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Abstract 

 

The function of biologically active molecules depends both on their structure and on 

their conformational dynamics. In solution, intramolecular interaction with the solvent will 

influence different biological processes, i.e. protein folding. However secondary structure 

(helices, sheets) is heavily influenced by intramolecular forces and hence it is important to 

isolate biological molecules in order to study their intrinsic behavior. Moreover, gas phase 

studies on biomolecules provide critical information that can serve as benchmarks to test the 

accuracy of theoretical predictions.  

The main focus of this thesis is the investigation of the potential energy surfaces of 

biomolecules in the gas phase. Biomolecular ions are produced in the gas phase via nano-

electrospray, mass-selected and guided into a cold, 22-pole ion trap where they are cooled via 

collisions with cold helium. A variety of double-resonance techniques based on 

photofragmentation detection are then applied to obtain information on the molecule stable 

conformations, the potential barriers separating stable conformations and their connectivity. 

We applied these techniques on molecules of increasing size, starting with protonated 

phenylalanine and proceeding to the 7amino acid peptides, Ac-Phe-(Ala)5-LysH
+
 and the 12-

residue peptide Ac-Phe-(Ala)3-(Gly)4-(Ala)3-LysH
+
. 

As a first step, electronic spectra and conformation-specific IR-UV double resonance 

spectra are measured. These measurements, in combination with DFT calculations, allow the 

assignment of two stable conformers in the case of the protonated phenylalanine and four in 

the case of the seven residue peptide. In the second part of this work we focused on the 

conformational isomerization of these molecules by performing infrared and ultraviolet hole-

filling spectroscopy in the ion trap. We demonstrated that we can induce isomerization 

between stable conformers of each molecule via vibrational excitation. After energy 

dissipation, the excited molecules are redistributed among the initially identified conformers, 

but no new minima were detected. In the last part of this thesis, the fractional populations and 

the isomerization quantum yields are determined through infrared induced population transfer 

spectroscopy. Protonated phenylalanine reveals conformational selectivity in its isomerization 

while the relaxation of the infrared excitation leads to the equilibrium distribution in the case 
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of the 12-residue glycine-containing peptide. The steps that occur during the energy 

dissipation are discussed in this thesis.  

Keywords: cold gas-phase biological molecules, 22-pole ion trap, tandem mass spectrometry, 

photodissociation spectroscopy, IR-UV double-resonance spectroscopy, conformational 

isomerization, hole-filling spectroscopy, infrared population transfer spectroscopy, fractional 

population, quantum yields to isomerization.   
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Résumé 

 

La fonction particulière remplie par une molécule biologique est en grande partie liée à 

sa structure ainsi qu’à sa dynamique. En phase liquide, les molécules ne sont pas isolées, mais 

interagissent avec un solvant et d’autres macromolécules ce qui va souvent influencer les 

divers processus biologiques comme le pliement des protéines. Cependant la structure 

secondaire des protéines est stabilisée par les liaisons intramoléculaires, d’où l’importance de 

mener des études sur ses molécules en les isolant en phase gazeuse afin de pouvoir 

caractériser leurs propriétés intrinsèques. Ces études peuvent aussi fournir d’utiles 

informations qui peuvent servir comme points de repère et vérification de l'exactitude des 

prédictions théoriques. 

 

L’objectif principal de cette thèse est d'explorer la surface d’énergie potentielle des 

biomolécules en phase gazeuse. Les molécules chargées sont produites en phase gazeuse par 

une source d'ions nano-spray et passent à travers un premier filtre de masse quadrupolaire. 

Les ions ainsi sélectionnés sont stockés et refroidis dans un piège à 22 pôles. Une variété de 

techniques spectroscopiques a été utilisée afin d’obtenir des informations sur les structures les 

plus basses en énergie, les états de transition qui les séparent et leur connectivité. Ces 

techniques ont été appliquées sur des systèmes moléculaires d'un intérêt biologique de tailles 

divers, allant de la phénylalanine aux peptides à 7- et 12- aminoacides, Ac-Phe-(Ala)5-LysH
+
 

et Ac-Phe-(Ala)3-(Gly)4-(Ala)3-LysH
+
.  

 

Dans un premier temps, les spectres électroniques et vibrationnels spécifiques à 

chaque conformation sont mesurés, et l’identification des structures est réalisée en comparant 

ces spectres avec des résultats de calculs DFT de géométries et de fréquences harmoniques. 

Ces comparaisons ont mis en évidence la présence de deux conformères de PheH
+
 et quatre 

dans le cas de Ac-Phe-(Ala)5-LysH
+
 tout en permettant l’identification de leurs structures. 

Dans la deuxième partie, nous avons élaboré les techniques de spectroscopie de transfert de 

population induite par IR et UV dans le piège ionique afin de mener une étude sur 

l’isomérisation entre le différents conformères. Nous avons démontré la possibilité de 

transférer la population parmi les plus stables conformères détectés de chaque système 

moléculaire via l’excitation vibrationnelle. Après l’absorption d’un photon, l’énergie acquise 
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par la molécule va se relaxer en créant une nouvelle distribution de population entre les 

conformères initialement identifiés puisque aucune nouvelle conformation minimale n’est 

détectée. Dans la dernière partie de cette thèse, les spectres de transfert de population induit 

par infrarouge ont permis la détermination de l’abondance de la population relative des 

conformères et le rendement quantique d’isomérisation. Concernant PheH
+
, un caractère 

conformationel sélectif a été relevé, en revanche la relaxation de l’excitation vibrationnelle 

dans le cas du peptide contenant la glycine donne une distribution similaire à l’équilibre établi 

lors du refroidissement des molécules à température ambiante arrivant dans le piège. Nous 

abordons dans cette thèse les divers processus qui ont lieu pendant la désactivation des 

molécules excitées.  

 

Mots-clés: ions biologiques froids en phase gazeuse, piège ionique à 22 pôles, spectrométrie 

de masse en tandem, photodissociation, spectroscopie de double résonance, isomérisation, 

spectroscopie de transfert de population, abondance relative de population, rendement 

quantique d’isomérisation. 
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Chapter 1     

 Introduction  

 

 

 

“Vital forces are molecular forces” T. H. Huxley (1860) 

 

 

The study of biological molecules is largely driven by the desire to understand the 

phenomena that govern their behavior and activity in vivo, such as enzyme action, molecular 

transport, genetic information and processing, and protein assembly. At the same time the 

understanding of the complex dynamics of biological processes such as protein folding will 

greatly advance the treatment of human disease [1]. Large progress towards this goal has been 

made in the past decades with the development of numerous experimental and theoretical 

techniques to determine the structures of various biomolecular entities. 

X-ray crystallography was the first high-resolution technique that could elucidate the 

three-dimensional geometries of large biomolecules as DNA and proteins on the atomic scale 

[2-6]. The measured structure reflects the conformational shapes in crystalline form which 

may differ from those in their native environment due to the influence of the packing forces. 

The nearest competing structural analysis method is multidimensional nuclear magnetic 

resonance (NMR), which can be used to determine solution structures and dynamical behavior 

of biomolecules, but it is restricted to molecules of no more than ~ 70 kDa [7-11]. Several 
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other techniques have been implemented to probe the structures of biomolecules, such as 

Fourier transform infrared spectroscopy (FTIR) [12], circular dichroism (CD) [13-17]  and a 

number of fluorescence techniques [18-21]. While these techniques probe molecular structure 

in solution, which is considered to be the most biologically relevant environment, these 

structures may not be identical to those in the natural environment.  For example, trans-

membrane proteins are situated in the hydrophobic interior of the membrane lipid bilayer 

[22], which is very different than an aqueous environment. Moreover, the crowded 

environment in the interior of a cell is likely to be substantially different than a dilute solution. 

In addition to experimental approaches, theory continues to make enormous progress 

in predicting the conformational structures of increasingly large biological molecules and 

elucidating the counterbalancing forces that control them [23-26]. Although theory is widely 

used, the accuracy of theoretical treatments needs to be verified by comparison with 

benchmark experiments. Gas phase studies on proteins and peptides, where the perturbations 

introduced by the local environment can be eliminated, could provide important critical 

information for testing the predictions of theory. Moreover, studies in the gas phase provide 

the possibility of modifying the molecular environment by forming clusters of biomolecules 

with solvent, which allows the investigation of the intermolecular interactions and the effect 

of the environment on the intramolecular processes. High resolution gas-phase spectroscopy 

of peptides will thus present the most challenging benchmarks to test and improve the 

theoretical methods.  

Biological molecules are fluxional rather than static and thus their function depends 

both on their structure and their dynamics, the utility to investigate their conformational 

dynamics. After reviewing work on spectroscopy of gas-phase biological molecules, we turn 

our attention to isomerization dynamics. 

1.1 Biological molecules in the gas phase 

In order to study biological molecules in the gas phase one has to remove them from 

their natural environment. Since the standard thermal methods are limited by the 

decomposition of the biomolecule upon heating, several techniques have been invented to 

facilitate their volatilization. Among these one can mention lased desorption (LD) [27, 28], 

which is based on the ejection of material from a sample-covered surface using intense laser 

light. An improved version of this is matrix-assisted laser desorption/ionization (MALDI), 
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where the sample molecules are embedded in a matrix that strongly absorbs the desorbing 

light [29, 30]. Other techniques, such as thermospray [31, 32] and electrospray ionization [33-

36], use the nebulization of a sample solution through a capillary to produce charged droplets 

from which ions can desorb. This latter is the method we use to produce our ions and it will 

be extensively described in Chapter 2. ESI and MALDI are the most popular production 

methods of gas-phase biomolecular ions present in academic research and industry. Both 

allow intact biomolecules of large size to be put into the gas-phase in the form of closed-shell 

ions.  

Many techniques have been developed in order to determine the structure of biological 

molecules by coupling these volatilizing techniques with mass spectrometry. Mass analysis 

identifies the peptide fragments produced in solution by chemical or enzymatic degradation or 

directly in the gas phase by collision-induced or photo-induced dissociation [37-44]. The 

structural information that could be obtained with this approach on biological molecules was 

related to their primary structure. Whereas H/D exchange experiments give information on the 

secondary structure the molecules. The number of potentially labile hydrogen atoms replaced 

by deuterium when a molecule is exposed to a deuterated solvent, can provide information on 

the conformation of proteins [45]. The polypeptide is first volatilized then brought in contact 

with a deuterated solvent. Based on this method, Freitas and Marshall studied bradykinin, a 

nanopeptide containing two arginines, and concluded that its  protonated form in the gas-

phase exists as a zwitterionic structure, with both arginine side chains protonated and the 

terminal acidic group deprotonated [46]. 

In order to characterize the three dimensional shape of a biomolecule, another strategy 

is based on its mobility through a drift tube containing several millibars of a buffer gas under 

the influence of a weak electric field. The gas-phase ions enter this tube, and based on the 

different conformations, biomolecular ions exit the tube at different times [47-50]. After 

measuring drift times and converting them into cross sections, they are compared with those 

of model structures. Jarrold and coworkers have probed the conformations and folding 

properties of proteins such as cytochrome c [51, 52] and bovine pancreatic trypsin inhibitor 

[52] and observed the formation of a helical structure in small model peptides [53]. A similar 

technique based on the differential ion mobility at a high and low electric field has been 

developed by Guevremont and coworkers, which is called high-Field Asymmetric waveform 

Ion Mobility Spectrometry (FAIMS) [54, 55]. This method allows the separation of isotopes 

[56], stereoisomers [57], isobaric ions that in conventional ESI interfere with each other [58] 
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and structural isomers [59]. While FAIMS can analyze and separate different conformers, 

there is no simple way to extract the molecule cross section and hence shape. 

Williams and coworkers developed a new technique that measures the dissociation 

energies of trapped protonated biomolecular ions known as blackbody infrared radiative 

dissociation (BIRD). It consists in measuring the kinetics dissociation of ions trapped in a 

Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR) induced by the slow 

absorption of blackbody radiation from the vacuum chamber walls [60]. Temperature-

dependent experiments allow the measurement of the activation energies and frequency 

factors for the lowest-energy dissociation pathways of mass-selected ions. Changes in the 

biomolecular structures affect these highly sensitive parameters that provide information on 

the conformational preferences of biomolecules. The Williams group has shown evidence that 

the most stable form of singly-protonated bradykinin is a salt-bridge structure [61] and proved 

that short strands of oligonucleotides forms Watson-Crick hydrogen-bonds [62].   

The aforementioned methods can give valuable information on the conformational 

structure of gas-phase biological molecules, although not their precise geometry. Moreover, 

they have limitations when structural isomers or conformations do not differ by their mass, 

fragmentation patterns or ion mobilities. 

Another approach to obtaining geometrical information on gas phase biological 

molecules is to use spectroscopic techniques, since the spectroscopic properties of a molecule 

are very sensitive to the three dimensional arrangement of its atoms, and thus small changes 

in it conformation can lead to detectable spectroscopic shifts.  This approach can be applied to 

gas phase biological molecules both in their neutral and their charged forms. 

1.2 Spectroscopic studies of biological molecules in the gas phase 

1.2.1  Neutrals 

Various optical approaches can provide an accurate value of the rotational constants of 

small biomolecules from which geometric information can be determined. In particular, 

microwave spectroscopy [63, 64], rotational coherence spectroscopy [65, 66], and fully [67, 

68] or partially [69-73] rotationally-resolved electronic spectroscopy have been implemented 

to determine the geometries of different conformers of neutral jet-cooled analogues of the 
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three aromatic amino acids (tryptophan, tyrosine and phenylalanine). Electronic spectroscopy 

can also give structural information by detecting the influence of the environment on the 

chromophore photophysics [74]. On the other hand, the vibrational frequency of a given bond 

is highly dependent on its local environment, which makes infrared spectroscopy a powerful 

tool to probe biomolecular structures; several examples will be presented below.  

In 1985, the Levy group reported the first electronic spectrum of neutral tryptophan in 

a supersonic expansion and identified the presence of several conformations using R2PI 

saturation and fluorescence spectroscopy [75, 76]. More recent work has confirmed their 

conclusion by UV-UV hole burning and IR dip spectroscopy [77-79]. The Levy group later 

recorded the electronic spectrum of tyrosine and phenylalanine, and demonstrated the 

presence of ten and five conformers respectively in the molecular beam [80]. Following this 

pioneering work, a number of groups extended the same methods to larger peptides and many 

other biomolecules, and developed innovative double resonance spectroscopic techniques 

(e.g., UV-UV hole-burning or IR-UV depletion spectroscopy) to acquire conformer-specific 

electronic and vibrational spectra [77, 81-93]. These approaches had prove extremely helpful 

for the study of the hydrogen bonding patterns of secondary structural elements in neutral 

molecules, where the size of the peptides probed increased gradually over the past decades. 

As consequence, it has become possible to observe some secondary structural elements of the 

peptide backbone, such as β- and γ- turns or 310-helices [94-98]. In the past few years, some 

groups have reported the application of the double-resonance IR-UV scheme to longer 

oligopeptides such as gramicidin, a 15-residue peptide [99-102] and to the study of the 

nucleotide bases [103, 104] as well base pairs [105-107]. Gerhards and coworkers identified 

signatures of β-sheet and γ-turn/β-turn structures [108-114] and recently extended this 

technique into the mid-IR region [115]. Other investigations have investigated the influence 

of solvation on the conformations of peptides by examining their hydrated clusters [111, 116-

119]. Finally, one can mention the elaboration of an IR-IR-UV triple resonance spectroscopic 

hole-burning scheme proposed by Zwier and coworkers, that makes possible the measurement 

of conformer-specific vibrational spectra even in cases where two conformers have 

indistinguishable electronic spectra [120] .  

1.2.2   Ions  

All these spectroscopic studies were concerned with gas-phase amino acids and small 

peptides in their neutral form. Nonetheless, the study of charged biomolecules is of equal 
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importance, since in their native environment these molecules are charged. Due to the 

difficulty of producing sufficient gas-phase concentration of ions, the optical investigation of 

these species started only at the beginning of the new millennium [121, 122]. The 

development of MALDI and ESI, as the soft ionization techniques, allowed the volatilization 

of biological molecules of virtually any size in the form of closed-shell molecular ions and 

thus opened new avenues of investigation. However, the use of direct absorption spectroscopy 

or even fluorescence spectroscopy is extremely difficult because of the low density of ions. 

Hence, one must make use of some sort of action spectroscopy and measure a consequence of 

the photon absorption rather than the absorption itself to record the spectrum of gas-phase 

molecular ions. Action spectroscopy was first used by Andersen and coworkers to 

characterize closed-shell molecular ions produced by electrospray [121, 122]. They reported 

the electronic excitation spectra of the green fluorescent protein chromophore in its 

protonated and deprotonated forms in an electrostatic ion storage ring by detecting the neutral 

products subsequent to photofragmentation or photo-detachment respectively. Nolting et al., 

using resonant photodissociation spectroscopy in a cold Paul trap, recorded the electronic 

spectrum of protonated tryptophan [123]. A room temperature spectrum of same  species was 

reported by Dugourd and coworkers over a wider wavelength range, and the analysis of its 

possible structure and of its various photofragmentation channels was given [124]. 

Monitoring the decay of cationic and anionic mono- and di-nucleotides in an ion storage ring 

after absorption of a UV photon on the microsecond time scale, Nielsen and coworkers could 

identify both statistical and non-statistical photodissociation channels, the latter of which 

becomes predominant for the protonated species [125, 126]. Parks and coworkers studied the 

conformational dynamics of weakly bound protonated oligonucleotides duplexes in a 

quadrupole ion trap by fluorescence resonance energy transfer (FRET) spectroscopy, and 

observed an intermediate state in their dissociation [127]. Electronic spectroscopy was also 

used to provide information on the excited-state dynamics, which is essential to understanding 

the photostability of biological chromophores such as the DNA bases or the aromatic amino 

acids. The excited-state dynamics of positively charged chromophores have also been 

explored by Jouvet and coworkers on a short time scale, using a femtosecond pump-probe 

laser schemes [128-132] and coincidence experiments [133-135]. Using this approach, they 

determined the excited-state lifetimes of protonated aromatic amino acids and of di- and tri-

peptides.  
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McLafferty and coworkers reported infrared spectra of electrosprayed peptides and 

proteins in a FT-ICR mass spectrometer in the light-atom stretch region by resonant infrared 

multiphoton dissociation (R-IRMPD), using an optical parametric oscillator (OPO) [136, 

137]. Von Helden and coworkers extended IRMPD spectroscopy into the amide I and II 

regions of the infrared employing a free-electron laser to measure the infrared spectrum of 

potassiated cytochrome C formed by electrospray [138]. The analysis of the vibrational 

spectrum in this region suggests a large degree of α-helical content in cytochrome C. Using 

these methods the structures of many protonated amino acids, small peptides and other 

biomolecules have been elucidated [133, 138-148].  

1.2.3  Low-temperature biomolecules  

In order to disentangle the contributions of the intermolecular and intramolecular 

interactions and determine the three-dimensional structure of an isolated molecule, which 

provides perhaps the most stringent test of theory, biomolecules have been studied in gas 

phase. A direct consequence of this approach is that various types of inhomogeneous spectral 

broadening can be eliminated.  In solution, each molecule has a slightly different environment 

arising from the different arrangement of solvent around it, and a spectrum represents the 

average of a multitude of distinct individual spectra. Examining isolated gas-phase molecules 

eliminates this source of heterogeneity. Secondly, inhomogeneous broadening at room 

temperature derives from the large number of rotational and low-energy vibrational degrees of 

freedom populated, and this can be greatly reduced at low temperature. Neutral molecules  

can be cooled in seeded supersonic expansions, attaining typical temperatures of ~ 1 K for 

translational degrees of freedom, a few degrees Kelvin for rotations and a few tens of degrees 

Kelvin for vibrations [149]. Multiple strategies have been used to cool ion-molecule 

complexes. Johnson and coworkers condensed solvent molecules onto argon-solvated ions 

formed in a supersonic expansion [150, 151]. Another method is to produce cations in a 

pulsed high voltage electric discharge source coupled to a pulsed nozzle supersonic 

expansion. Collisional cooling in the expansion leaves the cation with estimated temperatures 

below 100 k [152, 153]. 

Another approach is to confine ions in a trap maintained at low temperature, where 

they collide with a buffer gas for thermalization. Weinkauf and coworkers used a liquid-

nitrogen cooled quadrupole ion trap that could reach a temperature of ~ 140 k to measure the 

electronic spectrum of protonated tryptophan [123]. Another approach consists in mounting a 
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linear multipole ion trap on a closed-cycle helium refrigerator, which can attain temperatures 

below 10 k [154]. To achieve an effective ion cooling in such traps, a large number of poles 

are required to avoid RF-driven heating.    

Simons and coworkers developed a clever technique that might be applicable for the 

production of jet-cooled ions. In the gas phase, the molecule of interest forms a complex with 

a proton donor in a supersonic expansion, and a proton transfer is initiated by R2PI of the 

former. Detachment of the resulting radical cation leaves behind the protonated species. The 

jet-cooling of the warm ions generated could possibly be obtained by triggering the R2PI step 

early enough in the expansion [142, 147, 155, 156]. 

 

Summarizing the work that has been done to date, one can measure highly resolved 

conformation specific infrared spectra of neutral molecules of about a few amino acids of 

length [88, 108-114].  In comparison with theory this has allowed determination of reliable 

three-dimensional structures of these molecules. In these cases the experiments have served as 

important benchmarks for theoretical calculations and helped guide improving their accuracy. 

