| 815 8 99% 6% 2 1
R106_50_A_50 | 1930 16 X X X X X x| 764 10 96% ™% 6 5
R107_50_A_50 | 1995 33 X X X X X x | 1066 18 99% 11% 32 27
R108_50_A_50 | 2280 83 X X X X X x | 1069 20 98% 12% 56 46
R109.50_A_50 | 1392 12 X X X X X x | 823 10 99% 8% 7 5
R110_50_A_50 | 1475 29 X X X X X x| 915 12 99% 9% 18 15
R111.50_A_50 | 1950 82 X X X X X x | 1052 20 98% 12% 44 33
R112.50_A_50 | 2205 7 X X X X X x| 946 16 97% 11% 45 38

Table B.2: Exact 2stage column generation vs Relazed 2stage column generation: initialization with opt basis.
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Stand.CG Exact 2stage - init:opt_master Relaxed 2stage - init:opt_master

Instance | cols t | cols it %ord %arc tiot tcgz | cols it %ord %arc tior tcag2
R10125.C_100 | 990 1 425 9 48% 6% 10 10 | 343 10 48% 6% 1 0
R102.25_.C_100 | 2567 51 825 10 69% 16% 350 350 | 653 12 67% 16% 7 6
R103.25_.C_100 | 3629 13 | 1078 11 50% 10% 1356 1355 | 1336 14 85% 20% 39 37
R104_25_C_100 | 4021 33 X X X X X X 993 14 87% 23% 100 97
R105.25_C_100 | 1475 5 653 10 51% 8% 54 53 767 14 83% 17% 4 3
R106.25_C_100 | 3656 14| 665 9 63% 17% 322 322 | 785 14 86% 22% 19 18
R107.25_.C_100 | 4367 27 X X X X X x| 923 18 95% 33% 166 160
R108.25_.C_100 | 4434 34 X X X X X x | 1323 15 92% 24% 317 313
R109_25_C_100 | 2916 16 | 1136 10 67% 16% 209 207 | 1638 19 98% 32% 43 37
R110.25_.C_100 | 2546 24 645 9 62% 16% 1966 1964 707 15 94% 27% 144 140
R111.25_.C_100 | 3754 23 X X X X X x | 1401 19 96% 32% 97 93
R112.25_.C_100 | 3630 27 | 798 10 66% 17% 1433 1432 | 778 14 89% 24% 115 113
R101.50_A_50 | 1035 2 458 6 85% 5% 14 14 458 6 85% 5% 1 0
R102_.50_A_50 | 1746 9 X X X X X X 607 9 88% 6% 4 4
R103_.50_A_50 | 1975 22 X X X X X X 655 22 93% 12% 38 33
R104.50_A_50 | 2287 68 X X X X X x| 793 22 96% 12% 75 68
R105.50_A_50 | 1201 6| 546 6 85% 5% 69 68 | 580 8 89% 6% 2 1
R106_50_A_50 | 1930 16 X X X X X x| 666 10 89% 7% 7 6
R107_.50_A_50 | 1995 33 X X X X X X 738 18 95% 11% 30 26
R108_50_A_50 | 2280 83 X X X X X X 784 19 97% 12% 59 51
R109.50_A_50 | 1392 12| 570 7 88% 6% 1696 1695 | 576 12 92% 7% 6 6
R110.50_.A_50 | 1475 29 X X X X X x| 627 12 94% 8% 15 14
R111.50_.A_50 | 1950 82 X X X X X x| 810 24 96% 12% 53 44
R112.50_A_50 | 2205 it X X X X X X 704 17 95% 11% 42 35

Table B.3: Ezact 2stage column generation vs Relaxed 2stage column generation: initialization with opt master.
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Stand.CG