The situation for ions is similar although techniques for producing them are applicable for 

molecules of larger size. However, high resolution spectra could be obtained for peptides 

beyond seven amino acids only in the case where these species are cooled [157-161]. These 

molecules stand as critical benchmarks that should help to improve the choice and the 

parameterization of the force fields and DFT functionals, as well as the development of new 

conformational search algorithms. 

 

1.3 Biomolecular dynamics 

Knowing the structure of biological molecules is not enough to fully understand their 

function.  It is typically the ability to change their structure under certain conditions – that is, 

their conformational dynamics – that allow them to carry out their tasks.  Moreover, 

understanding the process by which biological molecules attain their structure after being 

synthesized in vivo (e.g. protein folding) is important to finding solutions to diseases based on 

their misfolding. A number of different approaches have been established to initiate and 

follow the kinetics and pathways of protein folding in condensed phases. Among these, one 

can mention conventional stop flow [162], and laser-induced temperature jump [163-165] 
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techniques. This later method, which was first used by Eigen and De Maeyer [166] involves 

rapidly increasing the temperature after equilibrium has been established between folded and 

unfolded forms, which displaces the equilibrium toward one of the two forms. 

In parallel and despite the complexity of the folding process, theoretical studies made 

a lot of progress in understanding the general nature of the energy landscape of folding. Lee et 

al. used a thermodynamic approach to predict the native folds of proteins [167]. The Levitt 

group simulated protein folding using simplified representations of polypeptide chains to fold 

proteins by energy minimization and exhaustive enumeration [168]; they reported protein-

folding pathways [169] and the folding rates [170]. An understanding of the thermodynamics 

and kinetics of protein folding requires knowledge of the free energy surface governing their 

motion and dynamics. Wales and coworkers have developed novel methods for predicting and 

explaining how structure, dynamics and thermodynamic properties are determined by the 

potential energy surface (PES) [23, 171-173]. These methods allowed the determination of the 

folding pathways and rate constants for peptides. The characterization of minima, transition 

states and pathways was accomplished by geometry optimization, and the determination of 

the rate constants corresponding to each transition state was done using the unimolecular rate 

theory [172, 174-179].  

Even if condensed phase studies are closer to physiological conditions, in this media, 

intramolecular processes cannot be separated from the intermolecular interactions involving 

energy exchange between the molecular system and its environment. In particular, the 

investigation of the potential energy landscape of biomolecules and their conformational 

dynamics in the gas phase allows separating the effects due to intrinsic properties of the 

molecule and those induced by the external perturbation and thus better understand the energy 

relaxation in biomolecules.  

Much work has been done investigating the dynamics of intramolecular energy flow 

and unimolecular reaction dynamics in isolated molecules using both time-resolved and 

frequency-resolved techniques [180-187], but most of this work has been focused on 

relatively small molecules. Zwier and coworker pioneered the extension of these ideas to 

small, gas-phase biomolecules by looking at the transfer of population between conformers 

after the deposition of energy by vibrational excitation, either directly in the infrared [188]or 

by stimulated emission pumping [189]. The former is a pump-recool-probe technique that 

consists in exciting a specific conformation with an IR laser followed by a collisional cooling 
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step, allowing the transfer of part of the population into the potential wells of other 

conformers. It was first applied on methyl-capped dipeptides and yielded values of the 

fractional population of the different conformers and the isomerization quantum yields [188, 

190, 191]. These quantities revealed, in some cases, a slight degree of mode specificity and 

thus the presence of distinguishable pathways on the energy landscape of the molecules. The 

second approach used by this group is a pump-dump-recool-probe experiment, where in its 

first step a specific conformer is promoted by the pump laser to the zero-point level of an 

electronically excited state and then stimulated back down into a specific vibrational level in 

the ground state with the dump laser. This experiment enabled direct measurement of 

isomerization barriers and provided insight into isomerization pathways of different 

molecules of relatively small size [189, 192-195].  

 These studies have been performed on neutral gas phase molecules of relatively small 

size. However in their native environment, biological molecules are often charged. Molecular 

and spectroscopic properties of a peptide can strongly be influenced by the presence of a 

charge and therefore the study of charged biomolecular ions, in addition to their neutral 

counterparts, is of fundamental importance. The purpose of this thesis is to perform gas-phase 

population transfer experiments on significantly larger protonated peptides and investigate 

their conformational isomerization in order to further clarify the connectivity between 

structures and thus test the limits of theory. 

1.4 Goals and outline  

This introduction has provided an overview of some experimental techniques used to 

determine the structures and dynamics of gas-phase biomolecules. A few years ago our 

laboratory developed a unique machine that combines several of these approaches to perform 

spectroscopic investigations of cold, gas-phase biomolecular ions [196-198]. This machine 

employs an ESI source for ion generation and two quadrupole mass filters to select the parent 

ions and analyze the fragments.  In between these two mass-analyzers sits a 22-pole ion trap 

in which the mass-selected parent ions are accumulated and cooled to ~10k. While trapped, 

the ions interact with laser light, and upon absorption of a resonant ultraviolet photon they can 

fragment.  By monitoring the photofragments as a function of the laser wavenumber we 

measure an electronic “action” spectrum.  Conformer-specific infrared spectra of cold 

protonated biomolecular ions in the gas-phase are measured employing a double resonance 
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technique. Results obtained for the three protonated aromatic amino acids in the gas-phase 

have proved the power of this machine [197, 199]. The low-temperature achieved by in the 

22-pole ion trap makes that the spectra attained of unprecedented resolution for ions that is 

comparable to that achieved for neutrals in supersonic molecular beams. More recently our 

group has pushed these techniques to larger molecules [157, 159-161, 200]. In this thesis we 

report the measurements of the electronic and conformer-specific vibrational spectra of the 

protonated phenylalanine and two peptides, one of which has 7 amino acid residues and the 

other has 12.  

However, the main objective of this thesis was to go beyond the structural 

determination and investigate the barriers separating stable conformations of biological 

molecules. Exploring the interconnectivity of different conformational families will provide 

insight into the dynamics of biomolecules and the topology of their energy landscapes. Such a 

fundamental understanding of the dynamics of biological process i.e., protein 

folding/unfolding, may shed light on the physiological activity of these molecules. As a first 

step we make use of electronic and conformer-specific infrared spectroscopies in order to 

identify the stable minima. We then use this information to develop population transfer 

techniques, following the example of Zwier [188, 190, 191], to exploit and investigate 

conformational isomerization. We extend the techniques pioneered by Zwier to large 

biomolecules in an attempt to clarify the connectivity between biomolecular structures and 

perhaps open new perspectives for the interpretation of the mechanisms that occur during 

biological process. In addition, this information will provide benchmark tests for the current 

theoretical approaches. 

The outline of this thesis is as follows. In Chapter 2 we give an overview of the 

machine used in this thesis, its general principles of producing, selecting, cooling and trapping 

the ions. Then, we will describe the UV and IR laser setups used in performing the different 

experimental measurements.  

In Chapter 3 we depict the timing of events in a typical pulsed experiment and explain 

the different types of measurements that are carried out: the recording of a photofragment 

mass spectrum, a standard ultraviolet photodissociation spectrum, and double resonance 

infrared and ultraviolet spectra. This chapter also describes the principle and the adaptation of 

the hole-filling and infrared population transfer techniques for studies of cold trapped ions. 

Some experimental results on the cooling efficiency are then presented, which allows defining 
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the timing diagram of these transfer experiments. In the last part of this chapter, as well as in 

Appendix A, we introduce the equations used to extract the fractional population and the 

quantum yields to isomerization.  

In Chapter 4 we report the electronic and conformer-specific vibrational spectra in the 

Amide A, I and II regions of the molecules studied in this thesis: protonated phenylalanine 

and of two peptides, Ac-Phe-(Ala)5-LysH
+
 and Ac-Phe-(Ala)3-(Gly)4-(Ala)3-LysH

+
. These data 

are combined with theoretical studies to assign two conformers for PheH+ and for the 7-

residue peptide.  Due to the limitation of our theoretical approach, in the case of the largest 

peptide the calculations did not allow the assignment of a structure to each conformer.  

Chapter 5 focuses on the hole-filling experiment, investigating the changes in the 

conformational dynamics. In the first part we report the measured spectra on the single amino 

acid and the two peptides after excitation of an N-H stretch transition. We demonstrate that 

transfer between the identified conformations of each system is induced within the energy of 

the absorbed photon. We then present the IR-UV spectra of the 
13

C-substituted 7-residue 

helical peptide, which allow us to selectively excite one conformer and investigate the 

dynamics of this molecule in the C=O stretch region. Finally, we describe the UV-UV hole 

filling method we applied to study and exploit the electronic excited state dynamics.  

Chapter 6 reports the results of the infrared population transfer (IRPT) experiments. 

We first extracted the fractional population of the three molecules studied in this work. The 

isomerization quantum yields of different NH stretch vibrations are then obtained from the 

IRPT spectra in association with the IR-UV double resonance spectra. In the case of 

phenylalanine the results showed unexpected behavior, where after IR excitation and 

relaxation, the molecules primarily re-form the conformer initially pumped. In this chapter we 

speculate on possible explanations for this behavior.  

Chapter 7 gives a summary of the main results presented in this thesis and suggests 

future possible research directions. 
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Chapter 2    

 Experimental Setup 

 

The experimental results in this work have been obtained with a home-built ion trap 

machine containing, as the central part, a cold 22-pole ion trap. The first part of this chapter 

gives an overview of the machine and the general principles of producing, selecting, cooling 

and trapping the ions. The second part gives a description of the UV and IR laser setups used 

in performing the different experimental measurements presented in this thesis.  

2.1   Overview of our ion trap experiments  

The schematic diagram of a typical trapping experiment is illustrated in Figure 2.1. It 

consists of an ion source, a first mass filter, an ion trap where the ion can be stored and 

cooled, followed by a second mass filter and an ion the detector. 

 

Figure 2.1 : Schematic of the sequence of events of a tandem mass spectrometric ion trap experiment 

Usually, the ions are generated and stored in an external reservoir in the ion source and 

upon release form an ion packet. Ions of a particular mass within this packet are selected by a 

quadrupole mass filter and then guided into the 22-pole ion trap, where they cooled by 
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inelastic collisions with cold helium buffer gas. The cooled ions interact with the laser, and 

the resulting ions (both parent and fragments) are released from the trap and sent through a 

second mass filter, which analyzes their mass before they are finally detected and counted.  

2.2   The home-built ion trap machine  

The machine used in these studies is a home-built tandem mass spectrometer. The 

apparatus, as well as the operating conditions and procedures to maximize the production and 

the transmission of ions, have been described in great detail in the PhD thesis of Dr Anthi 

Kamariotis [1] and Dr Sébastien Mercier [2], and these details are not repeated here; only a 

general description and a summary of the important features will be given.  

 

Figure 2.2: Section view of the tandem mass spectrometer 
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The seven differential pumping stages and the main ion optical devices needed to 

guide the ions through the entire machine are displayed in Figure 2.2. 

The ions are produced in the gas phase via a commercial nano-electrospray device. 

The resulting protonated molecules are transferred from atmospheric pressure to vacuum 

through a glass capillary and traverse a skimmer before entering an RF-only hexapole. By 

raising the voltage on the exit electrode of the hexapole, one can trap the ions and allow them 

to equilibrate translationally. Lowering the voltage on this electrode releases the ions from the 

trap in a packet of approximately 0.5 ms duration. Since the electrospray process generates a 

variety of species in addition to the molecule of interest (such as water clusters, different 

charge states of the molecule and some fragmentations induced by collisions), the resulting 

ion packet is guided into a first quadrupole mass filter for selection of the parent ions 

according to their mass-charge ratio, m/z. Ions of the selected mass are then turned 90° by a 

static quadrupole deflector, either to the left towards a first ion detector or to the right to be 

guided to the 22-pole ion trap. The neutral molecules that enter the machine together with the 

ions will not be affected by the deflector’s electric field and will be pumped out by the 

turbomolecular pump of this stage. This first ion detector helps in investigating the properties 

of the first part of the machine and in optimizing the voltages for the best ion transmission. 

After the bender, the ions travel through five decelerating cylindrical electrodes and then are 

guided by an RF-octupole into the 22-pole ion trap. The 22-pole is mounted on a closed cycle 

He refrigerator, which cools the trap and its surrounding walls to ~ 6K. Helium gas is 

introduced into the trap by a pulsed valve approximately 1 ms before the ion packet is 

released from the hexapole in order to reach the trap temperature before the arrival of the ion 

packet.  The kinetic energy of the ions is dissipated by inelastic collisions with the helium 

buffer gas so that they can be trapped radially by the effective potential created by the RF 

electrodes and axially in the potential well created by setting the pole bias voltage of the trap 

lower than those of its entrance and exit electrodes. After undergoing several collisions and 

being thermalized to the trap environment, the ions will interact with the ultraviolet and 

infrared laser light that is directed down the axis of the 22-pole ion trap. Upon photon 

absorption the internal energy of the ions becomes sufficient to cause dissociation of one or 

more chemical bonds producing fragment ions. If the photodissociation is fast enough such 

that the fragmentation will occur in the trap, when released, the ions packet will contain both 

parent and daughter ions. This packet is then turned 90° by a second deflector and delivered 

to the final quadrupole for mass analysis before they reach the ion detector. This quadrupole 
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mass filter is set to detect either a specific fragment or the parent mass. In the first case, we 

can detect the amount of photofragments as function of the laser wavelength, generating a 

photofragment excitation spectrum. On alternate trapping cycles we detect the parent ions and 

use them to normalize the fragment signal for slow fluctuations of the ion source. Both 

detectors used in this machine are channeltron electron multipliers with a conversion dynode.  

The latter component is set at a high negative voltage (for positive ions), typically -5 kV, and 

emits electrons upon impact of the accelerated ions. The electrons emitted from the dynode 

surface are collected by the channeltron multiplier, which further amplifies the electron 

current. The resulting signal is sent to a fast preamplifier and then to a gated pulse counter.  

The vacuum system of the machine consists of turbomolecule drag pumps backed by 

membrane pumps, except the first stage, which is evacuated by a mechanical pump. Typical 

pressures of each stage are shown in Table1. The pressure in the vacuum chambers is 

measured by ion gauges except for the first and second vacuum stages where Pirani gauges 

are used. The machine has a vacuum interlock system connected to the ion gauge of stage 4; 

when the pressure in this chamber exceeds 10
-4

 mbar all sensitive power supplies switch off.  

 

 

Table2.1 : Pressure (mbar) in different stage of the machine. The different stages are shown in   

Figure 2.2. 

The following sections explain in more detail the principle of operation of the key 

components of the ion machine.  

2.2.1 Nano electrospray  

Ion generation is accomplished by the use of nano-electrospray, which is a form of 

electrospray that uses lower liquid flow rates and the formation of smaller droplets. The 

formation of a spray of small droplets by applying an intense electric field to a liquid surface 

was first reported in the early part of the 20th century [3, 4]. In the 1960’s Dole and al. 

demonstrated the use of this electrospray phenomena as an ion source for mass spectrometry 

to ionize intact chemical species [5, 6]. Building upon the ideas of Dole, Fenn developed the 

electrospray as an ionization technique for high mass biologically related compounds [7-9], 

and since then it has become a standard technique in mass spectrometry. The processes 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 

2mbar 2x10-3 mbar 4x10-5mbar 3x10-7mbar 2x10-8mbar 5x10-9mbar <2.10-9mbar 
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involved in the gas-phase ion generation by electrospray have been widely investigated and 

intensively debated [10-20], although its general implementation has remained basically the 

same.  An analyte is dissolved in a polar solvent, and the solution flows through a conductive 

needle, which is maintained at high voltage. The electric field on the needle causes charge 

accumulation at the liquid surface and induces the formation of a Taylor cone [21] in which 

the liquid breaks up into charged droplets. When the coulombic repulsion between the charges 

on the droplet exceeds the surface tension (i.e. referred to as the Rayleigh limit) the drops 

explode in a jet-fission mode, producing a set of small progeny droplets. The droplet 

formation is followed by multiple uneven Rayleigh division events [22], until one of two 

things occur (according to different models). In one case, the field at the droplet surface is 

high enough that spontaneous desorption of preformed ions from the droplet can occur [12, 

13]. Another model proposes that successive droplet divisions occur until there is only a 

single analyte molecule per droplet, from which the neutral solvent eventually evaporates[5, 

11].  

The development of nano-electrospray started in the mid 1990s [23, 24] and owes its 

name to the lower liquid flow rate (~1nL·min
-1

 to 1μL·min
-1

) compared to conventional 

electrospray (~1μL·min
-1

 to 1mL·min
-1

). It overcomes the propensity of large molecules to 

fragment when ionized, facilitates the formation of bare ions and their clusters and provides 

better sensitivity toward a variety of analytes, including peptides and oligosaccharides [25].  

The ion source that we used is represented schematically in Figure 2.3. It is a 

commercial electrospray source (Analytica of Brandford, Inc., CT, USA) whose atmospheric 

section, which was of a regular electrospray design, has been replaced by a nano-electrospray 

source kit (model ES025A from Proxeon Biosystems, DK). This kit is formed from a 

nanospray needle consisting of a Au/Pd coated borosilicate capillary (~ 1 μm i.d. at the 

opening) inserted into a 1.5 mL Eppendorf vial. Both the vial and the capillary are filled with 

the sample solution, having a typical analyte concentration of 2x10
-4

 M in a 1:1 

water/methanol mixture with 0.1% acetic acid. The assembly is connected to a high voltage 

power supply and mounted on an electrically isolated platform that allows adjustment of the 

position in the xyz-directions. 
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Figure 2.3 : Schematic of the nano-electrospray ion source interface. 

During the spray formation a slight continuous pressure is applied to the solution, and 

the needle is floated ~500 V to 1 kV above ground potential. The Ni-coated entrance end of 

the glass capillary (24cm long), which serves as the counter-electrode, is grounded. To assist 

in the desolvation of the droplets, a counter-current flow of nitrogen gas can be used. Ions 

formed at atmospheric pressure enter the glass capillary (i.d. of 500 μm) and exit at the other 

end in the first vacuum stage pumped to a pressure of 2 mbar. A supersonic expansion takes 

place at the end of the capillary between the capillary exit and a skimmer. The metal-coated 

capillary exit acts itself as an electrostatic element that can accelerate ions through the 

skimmer, but the process may warm them through collisions with neutral background gas. 

These collisions should prevent condensation of the ions with solvent molecules in the carrier 

gas and help complete the desolvation process without disruption of the covalent bonds, 

although sufficiently high voltage applied to the capillary exit can cause bond breakage. Only 

the core of the free jet expansion passes through the skimmer orifice towards the hexapole. 

The latter traverses two pumping stages with significantly different average pressure. When 

traversing the hexapole from the high pressure side to the low side, the ions pass from a 

region of viscous flow where they still undergo collisions with the neutral molecules, to a 

region of molecular flow, where the mean free path is much larger than the instrument 

dimensions. The potential at which the ions are introduced into the high vacuum region is 

then defined by the floating potential of the hexapole rods (pole bias). By applying a voltage 

pulse to the exit lens of the hexapole we turn the continuous ion signal generated by the 

electrospray ionization source into a packet of ions, which matches the duty cycle of the ions 

to that of our pulsed lasers.  In addition, collisions in the hexapole thermalize the ion and 

reduce the spread of ion kinetic energy. This will improve the transmission efficiency of the 

ions through the tandem mass spectrometer. However, trapping too many ions in the hexapole 
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can lead to RF-induced-heating effects causing fragmentation of the ions [1, 26-28]. This 

effect is critical when the investigated species are weakly bound complexes such as solvated 

ions.  

2.2.2 Quadrupole mass filtering 

In 1953, Paul Wolfgang developed the quadrupole mass analyzer based on a clever 

design where he uses alternating quadrupolar electric fields rather than magnetic fields to 

separate charged particles of different mass to charge ratios[29]. Later, he described the use of 

this same device as a means of trapping charged particles [30, 31]. Only short summary on the 

basics of operating rf quadrupole is given here. 

 

Figure 2.4: Quadrupole and supplying voltages. 

A quadrupole mass analyzer consists of four parallel rods with cylindrical or 

hyperbolic cross section, aligned along the z-axis and equally spaced on an inscribed circle of 

radius r0 (see Figure 2.4). Each pair of adjacent rods have a potential with alternate 

polarity, 0 cosU V t , where U is a fixed DC and cos  V t  is the applied RF.  The 

electrical potential in the region between the rods is given by   

 
2 2

2

0

x y

r
 Eq 2.1 

If a charged particle is injected into the quadrupole and propelled down the z-axis, it 

will be subjected to forces in the x and y directions. The equations of motion of this particle 
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involve motion in 3 planes. The ion trajectory is described by the solution of a set of 

decoupled one-dimensional differential equations, called the Mathieu equations. Depending 

on their mass, the ions could follow either stable or unstable trajectories.  Furthermore, the 

nature of the motion is a function of the two dimensionless stability parameters, a and q, 

independent of the initial conditions:  

 
2 2 2 2

0 0

8 4
     

eU eV
a and q

mr mr
 Eq 2.2 

In order to understand the mass filtering ability of the quadrupole, consider the 

stability diagram displayed in Figure 2.5. For a fixed 0r  and , particles of a specific mass 

follow a stable trajectory by the proper choice of a and q, or U and V, respectively, in the 

stability region of the diagram. Physically this means that in the stable cases, the particle 

oscillates in the x and y directions within the free space between the rods and eventually exits 

the quadrupole. In the unstable cases, the particle veers off in the x and/or y direction, hits a 

quadrupole rod or exits laterally and is lost.  

 

Figure 2.5: Stability diagram for a quadrupole mass filter. [32] 

A mass spectrum is obtained by varying simultaneously the values of U and V along 

the “mass scan line” while maintaining their ratio,   / / 2 ,U V a q fixed. By increasing this 

ratio, the quadrupole operates with a “mass scan line” of high slope that cuts across the tip of 

the stability region thereby allowing for high resolution of the mass spectrum. Further detail 
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on the basic characteristics of this device and computer simulation studies discussing the 

geometry and the ion motion can be found in many books, reviews and papers [32-38]. 

2.2.3 The 22-pole ion trap   

With the objective of investigating the chemistry of ion-molecule reactions of 

astrochemical relevance, Gerlich and coworkers introduced the 22-pole rf ion trap[39], which 

allowed long trapping time and efficient buffer gas cooling. Extensive experimental and 

theoretical work has been devoted to characterizing this rf device [40-43].  

In order to understand the principle of operation of a radio-frequency ion trap, one 

must treat the equation of motion within an adiabatic approximation, which leads to the 

introduction of the so-called effective potential V*[44]. The frequency of the inhomogeneous 

field applied on the rods should be high enough to stay within the range of validity of the 

adiabatic approximation. An adiabaticity parameter  is introduced to give a quantitative 

measure for the quality of such an approximation. Gerlich and Teloy proved the validity of 

the adiabatic approximation if, along a trajectory  always remains smaller than 0.3 [44]. 

Recently Wester established a new limit for  of 0.36 [45]. Under such conditions the total 

kinetic energy is an adiabatic constant of the motion. 

The trajectory of a particle with charge q and mass m, moving in an oscillating field, 

can be described as the superposition of a smooth trajectory and a fast oscillatory motion. The 

smooth drift term can be derived from the effective potential. In the case of a linear 2n-

multipole, this later is expressed by the following expression [46]:  

 

2n 22

0*

0

qV1 r
V  

8 ε r
 Eq 2.3 

where  is the characteristic energy, 2 2

02

1
ε mω r

2n
 

  is the inscribed radius, 2n is the number of rods, 

 the amplitude and  the frequency of the rf voltage applied to the rods. 

The effective potential is proportional to
2n 2

0  r / r , so as n increases the repulsive 

wall becomes steeper, and the field free region near the center line becomes larger. Examples 
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of calculated effective potentials for a quadrupole, an octupole, and a 22-pole trap are given in 

Figure 2.6. 

 

Figure 2.6:  Relative effective potentials of a quadrupole, an octupole and a 22-pole. 

Comparison of these curves reveals the advantage of using higher order multipoles for 

buffer gas cooling:  they have much wider field free region which is important if one wants to 

minimize RF-driven heating of the stored ions.  Ion trajectories for several multipoles are 

presented in Figure 2.7. In the trap, ions move undisturbed in the field-free region but undergo 

an oscillating micromotion driven by the RF when they come close to the electrodes. In the 

case of the 22-pole, the field-free region is wide enough such that the ions move mostly 

undisturbed and the wiggling motion occurs only in the close vicinity of the rods, minimizing 

RF heating them under the adiabatic conditions [42, 46]. In low temperature applications, a 

buffer gas is pulsed into the trap to cool the ions and increase the trapping efficiency. 

Collision between the ions and the gas occurs during both the straight and wiggling motion of 

the ions. In the first case, the ions are thermalized to the temperature of the buffer gas while in 

the second case collisions will have a heating effect. 

1.0

0.8

0.6

0.4

0.2

0.0

V
*(

r)
/V

*(
r 0

)

1.00.80.60.40.20.0

r/r0

4-pole

8-pole

22-pole



  Experimental setup 

29 

 

 

 

Figure 2.7: Visualization of RF fields generated by infinitely long multipoles for several values of n at 

a fixed time. The black lines represent the hyperbolic electrodes, the equipotential lines are shown 

colored coded and the red line in each figure illustrates the typical ion trajectories [42]. 

 

Different measurements and numerical simulations show that this heating behavior is 

almost negligible for a trap with a wide field-free region [42]. The velocity distribution of an 

ion in a linear multipole, in the presence of helium buffer gas at 18K, is shown in Figure 2.8. 

The thermal distribution approaches the Boltzmann distribution at the temperature of the 

buffer gas, with increasing the number of poles. For a 22-pole trap the ion temperature is only 

slightly higher than the buffer gas temperature. 
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Figure 2.8: Velocity distribution of an ion stored in traps with different multipolarity n in the presence 

of helium buffer gas (18K) [42]. 

Another parameter that could lead to slight warming of the ions during the trapping 

process, is the potential generated by the end electrodes. It has components in the longitudinal 

as well as the radial direction, and the latter component can lead to a heating effect by pushing 

the ions towards the RF electrodes. Wester et al. have observed this behavior in the 

photodetachment of cold OH− ions in a 22-pole ion trap [41]. By performing transversal laser 

scans through the trap they observed a higher density of OH− ions towards the RF electrodes.  

In a recent work, by measuring the column density distribution obtained from the position-

dependent photodetachment rate, they observed ten distinct minima in the trapping potential 

[43]. They attributed them to a breaking of the 22-fold symmetry by a slight misalignment of 

some of the radiofrequency electrodes. 

In addition to its excellent thermalization capability, the 22-pole enables long trapping 

times, which makes it an ideal device to investigate spectroscopically cold charged species. 

Gerlich reported a trapping time of up to minute without ion loss [39, 46].  

The 22-pole trap we use in our apparatus has been designed and built by Dr. Oleg 

Boyarkin, based on the publications from the group of Dieter Gerlich [39, 46]. Figure 2.9 

illustrates the 22-pole trap mounted on the cold head as well as a picture of the trap without its 

cold shields 



  Experimental setup 

31 

 

 

  

 

Figure 2.9: Schematic section view of the home-built 22-pole ion trap and cold head assembly, and 

picture of the 22 rods mounted onto their holders. 

It consists of 2 × 11 stainless steel rods, 50 mm long and 1 mm diameter 

circumscribing a circle of 1 cm diameter. The rods are supported by two copper holders, each 

of them being electrically connected to a set of 11 alternate rods and insulated from the other 

11 by ceramic sleeves. Equal RF voltage of opposite phase is applied to the holders, where 

thin sapphire plates insure electrical insulation, but good thermal, contact with the rest of the 

trap housing. In order to let the ions in, confine them and finally release them after the 

photodissociation, two pairs of cylindrical electrodes are placed at the entrance and exit of the 

trap. Suitable voltages are applied on each lens to trap or release the ions. The system is 

enclosed by copper walls, which are mounted onto a cold head of a cryocooler that can be 

cooled to 6 K. This structure is surrounded by a second thermal shield held at about 50 K. The 

helium buffer gas is introduced into the trap via a Teflon tube through a pulse valve, which is 

fastened into an independent plate near the heat shield. Many more details on the trap 

assembly, as well as its characterization and operating conditions can be found in the PhD 

dissertation of Dr. Sebastien Mercier [2]. 
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2.3   Description of the laser setups 

2.3.1 Generation of UV laser light 

The schematic of the ultra-violet laser light generation used in this thesis is depicted in 

Figure 2. 10. The UV laser light is produced by frequency doubling the visible output of a dye 

laser pumped by third harmonic of a Nd:YAG (yttrium aluminum garnet) laser.  

 

 

Figure 2. 10: Schematic diagram of the UV generation setup 

The Nd:YAG pulse energies used to pump the dyes are on the order of 150 mJ at a 

repetition rate of 10 Hz or 20 Hz. We have mainly worked with Coumarin 540A and 503 

Exciton dyes to cover the region from 515 to 545nm. The Nd:YAG pumping power is 

adjusted to obtain a maximum pulse energy of 50 mJ out of the dye lase (Lumonics model 

HD-500), which is limited by the damage threshold of the beta barium borate crystal (BBO) 

used to convert the output of the dye laser into ultraviolet light by second harmonic generation 

(SHG). The BBO crystal is mounted in an Autotracker III (Inrad, NJ, US) and rotated 

automatically, together with a fused silica compensator, to the phase-matching angle as the 

visible wavelength is scanned. 

The resulting UV beam is separated from the remaining visible light via reflections on 

two dichroic mirrors and the use of a colored glass filter. The UV beam is then optionally 

focused by the use of a converging lens before being deflected by a prism through a BaF2 

window placed at Brewster's angle into the machine, on the side of the 4th vacuum stage. The 

Nd:YAG laser

355 nm

480-550 nm1064 nm

SHG
BBO

Dye laser
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UV pulse duration is about 5-10 ns and the energy is 1.5 to 3 mJ. The typical linewidth in the 

UV is about 0.07 cm
-1

. 

2.3.2 Generation of IR laser light 

Infrared laser light is generated by converting the horizontally polarized 1064 

fundamental harmonic output of the Innolas Spitlight 600 Nd:YAG pulse laser system into 

tunable radiation using a multi-stage OPO/OPA system from LaserVision, shown 

schematically in  Figure 2. 11.  

Figure 2. 11: Schematic overview of the IR laser generation setup 

The output of the Nd:YAG laser pulse length is 7 ns and the line width of the 

unseeded beam is 0.5 cm
-1

. The pulse energy is about 500 mJ with a repetition rate of 10 Hz.  

In the converter system a beam splitter divides the horizontally polarized incoming 1064 nm 

pump into two separate beams. One is frequency-doubled in a KTP (Potassium Titanyl 

Phosphate) crystal to provide the 532 nm pump light for the OPO stage, while the second 

beam is directed through a delay line before recombination with the vertically polarized idler 

output of the first stage. The idler wave of the OPO stage passes through a variable half-wave 

plate and two beam-steering mirrors before being combined with the delayed 1064 nm beam. 

The combined beams are then directed into an OPA stage for difference-frequency mixing. 

Four Potassium Titanyl Arsenate (KTA) crystals are used in the OPA stage. Its output consists 

of a horizontally polarized signal (the idler of the OPO stage) and a vertically polarized idler, 

which is in the mid-infrared region between 1.35 and 5 μm. A Brewster plate polarizer 

isolates the idler from the combined output.  

To generate far-infrared radiation, a Silver Gallium Selenite (AgGaSe2) crystal is 

added after the output of the OPA stage. A Si filter is included between the OPO and OPA 

stage to remove the signal wave from the beam. The pump beam is limited to a maximum 

energy of 30 mJ to prevent damaging the crystal. After the crystal, a ZnSe filter is used to 

Mid-IRNd:YAG laser

1064 nm

1064 nm

LaserVision OPO/OPA system

Innolas Spitlight 600
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remove the pump light. It is mounted at an angle of 45° such that it reflects the pump light and 

at the same time is closer to Brewster’s angle for the vertically polarized far-IR 

All seven crystals are placed on motorized rotation plates.  The phase matching for the 

desired conversion process is achieved by angle tuning via motor rotation through a Microsoft 

Windows based program. 

The polarization of the output beam is changed using reflections off two mirrors. The 

horizontally polarized beam is focused by a converging lens and directed to the BaF2 window 

placed at Brewster's angle on the 6th stage of the vacuum chamber. The IR pulse energy 

ranges from 6 to 12 mJ in the 3μm region and 0.7 to 1.4 mJ in the 6μm region. Since we are 

using an unseeded beam from the Innolas Nd:YAG to pump the OPO/OPA convertor, the IR 

linewidth is about 1 cm
-1

. The pulse duration, after frequency mixing, is about 3 ns.  
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Chapter 3    

 Experimental Methods 

 

 

A variety of double resonance spectroscopic techniques are used in this work to 

provide information on isolated biological molecules in the gas phase with the goal of 

developing a fundamental understanding of their energy landscapes. The first part of this 

chapter describes briefly the technique used to measure electronic spectra of gas-phase 

peptides as well as the IR-UV double resonance method that provides conformer specific 

infrared spectra – both of these are used to determine the local minima (i.e. stable 

conformations) on the ground potential energy surface. The second part of this chapter 

describes the techniques of hole-filling spectroscopy and infrared population transfer 

spectroscopy, which involve the transfer of molecules from one stable conformation to 

another. We explain in detail how we have adapted these techniques for studies of cold, 

trapped ions.  

3.1 Photodissociation spectroscopy 

The low density of ions in the 22-pole trap compared to neutral gas samples or 

condensed media makes the use of the direct absorption spectroscopy impossible due to 

insufficient sensitivity. For this reason we must use an indirect method of measuring photon 

absorption by detecting one of its consequences on the molecule of interest – generating a so-

called “action spectrum”. In our case we measure the fragmentation of parent ions caused by 

photon absorption.  When working with charged species this method is facilitated by the 

ability to collect, transmit and detect the fragment ions with high efficiency. Moreover, 

additional detailed information on the spectroscopy of the parent ions can be obtained by 

separately measuring fragments of different masses. The quantum yield of photodissociation 
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can be wavelength dependent, and this may lead to some drawbacks, since an action spectrum 

may not be identical to an absorption spectrum. Other widely used action spectroscopic 

techniques include, laser induced fluorescence [1-3] and resonant enhanced multiphoton 

ionization (REMPI) [4, 5], but these are difficult to implement in the case of cold ions in a 22-

pole ion trap. In the case of fluorescence this is a result of the low ion density and the 

inefficiency of photon collection and detection. In the case of the REMPI, it requires high 

energy to remove an electron from a parent species that already has a positive charge. 

Because of the low temperatures of the 22-pole trap, singly-charged parent molecular 

ions, AB
+
, lie in their lowest vibrational state of their ground electronic state S0 [6-8]. After 

the absorption of a UV laser photon of the proper resonant frequency, some of the ions reach 

an excited electronic state S1, which is at an energy above their dissociation threshold. 

Different mechanisms represented in Figure 3.1 can lead to fragmentation. 

 

Figure 3.1: Spectroscopic scheme of photodissociation after an electronic excitation. 

Direct dissociation occurs if the S1 state is purely repulsive in the direction of a 

particular bond or to an indirect dissociation in case the initially excited state crosses a 

repulsive state S2 though which dissociation occurs. Another possible mechanism is internal 

conversion from S1 back to S0 at an energy above the dissociation threshold such that 

fragmentation takes place on the ground potential energy surface. In this case the excitation 

energy will be redistributed among the vibrational modes of the molecules. For large 

molecules with many vibrational modes, intermolecular vibrational energy redistribution 

(IVR) will reduce the dissociation rate. Many studies have focused on the dissociation 

processes via IVR, questioning the general assumption that the excitation energy is spread out 

among all vibrational degrees of freedom before the dissociation occurs. Schlag and Levine 
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have shown that when the excess of vibrational excitation is below one quantum per mode the 

dissociation rate is slower than assumed by statistical theories and the energy may remain 

localized for a sufficiently long time to induce dissociation [9]. A fraction of the excited 

molecules may fragment by undergoing nonstatistical dissociation on an unexpected short 

time scale compared to RRKM estimations. The remaining fraction would possibly dissociate 

according to statistical rate constant [10, 11]. These studies were confirmed by different 

experimental measurements on biomolecules that reported the existence of both statistical and 

nonstatistical fragmentation processes [10, 12-15]. 

There may, in fact, be no practical upper limit to the size of molecular ions that we can 

photofragment in our apparatus. Our detection schemes based on photodissociation continue 

to be relevant for molecules that undergo fragmentation directly from the electronic excited 

state or nonstatistically in the ground state. However, in a recent work, Guidi et al. reported, a 

spectroscopic technique, based on IRMPE, that increases the photofragmentation yield of 

large molecules by more than two orders of magnitude [16, 17]. It has now become clear that 

the electronic spectra of large peptide ions can be recorded by selectively detecting the 

produced fragments (A+) as a function of the UV laser wavenumber [7, 18, 19].  

3.2 Measurement of a photofragment mass spectrum  

In order to record a photofragment excitation spectrum of a specific species in our 

apparatus, one needs to know the mass-to-charge ratio of the possible laser induced 

fragments. While one can find in the literature the fragmentation spectra of different 

molecules, the use of fragmentation techniques that are fundamentally different from ours 

(e.g., collision-induced, electron capture or electron impact dissociations) typically leads to 

different fragmentation patterns [20-25]. Moreover, in the case of the photodissociation 

spectra, one has to take into account that the relative fragment intensities depend on the 

experimental conditions (e.g., laser wavelength and ion temperature) [26-28]. For these 

reasons, the fragmentation mass spectrum of each parent ion must be measured with our 

equipment under our experimental conditions.  

The fragment mass spectrum is recorded by successively dissociating several ion 

packets while incrementing the mass of the fragments to be detected. During the mass scan, 

the laser wavelength is fixed on an absorption transition of the parent ion. Because the 
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spectrum is not yet known for a new species, the first fragmentation mass spectrum is 

measured at room temperature, taking benefit of the large absorption band due to 

inhomogeneous broadening to fix the laser wavenumber. The resulting spectrum gives insight 

into the fragment ions induced by photodissociation, although their relative intensities can be 

different from those at low temperature. After identification of the masses of the main 

fragments, the low temperature optical spectra can be measured by monitoring the mass of 

one fragment while scanning the laser wavenumber. The transitions in the cold optical spectra 

are expected to be much narrower compared with those measured at room temperature. By 

fixing the laser wavelength on different sharp transitions, the corresponding mass fragment 

spectra can be recorded at low temperature. Different fragmentation patterns can be obtained 

from transitions that belong to distinct conformers of the same parent ions [18]. 

3.3 Conformer specific IR-UV double resonance spectroscopy 

A unique ion species of a particular mass to charge ratio can adopt different 

conformations in the 22-pole ion trap corresponding to different local minima on the potential 

energy surface. At low temperature the optical spectrum would be a superposition of spectra 

of different conformers. Spectroscopic interpretation and characterization of each 

conformation requires disentangling the different contributions.  

Various techniques have been implemented in order to distinguish different 

conformations and assign their individual transitions. Levy and co-workers used R2PI 

saturation spectroscopy and dispersed fluorescence spectroscopy to identify stable 

conformations of the amino acid tryptophan and some of its analogs in a supersonic molecular 

beam [1, 29-32]. The introduction of the double resonance hole-burning technique by the end 

of the 1980s was one of the most important developments in the field. Colson and coworkers 

reported the electronic spectrum of a single m-cresol conformer using UV-UV hole-burning 

spectroscopy [33]. This is a pump-probe laser technique where the pulsed probe laser is fixed 

on a given vibronic transition in the electronic spectrum previously measured and the second 

pulsed laser (the pump laser) is fired about 500 ns before the probe and is scanned across the 

spectrum. Each time the pump laser is in resonance with a transition of the selected 

conformer, a fraction of the ground state population is preexcited and does not absorb the 

second UV laser at the same frequency as the ground state species. This will lead to dips in 

the signal induced by the probe laser, producing a conformer-specific vibronic spectrum. In a 
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similar way, Lee and coworkers used IR-UV double resonance to study state-selective of local 

modes in benzene molecules and dimers [34, 35].  In this scheme an IR laser pulse is fixed on 

a vibrational transition specific of a particular conformer while the UV probe laser is scanned, 

and the difference between the UV spectra recorded with and without the IR burn laser 

reveals the transitions belonging to the selected conformer. The infrared spectra of conformer-

selected molecules can be recorded using the same scheme but keeping the UV fixed on a 

specific transition while scanning the IR wavelength. These methods have been developed 

and applied by several groups in order to sort out the different conformers of flexible 

molecules or clusters in supersonic expansions [5, 36-46]. 

 We use IR-UV double resonance techniques to record the infrared of conformer-

selected molecules. The feasibility of this approach in our apparatus has been demonstrated 

and IR spectra of different species of increasing size have been reported [18, 19, 47, 48]. The 

UV absorption spectrum of the vibrationally cold ions is different from those first excited in 

the IR. In a recent review, Rizzo et al. give an overview on the possible mechanisms 

responsible for the shift in the UV absorption frequency of the vibrationally preexcited 

molecules respect to the ground state molecules [49]. Considering the time delay of 200 ns 

between the two laser pulses, after IR excitation the molecule will be in states of mixed 

vibrational character due to the energy redistribution among its vibrational modes. The UV 

spectrum of the preexcited species will be broadened by statistical inhomogeneous broadening 

[50, 51], which occurs because the different components of the mixed wave function will give 

rise to slightly different UV absorption frequencies. 

In order to measure infrared spectra of biomolecular ions using an IR–UV double-

resonance scheme, illustrated schematically in Figure 3.2a, we direct an infrared laser pulse 

from an OPO at 10 Hz into the ion trap 200 ns before a UV laser pulse, which comes at 20 

Hz. The UV laser is fixed on a transition from the previously measured electronic spectrum 

while scanning the IR frequency. Each time the latter is in resonance with a vibrational 

transition of the selected conformer the UV photofragment signal at the probe wavelength will 

be depleted. An IR transition is then detected as a dip in the UV photofragmentation signal. 

The IR spectrum is recorded by monitoring the difference in the photofragmentation signal 

when the IR laser is on and off.  
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Figure 3.2: Spectroscopic schemes applied to cold biomolecular ions for measuring conformation 

specific infrared (a) and electronic (b) spectra via photofragment detection. 