Exact 2stage - init:opt_lp

Relaxed 2stage - init:opt_lp

Instance | cols t | cols it %ord %arc tiot tcgz | cols it %ord %arc tior tcg2
R101.25_.C_100 990 1 531 9 43% 6% 20 20 575 10 50% 7% 1 1
R102.25_.C_100 | 2567 5 X X X X X x | 1009 12 78% 19% 8 8
R103.25_.C_100 | 3629 13 X X X X X x | 1642 14 87% 23% 69 66
R104.25_.C_100 | 4021 33 X X X X X x | 2075 16 95% 27% 283 276
R105.25_.C_100 | 1475 5 846 11 46% 8% 250 249 828 13 84% 17% 4 3
R106-25_C_100 | 3656 14 X X X X X x | 1791 14 85% 21% 39 36
R107.25_.C_100 | 4367 27 X X X X X x | 2300 20 94% 34% 296 289
R108.25_.C_100 | 4434 34 X X X X X x | 2082 16 95% 27% 488 482
R109.25_.C_100 | 2916 16 X X X X X x | 1859 21 100% 34% 34 26
R110.25_.C_100 | 2546 24 X X X X x x | 1433 15 95% 25% 96 89
R111.25_.C_100 | 3754 23 X X X X X x | 2116 16 99% 28% 151 143
R112.25_.C_100 | 3630 27 X X X X X x | 1719 16 95% 26% 211 205

R101_50_A_50 | 1035 2| 1143 16 100% % 185 184 | 1143 16  100% 7% 2 1
R102_50_A_50 | 1746 9 X X X X X x | 1646 21 100% 8% 17 14
R103_50_A_50 | 1975 22 X X X X X x | 1701 36  100% 15% 93 83
R104_50_A_50 | 2287 68 X X X X X x | 2460 33 100% 14% 604 576
R105.50_A_50 | 1201 6 X X X X X x | 1181 18 100% 7% 6 4
R106_50_A_50 | 1930 16 X X X X X x | 1442 21 100% 9% 35 30
R107_50_A_50 | 1995 33 X X X X X x | 1867 32 100% 13% 149 136
R108_50_A_50 | 2280 83 X X X X X x | 2393 33 100% 14% 834 801
R109_50_A_50 | 1392 12 X X X X X x | 1335 23 100% 10% 22 18
R110_50_A_50 | 1475 29 X X X X X x | 1656 24 100% 10% 87 78
R111_50_A_50 | 1950 82 X X X X X x | 1674 30 100% 12% 102 88
R112_.50_A_50 | 2205 77 X X X X X x | 1778 31 100% 13% 356 335

Table B.4: Ezact 2stage column generation vs Relazed 2stage column generation: initialization with opt lp.
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Stand.CG Relaxed 2stage - init:opt_master

10ord-10arc 500rd-50arc 10ord-100arc 10ord-150arc 500rd-150arc

Instance | cols t | cols it t | cols it t | cols it t | cols it t | cols it t
R101_25_C_100 990 1 343 10 1 522 5 1| 401 9 1| 371 8 0 593 4 1
R102_25_.C_100 | 2567 5 653 12 7 791 4 3| 417 8 3| 415 8 3 699 4 2
R103.25_.C_100 | 3629 13 | 1336 14 39 | 2068 6 22 | 801 14 26 | 761 12 29 | 1560 4 25
R104.25_.C_100 | 4021 33 993 14 100 | 1741 5 42 | 731 12 50 | 775 11 83 1 1330 5 50
R105.25_.C_100 | 1475 5 767 14 411093 5 2| 574 11 3| 614 10 3| 1101 5 2
R106-25_C_100 | 3656 14 785 14 19 977 5 9 | 547 13 17| 605 14 29 873 5 17
R107_25_.C_100 | 4367 27 923 18 166 | 1489 5 49 | 723 15 105 | 671 14 96 | 1150 5 44
R108_25_C_100 | 4434 34 | 1323 15 317 | 1575 4 30 | 844 15 105 | 930 15 147 | 1297 4 43
R109.25_.C_100 | 2916 16 | 1638 19 43 | 1971 6 17 | 686 16 36 | 570 16 23 | 1214 4 11
R110.25_.C_100 | 2546 24 707 15 144 | 1332 5 44 | 604 14 84 | 651 15 72 | 1121 4 29
R111.25_.C_100 | 3754 23 | 1401 19 97 | 1886 6 34 | 780 15 92 | 991 16 92 | 1346 4 28
R112_25_.C_100 | 3630 27 778 14 115 | 1373 5 49 | 664 15 8 | 913 16 118 | 1262 4 34
C101.25_C_100 | 3050 34 939 11 18 | 1265 5 22 | 972 12 32| 717 10 18 889 4 20
C102.25_C_100 | 6062 149 997 14 567 | 1402 7 682 | 995 14 1579 | 906 14 847 | 1438 4 551
C103.25_C_100 | 6787 2412 X X X X X X X X X X X X X b'e
C104.25_C_100 X X X X x | 1441 7 3440 X X X X X X X X X
C10525_C_100 | 3420 454 807 14 85 | 1716 5 131 | 890 14 155 | 748 14 127 | 1132 4 57
C106-25_C_100 | 3222 25 760 14 30 | 1019 4 17 | 872 13 35| 773 13 44 929 4 15
C107-25_C_100 | 2979 93 856 14 192 | 1057 5 142 | 903 15 884 | 808 14 245 578 4 289
C108-25_C_100 | 3050 142 845 15 312 978 6 440 | 876 15 766 | 841 15 682 867 4 307
C10925_C_100 | 3055 1456 965 17 1081 908 7 2101 | 836 15 2311 | 841 15 3076 | 1149 4 3031