After getting the IR spectrum of a specific conformer, the IR-UV hole burning 

spectrum can be measured by fixing the IR wavelength on a particular transition and scanning 

the UV frequency, as shown in Figure 3.2b. If the chosen IR transition is unique to a specific 

conformer, the IR laser will deplete all vibronic transitions related to the IR tagged conformer. 

The subtraction of the spectrum obtained with IR on and off will generate an electronic 

spectrum of the selected conformer. 

3.4 Population transfer spectroscopy 

Many spectroscopic studies [3, 46, 49, 52-54] have been and continue to be devoted to 

providing information on biological molecules in gas phase giving particular attention to the 

minima on the potential energy surface. While local minima on the potential energy surface 

give essential information on the different non-covalent interactions that govern the structure 

of different stable conformers, the energy barriers separating them influence their dynamics, 

which are important to understanding their function. Zwier et al. performed pioneering studies 

looking at the transfer of population between conformers after the deposition of energy by 

vibrational excitation of small biological molecules cooled in a supersonic expansion [55-58]. 

These experiments are based on the pump-cool-probe principle, where the pump is an IR laser 

pulsed at the half frequency of the UV probe laser. It is a hole-filling experiment if the pump 

laser is fixed to a specific vibrational band of one conformer while scanning the UV after 

sufficient cooling collisions. The hole-filling spectra resulting from the difference of LIF 

signal scanned with and without the IR laser will reflect the change in population of various 
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conformers. The dip in the population of the selected conformer manifests itself by a 

depletion in the LIF signal whereas conformations gaining population cause a gain in signal. 

By using the exact same arrangement but keeping the UV fixed and scanning the IR 

wavelength Zwier and coworkers record a so-called infrared population transfer spectrum. In 

this case, the population change induced by infrared excitation in a selected conformer is 

detected. These spectra allow the extraction of fractional population if the hole-filling spectra 

did not result in the formation of new conformations. When associated with IR spectra taken 

under the same conditions one can extract the quantum yields to isomerization. 

 The Zwier group was also the first to describe a methodology for investigating the 

barrier heights separating different conformational minima [59-64] using simulated emission 

pumping. In this technique the IR source is replaced by two tunable ultraviolet lasers. The 

first laser is fixed on a vibronic band (S0-S1 transition) in such a way as to excite selectively 

one conformer. The second ultraviolet laser induces stimulated emission of a fraction of the 

excited state population back down to a particular vibrational level in the ground state. In this 

case the S1 state must be sufficiently long-lived to allow time to drive population from the S1 

state to S0 (v). Most of these studies have been performed on neutral molecules having the 

size of a single amino acid.  

In this thesis work, following the example of Zwier [55], we performed population 

transfer experiments in order to investigate the barriers separating stable conformers of much 

larger protonated peptides. Although the principles remain the same (i.e., pump-cool-probe), 

these techniques needed to be adapted for application to ions in a cold ion trap. 

3.4.1 Hole filling spectroscopy in the cold 22-pole ion trap 

The hole-filling experiment, illustrated schematically in Figure 3.3, consists of 

selectively exciting a single conformation of a cold ion species by setting the IR laser to a 

unique vibrational transition. This wavelength is chosen after recording the electronic 

spectrum of this molecular ion and the IR spectra of its stable conformers. The selected 

conformer is then heated by the absorption of the IR photon. A very important element is to 

give enough time for the molecule to cool back down before firing the UV probe laser, which 

in this case will be tuned over the region of interest to monitor the changes in population of 

the various conformers.  
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The experimental procedure in our apparatus is as follows. The ions are pulsed into 

22-pole trap in a package of typically 10,000 ions with a repetition rate of 20Hz. The ions are 

cooled to about 10K by collisions with helium, which is injected and thermalized to the 

temperature of the trap housing 1 ms before the arrival of the ions. An IR laser operating at  

10 Hz excites a single conformation of the trapped ions, and after a time delay sufficient for 

the molecule to relax back the vibrational ground state excitation, the UV probe laser fires, 

inducing fragmentation. This is repeated at different UV wavelengths to measure a UV 

spectrum of the molecules after IR heating and recooling. On alternate laser shots, only the 

UV laser fires and we measure the difference spectrum with and without the IR excitation. 

 

Figure 3.3: Spectroscopic scheme of the Hole-filling experiment in a cold 22-pole ion trap. I) the ions 

are cooling by collision with He, II) infrared burn laser excites a single conformation of the cold ion 

species, III) the excited conformer is cooled back by collision with the remaining He, IV) the UV 

probe laser scanned detects the changes in population. 

This difference spectrum will reveal whether the photon energy was high enough in 

energy to bring the molecule above the barrier to isomerization and cause the changes in 
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population of different conformations. The depletions and gains in the photofragmentation 

signal will reflect the loss and gain in the population.   

3.4.2 IR-population transfer spectroscopy in the cold 22-pole ion trap 

In the IR-population transfer experiment, the basic scheme of cool-excite-recool-probe 

is maintained, but in this case the UV laser fixed on a transition of a particular conformer and 

the IR laser tuned. This is shown schematically in Figure 3.4. 

 

Figure 3.4: Spectroscopic scheme of the IR-population transfer experiment in a cold 22-pole ion trap. 

I) the ions are cooling by collision with He, II) infrared burn laser scanned, III) the excited conformer 

is cooled back by collision with the remaining He, IV) the UV probe laser fixed, detecting the changes 

in population of the selected conformer. 

The resulting spectra obtained from the difference of the photofragmentation signal 

after IR excitation and recooling and in the absence of this IR excitation reflect the population 
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changes induced by IR laser on the population of the selected conformer. The infrared 

transitions due to the probed conformer will be recognized as depletions in the fragmentation 

signal, while gains occur from the transitions where other conformers absorb and transfer 

population into the selected one. Together with conformer-specific IR-UV spectra taken under 

the same conditions, these spectra allow the extraction of quantitative data on the fractional 

population and the quantum yields to isomerization. The equations that allow us to extract 

these quantitative data will be developed in Section 3.5.     

3.4.3 Adaptation to the condition of the cold tapped ions  

The first step in our experiment is to vibrationally excite cold molecules, and for this 

we need a diagnostic of the temperature of the molecules so that we can determine the time 

required to cool them. As shown in Figure 3.5, in the usual spectroscopic experiment we fire 

the laser at the end of our trapping cycle, however in this case the same He pulse should be 

used to cool the molecules initially and later recool them after the burn excitation.  

 

Figure 3.5: Timing diagram of the IR-UV double resonance experiment in 22-pole ion trap. 

The temperature verification is done by recording ultraviolet photofragment spectra at 

different residence times of the ions in the trap. If the molecule is sufficiently cold, excited 

rotational and vibrational levels can be very effectively depopulated, and the spectrum will be 

greatly simplified. Assuming a Boltzmann distribution at thermal equilibrium of the ion 

packet, one can get an estimation of the vibrational temperature of the molecule from the 

intensity of the hot bands. Assuming that the intensity of a hot-band S0←1 and the 

corresponding vibronic band S1←0, will have similar Franck-Condon factors, the populations 
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of the respective initial states will be proportional to their measured intensities. Thus, the 

temperature is obtained from the following expression: 
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 Eq 3.1 

where E  is the energy difference between the band origin and the hot band. (i.e., the 

energy of the vibrational mode giving raise to the hot band) 

 

Figure 3.6: Electronic spectra of the seven amino acid peptide (Ac-Phe-(Ala)5-Lys) [48] recorded at 

different trapping times. 

The data of Figure 3.6 shows that the longer the delay between the arrival of the ions 

to the trap and the laser excitation, the more resolved the spectrum is. The first spectrum 
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recorded after 1ms of collisions with helium shows a background with unresolved bands due 

to incomplete cooling. In Figure 3.6 b and c the spectra become more resolved, but the bands 

are still broad and the estimated temperature indicates that the ions are still slightly warm. 

After an additional 20 ms for cooling, the vibrational temperature is estimated between 10 and 

15K. 

Having defined the delay time need for the ions to cool before we fire the IR burn 

laser, we need to determine the time that the ions need to dissipate the absorbed IR photon 

energy before firing the UV probe laser pulse. This is simply done by scanning the time delay 

between the two laser pulses – the first which is from an IR source fixed at a frequency in 

resonance with a vibrational transition specific to a particular conformer and the second from 

a UV laser tuned to a given vibronic transition of a different conformer than the one selected 

by the IR laser. We scan the time delay between the two lasers, monitoring the difference in 

signal between IR laser on and off. Figure 3.7 illustrates the gain in the photofragment signal 

of conformer B of a seven amino acid peptide having population in four different 

conformations [48, 65], while the IR laser is fixed at a transition belongs to conformer A. The 

curve shows an increase in the signal during the first microseconds, after which it reaches a 

maximum and stays stable for 10ms. In view of this, a delay in time of 7 ms was chosen to 

ensure that the excited molecules have enough time to relax back to their ground vibrational 

level and redistribute across the trap. 

 

Figure 3.7: The gain in the photofragment signal, of Ac-Phe-(Ala)5-Lys conformer B, detected as a 

function of time delay between the IR and UV lasers, fixed in wavenumber. The IR laser is set to a 

vibrational transition of conformer A at 3347 cm-1 while the UV laser probes conformer B at 

37’577.83 cm-1.  
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Since the ion temperature in the 22-pole trap depends on several parameters [66-68], 

the timing diagram presented in Figure 3.8 is verified before each set of population transfer 

experiments for the molecules studied in this work.    

 

Figure 3.8: Timing diagram of the population transfer experiments in 22-pole ion trap.  

The successful implementation of the population transfer experiments in the ion trap 

requires a good overlap in space between the lasers and the ion packet. The IR beam has 

slightly large diameter than the UV beam. The latter is first aligned with the ions by 

maximizing the photofragment signal. Once this is done, the IR beam is positioned by 

optimizing the depletion in the UV signal.  

3.4.4 Timing of the events 

All the population transfer experiments on a single ion packet reported in this work, 

from the electrospray ion generation to the detection of the products, lasts typically 50 ms. 

The repetition rate of these experiments is 20 Hz, and a single point of a spectrum is obtained 

by averaging the signals of certain number of cycles (between 50 and 100). After recording 

the first point, the laser wavelength is then changed by a small increment, and a new point is 

acquired. This procedure is repeated until a complete spectrum is measured.  

The timing diagram of Figure 3.9 shows the sequence of events taking place during a 

population transfer experiment presented in the next chapters. The continuous nano-

electrospray ion signal is collected in the hexapole for 40 ms and transformed into an ion 

packet, which is pulsed out of this ion reservoir by lowering the exit lens potential for 9 ms. 

The parent ions, mass-selected in the first quadrupole Q1, enter the 22-pole trap where they 

will be stored for 29 ms and cooled by collisions with helium buffer gas which is pulsed ~1ms 
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prior to their arrival. In this case, the IR laser repetition rate is set to 10 Hz and the UV laser 

to 20 Hz, which make it possible to acquire one data point with IR laser on and one with IR 

laser off and subtract the two in order to obtain the population transfer spectrum. As discussed 

above, an IR laser pulse is fired through the 22-pole trap after 20 ms of trapping time and 

followed 7 ms later by a UV laser pulse that excites the parent ions to an excited electronic 

state from which some fraction of them dissociate. The excited parent ions are given 2 ms to 

fragment before the potential on the exit lens of the 22-pole is lowered and the parent and 

daughter ions are released and directed towards the second quadrupole mass filter, Q3. This 

latter transmits a fragment of a given mass-to-charge ration (m/z) for detection. The number of 

daughter ions after IR induced population transfer, is recorded on channel A of the pulse 

counter. During the following trapping cycle, channel B of the counter measures the number 

of fragment ions without the IR laser firing. During the IR-UV spectroscopic studies without 

population transfer, this process is the same but with a delay of 200 ns between the two lasers 

fired 1 ms before the trap opens. 

 

Figure 3.9: Timing diagram of the events taking place in a single population transfer experiment. 
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3.5 Extracting the fractional population and the isomerization 

quantum yields  

3.5.1 Extracting the fractional population 

The IR-population transfer spectrum detects the population changes induced in a 

single conformation by the absorption of an IR photon. Consider the case of a molecule with 

population in three stable conformations (A, B and C) in the ion trap. If the hole filling spectra 

of all the stable conformers of a given molecule do not show evidence of any new minima, 

this will mean that there is no change in the total ion population and the following equation 

will be satisfied [55]:   

 XA XB XCΦ  Φ Φ 1   Eq 3.2 

where Φ  XY is the isomerization quantum yield going from conformer X to conformer 

Y.  

The peak intensity of an IR-population transfer spectrum is given by subtracting the IR 

laser-on signal and IR laser-off signal and dividing it by the IR off signal acquired almost 

simultaneously. If the IR pulse is fixed at a wavenumber at which all three conformers absorb, 

the UV pulse is tuned to conformer A, and there is enough time for the absorbed IR energy to 

be completely dissipated and the ions to be redistributed in the trap, the IR-population transfer 

peak intensity will be given by:  

 
: , :

:

 
AUV IR AUV

A

AUV

F F
IRPTS

F
 Eq 3.3 

where,  :AUVF  is the total number of fragment ions from conformer A; and : ,A UV IRF  is 

the total number of fragment ions from conformer A after cooling the IR excitation. 

Equation 3.3 is developed in detail in the appendix A; here we will give the final 

expression of the peak intensity of an IR-population transfer spectrum:  

 
, XA , AA       .    . Φ .   .(1 Φ )  . 

 
. .  

X X IR A A IR IRX A

A

A ion IR

p p E
IRPTS

p A
 Eq 3.4 
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where  and A Xp p  the fractional population of ions in conformation A and X.  is the 

absorption cross section at the utilized laser wavelength. IRE  is the pulse energy and IR is the 

frequency of the IR laser pulse.  

The weighted sum of the population transfer spectra for the three conformation at all 

infrared wavelengths is given by: 

.    .    . A A B B C Cp IRPTS p IRPTS p IRPTS  

, , XA , AA

, , XB , BB

, , XC , CC
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E
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Since equation 3.2 holds for all conformers, then:  

AB AC AA

BA BC BB

CA CB CC

Φ  Φ  (1 Φ )

Φ  Φ  (1 Φ )  

Φ  Φ  (1 Φ ) 1 1 0

 

and therefore, 

 .    .    .  0A A B B C Cp IRPTS p IRPTS p IRPTS  Eq 3.5 

This equation demonstrates that all the infrared excited population is redistributed 

among the existing conformers. In the meantime the fractional population of the molecule 

sum to 1:  

 1X A B Cp p p p  Eq 3.6 
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The IRPTSX are obtained experimentally and thus from the weighted-sum of the 

infrared population transfer spectra and Equation 3.6 we can extract the fractional populations 

of the conformation of the molecule under the trap conditions.  

3.5.2 Extracting the quantum yields to isomerization 

To extract the quantum yield to isomerization from the IRPT spectra, we need 

information about the number of molecules that are excited by the infrared laser pulse. This 

piece of information could be extracted from an IR dip spectrum taken under the same 

conditions of the IR population transfer spectrum. This is done by moving the UV laser pulse 

in time so it will fire early in the trapping cycle, 200ns after the IR laser. The IR spectrum 

peak intensity is given by:  

 
: , :

,

:

   . 
max( ,  ).

AUV IR AUV IR
A A IR

AUV UV IR IR

F F E
IR

F A A
 Eq 3.7 

where,  :AUVF  is the total number of fragment ions from conformer A; and : ,A UV IRF  is 

the total number of fragment ions from conformer A after the IR excitation.  and   UV IRA A are 

the area of the UV and IR laser beam. This equation is developed in detail in the appendix A.  

Substituting ,A IR  into the IRPTS expression, Equation 3.4:  

 XA AA

max( ,  )
  .    .   . Φ . .(1 Φ )

.

UV IR
A X X A A

X AA ion

A A
IRPTS p IR p IR

p A
 

If we consider 
max( ,  )UV IR

ion

A A

A
  

This will lead to a final set of IRPTS equations for the three conformers A, B and C: 

BA CA AA.   . Φ .   . Φ .(1 Φ ) .CB
B C

A A

A A

pp
IRPTS IR IR IR

p p
 Eq 3.8 

AB CB  .   . Φ   .   . Φ .(1 Φ ) .CA
B A C B BB

B B

pp
IRPTS IR IR IR

p p
 Eq 3.9 
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AC BC   .   . Φ    .   . Φ .(1 Φ ) .A B
C A B C CC

C C

p p
IRPTS IR IR IR

p p
 Eq 3.10 

However if the quantum yields are extracted at transition where just conformer A 

absorbs, this set of equation will give:  

AA

AB

AC
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A A
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In the case of the unique absorption band of conformer B:  

BA
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.(1 Φ ).

.Φ .

.Φ .
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In the case of the unique vibration band of conformer C, give  

CA

CB

.(1 Φ ).

.Φ .

.Φ .

C

A

C C CC

A

B B
C

B

C

IRPTS IR

p
IRPTS IR

p

p
IRPTS IR

p

 

The only unknown quantities in these equations are the quantum yields since the peak 

intensities of the infrared population transfer and infrared spectra are measured 

experimentally and the fractional population could be extracted from the weighted sums of the 

population transfer spectra us demonstrated in the previous paragraph. We assume to be 

working under optimized conditions for a maximum of overlapping between the lasers and the 

ions and thus γ is assumed to be close to 1.  
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Chapter 4     

 Conformer-specific spectroscopy by IR-

UV double resonance  
 

 

The objective of this thesis is to investigate conformational dynamics by exploring the 

energy landscapes of biological molecules and transitions between them.  It is primordial that 

our attention focuses first on the number of conformers that a given molecule could adopt, 

their structures as well as their spectroscopic signatures. In this chapter, we present 

spectroscopic studies that provide information about the local minima on the potential energy 

surface. We first discuss the spectroscopy of the amino acid phenylalanine which serves as 

chromophores in the peptides used in this thesis work. In the second part, we describe our 

spectroscopic studies of two small peptides,  Ac-Phe-(Ala)5-LysH
+
 a 7 amino acid helical 

peptide and Ac-Phe-(Ala)3-(Gly)4-(Ala)3-LysH
+
 a twelve amino acid peptide, in the Amide A, 

I and II regions of the infrared spectrum.  

4.1 Spectroscopy of the amino acid phenylalanine 

4.1.1 Introduction  

Many gas phase studies have focused on understanding the intrinsic properties of the 

aromatic amino acids for the simple reason that they are responsible for photochemistry and 

photophysics of proteins in the UV region. In 1985, the Levy group reported the first 

electronic spectrum of tryptophan in a supersonic expansion and identified six different 

conformations using R2PI saturation and fluorescence spectroscopy [1, 2]. The desire to 

understand more completely the relationships among conformation, chromophore 

environment, and photophysics has led to numerous gas phase spectroscopic studies of the 
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amino acids and their derivatives in which the complicating effects of solvent have been 

removed [3-9]. The spectrum of the neutral aromatic amino acid, phenylalanine, first recorded 

by Martinez et al., about 20 years ago in a supersonic jet using laser-induced fluorescence 

spectroscopy, revealed the presence of five stable conformers [6]. Other groups applied a 

combination of spectroscopic techniques, coupled with high-level ab initio calculations, and 

demonstrated the presence of six conformations and predicted their assignments [10-13]. 

All these spectroscopic studies were concerned with the gas-phase amino acids in their 

neutral form. The study of charged biomolecules is of at least equal importance since in their 

native environment these molecules are charged. Several groups have put a considerable 

effort in order to understand the spectroscopy, structure, various photofragmentation channels 

and the excited-state dynamics of the aromatic amino acids and their derivatives [14-24]. 

Stearns et al. reported the ultraviolet photofragmentation spectra of protonated 

tyrosine and phenylalanine [19]. The electronic spectrum of TyrH
+
 was measured by 

monitoring the fragment m/z 107 amu which corresponds to the tyrosine side chain radical 

cation and exhibits sharps features, making possible the use of the IR-UV double resonance 

techniques. The IR spectra combined with the DFT calculations at the B3LYP/6-31G** 

revealed the presence of four stable conformations sorted in two classes depending on the 

orientation of the backbone, anti and gauche, which exhibit different fragmentation patterns. 

The following section will represent the spectroscopic studies of the protonated 

phenylalanine, in which I contributed.   

4.1.2 Results on the spectroscopy of protonated phenylalanine  

Phenylalanine ions are produced by electrospray, pre-trapped in the hexapole for ion 

packet formation, mass-selected and injected into a cold ion trap, where they are cooled by 

collisions with helium. We then irradiate these cold ions with different combinations of UV 

and IR laser pulses and measure spectra by detecting fragments that are produced after photon 

absorption as a function of the laser frequency. 

The vibrationally resolved ultraviolet photofragmentation spectrum of PheH
+
 is 

presented in Figure 4.1. The signal was recorded by monitoring the fragment at m/z 74 as a 

function of wavenumber of the UV dissociation laser. This fragment corresponds to NH2-CH-

COOH, the radical cation left upon loss of a hydrogen atom and breakage of the Cα-Cβ bond. 

It is not observed in collision-induced dissociation (CID) [25] and must result from a direct 
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dissociation from an excited electronic state. Assuming that phenylalanine behaves like 

tyrosine, this bond cleavage mechanism, according to Lucas et al., is based on light-induced 

electron transfer from the aromatic ring to the carboxylic acid, followed by a fast internal 

proton transfer from the ammonium group to the carboxylic group [26].  

 

Figure 4.1: Ultraviolet photofragment excitation spectrum of PheH+ recorded by detecting the m/z 74 

fragment. The conformational assignments are based on the infrared and IR-UV hole burning spectra. 

Excitation of the first two UV transitions of PheH
+
 (37 520.9 cm

-1
 and 37 529.6 cm

-1
) 

induces the same fragmentation mass spectrum, shown in Figure 4.2. The fragment m/z 74 has 

the most intense signal, and another major fragment is detected over the mass channels 91- 

93. Mass 93 is observed in CID and attributed to the loss of (H2O + CO + HCN) [25]. Mass 

91 corresponds to the side chain radical cation [21], but it is not clearly distinguishable from 

m/z 93, since we run our analyzing quadrupole at relatively low resolution in order to 

maximize ion transmission.  

 

Figure 4.2: Photofragment mass spectrum of protonated phenylalanine. 
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The UV spectra record monitoring the fragment m/z 91-93 or m/z 74 are identical. The 

first origin transition occurs at 37 520.9 cm
-1

 and is shifted to the red of that of the neutral 

species by only 17 cm
-1

. The second peak in the UV spectrum of PheH
+
 is larger than the first 

and spaced from the latter by 10.5 cm
-1

. This small energy difference between the first two 

peaks and the absence of a further progression of peaks suggests that these two features are 

not a part of a Franck-Condon progression but the origin transitions of different conformers.  

Figure 4.3 shows the IR spectrum recorded with the UV laser set to the first transition of 

PheH
+
 at 37 520.9 cm

-1
, fired 200 ns after the scanned IR laser. The different calculated 

spectra are presented below the experimental spectrum, each representing a family of 

structures sorted according to the NH3 and COOH orientations. Figure 4.3a displays the 

global minimum which contains two stabilizing hydrogen-bond interactions of the charged 

NH3 group, one with the -cloud of the ring and one with the carbonyl oxygen. Figure 4.3b 

presents the calculated spectrum for a conformer in which the rotation of the carboxylic acid 

group results in an NH-OH interaction that is considerably weaker than the NH-O=C 

interaction shown in Figure 4.3a, increasing the energy by 16.0 kJ/mol and shifting the NH 

stretching frequency up from 3188 cm
-1

 to 3283 cm
-1

.  The loss of the NH-  interaction in the 

conformers shown in Figure 4.3c and d also results in a higher frequency NH stretch and 

considerably higher energies.  Only the lowest energy structure is consistent with the 

experimental spectrum.  There are two structures with NH3 and COOH orientations like that 

of Figure 4.3a that differ in the orientation of the backbone with respect to the ring by a 

rotation of the angle 1.  The structure with  = 72º (gauche) is 3.2 kJ/mol higher in energy 

than the global minimum structure, which has = 169º (anti). 

Assuming that phenylalanine is protonated on the N-terminus, initial conformational 

searches on the protonated amino acids using the AMBER force field [27] within the 

MacroModel [28] program were performed. Re-optimization of the lowest energy structures 

and calculation of harmonic and anharmonic vibrational frequencies were carried out using 

B3LYP/6-31++G** in Gaussian03 [29].  Harmonic hydride stretch frequencies were scaled 

by 0.954 for comparison to the infrared spectra, but all frequencies were left unscaled in the 

zero-point energy calculations. Anharmonic frequency calculations were left unscaled.
1
 

                                                 

1 The DFT/B3LYP/6-31++G** calculations were performed in our laboratory by Dr Jaime A. Stearns. 
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Figure 4.3: Experimental infrared spectrum of conformer A and the calculated spectra at the B3LYP/6-

31++G** level of theory (a)-(d) for four families of conformers, with the zero-point corrected energy 

of each structure in kJ/mol.   

The infrared spectra associated with the first two transitions in the UV spectrum are 

presented in Figure 4.4. While the peak corresponding to the carboxylic acid OH stretch is the 

same for the two, the vibrational frequency of the non-interacting ammonium NH stretch 

differs by 15 cm
-1

, supporting the conclusion that the peaks in the UV spectrum belong to 

different conformers. Further differences occur in the lower frequency region between 3000-

3150 cm
-1

 where the vibrational bands of the NH groups interacting with the π cloud and the 

carboxyl group appear. Comparison with the anharmonic and scaled harmonic calculated 

frequencies for PheH
+
 suggests assigning the spectrum of Figure 4.4a to conformer A, which 

corresponds to the global minimum anti structure, and that of Figure 4.4b to conformer B, the 

gauche structure. This assignment is made based upon the good agreement between the 

calculated and observed free NH stretch frequencies as well as the prediction that the 

hydrogen bonded NH stretches are further shifted to the red in conformer B. 
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Figure 4.4: Infrared spectra of conformers (a) A and (b) B of PheH+. Calculated spectra (B3LYP/6-

31++G**) and structures are shown below the experimental spectra. The solid line spectra represent 

scaled harmonic frequencies, and the dashed line spectra are unscaled anharmonic frequencies.  

This assignment is further supported by the correct prediction of the greater splitting 

between the bound NH stretches in conformer A compared to those of conformer B. To help 

assign the conformers associated with many of the transitions in the UV spectrum of Figure 

4.1, similar infrared spectra were obtained. Moreover, IR-UV hole burning electronic spectra 

have been recorded for both conformers A and B, as shown in Figure 4.5.  

The red traces in Figure 4.5 show the first 260 cm
-1

 of the IR-UV hole burning spectra 

of PheH
+
 measured by fixing the IR laser on the N-H transition, in the low frequency region, 

at 3122 cm
-1

 and 3079 cm
-1

 for conformers A (a) and B (b) respectively. The black traces 

correspond to the signal recorded while the IR laser pulse is off. The depletion in the signal of 

the hole-burning spectra and the comparison between them illustrate that each vibronic 

transition observed could be attributed to conformer A or conformer B. 

The electronic spectra of both conformers exhibit a hot band (at -43.6 cm
-1

 for A and -

42.9 cm
-1

 for B), which is too small to be observed on the scale of Figure 4.1. Using the 

intensity of this hot band, we estimate a vibrational temperature of PheH
+
 of ~12 K, which is 

similar to that determined for protonated tyrosine. A vibrational mode of similar frequency in 
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the excited state (43.6 cm
-1

 for A and 42.0 cm
-1

 for B) seems to be built off of the origin for 

each conformer.   

 

Figure 4.5: IR-UV hole burning spectra (in red) recorded by fixing the IR the transition of (a) 

conformer A at 3122cm-1 and (b)conformer B at 3079cm-1 of PheH+. The black traces are recorded 

with the IR laser off. 

The lowest frequency vibration predicted by the calculations is a torsion of the phenyl 

ring with respect to the backbone that has a ground state harmonic frequency of 45 cm
-1

 for 

conformer A and 43 cm
-1

 for conformer B.  Conformer A shows considerably more vibronic 

activity than conformer B, indicating a larger geometry change upon excitation.  The low-

frequency vibrations are also built off of the intense vibronic bands at 38054.2 cm
-1

 and 

38061.1 cm
-1

, which are 531 cm
-1

 above the band origins of conformers A and B, 

respectively.  This vibrational mode corresponds well to the 6b vibration of benzene and its 

derivatives, which appears at 530 cm
-1

 in the excited state of toluene [30]. The intensity of 

this transition in toluene and other substituted benzenes derives from vibronic coupling 

between the Lb and La * excited states, and this is likely also the case for PheH
+
. Since we 

had clearly identified different peaks with conformer A and B, the inversion of the relative 

intensities between the origins and 6b bands suggests that the intensities are not simply related 

to the relative population. This subject will be addressed further in Chapter 6.  

We had recently extended the IR region to cover the 6 µm by generating laser light by 

an IR OPO together with difference-frequency mixing in a AgGaSe2 crystal. The IR spectra of 
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the first two transitions in the UV spectrum of protonated phenylalanine are presented in 

Figure 4.6.   

 

Figure 4.6: Infrared spectra of conformers (a) A and (b) B of PheH+ in the amide I region.  

The peak around 1785 cm
-1

 is assigned to the excitation of the C=O stretching mode 

while the small peak appearing to the blue of these transitions could be an overtone of lower 

frequency vibrations. The C=O  transition has a width of about 5.1 cm
-1

 and 11cm
-1

 in the 

case of conformers A and B,  the factors leading to this difference are likely a combination of 

the hydrogen bonding and interaction with the π cloud of the phenyl ring although it could be 

some mixing with the overtone. 

This band appears close in frequency to the C=O group of neutral phenylalanine with 

the carbonyl oxygen hydrogen bonded [10, 13, 31]. This observation confirms our previous 

structural assignment based on the association with the spectra in the NH stretch region, 

where both conformers A and B have the C=O hydrogen bonded.  

4.1.3 Conclusion  

The protonated aromatic amino acids are closed shell species with ultraviolet 

chromophores and * excitation energies similar to those of the neutrals.  Protonation results 

in a red shift of the S0-S1 transition energies of only about 50 cm
-1

 for phenylalanine, 

indicating the * state does not depend strongly on protonation state for these species.  Only 
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the lowest energy calculated structures give infrared spectra that are consistent with those 

measured here, suggesting the cooling process does not trap molecules in higher energy 

potential minima.  The conformations observed for PheH
+
 belong to the same familie, each 

having two backbone orientations, with dihedral angle  = ~170º (anti) and ~70º (gauche).  

These two conformers are analogous to conformers II and VII calculated for the neutral, 

although VII was not observed in a gas phase experiment [10].  

4.2 Spectroscopy of seven and twelve residue peptides 

4.2.1 Introduction  

The secondary structure of a peptide corresponds to local three-dimensional structural 

elements, while the tertiary structure is the molecule’s overall shape. These three-dimensional 

arrangements are governed by weak non-covalent interactions between the amino acids, i.e. 

hydrogen bonds. One of the most common secondary structural elements in proteins is the 

helix. There are different types of helices, which differ in their hydrogen-bonding patterns. 

The most common and prevalent type of secondary structure and which plays important role 

in the protein folding is the α-helix [32]. Based on the Pauling and Corey nomenclature, it is a  

3.613-helix that represents a repeating pattern of hydrogen bonds between the amide carbonyl 

oxygen on the i
th

 residue and the amide NH of the i+4
th

 residue, forming hydrogen-bonded 

rings of 13 atoms, denoted C13 [33]. The 310 helix is a tighter, less common structure formed 

by 10-membered rings (C10) of an i, i+3 bonding pattern.   

The gas phase provides a medium for studying the intrinsic conformational 

preferences of peptides that is not dissimilar to the low dielectric constant environment of 

biological membranes. In the absence of solvent a peptide can adopt conformations driven by 

only intramolecular forces, providing the opportunity to study these interactions in detail 

using high-resolution spectroscopic techniques. At the same time, gas phase studies provide 

benchmarks to test and improve theoretical predictions of the conformational structure and the 

counterbalancing forces that control them. Several IR spectroscopic studies have identified 

helical structures in gas phase peptides.  Oomens and coworkers measured IR spectra for 

several charge states of cytochrome c by multiple-photon dissociation spectroscopy in an FT-

ICR mass spectrometer [34]. They assigned their spectrum mostly to features indicative of -

helices, in keeping with its known solution structure. Mons and coworkers, using IR-UV dip 
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spectroscopy in the NH stretch region, identified 310 helical motifs for Ac-Ala-Phe-Ala-NH2 

and Ac-Aib-Phe-Aib-NH2 [35]. They studied many other small peptides with the aim of 

characterizing the interactions responsible for the formation of the secondary structures in 

proteins and understanding the competition between the several of these secondary structures, 

namely β-turns, β-strands, or 310 and α-helices [36-40]. De Vries and coworkers reported the 

infrared spectra of the pentapeptide FDASV and several 15-residue gramicidin peptides in the 

hydride stretch region and suggested the presence of gas-phase helical structures, the former 

containing a single C13 -turn, and the latter each showing a large, unresolved band in the 

NH-stretch region attributed to hydrogen bonds involved in a helix [41, 42].  

In parallel to the spectroscopic studies, ion mobility has been applied to assigning the 

geometries and the factors that stabilize the secondary structure of peptides and proteins [43-

47]. Jarrold and coworkers established that peptides consisting of seven or more alanines with 

a lysine at the C-terminus form extremely stable gas-phase helices, while those without the 

lysine or with the lysine at the N-terminus are globular [45, 46]. Recently using IRMPD 

spectroscopy in the high-frequency stretch region, Vaden et al. confirmed the globular nature 

of small alanine peptides lacking the C-terminal lysine [48]. The protonated lysine side-chain 

plays an important role in helix formation, by providing hydrogen-bonding sites for three 

carbonyls at the C-terminus and by stabilizing the macro-dipole of the helix. 

Recently Stearns et al. reported first results of the spectroscopic studies of cold, 

protonated, lysine-capped polyalanine helices Ac-Phe-(Ala)5-Lys-H
+
 and Ac-Phe-(Ala)10-Lys-

H
+
. They assigned the spectroscopic features associated with the conformers of the smaller 

peptide and speculated as to the corresponding conformers observed in the larger [49, 50]. 

The presence of the phenylalanine was essential, since a chromophore is needed for these 

spectroscopic experiments and is not expected to change significantly the helical shape 

predicted by the ion mobility studies. The IR spectra in the NH stretch region of the small 

peptide exhibits seven well resolved bands, which were assigned by comparison with 

calculations together with nitrogen-15 isotopic substitution studies. The helical geometries 

found spectroscopically seem to be in agreement with the ion mobility studies of Jarrold and 

coworkers [43-47]. Stearns et al. also reported the effects of N-terminus substitution on the 

structure and spectroscopy of gas-phase helices [51]. It was found that the acetylation of the 

N-terminus has a very little effect on the spectroscopy and structure, however protonation of 
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the N-terminus changes the infrared spectrum to the point that it may also change the structure 

of the peptide.  

The Ac-Phe-(Ala)5-Lys-H
+
 peptide is one of the systems that we choose to explore its 

conformational isomerization by population transfer experiments. First it is important to 

identify the number of conformers and their structure. The following section will report the 

spectroscopic studies on this small peptide. In order to present the entire picture it is necessary 

to reported some of the data Dr. Stearns obtained, but this will be specified.  

4.2.2 Results of spectroscopic studies of Ac-Phe-(Ala)5-Lys-H+ 

The UV photofragment spectra of the Ac-Phe-(Ala)5-Lys-H
+
 peptide, shown in the 

Figure 4.7, was recorded monitoring the fragment m/z=474 corresponding to the b5 fragment 

[49]. Despite the large size of the molecule, the UV spectrum shows sharp features without 

significant congestion from Franck-Condon activity, a large number of conformers or hot 

bands.  

 
Figure 4.7: Ultraviolet photofragment spectrum of Ac-Phe-(Ala)5-Lys-H+,  recorded by detecting the 

m/z 474 fragment. The conformational assignments are based on the infrared  

IR-UV spectra. 

By fixing the UV laser on different transitions in the photofragment spectrum while 

scanning the IR laser 200 ns earlier, we recorded the IR spectrum associated with each of 

these transitions. The largest peaks have different IR spectra and are labeled A and B. The 

next most intense peaks, 10 cm
-1

 and 38 cm
-1

 to the blue of peaks A and B, have the same IR 

spectra as A and B, so we assign them as vibronic bands of the same conformers, and label 

them with the corresponding lower-case letter.  The two transitions to the red of A and B have 

different infrared spectra, and therefore represent the third and fourth conformers, C and D. 
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Figure 4.8 presents four IR spectra in the NH stretch region associated with 

conformers A-D as identified by their respective transitions in the UV spectrum. We noticed 

some gains in the infrared spectra of conformers C and D (dashed-line), which arise because 

of statistical broadening [52] in the UV spectrum of conformers A and B following IR 

excitation.  This spreads a small amount of absorption intensity to the UV wavelengths at 

which conformers C and D are probed. Because the fragmentation signals from conformers A 

and B are significantly more intense than those of C and D, this gain on the fragmentation 

signal is on the same scale as the IR-induced depletion of C and D.  The populations of C and 

D are sufficiently small that the inverse is not perceptible [53]. The spectra represented with a 

solid line in the case of C and D are the same as those dashed, but the gains have been 

removed by subtracting the contributions from conformers A and B.   

 

Figure 4.8: IR-UV double resonance spectra of Ac-Phe-(Ala)5-Lys-H+ recorded at the labeled 

transitions in the UV spectrum.  The positive-going signals in the spectra of C and D (the dashed-line) 

are gains due to conformers A and B. The best matching calculated spectra are presented directly 

under each experimental spectrum together with the assignments of each peak to a specific amino acid 

residue. 

The four infrared spectra exhibit a C-terminal carboxylic acid OH stretch band at 3572 

cm
-1

 and show seven resolved amide NH stretches except in D, where two of the peaks may 

overlap. In general, the amide NH stretch bands below 3400 cm
-1

 belong to the NH groups 

involved in stronger hydrogen bonds, whereas the higher-frequency NH stretch bands arise 

from those in weaker interactions.  The significant differences in the low-frequency region 
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between the two pairs of conformers A/B and C/D suggest different hydrogen-bonding 

patterns for each pair (see discussion below).  We also observed several broad transitions 

between 2900-3100 cm
-1

 (not shown), which we assign to the NH stretches of the ammonium 

group of the lysine side chain.  In protonated amino acids,  ammonium NH stretches appear 

around 3350 cm
-1

 in the absence of hydrogen bonding, and around 3000 cm
-1

 when hydrogen-

bonded [19], implying that the ammonium NH groups in Ac-Phe-(Ala)5-Lys-H
+
 are involved 

in  hydrogen bonds.   

To help assign the amide NH bands, Dr. Stearns carried out calculations at the 

B3LYP/6-31G** level of theory and recorded infrared spectra of three isotopologues of Ac-

Phe-(Ala)5-Lys-H
+
, each with an alanine amide nitrogen replaced by N-15:

 15
N-Ala

2
, 

15
N-

Ala
4
, and 

15
N-Ala

6
, (the right superscript index of the residue indicates its position from the 

N-terminus). These studies allow the identification of four helical conformers that can be 

sorted in two families according to their hydrogen-bonding scheme of the peptide backbone, 

as shown schematically in Figure 4.9 (A-B backbone II and C-D backbone I). The global 

minimum is a helix with two C10 and two C13 rings, as shown schematically in Figure 4.9a, 

and denoted backbone I.  The hydrogen-bonded rings involve the amide NH groups of Ala
3
, 

Ala
4
, Ala

5
, and Ala

6
 in such a way that the middle two share a carbonyl while the amide NH 

groups at the ends of the molecule do not participate in C10 or C13 NH···C=O hydrogen bonds.  

The lysine amide NH is in a C5 arrangement with the C-terminal carbonyl, and the 

phenylalanine NH can be in a -hydrogen bond with the aromatic ring, depending on the 

orientation of the phenylalanine side chain. The second-lowest-energy hydrogen-bonding 

pattern, II, has three C10 rings and one C13 ring, with the Ala
5
 and Ala

6
 NH groups hydrogen-

bonded to the same carbonyl (Figure 4.9b). The hydrogen bonding schemes for the end 

residues are the same as backbone I.  
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Figure 4.9: Schematic depictions of the structures of the lowest-energy conformers of  

Ac-Phe-(Ala)5-Lys-H+, with the hydrogen-bonding schemes of the helices on the left and calculated 

structures on the right.  The calculated structures have the helix axes aligned to better show the 

orientation of the phenylalanine ring: g+, g-, or anti.  The conformers are also labeled with their zero-

point-corrected energy in kJ/mol and their assignment (A, B, C, or D).    

In each conformational family the orientation of the phenylalanine side chain changes 

by rotation around the C -C  bond, such that the Phe
1
 1 angle, measured along the N-C -C -

C  atoms, can take values of approximately 180°, +60°, or -60°, corresponding to labels of 

anti, gauche + (g+), and gauche – (g-).  In all the structures, the gauche structures were lower 

in energy because they allowed the Phe
1
 amide NH to form a favorable -hydrogen bond with 

the aromatic ring, which, based on the vibrational frequencies, seems to be especially strong 

in the g- structures (Figure 4.9). The best matches to A and B are shown directly under the 

experimental spectra, and they both have the C10-C10-C10-C13 hydrogen-bonding pattern 

(backbone II) and respectively the g+ and g- orientations of the Phe
1
 side chain.   The g- 

structure proposed for conformer B has the Phe
1
 NH group in a stronger -hydrogen bond 

than does conformer A, giving the NH stretch a lower frequency in conformer B, which is the 

only significant difference between the two spectra. The calculated spectra that give the best 

match to the experimental spectra of C and D correspond to conformers with backbone I,  

C10-C10-C13-C13 hydrogen-bonding pattern. The assignment of the Phe ring orientation was 

made on the basis of the Phe
1
 NH stretch, which is present above 3430 cm

-1
 in conformer C 

and the g+ structure. In conformer D, the Phe
1
 NH stretch is apparently shifted from that of 

Ala
2
 (which was assigned by isotopic substitution), and the calculated spectrum for the g- 
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structure suggests that it may be buried underneath that of Ala
4
 or Lys

7
.  In the spectrum of 

15
N-Ala

4
 conformer D, the Ala

4
 transition shifts to the red but reveals no underlying Phe

1
 NH 

stretch, so perhaps it lies underneath that of the Lys
7
 amide NH transition at 3404 cm

-1
, which 

appears broader in conformer D than in conformer C.  