Table B.5: Sensitivity analysis with respect to the number of added cols: 25 customers, initialization with opt master.
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Stand.CG

Relaxed 2stage - init:opt_lp

10ord-10arc

500rd-50arc

10ord-100arc

10ord-150arc

50o0rd-150arc

Instance | cols t | cols it t | cols it t | cols it t | cols it t | cols it t
R101_25_.C_100 990 1 575 10 1 712 4 1 370 7 0 387 10 1 539 5 1
R102_25_C_100 | 2567 51 1009 12 8 | 1598 6 5 899 10 5 766 10 4| 1576 5 4
R103-25_C_100 | 3629 13 | 1642 14 69 | 3742 6 43 856 13 45 724 13 80 | 1567 5 38
R104.25_C_100 | 4021 3312075 16 283 | 4495 6 99 | 1191 14 110 | 1213 15 84 | 3883 5 73
R105.25_C_100 | 1475 5 828 13 411333 5 3 681 12 4 648 12 411091 5 4
R106_25_C_100 | 3656 14 | 1791 14 393291 6 26 858 13 19 787 15 31| 1701 4 13
R107.25_.C_100 | 4367 27 12300 20 296 | 3743 6 105 | 1260 15 218 | 1090 15 171 | 2626 4 75
R108_25_C_100 | 4434 34 | 2082 16 488 | 5136 6 319 | 1317 15 245 | 1461 15 230 | 1372 4 185
R109.25_C_100 | 2916 16 | 1859 21 34 | 2584 6 12 707 17 16 706 16 13 11391 5 8
R110.25_C_100 | 2546 24 | 1433 15 96 | 2839 6 56 893 15 55 853 14 81 | 1513 5 31
R111.25_.C_100 | 3754 23 | 2116 16 151 | 3607 6 60 | 1077 16 139 | 1134 15 104 | 2856 5 54
R112.25_.C_100 | 3630 27 | 1719 16 211 | 3805 6 130 959 15 151 | 1007 15 139 | 2147 4 140
C10125_C_100 | 3050 34 | 1870 14 100 | 3218 5 65 | 1195 14 103 | 1116 13 56 | 2523 4 46
C10225_C_100 | 6062 149 X X X X X X X X X X X X X X X
C10325_C_100 | 6787 2412 X X X X X X X X X X X X X X X
C104_25_C_100 X X X X X X X X X X X X X X X X X
C10525_.C_100 | 3420 454 | 1625 16 421 X X x | 1166 15 201 | 1133 14 259 | 2316 4 210
C10625_C_100 | 3222 25 | 1554 14 125 | 4415 7 226 | 1316 14 134 | 1291 13 111 | 2981 4 102
C10725_C_100 | 2979 93 X X X X X X X X X X X X X X X
C108-25_C_100 | 3050 142 X X X X X X X X X X X x | 2762 4 3400
C109.25_C_100 | 3055 1456 X X X X X X X X X X X X X X X

Table B.6: Sensitivity analysis with respect to the number of added cols: 25 customers, initialization with opt lp.
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Stand.CG Relaxed 2stage - init:opt_master

10ord-10arc | 50ord-50arc | 10ord-100arc 10ord-150arc | 50ord-150arc
Instance | cols t | cols it t | cols it t | cols it t | cols it t | cols it t
R101.50_A_50 | 1035 2 | 458 6 1 502 4 1 469 5 1 462 5 1 479 4 1
R102_.50_A_50 | 1746 9| 607 9 4 693 4 2 699 6 4 716 6 5 663 4 3
R103_50_A_50 | 1975 22 | 655 22 38 771 6 10 759 6 14 707 6 12 753 4 9
R104.50_A_50 | 2287 68 | 793 22 75 721 6 20 761 6 32 779 6 31 7715 24
R105.50_A_50 | 1201 6| 580 8 2 565 5 1 561 7 2 592 5 2 599 4 1
R106_50_A_50 | 1930 16 | 666 10 7 652 4 3 655 6 6 649 7 7 676 5 6
R107_.50_A_50 | 1995 33| 738 18 30 706 6 10 728 6 13 736 6 18 759 3 9
R108_50_A_50 | 2280 83 | 784 19 59 717 5 19 829 6 38 865 6 66 874 3 29
R109.50_A_50 | 1392 12 | 576 12 6 615 5 3 611 6 5 573 6 5 581 5 4
R110_50_A_50 | 1475 29 | 627 12 15 710 5 8 770 6 11 743 7 15 753 4 11
R111.50_A_50 | 1950 82 | 810 24 53 844 7 18 923 9 36 870 8 39 976 5 23
R112.50_A_50 | 2205 7T 704 17 42 670 6 17 682 6 28 746 6 28 763 4 23
C101_50_A_100 | 2190 111 929 10 4 889 4 3 845 8 8 787 8 10 | 1000 4 5
C102_50_A_100 | 4655 283 | 909 19 25| 1161 6 14 | 1055 9 16 | 1020 10 81 | 1381 5 19
C103.50_A_100 | 4924 3250 | 796 18 55| 1288 6 22| 1015 10 286 945 10 370 | 1359 4 21

C104_50_A_100 X x | n/a n/a n/a n/a n/a
C105.50_A_100 | 2232 19 | 838 12 8 889 6 5 899 9 23 815 10 20 922 4 7
C106_50_A_100 | 2216 17 | 824 12 6 969 6 5 748 9 26 852 9 19 868 4 5
C107_50_A_100 | 2276 26 | 927 17 15| 1344 8 14 885 10 32 934 10 37 11256 6 15
C108_50_A_100 | 2312 84 | 782 20 39 860 6 16 913 9 68 783 9 127 894 4 18
C109_.50_A_100 | 2475 316 | 814 24 85 870 7 54 779 10 173 839 10 320 977 5 52

Table B.7: Sensitivity analysis with respect to the number of added cols: 50 customers, initialization with opt master.
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Stand.CG

Relaxed 2stage - init:opt_lp

10ord-10arc

500rd-50arc

10ord-100arc

10ord-150arc

50o0rd-150arc

Instance | cols t | cols it t | cols it t | cols it t | cols it t | cols it t
R101.50_A_50 | 1035 2 | 1143 16 2| 1219 7 2 887 10 2 837 9 2| 1059 4 1
R102_50_A_50 | 1746 9| 1646 21 17 | 1911 9 9 | 1412 10 12 | 1491 10 13 | 1944 5 9
R103_.50_A_50 | 1975 22 | 1701 36 93 | 2089 10 51 | 1801 11 53 | 1740 10 59 | 2287 6 39
R104_.50_A_50 | 2287 68 | 2460 33 604 | 2657 11 366 | 1982 10 337 | 1805 10 506 | 2457 7 308
R105.50_A_50 | 1201 6 | 1181 18 6 | 1343 7 3| 1007 10 4 | 1002 10 511345 5 4
R106_50_A_50 | 1930 16 | 1442 21 35 | 2231 9 16 | 1703 10 22 | 1554 10 23 | 1896 6 16
R107_50_A_50 | 1995 33 | 1867 32 149 | 2057 10 65 | 1792 10 78 | 1752 10 86 | 2373 6 96
R108_.50_A_50 | 2280 83 | 2393 33 834 | 2690 11 407 | 1998 11 423 | 1939 10 394 | 2521 7 382
R109.50_A_50 | 1392 12 | 1335 23 22 | 1601 9 11 | 1339 10 15 | 1187 9 13 | 1587 6 11
R110.50_A_50 | 1475 29 | 1656 24 87 | 1865 10 31 | 1456 11 37 | 15632 10 43 | 1775 5 25
R111.50_A_50 | 1950 82 | 1674 30 102 | 2289 10 49 | 1729 11 70 | 1702 11 121 | 2330 7 81
R112.50_.A_50 | 2205 77 | 1778 31 356 | 1917 10 83 | 1826 11 115 | 1761 10 214 | 2065 6 99