While the level of theory used here was sufficient to help assign the infrared spectra, it 

was not particularly accurate for predicting precise vibrational frequencies or the relative 

energies of the various conformers as determined from the observed relative intensities of the 

band origins in the UV spectra (C and D are calculated to be lower in energy but they have 

smaller intensities in the UV spectrum). Although the DFT methods and modest basis set used 

here performed surprisingly well, Hobza and coworkers had previously noted unsatisfactory 

results in other peptides because of the lack of inclusion of dispersive interactions [54]. 

Dispersion may also be the reason that Phe
1
 NH frequencies are predicted rather poorly in the 

g+ conformers A and C.  

In order to understand more fully the spectroscopic signature of helices and to 

complement our current data in the NH stretch region, we extended our conformer-specific IR 

spectra of these helical molecules into the amide I and amide II regions, shown in Figure 4.10 

for conformers A-D together with calculated spectra. The laser light was generated by an IR 

OPO together with difference-frequency mixing in a AgGaSe2 crystal. The four spectra 

exhibit peaks around 1630-1800 cm
-1

 that correspond to bands with mainly C=O stretch 

character while the lower intensity peaks at lower wavenumber arise from the NH bending 

vibrations (amide II), although there is some degree of mixing between these modes in both 

regions. The calculated spectra of the four conformers assigned by comparison with our 

measured spectra in the NH stretch regions, reveal an acceptable match with the new data in 

the amide I and II regions although a different scale factor (0.973) has been used here. That a 

different scale factor should be necessary for these different spectral regions is entirely 

expected, since the anharmonicity of CO vibrations will be quite different from light atom 

stretch vibrations.  
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Figure 4.10: IR-UV double resonance spectra of Ac-Phe-(Ala)5-Lys-H+ recorded in the amide I and II 

region, at the labeled transitions in the UV spectrum. The best matching calculated spectra are 

presented directly under each experimental spectrum. 

The four spectra show a transition around 1792 cm
-1

 which can be assigned to the CO 

stretch of the C-terminal carboxylic group. The C-terminal C=O band is slightly red shifted 

upon hydrogen bonding with the N-H group [55], which is consistent with the conclusion 

drawn earlier in the region of the NH and OH stretches where the lysine amide NH in all 

conformations is in a C5 arrangement with the C-terminus. If a lone pair of the oxygen atom is 

involved in a hydrogen bond the CO distance will increase and the vibrational frequency will 

red-shift by about 50 cm
-1

. Based on the work of Bakker et al. [55], the transitions between 

1660 and 1710 cm
-1

 are assigned to weakly hydrogen-bond C=O stretching vibrations, and the 

bands below 1660 cm
-1

 to a stronger hydrogen-bond C=O stretching vibrations. The absence 

of a significant difference between the two spectra of A and B reflects the similarity in the 

helical structure attributed previously for these conformations (A and B). The spectra of 

conformers C and D also have transitions between 1685-1700 cm
-1

 that can be ascribed to free 

or weakly hydrogen-bonded C=O stretches. In this same region and below 1685 cm
-1

, the 
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spectra of C and D differ from A and B in the position of these lowest frequency transitions 

that are red-shifted due to the C=O hydrogen bonding.  These reflect the difference in the 

backbone hydrogen-bonding schemes between the two groups of conformations mentioned 

above. The transitions of the amide II are concentrated around 1500-1600 cm
-1

 in all spectra, 

the blue shifted transitions reflect clearly that the NH are bonded, while the lower frequency 

bands belong to the free or weakly bounded [55]. The distribution of these transitions is 

different between the two conformational families. The frequencies in A and B are 

comparable in position although those of B are more intense, but they differ completely of the 

transition in C and D.  

In addition to the complementary information that these spectra bring for the structural 

assignment, they are useful for the population transfer experiments allowing us to try IR-

induced conformational isomerization at lower energies and thus bracket better the energy 

threshold to isomerization.  

4.2.3 Results of spectroscopic studies of Ac-Phe-(Ala)3-(Gly)4-(Ala)3-

Lys-H+ 

We modified the 12-residue peptide, Ac-Phe-(Ala)10-Lys-H
+
, already reported to have 

a helical shape [49, 50, 56],  by substituting four alanines by four glycines, an amino acid that 

has a low helix-forming propensity [47, 56] in order to tune the stability of helical structure to 

the point where helical and non-helical conformers might have similar stability. Our goal in 

doing this was to find cases in which we could cause unfolding transitions subsequent to IR 

excitation. The initial conformational searches on this molecule using the AMBER force field 

[27] within the MacroModel [28] program gives an initial collection of both folded and 

unfolded conformers with similar energies under 50 kJ/mol.  

Figure 4.11 depicts the electronic spectrum of this molecule recorded by monitoring 

the fragment m/z 858 as a function of wavenumber in the region between 37450 and  

37700 cm
-1

. The UV spectrum shows well resolved bands with major peaks at 37536 cm
-1

 and 

37574 cm
-1

. There also seems to be a Franck–Condon progression in a 9.5 cm
-1

 vibrational 

mode built upon the first major peak. 
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Figure 4.11: Electronic spectrum of Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H+ recorded monitoring the 

photofragment m/z 858. The transitions are labeled by conformation, as determined by IR-UV double-

resonance spectroscopy. 

By setting the UV laser on different transitions we get the same photofragment mass 

spectrum shown, in Figure 4.12. The transitions in the UV spectrum were labeled based on 

the IR-UV double resonance spectroscopy recorded using each band. Only two different 

vibrational spectra were observed, suggesting the existence of two distinct conformers, 

labeled A and B.  

 

Figure 4.12: Photofragment mass spectrum of Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H+. 
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Figure 4.13 shows two infrared spectra of Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H
+
 

measured in the NH and OH stretch region. The red trace is associated with the UV transition 

labeled A and the blue with B. The spectra show at least 9 of the 12 amide N-H that are 

sufficiently resolved. Most of the activity in these spectra is concentrated in the region below 

3380 cm
-1

, where vibrations are associated N-H groups in strong hydrogen bonds. The 

transitions above 3380 cm
-1

 are narrower and characteristic of free or weakly interacting N-H 

bonds. In these two spectra the carboxylic acid OH stretch occurs as a sharp peak around 3575 

cm
-1

, its position is similar to the free OH stretch observed in conformers of protonated 

peptides previously reported [49, 50, 57]. The fact that the OH group is not hydrogen-bonded 

is already evidence that the two conformations of this molecule may be helical, because the 

rigid structure of the helix would prevent the C-terminus from wrapping around to form any 

hydrogen bonds. One would expect that in a globular structure, the carboxylic OH may be 

hydrogen-bonded, which would shift the corresponding band to lower wavenumber. The 

observation of the free OH transition in both conformations suggests that both of the observed 

conformers may be helical.  

 

Figure 4.13: IR-UV double resonance spectra of Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H+ recorded at the 

labeled UV transitions A (red trace) and B (blue trace) in the UV spectrum. The black traces 

correspond to the IR spectra of conformer B (a) and A (b), respectively,  

of Ac-Phe-(Ala)10-Lys-H+  [49, 50]. 
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Since our computational capabilities are limited for large molecules, we based our 

structural identification for this molecule on the comparison with the infrared spectra of the 

12 residue peptide Ac-Phe-(Ala)10-Lys-H
+
, which is almost certainly helical. In  

Figure 4.13, above the IR spectra of Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H
+
, the black 

traces in a and b, correspond to the IR-dip spectra of conformer A and B, respectively, of Ac-

Phe-(Ala)10-Lys-H
+ 

reported by Stearns
 
et al. [49, 50]. As with Ac-Phe-(Ala)10-Lys-H

+
 and 

conformers C and D of Ac-Phe-(Ala)5-Lys-H
+
, the intense transitions that appear between 

3320 and 3350 cm
-1

 could be assigned to the internal N-H groups of an α-helix, and they are 

in very similar environments with C13 hydrogen-bonded rings. The intense N-H stretch near 

3300 cm
-1

 may well be attributed to the second alanine in a C10 arrangement. The similarity 

between the spectra of the two molecules as shown in Figure 4.13, lead us to suggest a helical 

shape for the glycine containing peptide.  

Some other structural clues may also be inferred from the position of the C=O 

stretches vibrations of this molecule. The IR spectra of conformers A and B of Ac-Phe-(Ala)3-

(Gly)4-(Ala)3-Lys-H
+
 in the amide I and II region are illustrated in Figure 4.14.  

 

Figure 4.14: IR-UV double resonance spectra of Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H+, in the amide I 

and II region, recorded at the labeled UV transitions A (red trace) and B (blue trace) in the UV 

spectrum. 

In the amide I region, the resonances that appear at  1690 and 1700cm
-1

 in both 

spectra, are assigned to weakly hydrogen-bond C=O stretching vibrations, and the band below 
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1655 cm
-1

 to a strong hydrogen-bond shifted C=O stretching vibration. The C=O stretch of 

the carboxylic group appears as a small band at 1798 cm
-1

. The position of these transitions is 

close to what we observed previously in the case of conformer C and D of the Ac-Phe-(Ala)5-

Lys-H
+
. Moreover the common bands at 1608 and 1639 cm

-1
 are almost inexistent in the 

spectra of conformation A and B of Ac-Phe-(Ala)5-Lys-H
+
 which has a C10-C10-C10-C13 

hydrogen-bonding pattern. The similarity between the two spectra of Ac-Phe-(Ala)3-(Gly)4-

(Ala)3-Lys-H
+ 

and the spectra of conformer C and D of the Ac-Phe-(Ala)5-Lys-H
+
 in the 

amide I region suggests similar hydrogen-boding pattern. In the case of A and B (Figure 

4.14), the N-H bending vibrations appear in the interval between 1500 and 1570 cm
-1

 where 

the lowest bands reveal the existence of free N-H and the blue shifted the bound N-H [55]. 

This confirms the existence of free and bound NH depicted in the amide A region. 

Unfortunately in the case of the 7-residue peptide, the amide II bands are not well resolved 

and thus exclude any possible comparison.  

No significant differences were observed between the IR spectra depicted in  

Figure 4.14, implying that the lowest energy structures in the glycine-containing peptide 

adopt similar conformational shapes. The substitution of four alanines with four glycines does 

not seem to be enough to destabilize the helical structure. From the comparison with the 

spectra of some previously assigned helical peptides, we can exclude a globular conformation. 

The IR spectra in the amide II and amide A regions show some common transitions in the 

spectra of conformers C and D of Ac-Phe-(Ala)5-Lys-H
+
 suggesting a helical shape to this 

molecule.  

4.2.4 Conclusion 

We have presented conformer specific IR spectra of 7- and 12-residue peptides, which 

demonstrate the power of our IR-UV double resonance technique to investigate large 

molecules. The reported spectra cover the spectral region of the N-H and O-H stretches as 

well as the amide I and II bands, both of which help to define the structural assignments for 

these molecules.  The IR spectra of the seven amino acid peptides reveal the existence of two 

conformational families that differ from each other by the hydrogen-bonding pattern of the 

backbone. Within the same family, the conformations have a different orientation of the 

phenylalanine side chain. The conformational structures were predicted by comparison with 

DFT calculations with the help of isotopic substitution studies. However our computational 

power was insufficient to do calculations on the larger peptide. Assignments were thus 
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suggested by the comparison with previously reported spectra of helical peptides [49, 50]. 

Based on the common transitions in the C=O, N-H and O-H stretches regions that were 

observed in the spectra of the minor conformation of Ac-Phe-(Ala)5-Lys-H
+
 and the spectra of 

the large peptide we could suggest that both conformations of the glycine containing peptide  

adopt a helical shape where the N-H groups in the center of the helix are involved in C13 

interactions. These data provide a benchmark for improving the computations of peptide 

structure and protein folding. Moreover, they provide the spectroscopic assignments needed 

for population transfer experiments to be presented in Chapter 5 of this thesis.  
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Chapter 5       

 Hole-filling spectroscopy 
  

5.1 Introduction  

One of the goals of this thesis work is to investigate the barriers separating stable 

conformations of biological molecules using population transfer experiments in which one 

selectively excites a single conformation of a cold ion species in a 22-pole ion trap. Exploring 

the interconnectivity of different conformational families will provide insight into the 

dynamics of biomolecules and the topology of their energy landscapes. Such a fundamental 

understanding of the dynamics of biological process such as protein folding/unfolding may 

shed light on the physiological activity of these molecules, which in turn may advance the 

treatment of human diseases [1]. 

Different condensed phase experimental studies have made great advances toward this 

goal. Numerous techniques had been implemented to probe the progress of the folding 

process by monitoring the evolution of secondary and tertiary structure. X-ray crystallography 

was the first and perhaps most powerful technique elucidate the geometries of large 

biomolecular at an atomic scale [2-6]. Multidimensional nuclear magnetic resonance (NMR) 

has also proven to be a powerful approach in the detection of the solution structures of large 

proteins and in probing their dynamical behavior [7-12]. Incorporating NMR-derived data 

into protein structure prediction serves to guide conformational searches toward the lowest-

energy conformations in the folding landscape. In addition to the above-mentioned 

techniques, several other experimental strategies can provide structural information on 

biomolecules such as Fourier transform infrared spectroscopy (FTIR) [13], circular dichroism 

(CD) [14-18] a number of fluorescence techniques [19-22] and the multidimensional IR 

spectroscopy [23-27]. Different approaches have been established to initiate folding in order 
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to follow the kinetics of the folding pathways,  including the conventional stopped flow [28], 

and laser-induced temperature jump [29-31]. This later method, which was first used by Eigen 

and De Maeyer [32] involves rapidly increasing the temperature after equilibrium has been 

established between folded and unfolded forms, which displaces the equilibrium toward one 

of the two forms. 

While condensed phase studies are closer to physiological conditions, isolating the 

molecules in the gas phase and cooling them to low temperature allows the spectroscopic 

study of peptide structures without any effects due to the solvent and hence the investigation 

of their intrinsic properties: in particular their potential energy landscape and their 

conformational dynamics. Zwier and coworker pioneered this approach by looking at the 

transfer of population between conformers of small biomolecules in the gas phase after the 

deposition of energy by vibrational excitation, either directly in the infrared [33-35] or by 

stimulated emission pumping [36-40]. 

Following this pioneering work, we have performed gas-phase population transfer 

experiments on significantly larger protonated peptides. Before investigating the dynamics of 

conformational isomerization one must first identify the different accessible conformational 

minima. Toward this aim, we have measured UV and conformer specific IR-UV double 

resonance spectra for the three systems that form the core of this thesis work.  Chapter 4 

presented the IR spectra the in regions between 3000–3600 cm
-1

 and 1400-2000 cm
-1

. This 

wide range of energy that covers OH and NH stretch vibrations as well as the Amide I and II 

bands allow multiple choices for infrared-induced conformational isomerization. On the basis 

of the infrared spectra and density functional theory calculations, we determined there are two 

conformations of protonated phenylalanine present in our experiment, which are stabilized by 

hydrogen bonding between the charged NH3 group and the aromatic ring and carbonyl oxygen 

[41]. Conformation-specific IR-UV double resonance spectroscopy, together with nitrogen-15 

isotopic substitution, allow us to identify four conformers of the peptide Ac-Phe-(Ala)5-Lys-

H
+
, which were classified into two families based on their helical geometries [42]. The 

infrared spectra of the twelve amino acid peptide Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H
+
 reveal 

the existence of two stable conformations in the cold ion trap.  

Having identified different conformers, we then performed population transfer 

experiments using IR excitation of the amide A (NH stretch) and the Amide I (CO stretch) 

vibrations. In the first part of this chapter, we present results on the isomerization of the 
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amino acid phenylalanine. This is followed by the first hole-filling spectroscopic studies 

reported on gas-phase protonated peptides, where we investigate the 7-residue helical peptide 

Ac-Phe-(Ala)5-Lys-H
+
 after IR excitation of the N-H and C=O stretch vibrations. We then 

present hole filling studies on Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H
+
, a glycine containing 

peptide, after an IR excitation in the N-H stretch region. The last part of this chapter describes 

an experiment designed to populate new conformations using a UV-UV pump-cool-probe 

scheme. 

5.2 Infrared Hole-filling spectroscopy in a cold ion trap  

As described in detail in Chapter 3, we produce biomolecular ions in the gas phase via 

nanoelectrospray, collect them in an RF-only hexapole ion trap, and then transfer an ion 

packet to a 22-pole cooled ion trap, where the molecule ions have sufficient time to cool via 

collisions with cold helium. An IR laser pulse, which is tuned to a transition of a single 

conformer, pumps energy into the molecule. After re-cooling the excited molecules by 

collisions with remaining helium, the UV laser then interrogates the electronic spectrum and 

hence monitors the new conformer population, noting in particular the change in intensities of 

peaks corresponding to different conformers. 

5.2.1 Infrared hole-filling spectroscopy of a single amino acid 

The protonated form of the amino acid phenylalanine was the test molecule to start 

performing the population transfer experiments in our laboratory. It is close to the size of 

molecules studied by the Zwier group, and we had already demonstrated the existence of two 

stable conformations that differ in the orientation of the backbone with respect to the ring. 

Comparison of our experiments with calculation suggest that the gauche structure is  

3.2 kJ/mol higher in energy than the structure anti structure, which corresponds to the global 

minimum [41] (see Section 4.1.2). The cool-pump-recool-probe principle of the hole-filling 

experiment remains the same as that described by Zwier [33]. Shortly after the ions arrive in 

the trap we pulse an IR pump laser, which is fixed at a specific wavenumber that excites a 

vibrational band of a single conformation. We then leave the ions enough time to recool to 

their zero-point energy level via collisions with the He buffer gas, before firing a UV probe 

laser that photodissociates the parent ions. The wavenumber of the UV laser is scanned, 



Chapter 5    

84 

 

generating an electronic spectrum that reveals the conformational composition of the ions 

after the heating and reecoling cycle. 

 

Figure 5.1: Hole-filling spectra of protonated phenylalanine measured with the infrared laser fixed on 

a) the N-H stretch transition of conformer A at 3122 cm-1, b) the N-H stretch transition of conformer B 

at 3079 cm-1. The black trace c) corresponds to the ultraviolet photofragmentation spectrum of PheH+.  

Figure 5.1 shows the resulting spectra from the difference of photodissociation signal 

with the IR laser off and on, which we call an IR hole-filling spectrum. The red trace in 

Figure 5.1a shows the first 260 cm
-1

 of this spectrum with the IR laser fixed at the N-H 

transition of conformation A at 3122 cm
-1

. The blue trace in Figure 5.1b represents the first 

part of the IR hole-filling spectrum while pumping the N-H transition of conformer B at 3079 

cm
-1

. The black trace corresponds to the ultraviolet photofragmentation spectrum of PheH
+
, 

showing the major peaks that correspond to the two different conformers. As one can see, IR 

excitation of conformer A leads to depletion of its population which produces a dips in the 

photofragmentation signal at the transitions belonging to conformer A. At the same time, this 

loss in population, of conformer A manifests itself as gains in the photodissociation signal of 
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the transitions where conformer B absorbs.  Likewise, selectively exciting a transition in 

conformer B drives population out of conformer B into conformer A. 

These spectra clearly demonstrate the feasibility of the IR-UV population transfer 

experiment under our experimental conditions: ions in a cold ion trap and using 

photofragmentation as a detection method. The population transfer experiment reported by 

Dian et al. was applied to molecules in a molecular beam having significantly higher density 

and higher helium pressure, and used fluorescence detection [33]. Figure 5.1 shows that an 

infrared excitation that selectively interacts with a single conformation is able to create a new 

conformational population distribution in the trap. It is important to note that we create this 

new distribution among the conformations already having population in them (i.e., those that 

already appear in the spectrum), but seem not to populate any new conformational minima as 

no new peaks appear. Finally we can conclude that barrier to isomerization for the protonated 

phenylalanine is less than the photon energy we used to pump the selected conformation 

(3122 and 3079 cm
-1

 for respectively conformers A and B). 

We tried to predict theoretically the transition state separating the two minima of 

PheH
+
, for comparison with our experimental data. We used Gaussian03 [43] to generate a 

starting structure for a transition state optimization based upon the starting and the final 

geometries, which represent in our case the two conformational structures of the protonated 

phenylalanine linked by this transition state. Gaussian employs the method known as STQN 

[44] (Synchronous Transit-Guided Quasi-Newton), which does not require a guess for the 

transition structure; instead, only the starting and ending conformational structures are taken 

as input. Re-optimization of the energy of the generated transition state structure and 

calculation of its harmonic vibrational frequencies were carried out using B3LYP/6-31++G** 

level of theory. The final predicted energy of this structure, shown in Figure 5.2, is 

approximately 12.1 kJ/mol, yielding of about 8.9 kJ/mol energy barrier for conformer B to 

overcome in order to transfer into conformer A, and about 12.1 kJ/mol energy barrier transfer 

from conformer A into B. This energy difference, in part, corresponds to a displacement in the 

dihedral angle (  = 118º) involving the backbone orientation, which is what we would expect 

for a transition state between these two conformers.  
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Figure 5.2: A one-dimensional energy level diagram of the protonated phenylalanine, representing the 

lowest energy conformations and the transition state structure. The transition state calculations were 

done at the B3LYP/6-31++G** level using the STQN method. The relative energies are zero-point 

energy corrected.   