C101_.50_A_100 | 2190 11 | 1996 15 10 | 2337 6 8| 1946 11 24 | 1535 11 18 | 3270 6 13
C102_50_A_100 | 4655 283 | 3832 24 150 | 5265 10 111 | 2561 10 124 | 2776 10 216 | 4673 7 91
C103.50_A_100 | 4924 3250 | 4319 33 1399 | 5344 11 958 | 3449 11 1503 | 3260 10 804 | 5230 7 383
C104_.50_A_100 X X X X X X X X X X X X X X X X X
C105.50_A_100 | 2232 19 | 2847 20 28 | 3636 8 24 | 2033 10 25 | 2100 10 38 | 3234 6 23
C106.50_A_100 | 2216 17 | 2359 18 17 | 2775 7 11 | 1725 10 15 | 1961 11 26 | 2651 5 11
C107_50_A_100 | 2276 26 | 2065 21 34 | 2719 8 23 | 1895 10 32 | 1583 10 46 | 3963 6 31
C108_50_A_100 | 2312 84 | 2599 26 95 | 3077 9 64 | 2424 11 75 | 2162 10 112 | 3845 6 47
C109_50_A_100 | 2475 316 | 3138 37 416 | 3725 10 236 | 3472 11 336 | 2870 11 441 | 5059 7 214

Table B.8: Sensitivity analysis with respect to the number of added cols: 50 customers, initialization with opt lp.
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156 APPENDIX B. TWO-STAGE CG COMPUTATIONAL RESULTS

Stand.CG | 2stage - init:opt_master 2stage - init:opt_lp

Instance | cols t | cols Y%eors it t | cols Y%eors it t
R101_50_.A_50 | 1035 2 479 -54% 4 1| 1059 2% 4 1
R102_50_A_50 | 1746 9| 663 -62% 4 3| 1944 1% 5 9
R103_.50_A_50 | 1975 22 | 753  -62% 4 9 | 2287 16% 6 39
R104_.50_A_50 | 2287 68 | 771  -66% 5 24 | 2457 "% T 308
R105.50_A_50 | 1201 6 599 -50% 4 1| 1345 12% 5 4
R106_50_A_50 | 1930 16 676 -66% 5 6 | 1896 2% 6 16
R107_50_A_50 | 1995 33| 759  -62% 3 9 | 2373 19% 6 96
R108_.50_A_50 | 2280 83| 874  -62% 3 29 | 2521 11% 7 382
R109_.50_A_50 | 1392 12| 581 -58% 5 4 | 1587 14% 6 11
R110_50_.A_50 | 1475 29 753 -49% 4 11 | 1775 20% 5 25
R111_50_.A_50 | 1950 82 976 -50% 5 23 | 2330 19% 7 81
R112_50_.A_50 | 2205 it 763 -65% 4 23 | 2065 6% 6 99
R101.50_B_50 | 1824 9 793 -57% 3 2| 1553 -15% 5 6
R102_.50_B_50 | 3783 55 | 1140 -70% 4 24 | 3354 -11% 6 100
R103.50_B_50 | 3809 182 | 1356 -64% 5 112 | 3427 -10% 7 748
R104.50_B_50 | 4429 1356 | 1320 -710% 5 1006 X X X b'e
R105.50_B_50 | 2248 24 | 1022 -55% 5 811786 -21% 7 17
R106.50_B_50 | 3527 102 | 1290 -63% 5 3112969 -16% 5 291
R10750.B_50 | 3791 290 | 1360 -64% 5 119 | 3551 6% 7 1444
R108.50_B_50 X x | 1378 —o0 6 780 X X X X
R109.50_B_50 | 2364 73 | 1175 -50% 5 33 | 2382 1% 6 138
R110.50.B_50 | 2858 208 | 1255 -56% 5 174 | 3083 8% 8 287
R111.50.B_50 | 3556 488 | 1415 -60% 5 430 | 3553 0% 7 906
R112.50.B_50 | 4457 425 | 1455 -67% 5 511 | 3315  -26% 7 1473
R101.50_.C_50 | 2727 27 | 1112 -59% 5 8 | 2127 -22% 7 18
R102.50_.C_50 | 4837 166 | 1683 -656% 5 181 | 4007 1% 7 870
R103.50_C_50 | 5287 1051 X X X X X X X X
R104_50_C_50 X X X X X X X X X X
R105.50_.C_50 | 3041 72 | 1291 -58% 6 37 | 2334 -23% 7 78
R106.50_C_50 | 4895 453 | 1773 -64% 5 209 | 4792 2% 7 2073
R107.50.C_50 | 5196 1814 | 1798 -66% 6 1569 X X X X
R108.50_.C_50 | 6242 2924 X X X X X X X X
R109.50.C50 | 3726 556 | 1543  -59% 5 151 | 3513 6% 8 572
R11050_.C_50 | 4228 1256 | 1841  -56% 6 1870 | 2686  -36% 8 2371
R111.50_-C_50 X x | 1947 —o0 6 3565 X X X X
R112.50_.C_50 | 5942 1485 X X X X X X X x

Table B.9: Analysis of increasing orders for instances of class R1, 50 customers.
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Stand.CG | 2stage - init:opt_master 2stage - init:opt_lp

Instance | cols t | cols Tcors it t | cols Y%eors it t
C101_.50_A_100 | 2190 11 | 1000 -54% 4 5 | 3270 49% 6 13
C102_.50_A_100 | 4655 283 | 1381 -10% 5 19 | 4673 0% 7 91
C103.50_A_100 | 4924 3250 | 1359 -72% 4 21 | 5230 6% 7 383
C104_50_A_100 X X | n/a X X X
C105.50_A_100 | 2232 19 922 -59% 4 7| 3234 45% 6 23
C106_.50_A_100 | 2216 17 868 -61% 4 5 | 2651 20% 5 11
C107_.50_A_100 | 2276 26 | 1256 -45% 6 15 | 3963 4% 6 31
C108.50_A_100 | 2312 84 | 894 -61% 4 18 | 3845 66% 6 47
C109.50_A_100 | 2475 316 | 977 -61% 5 52 | 5059 104% 7 214
C101_.50_B_100 | 3883 122 | 1615 -58% 5 74 | 4977 28% 6 145
C102_.50_B_100 | 8360 3450 | 1735 -19% 6 901 X X X
C103.50_-B_100 X x | n/a X b'e b'e
C104_50_B_100 X X | n/a X X X
C105.50_B_100 | 4193 479 | 1718 -59% 7 609 | 5653 35% 7 1095
C106.50_B_100 | 4198 207 | 1889 -55% 5 106 | 4305 3% 6 326
C107-50_B_100 | 4026 615 | 1936 -52% 6 429 | 5282 31% 7 1986
C108.50_B_100 | 4634 1725 | 1928 -58% 6 2317 X X X
C109.50_B_100 X x | n/a X X b'e
C101.50_C_100 | 6298 680 | 2449 -61% 7 380 | 7063 12% 7 2479
C102.50_C_100 X x| n/a X X X
C103.50_C_100 X x| n/a X X X
C104.50_C_100 X x | n/a X b'e b'e
C105.50_.C_100 | 6324 3023 | 2480 -61% 7 899 X X p'e
C106.50_.C_100 | 6746 828 | 2032 -70% 7 355 X X p'e
C107_50_C_100 | 6402 3215 X X X X X X
C108.50_C_100 X x| n/a X X X
C109.50_C_100 X x | n/a X b'e b'e

Table B.10: Analysis of increasing orders for instances of class C1, 50 customers.



Irnich Exact

2stage Exact - init:opt_master

2stage Exact - init:opt_lp

Instance IC] [El | ICsubl [Esupl tiot | ICoubl [1Cinal  [Esubl [Eindl tiot | [Csubl [Cinal [Esubl [Einal  tiot
R101.25_.C_100 | 175 625 73 560 2 75 16 40 547 10 74 25 54 531 20
R102_25_.C_100 | 175 625 0 190 10 0 54 0 525 350 X X X X X
R103.25_.C_100 | 175 625 81 537 800 83 5 41 523 1356 X X X X X
R104.25_.C_100 | 175 625 X X X X X X X X X X X X X
R105.25_.C_100 | 175 625 79 551 9 85 1 37 538 54 80 15 53 524 250
R106_25_.C_100 | 175 625 0 150 111 0 65 520 322 X X X X X
R107.25_.C_100 | 175 625 0 77 2014 X X X X X X X X X X
R108.25_.C_100 | 175 625 24 469 660 X X X X X X X X X X
R109.25_.C_100 | 175 625 81 540 44 0 58 0 522 209 X X X X X
R110.25_.C_100 | 175 625 0 64 116 0 66 0 525 1966 X X X X X
R111.25_.C_100 | 175 625 0 80 182 X X X X X X X X X X
R112.25_.C_100 | 175 625 0 0 57 0 60 0 521 1433 X X X X X