 

This simulation confirms our experimental observation that the energy photon used in 

the N-H stretch region is more than enough to cross the barrier to isomerization. Nevertheless, 

even with the excess energy available, the excited conformers did not isomerize to region of 

the conformational spaces that were not populated initially (i.e., in the absence of the IR). 

This is not particularly surprising, given the relative conformational simplicity of a single 

amino acid. Recent work by von Helden et al. reported simulations to characterize the 

potential energy surface of the neutral phenylalanine [45]. Most of their transition states are 

found to be less than 23.9 kJ/mol (2000cm
-1

) above their lowest energy structure. Some of 

these transition states were also reported by Kaczor et al. [46].  

 



  Hole-filling spectroscopy 

87 

 

Even though our IR excitation energy was significantly above the calculated barrier 

height for isomerization of protonated phenylalanine, we chose this molecule as a test of our 

method, since it has simple and well characterized UV and IR spectra. We now go on to apply 

the same techniques to peptides of considerably greater complexity. 

5.2.2 Hole-filling spectroscopy of Ac-Phe-(Ala)5-Lys-H+ 

After the demonstration of the feasibility of the population transfer experiment in a 

cold ion trap, we extended these techniques to even larger systems. We reported in  

chapter 4.2.2 the identification of four helical conformers of the peptide  Ac-Phe-(Ala)5-Lys-

H
+
, and through a combination of conformer specific IR spectroscopy and DFT calculations 

we sorted them in two families according to the hydrogen-bonding scheme of the peptide 

backbone [42]. Backbone family II constituted of conformers A and B have a C10-C10-C10-C13 

hydrogen bonding pattern, while backbone family I consists of conformers C and D which 

exhibit a C10-C10-C13-C13 hydrogen bonding pattern. Within each conformational family the 

phenylalanine side chain can adopt two different positions by rotation around the C -C  bond. 

These features make Ac-Phe-(Ala)5-Lys-H
+
 an interesting candidate to investigate its 

isomerization dynamics, since transferring population within the same family involves the 

rotation of the phenyl rings while isomerization between the two families requires breaking 

and reforming of C10 and C13 hydrogen bonded structures, which amounts to winding and 

unwinding of the helical backbone. 

We begin the hole-filling experiments on this molecule by fixing the IR laser in the N-

H stretch region on a transition associated with a particular conformer while scanning the UV 

laser over the electronic transition of different conformations. Figure 5.3 shows the hole-

filling spectra of family II of Ac-Phe-(Ala)5-Lys-H
+ 

pumping (a) the Phe
1
 amide NH of 

conformation A at 3447 cm
-1

 and (b) the amide NH of Ala
5 

and/or Ala
6
 of conformation B at 

3374 cm
-1

. In the hole-filling spectrum of conformation A (Figure 5.3a), the UV transitions 

associated with this conformer appear as a depletion in the photodissociation signal whereas a 

clear gain signal is observed  at the transition of conformer B at 37’560 cm
-1

.  Analogous 

results are obtained from the hole-filling spectrum of conformer B, Figure 5.3b. Its ground 

state population is partially depleted, producing dips in the vibronic transition associated with 

the pumped conformer and gains in the transitions belong to conformer A. These observations 

demonstrate the efficiency of IR induced population transfer within this same conformational 

family (backbone II). At the same time, both spectra show an increase of the population of 
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conformers C and D via the transitions at 37’526 and 37’556 cm
-1

 respectively, which signals 

a helical rearrangement, going from conformational family II to family I. 

 

Figure 5.3: Hole-filling spectra for Ac-Phe-(Ala)5-Lys-H+. In (a) the IR laser is fixed to the Phe1 amide 

NH stretch of conformer A at 3447 cm-1, (b) the IR laser is fixed to the amide NH of Ala5 or Ala6 of 

conformer B at 3374 cm-1. c) corresponds to the ultraviolet photofragmentation spectrum of  

 Ac-Phe-(Ala)5-Lys-H+. 

Figure 5.4 presents the hole-filling spectrum recorded by fixing the IR laser on a 

transition associated (a) with conformer C at 3444 cm
-1

 and (b) conformer D at 3442 cm
-1

 

while scanning the UV laser. The depletion in the photofragmentation signal of the origin 

transition of conformer C, depicted in Figure 5.4a, is explained by the increase in population 

of the other conformations A, B and D. It is also obvious from the dip in the hole-filling 

spectrum of Figure 5.4b that the IR excitation removes population from the ground state of 

conformer D and, after the relaxation time, populates those of conformer A, B and C reflected 

by the gains in their photofragmentation signal.  
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Figure 5.4: Hole-filling spectra for Ac-Phe-(Ala)5-Lys-H+. In (c) the IR laser is fixed to the Phe1 amide 

NH stretch of conformer C at 3444 cm-1, (b) the IR laser is fixed to the amide NH of Ala2 of conformer 

D at 3442 cm-1. c) corresponds to the ultraviolet photofragmentation spectrum of  

 Ac-Phe-(Ala)5-Lys-H+. 

An evident deduction from these four hole-filling spectra is the feasibility of the 

population transfer on relatively large molecule (i.e., a 7-residue peptide) under the conditions 

of our trapping experiment, which can open a new dimension to explore intramolecular 

bonding and isomerization dynamics. From these spectra we can conclude that with the 

photon energy used (about ~ 41.8 kJ/mol), the molecule can cross the barrier to isomerization 

and is cooled back to their lowest energy minima. Nevertheless, we did not observe any new 

transitions in these hole-filling spectra that would result from populating new minima (i.e., 

reaching stable conformations of the molecule that were not populated during the initial 

cooling process). The transfer within the same conformer family of Ac-Phe-(Ala)5-Lys-H
+
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involves the rotation of the phenylalanine side chain around the C –C  bond from the 

gauche+ (+60°) to the gauche- (-60°) position and conversely. At the same time, Ac-Phe-

(Ala)5-Lys-H
+
 has two interacting families of conformers separated by an energy barrier 

lower than the IR excitation in the NH stretch region. The transfer from conformer A and B to 

C and D, respectively, requires the breaking of the hydrogen bond of the Ala
5
 NH that 

participates in C10 interaction and the formation of a hydrogen bond, sharing the same 

carbonyl with Ala
6
, thereby creating a C13 ring. Driving the population transfer in the opposite 

direction means replacing the C13 ring in the middle of the helix backbone I by a C10 ring. The 

schematic in Figure 5.5 illustrates the structures of the four conformers of Ac-Phe-(Ala)5-Lys-

H
+
, with the phenyl ring rotation from gauche- (-60°) to gauche+ (+60°) represented on the x-

axis and the helical rearrangement along the y-axis.  

 

Figure 5.5: Schematic depictions of the structures of the four conformers of Ac-Phe-(Ala)5-Lys-H+. 

The x-axis represents the phenyl ring rotation from gauche- (-60°) to gauche+ (+60°). The y-axis 

corresponds to the rearrangement of the helix. The hydrogen-bonding schemes of the involved region 

are represented on the right. The conformers are also labeled with their zero-point corrected energy in 

kJ/mol and their assignment (A, B, C, or D). 

The diagonal transfer going form A and B to D and C, respectively, involves a 

rearrangement of the helix accompanied by phenyl ring rotation, the combination of which is 

likely to require higher energy to overcome the barrier. We have extended the wavelength 

range of our laser to cover the Amide I and II regions (1500-2000 cm
-1

) in order to access a 

wider range of energies and better bracket our estimate for the barrier to conformational 
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isomerization. In the case of this 7 residue peptide, pumping the conformation with lower 

energy may be insufficient to overcome the barrier for a diagonal transfer.  

The IR spectra of all four conformers of this molecule in the region of the CO stretch 

band, reported in Chapter 4.2.2 and Figure 4.10, show that the absorption bands are heavily 

overlapped making it impossible to selectively excite individual conformation in this region. 

We choose to record infrared spectra of an isotopically substituted Ac-Phe-(Ala)5-Lys-H+, 

illustrated in Figure 5.6, in which the carbon-12 of the acetyl carbonyl group was replaced by 

carbon-13.  

 

Figure 5.6: IR-UV double resonance spectra in the amide I and II region of Ac-Phe-(Ala)5-Lys-H+, 

isotopically substituted with C-13 at the carbonyl of the acetyl group, recorded at the UV origin 

transition of each conformations. The dashed curves correspond to the IR-UV double resonance 

spectra of unsubstituted Ac-Phe-(Ala)5-Lys-H+, reported here for a direct comparison.  

In a simple diatomic model for the CO oscillator, the difference in reduced mass due 

to the heavier isotope would shift the carbonyl stretch frequency to lower energy by ~37 cm
-1

. 

For the most part in each spectrum a single transition is shifted by ~37 cm
-1

, and in the case of 

conformer A and B, this transition appears at 1645 and 1654 cm
-1

, respectively. In the case of 
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conformer C and D it is not clear where the single shifted transition appears - it is probably 

overlapping another CO stretch band. Nevertheless, the shift due to carbon-13 substitution 

isolates a transition at 1654 cm
-1

 where only conformer B absorbs, and this, allows us to 

selectively excite this conformation.  The hole-filling spectrum resulting from pumping 

conformer B at 1654 cm
-1

 in the infrared and scanning the UV probe beam is shown in Figure 

5.7.  

 

Figure 5.7: Hole-filling spectra of Ac-Phe-(Ala)5-Lys-H+, isotopically substituted C-13 of the acetyl 

group,  measured with the infrared laser fixed on the C-O stretch transition of conformer B at  

1654 cm-1. 

It is clear that population is driven out of conformation B leading to depletion in the 

photodissociation signal, whereas clear gains occur in the signal at the transitions of A, C and 

D (at 37’532, 37’526 and 37’556 cm
-1

 respectively). This gain in the population of the other 

conformations means that whatever are the pathways between these three conformations and 

B, the energy needed to cross the barrier to isomerization is less than 19.8 kJ/mol (1654 cm
-1

). 

Thus, even by going to low energy, isomerization along the unfolding coordinate of the helix 

is still possible while going from conformer B to C and D.  
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5.2.3   Hole-filling spectroscopy of Ac-Phe-(Ala)3-(Gy)4-(Ala)3-Lys-H+ 

The third system investigated in this thesis by hole-filling spectroscopy is the twelve 

residue peptide Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H
+
. Although this molecule was designed to 

destabilize the helix so that it could adopt both globular and helical forms, the IR spectra 

reported in Chapter 4.2.3, indicates the existence of two conformations having the same 

hydrogen-bonding scheme of the peptide backbone. The similarity between the IR spectra of 

this molecule and a twelve amino residue peptide with ten alanines [47], suggest a helical 

shape for the glycine containing peptide.  

 

Figure 5.8: Hole-filling spectra of Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H+, measured with the infrared 

laser fixed on a) the N-H stretch transition of conformer A at 3412 cm-1, b) the N-H stretch transition 

of conformer B at 3447 cm-1. The black trace, c), corresponds to the ultraviolet photofragmentation 

spectrum of Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H+.  

The importance to investigate the isomerization of such a system comes first from the 

size of the molecule which helps explore the limits of this technique. On the other hand, the 
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low helix-forming propensity of the glycine residue is supposed to destabilize helical 

conformations, thereby lowering the barrier to isomerization which could permit the 

population of new conformational minima after IR excitation and cooling.   

We record the hole-filling spectra of Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H
+
, presented in 

Figure 5.8, by fixing the IR laser on a transition associated with a particular conformer in the 

NH stretch region, while scanning the UV laser and monitoring intensity of the fragment ion 

signal. In the spectrum of Figure 5.8a, the IR pump laser fixed at 3412 cm
-1

 removes 

population from the ground state of conformation A. This conformer acquires the amount of 

energy needed to cross the barrier to isomerization and this manifests as depletion in the 

photofragment signal when the UV laser probes the transition of conformation A. This 

depletion explains the gain in the photofragment signal where conformation B absorbs in the 

UV. The hole-filling spectrum, in Figure 5.8b, depicts the redistribution of the population 

after the relaxing of the IR excitation, held fixed at 3447 cm
-1

 to pump up the population of 

conformation B. The decrease of the initial population of conformation B manifests as 

depletions in the photofragment signal when the UV laser tuned though its transitions, while 

the photofragment signal due to conformation A show clear gains, indicating that the 

population lost in conformer B has undergone isomerization to form A.  

These spectra illustrate the changes in population induced with the IR laser following 

selective excitation of a single conformer in the NH stretch region. These excitations were 

able to move population between the minima that had already population in them. Even for 

such relatively big molecule, the barrier separating its minima is lower than the energy photon 

41 kJ/mol, implying that the isomerization coordinate must be a relatively simple one. While 

we would have liked to extend our study to the CO stretch region, the absorption bands of the 

IR spectra of both conformers in this region, reported in Section 4.2.3, are heavily overlapped 

making it impossible to selectively excite individual conformations in this region. It is also 

important to stress that there is no evidence of the formation of new conformations having a 

barrier to isomerization lower than the energy photon used.  

5.2.4 Discussion and conclusions  

The dynamics of conformational isomerization of the three systems studied in this 

work have been probed using IR-UV hole-filling spectroscopy. This cool-pump-recool-probe 

approach is able to induce changes in the conformational population of the molecules 
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following conformation-specific excitation. This method is able to remove population out of a 

single conformation leading to population gains in the other conformation. As a consequence, 

it is possible to control the conformational population in our trap.  

We estimate the temperature of the ions arriving to the trap to be near room 

temperature before they are collisonaly cooled to their zero-point level and this energy is 

removed. In the hole-filling experiments, the cold ions are then excited with an energy 

corresponding to 3300 cm
-1

 if the IR photon absorb is in the NH stretch region or 1645 cm
-1

 in 

the case of the amide I region. Because of the difference in complexity of the studied systems, 

two states of figure have to be taken in consideration. In the case of the single amino acid 

phenylalanine, the molecule arrives to the trap with an average internal energy estimated to  

1852 cm
-1

 which is lower than the energy deposited via the infrared excitation, ~ 3100 cm
-1

. 

While this later energy will be first concentrated in a specific mode, within the cooling time 

scale of few milliseconds (Cf. section 3.4.3) this vibrational energy will redistribute among 

the vibrational modes of the molecules, putting them in states of mixed vibrational character 

having components that represent population in many low frequency vibrational modes. After 

IVR the energy dissipation through the isomerization process involves displacement in the 

dihedral angle (from  = 72º to  = 169º) and the backbone orientation. However the excess 

of energy was not sufficient to cross high barrier to isomerization and the cooling process did 

not drive the population to different regions of the potential surface leading to different 

minima. Besides that, one would argue that even if the absorption of the photon will excite the 

molecule to region on the potential energy surface where other conformations can occur, the 

excited molecule are cooled slowly enough to always find the global minimum. But then 

again we were able to demonstrate the existence of more than one conformer, meaning that at 

some point the molecules start to be trapped kinetically. 

In the case of the two peptides, the average energy of the molecule at room 

temperature is 10980 cm
-1

 in the case of 7-residue peptide and 15833 cm
-1

 in the case of the 

12-residue peptide which is significantly higher than the energy of the excited molecule 

through one of the NH (3440 cm
-1

) or CO (1654 cm
-1

) vibrational transitions. In contrast to 

the case of phenylalanine, despite the fact that the potential energy surface increased in 

complexity, the energy deposited in the molecule may be insufficient to overcome the 

transition states separating other major conformational families and thus limit the region to be 

mapped out on the potential energy surface. This could explain the fact that no new minima 
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were populated and we just detect the set of conformations that had population in them upon 

initial cooling. Although, both molecules showed an efficient transfer between their identified 

conformations, meaning that the energy acquired by the absorption of the IR photon is above 

some of the energy barriers to isomerization. The excitation energy, even if initially localized, 

should be rapidly dispersed among the other vibrational modes through IVR will lead to the 

mixing of the vibrational states that are conformationally mixed in character.  Radiative and 

nonradiative process will be competing in order to bring the molecule into their lowest energy 

level. In the case of Ac-Phe-(Ala)5-Lys-H
+
, we observed isomerization deactivation which 

leads to the rotation of the phenylalanine side chain around the C –C  bond from gauche+ 

(+60°) to gauche- (-60°) position and conversely as well as the helical rearrangement 

involving the formation/breaking of C10 and C13 ring. Although the conformational structure 

for Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H
+
 was not assigned, from the similarity in its IR-UV 

double resonance spectra we suggest a similar hydrogen-boding pattern and thus the 

isomerization process in this case will probably not involve the helical rearrangement. 

However the cooling process in both peptides did not form new conformational structures. 

Such results on large flexible molecules open an avenue to probe their multidimensional 

potential energy surfaces by identifying the accessible minima and different pathways 

connecting them.  

The technique of buffer-gas cooling used in these experiments differs from cooling in 

the supersonic expansion used by Zwier and coworkers [33, 35]. Cooling is much faster in 

their approach, since the helium backing pressure could reach 10 bar and has the possibility of 

competing with isomerization in molecules which may lead to populating new minima on the 

potential energy surface, where in our case the rate of isomerization is likely to be fast 

compared to the slower collisional cooling rate. 

On the other hand, our studies did not yield a direct measurement of the barriers to 

isomerization which might be possible using simulated emission pumping (SEP), a method 

used in Zwier group for this purpose [37, 40]. Unfortunately, such experiments are much 

more difficult when photodissociation is used as the detection method, since one must be able 

to distinguish between the fragment ions induced by each laser.  

Another objective of this study was to search for trapping population in new minima 

on the potential energy surface. In the case of the three studied systems, we did not observe 

any minima that did not have population in them in the absence of the IR excitation. This 
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could be due to the fact that the barriers between different conformational families are higher 

than the IR energy photon used. In the case of the two peptides studied here, the IR excitation 

energy was less than the initial thermal energy of the molecule. In the following section, we 

will describe an additional experiment designed with the idea to populate new conformations, 

using a UV-UV pump-cool-probe approach. 

5.3 UV-UV hole-filling spectroscopy in a cold 22-pole ion trap 

In the first part of this chapter we reported an approach, to study the conformational 

isomerization in three different biological molecules, using an infrared laser to selectively 

excite a single conformation. The energy of the IR photon was well above the lowest barriers 

to isomerization so we were able to redistribute population in between the minima that 

already have population in them. However, this excess of energy was not sufficient to cross 

high barriers and drive the population into new minima. Here, we introduce an UV-UV hole-

filling experiment where the IR excitation of the previous approach is replaced with a UV 

excitation.   

5.3.1 Description of the method  

In the UV-UV hole-filling spectroscopy, the cool-pump-recool-probe configuration of 

the previously described experiment, IR-UV hole filling, is maintained while the IR laser 

excitation is replaced by a UV laser excitation.  However the absorption of the UV photon 

puts an order of magnitude more energy in the molecule than the IR excitation and thus the 

delay between the lasers corresponding to the relaxation time is increased to provide more 

collisional cooling to the UV-excited molecules. Experimentally, the ions produced by 

electrospray are pulsed into the 22-pole trap with a frequency of 20Hz and cooled to about 

10 K by collisions with helium, which is injected and thermalized to the temperature of the 

trap housing 1ms prior the arrival of the ions. Once the ions are cold, a single conformation 

interacts with a 10 Hz UV laser fixed at a specific transition. After a 20 ms delay the UV 

probe laser, operating at 20 Hz, is sent through the trap.  Figure 5.9 depicts the energy level 

and timing diagram of the UV-UV hole-filling approach.  
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Figure 5.9: Energy level and timing diagram of the UV-UV hole-filling experiment. 

The first laser fixed at a specific transition of one conformation will excite some of the 

ions to the electronic state S1 and induce photofragmentation. Different mechanisms can lead 

to fragmentation, subsequent to UV absorption: (i) a direct dissociation if the S1 state is purely 

repulsive in the coordinate of a given bond (ii) an indirect dissociation (i.e., predissociation) if 

the S1 excited state crosses a repulsive state S2 through which fragmentation occurs, or (iii) 

dissociation on the ground potential energy surface after internal conversion from the excited 

state S1 back to a highly excited vibrational state of the electronic ground state. Other studies 

in our laboratory [48] have shown that following UV excitation of the aromatic amino acid 

chromophores loss of the aromatic side chain occurs via dissociation from an excited 

electronic state ((i) or (ii) above).  However, since only a small fraction of ions dissociate, it is 

possible that a large fraction undergoes internal conversion to highly vibrationally excited 

levels of the ground electronic state. If this is the case, the vibrationally excited molecules 
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would have sufficient energy to explore a much larger portion of the conformational space, 

and upon collisional cooling this might populated new conformers. If this occurs, the second 

UV laser will probe the appearance of new absorption bands in the electronic spectrum. The 

following section presents the UV-UV hole-filling spectra of peptide ions of seven and twelve 

amino acids.  

5.3.2 Results  

We applied this technique to Ac-Phe-(Ala)5-Lys-H
+
 and Ac-Phe-(Ala)3-(Gly)4-(Ala)3-

Lys-H
+
. Figure 5.10 illustrates the outcome of these experiments. The red traces correspond to 

the UV hole-filling spectra when the UV pump laser is on and the blue traces to the spectra 

when this laser is off, which correspond to the photofragmentation spectra previously obtain 

for these molecules. The offset between the laser on/off traces correspond to the 

fragmentation due to the first UV laser.   In Figure 5.10a the UV pump laser excites 

conformation D of the Ac-Phe-(Ala)5-Lys-H
+
 at its origin transition at 37’556 cm

-1
, where the 

ion internal temperature after UV excitation is estimated to be 588 K. Under the same 

conditions we record the UV-UV hole-filling spectra (not shown here) of the conformation A, 

B and C by fixing the UV wavelength of the pump laser on their respective origin transitions. 