R101.50_A_50 | 150 2500 0 1605 4 0 22 0 2368 14 0 0 17 2319 185
R102_.50_A_50 | 150 2500 0 995 61 X X X X X X X X X X
R103_50_A_50 | 150 2500 0 601 751 X X X X X X X X X X
R104_50_A_50 | 150 2500 X X X X X X X X X X X X X
R105.50_A_50 | 150 2500 0 1326 10 0 22 0 2365 69 X X X X X
R106_.50_A_50 | 150 2500 0 794 148 X X X X X X X X X X
R107_50_A_50 | 150 2500 0 462 950 X X X X X X X X X X
R108_50_A_50 | 150 2500 X X X X X X X X X X X X X
R109_50_A_50 | 150 2500 0 851 42 0 18 0 2349 1696 X X X X X
R110_50_A_50 | 150 2500 0 399 862 X X X X X X X X X X
R111.50_A_50 | 150 2500 0 415 1335 X X X X X X X X X X
R112_.50_A_50 | 150 2500 X X X X X X X X X X X X X

Table B.11: Comparison between variable elimination (Irnich et al., 2010) and two stage column generation: exact DP.

891

SLINSHY TVNOILLVLAdNOD 90O HOVLS-OML g XIANAddV



Irnich Relax 2stage Relax - init:opt_master 2stage Relax - init:opt_lp

Instance |C| [El | ICsubl [Esubl tiot | ICsubl [Cinal [Esubl [Einal tiot | [Csubl 1Cinal [Esubl |Einal  tiot
R101.25.C_100 | 175 625 0 349 1 74 17 41 545 1 72 15 50 533 1
R102.25.C_100 | 175 625 0 190 5 0 57 0 523 7 0 38 4 504 8
R103.25.C_100 | 175 625 0 100 20 0 26 0 501 39 0 22 2 478 69
R10425.C_100 | 175 625 0 53 37 0 22 0 481 100 0 9 1 457 283
R105.25.C_100 | 175 625 0 275 5 0 29 0 521 4 0 28 6 512 4
R106-25_C_100 | 175 625 0 150 18 0 25 0 488 19 0 26 3 492 39
R107.25.C_100 | 175 625 0 77 36 0 9 0 421 166 0 10 1 409 296
R10825.C_100 | 175 625 0 37 39 0 14 0 478 317 0 9 0 455 488
R10925.C_100 | 175 625 0 173 18 0 4 0 425 43 0 0 2 413 34
R110-25.C_100 | 175 625 0 64 28 0 11 0 454 144 0 10 1 465 96
R111.25.C_100 | 175 625 0 80 28 0 7 0 428 97 0 2 0 452 151
R112.25.C_100 | 175 625 0 0 31 0 19 0 473 115 0 9 0 461 211
R101.50_.A_50 | 150 2500 0 1605 2 0 22 0 2368 1 0 0 17 2319 2
R102.50_.A_50 | 150 2500 0 995 10 0 18 0 2350 4 0 0 13 2276 17
R103.50_A_50 | 150 2500 0 601 24 0 11 0 2192 38 0 0 5 2121 93
R104.50_A_50 | 150 2500 0 182 71 0 6 0 2190 75 0 0 1 2146 604
R105.50_.A_50 | 150 2500 0 1326 6 0 16 0 2352 2 0 0 14 2304 6
R106_50_A_50 | 150 2500 0 794 16 0 17 0 2335 7 0 0 9 2271 35
R107.50_.A_50 | 150 2500 0 462 34 0 8 0 2225 30 0 0 4 2160 149
R108.50_A_50 | 150 2500 0 128 85 0 4 0 2209 59 0 0 0 2145 834
R109.50_A_50 | 150 2500 0 851 13 0 12 0 2327 6 0 0 7 2255 22
R110_50_A_50 | 150 2500 0 399 30 0 9 0 2298 15 0 0 2 2246 87
R111.50_.A50 | 150 2500 0 415 83 0 6 0 2202 53 0 0 3 2187 102
R112.50_.A50 | 150 2500 0 1 79 0 7 0 2235 42 0 0 0 2168 356

Table B.12: Comparison between variable elimination (Irnich et al., 2010) and two stage column generation: relaxed DP.
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