In these spectra, the linewidth of the transitions is about 1.3 cm
-1

, similar to those in the 

photofragmentation spectra. This confirms that the time delay between the two lasers and the 

residual helium in the trap was sufficient to successfully cool the excitation.  On the other 

hand, none of these UV-UV hole-filling spectra of Ac-Phe-(Ala)5-Lys-H
+
 reveal the 

appearance of any new transitions. 

We extended this approach to the twelve amino acid peptides Ac-Phe-(Ala)3-(Gly)4-

(Ala)3-Lys-H
+
. The resulting UV-UV hole-filling spectrum is shown in Figure 5.10b 

measured by pumping conformation A at 37’536 cm
-1

.  It shows a high level of noise coming 

primarily from intensity fluctuations in the pump laser. Because of this uncertainty this 

spectrum was recorded more than 10 times in order to verify whether any of these small 

features could be attributed to any new conformations. These different spectra confirm that 

these fluctuations were just noise and do not belong to new bands that could result from the 

population of new a conformation. The UV hole-filling spectrum exciting conformation B 

was also recorded, but it also showed no clear evidence of new transitions.  
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Figure 5.10: UV-UV hole-filling spectra measured by pumping a) conformation D of Ac-Phe-(Ala)5-

Lys-H+, at 37’556 cm-1 b) conformation A of Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H+, at 37’536 cm-1 

The fluctuations could be due to the fact that the UV-UV spectrum is recorded by 

counting the ion fragments induced from both lasers (pump and probe). These ion fragment 

signals depend on each laser power and the number of the parent molecules in the trap, which 

we were not able to measure on alternate shots, limited by the number of channels that our 

data acquisition program can record. In addition, both parent and fragment ions are irradiated 

with the second laser, and hence the possibility that the daughter ions absorb the UV photon 

and dissociate could not be exclude, which could reduce the numbers of count of the daughter 

ions produced by the first laser excitation.  
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5.3.3 Discussion and conclusions  

The UV-UV hole-filling spectra of two peptides of seven and twelve amino acids are 

recorded by pumping a specific conformation with a UV laser and then probing the new 

population distribution after a 20 ms delay.  These spectra show vibrationally well resolved 

bands suggesting a complete cooling of the pump excitation. The main goal of these 

experiments was to populate new minima on the potential energy surface.  

In order to explain these observations, one has to consider diverse dissociation 

mechanisms that could occur after UV excitation. Two different processes happen on distinct 

time scales, fast dissociation directly from the electronic excited state or dissociation on the 

ground electronic state after internal conversion this mechanism, which should be slower than 

the previous. Recent works of Schlag and coworkers proposed the co-occurrence of these two 

mechanisms during biomolecule fragmentation [49]. Thus, a fraction of the excited molecules 

may undergo nonstatistical dissociation and produce fragments on a short timescale compared 

to RRKM estimations. The remaining fraction would go through complete IVR and possibly 

dissociate, according to a statistical rate constant [50, 51]. Using coincidence and 

femtosecond pump/probe experiments Grégoire et al. demonstrate the existence of both 

statistical fragmentation following internal conversion from the electronically excited state 

and direct dissociation from the electronic excited surface in single protonated aromatic 

amino acid and small peptide ions interacting with UV laser radiation [52-56].  

Recent experiments in our group intended to measure the electronic and the vibrational 

spectra of large, protonated peptides using IRLAPS, a photofragment-based detection scheme 

[48, 57]. This technique was able to enhance the fragmentation produced by the Cα-Cβ bond 

cleavage attributed to direct dissociation on the excited state surface, suggesting the fast 

formation of a biradical intermediate species after the electronic excitation. Whatever is the 

nature of the intermediate species, if considering the fraction of the molecules that undergo 

electronic excited state photodissociation, the lifetime of the excited molecules compared to 

competing processes is too short and the pre-excited species will dissociate undergo fast 

dissociation. The activated molecules that dissociate in a nonstatistical manner have a rate for 

dissociation faster than the rate for internal conversion and thus the branching ratio for 

internal conversion may simply be small. In this case the UV probe laser firing with a time 

delay of 20 ms, will not interact with the parent ions that already saw the UV pump laser.  
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Indeed, in the UV-UV hole-filling experiment reported here, b-type ion fragments, 

which are associated with dissociation on the ground electronic state after internal conversion 

from the excited electronic state [58], are monitored in the case of both peptides. The 

molecules in the excited state decay following internal conversion to the electronic ground 

state and undergo vibrational energy redistribution and fragmentation. However, on the time 

scale of the delay between the two lasers (20 ms), the dissociation process will compete with 

collisional processes reducing the fraction of molecules that survive to isomerize. Thus, at the 

S1 origin perhaps only a fraction of the population that undergoes internal conversion to the 

ground state, will lead to isomerization.  

In this case, the isomerization following internal conversion proceeds on the ground-

state surface. During relaxation process molecules in highly excited vibrational levels may 

overcome the barriers between different conformational families, adopting different energy 

path and end in new local minima. However, for the studied peptides, because of the absence 

of any new bands in the UV-UV hole-filling spectra these previous possibilities can be ruled 

out. It appears that the molecules follow the same cooling path as during the first cooling step 

to populate the minima already identified in the absence of the UV excitation. During the 

isomerization process and on the time scale of the recooling step (20 ms), the emission of an 

IR photon could occur [59] so radiative and collisional relaxation pathways compete together 

to transfer population to cool the molecule. 

One should point out that the use of the photodissociation as detection technique in the 

UV-UV hole-filling approach makes it difficult, if not impossible, to discuss the relative 

changes in the population of the different conformations. The disadvantage of this technique 

under our experimental conditions is that daughter ions produced from both lasers are released 

together from the trap and so no control over the number of fragmentation induced by each 

laser.  

Finally, we attempted to probe excited-state isomerization dynamics using the UV-UV 

hole-filling method. The excited molecules could follow nonstatistical and statistical manner 

in order to dissociate, in this later case internal conversion occur and thus isomerization 

process could lead to the formation of new conformational structures. The resulting spectra of 

the studied systems did not show any new transition that could be attributed to new 

conformational minima. 
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5.4 Conclusion  

In this chapter, we demonstrate the feasibility of population transfer experiments on 

large ions in a cold 22-pole ion trap using photofragment spectroscopy for detection. First the 

potential energy surfaces of molecules were explored following an infrared excitation, and 

after collisional recooling a UV laser probes the new conformational distribution. We have 

applied this method to three different molecules of increase size, starting with the single 

amino acid phenylalanine then proceeding to a seven residue helical peptide and to a twelve 

residue peptide. The three systems show evidence of the transfer between its lowest energy 

minima after IR excitation; however the isomerization process did not populate regions of the 

potential surface corresponding to new conformers. A possible way to get benefit of this 

method is to apply the cool-pump-recool configuration multiple times and therefore pumping 

out a specific conformer in spite of maximizing other conformations, this will be feasible by 

extending the trapping cycle to hundreds of ms by simply changing the frequency of the 

machine.  

Secondly we developed a method for probing the isomerization dynamics of the 

peptides after being promoted to an electronic excited state from their lowest vibrational state 

on the ground electronic state S0. The isomerization into new conformational minima was not 

observed, however due to the complexity of the peptides structure, it is difficult to identify the 

exact pathways. 
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Chapter 6       

 Infrared population transfer spectroscopy 

  

 

An important objective of this work is to provide information about the abundance of 

different conformers of molecules in our cold ion trap as well as the quantum yield to 

isomerization after infrared excitation, both of which will serve as benchmarks for theoretical 

studies. After having demonstrated the feasibility of the population transfer approach and the 

redistribution of population between the lowest identified minima, we report here results of 

our infrared population transfer (IRPT) experiment. These data allow the extraction of the 

fractional population of the protonated phenylalanine as well as the two peptides studied in 

this work.  In association with IR-UV double resonance spectra, the IRPT spectra give the 

possibility to obtain the isomerization quantum yields of different NH stretch vibrations of 

phenylalanine and the twelve-residue peptide Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H
+
. 

6.1  Introduction 

Numerous experimental studies seek to understand the mechanisms and dynamics of 

conformational isomerization in flexible molecules. Unimolecular reaction studies provide 

information on the reaction energy barrier, time scales, and pathways on the potential energy 

surface of small molecules where two conformational minima are connected by a single 

transition state along a well-defined reaction coordinate [1-7]. On the other side, large 

molecules have very complex potential energy landscape with an enormous number of 

conformational minima, and thus the pathways connecting them may involve several 

transition states. This fact makes it very difficult to define all the stationary points on their 

potential energy landscape and to probe the conformational dynamics [8].  
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In recent experiments on methyl-capped dipeptides, Zwier and coworkers showed that 

conformational change in gas-phase biomolecules can be induced by infrared excitation [9]. 

The important results of these experiments were values of fractional population of the 

different conformers and the isomerization quantum yields following excitation of each of the 

unique amide NH stretch fundamentals of these molecules, where evidence of conformation-

specific, and to a lesser degree mode-specific, isomerization was found [9-12]. We have 

performed similar studies on two protonated peptides of somewhat greater size in addition to 

the single amino acid phenylalanine. We report here the infrared population transfer spectra of 

three molecules of different size and flexibility and population abundance. Quantum yields for 

conformational isomerization are extracted for different NH stretch vibrations of 

phenylalanine and the twelve residue peptide Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H
+
. 

6.2  Infrared population transfer experiment in a cold 22-pole ion 

trap 

This method is based on the work of the Zwier group [9]; details of its adaptation to 

study cold ions in a 22-pole ion trap can be found in section 3.4.2. Here we give only a brief 

description. Ions are generated in the gas phase via nano-electrospray and collected in a 

hexapole, which generates an ion packet every 50 ms and projects it through a quadrupole 

mass filter, to select the ions of a particular m/z.  The mass-selected ions are then guided to a 

cold 22-pole ion trap where they are cooled by collisions with helium, which is pulsed into the 

trap 1 ms prior to the arrival of the packet. Once in the trap, the ions are given 20 ms to cool 

before being excited with an infrared pump laser. The changes in the conformer population 

were detected 7 ms later using UV laser-induced fragmentation. In these experiments 

particular attention is given to the spatial overlap between the lasers and the trapped ion 

packet. The pump and probe lasers were positioned to maximize the population transfer 

signal. The IR beam has a slightly large diameter than the UV beam and a maximum pulse 

energy of 5-6 mJ in order to prevent the saturation of the transitions.  

6.2.1 Results  

6.2.1.1 IRPT spectroscopy of protonated phenylalanine 

Phenylalanine is large enough to have some degree of conformational complexity but 

small enough such that its spectroscopy is still relatively simple.  As one of the near-UV 
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chromophores of proteins, it has been studied by various groups both experimentally and 

theoretically. These studies have provided structural information on the different 

conformations of neutral phenylalanine [13-20], their relative abundances and the transition 

states separating them [16, 18]. We have used single- and double-resonance photofragment-

based laser techniques to record ultraviolet and infrared spectra of protonated phenylalanine, 

and the comparison of these spectra with DFT calculations allowed us to identify two stable 

conformers [21]. Here, we present the results of the population transfer experiments on PheH
+
 

and determine which products are formed, and in what abundance. Figure 6.1 presents the 

infrared population transfer spectra for conformer A and B of PheH
+
. These spectra are 

measured by fixing the UV probe laser to the band origin of conformer A (red) and conformer 

B (blue) while scanning the IR laser over the NH stretch region.  

The IRPT spectra reflect a symmetry in which depletions in one spectrum are always 

compensated by gains in other and thus detect the population changes induced in a single 

conformation by the absorption of an IR photon. The hole filling spectra of the stable 

conformers of this molecule reported in the previous chapter did not show any change in the 

total ion population due to the formation of any new minima (c.f. section 5.2.1). This leads us 

to consider that the weighted sum of the population transfer spectra for these two 

conformations at all infrared wavelengths should be zero:  

 .    .  0A A B Bp IRPTS p IRPTS  Eq.6.1 

where IRPTSX corresponds to the intensity of the population transfer spectra at a given 

frequency and pX the fractional population of conformer X. 
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Figure 6.1: Infrared population transfer spectra of conformer A (red) and B (blue) of PheH+. The black 

traces correspond to the IR-UV double resonance spectra of the respective conformer, taken under the 

same condition of the population transfer experiment.   

The fitted curve represented in black in Figure 6.2, shows clearly that Equation 6.1 

was satisfied over the entire wavelength range, confirming the redistribution of IR excited 

molecules among the two detected conformers. The fractional populations for the 

conformation of the protonated phenylalanine are pA= 0.63 and pB= 0.37 with an error of 

±0.02. Based on the simulations presented section 4.1.2, the structure of conformer B with  

= 72º (gauche) is predicted to be 3.2 kJ/mol higher in energy than the global minimum 

structure, which corresponds to conformer A having = 169º (anti). The higher abundance 

for conformer A is consistent with it being the lower energy conformer of the two even 

though the population difference is not related in a simple way to the difference in zero-point 

energies.  

These values for the fractional populations of the conformations of PheH
+
 are 

independent of the dissociation quantum yields and oscillator strengths of the vibronic 
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transitions in the photodissociation spectra. These experiments can thus be considered as a 

direct method to determine the fractional abundance of the conformers in a cold 22-pole ion 

trap given the assumption (supported by experiment) that no new conformers are formed 

subsequent to IR excitation. 

 

Figure 6.2: The back trace is the weighted sum of the infrared population transfer spectra of conformer 

A (red) and B (blue) of PheH+.  

One important conclusion that jumps out right away from these relative populations is 

that they are very different from the relative intensities of band origins of the two conformers 

in the UV spectrum. As shown in Figure 6. 3, the band origin that we attribute to conformer A 

is roughly half the intensity of that assigned to conformer B.  From these relative intensities 

alone we might be tempted to conclude that conformer B has twice the population of A.  

However the analysis presented above indicates that the opposite is true: conformer A has 

twice the population of B. While this discrepancy may seem to arise from a simple 

mislabeling of conformers, it is not the case. One can see that the relative intensities of the 

vibronic band of the two conformers at ~540 cm
-1

 to higher frequency is completely different, 

reflecting more nearly the relative conformer populations. The observed band origin 

intensities must therefore have oscillator strengths that differ by a factor of four for these two 

conformers.  This emphasizes something that Zwier has already pointed out [22] – the 

importance of not judging the conformer populations as being simply proportional to the band 

intensities. 
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Figure 6. 3: Ultraviolet photofragment excitation spectrum of PheH+ recorded by detecting the m/z 74 

fragment. The conformational assignments are based on the infrared and IR-UV hole burning spectra. 

In addition to being able to determine the relative conformer populations from the 

IRPT spectra of Figure 6.1, the difference in the NH stretch frequencies of the two 

conformations makes it possible to determine the isomerization quantum yields after exciting 

in the infrared via each of these three transitions. In order to do so we need, in addition to the 

fractional abundance, the intensities of the infrared bands in both the population transfer 

spectrum and the normal infrared spectrum of each conformer. The later measures the fraction 

of the population of a specific conformer that absorbs an IR photon after being cooled in the 

trap for 20 ms. These infrared spectra are presented in Figure 6.1(black). 

The equations to extract the quantum yields are developed in detail in Appendix A. 

Here we give the final result applicable in the case of the two conformers of PheH
+
 for a 

specific wave number where both absorb:  

BA AA.   . Φ .(1 Φ ) .A A

A

B
B

p
IRPTS IR IR

p
 

 AB BB  .   . Φ .(1 Φ ) .A
B A B

B

p
IRPTS IR IR

p
 Eq.6.2 

max( ,  )
where UV IR

ion

A A

A
 

IRPTSX and IRX are the intensities of the transition in the population transfer and IR-

UV double resonance spectra for conformer X at a specific frequency and Φ  XY is the 
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isomerization quantum yield for going from conformer X to conformer Y following excitation 

of a specific IR transition of conformation X. The factor  corresponds to the maximum 

overlapped area of the two laser beams with the total number of ions. Working under the 

optimized condition for maximum of overlap between the pump probe lasers and the ions, this 

factor is assumed to be close to 1.  

If the quantum yields are extracted at an NH stretch where just conformer A absorbs, 

Equation 6.2 will simplify to: 

 

AA

AB

.(1 Φ )

.Φ

A A

A
A

B

B

IRPTS IR

p
IRPTS IR

p

 Eq.6.3 

The same equations in the case of the unique NH stretch of conformer B give:  

 

.(1 Φ )

.Φ

B

B

A

B BB

A B BA

IRPTS IR

p
IRPTS IR

p

 Eq.6.4 

In these final equations the only unknowns are the quantum yields ФXY, since the 

fractional population pX has been already extracted from the weighted sums of the population 

transfer spectra, and the population transfer (IRPTSX) and infrared (IRX) peak intensities are 

measured experimentally. In order to get these intensities, all the bands in the spectra were 

fitted by Gaussians:  

 
2

. 0

2

( )
( ) .exp

22 .

Int AI
I  Eq.6.5 

In the fits of the population transfer spectra, the peak width and the center frequencies 

are set from the bands in the IR spectra taken under the same conditions.  Using these values 

we calculate for every IR absorption band the isomerization quantum yields, presented in 

Table 6.1. These quantum yields are determined separately, as independent quantities, 

however the sum of each set of values has to satisfy the equation XY + XX = 1 and thus we 

scale them to be so [9, 10, 22]. In no case are these scale factors more than 25% and in most 

cases much less.  
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Isomerization quantum yields for PheH
+
 

   PheH
+
 conformer A                             PheH

+
 conformer B         

Quantum         3087 cm
-1

      3122 cm
-1

    3156 cm
-1

     3335 cm
-1

       3054 cm
-1

     3079 cm
-1

    3352 cm
-1

  

yields 

ФXA               0.92±0.04      0.73±0.02     0.69±0.09    0.71±0.03        0.25±0.02     0.10±0.04     0.27±0.05 

ФXB               0.08±0.05      0.26±0.02     0.31±0.05    0.29±0. 06       0.75±0.02     0.90±0.05     0.73±0.06 

 
Table 6.1: IR-induced isomerization quantum yields for the protonated phenylalanine. ΦXA/B is the 

quantum yield for formation of conformer A/B following IR excitation of conformer X. Quantum 

yields have been normalized so that their sum equals 1. 

 

The quantum yields are also displayed graphically in Figure 6.4.  Under the slow 

cooling conditions of the experiment (see below) and after energy relaxation, one would 

expect that most of the population will find its way back to the lowest energy conformation, 

which is A in this case. Figure 6.4 shows that the excitation of a specific conformation 

preferentially leads to the reformation of this same conformation.  By exciting the global 

minimum A and after energy dissipation, the conformational distribution is similar to the 

initial distribution formed during the initial cooling of ions in the trap: 63% of conformation 

A and 37% of conformation B.  However, starting from conformation B the final distribution 

showed that almost 70% of the excited molecules find its way back to the initially excited 

conformer. Thus, the repartitioning of the population after vibrational excitation depends on 

which conformer one starts with.   
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Figure 6.4: Quantum yields for isomerization following IR excitation of the indicated NH stretch of 

conformation A and B of PheH+. Φxy is the quantum yield for formation of conformer y following IR 

excitation of conformer x. 

After the absorption of an infrared photon, phenylalanine is promoted to a vibrational 

level above the barrier to isomerization – we know this because we probe and observe the 

isomerization product.  This means that upon vibrational excitation, intramolecular vibrational 

redistribution (IVR) must occur and that the vibrationally mixed states include levels that are 

conformationally mixed in character. The time scale of IVR to such conformationally mixed 

states, which is essentially an isomerization rate, is difficult to estimate because it depends on 

coupling matrix elements to states of very different conformational character.  If these rates 

were to be slow enough, collisional cooling might compete with isomerization, and in this 

case it would direct population back into the initially excited minimum. To see if this might 

be the case in a molecule the size of protonated phenylalanine, we could compare with the 

results from Zwier and coworkers [9, 10, 22]. 

Dian et al. reported conformational specificity in the population transfer experiment of 

N- acetyl tryptophan methyl amide (NATMA) in a supersonic expansion [9, 22].  Simulations 

carried out by Evans et al. to explain the population dynamics of this molecule revealed that 

at sufficiently high rates of collisional cooling one should indeed observe conformer 

selectivity, since the cooling process begins to compete with the isomerization rate [11, 23]. 

In the supersonic molecular beam experiments on NATMA, the time to cool the vibrationally 

excited molecule back down to the zero point level is estimated to be on the order of 900 ns, 

and the initial time between collisions is ~100 ps. These timescales are at least 10
4
 times 

shorter than in our experiment. 

The initial density of helium ρHe in our trap was calculated by measuring the 

background pressure of helium inside the vacuum chamber and based on the pumping speed 

of the turbo-pump, it was found to be on the order of 10
15

 cm
-3

 [24]. The number of collisions 

per second, Z, is given by the density of the helium atom ρHe times their average velocity  at 

10 K (2.10
4
 cm/sec) and the molecular diameter, which is estimated to be about 1 nm based 

on the molecular diameter of the benzene ring: 

 
22. . . .He ionZ D  Eq.6.6 

This gives a frequency of 10
6
 sec

-1
 and time between collisions of about 1 µsec. In 

addition, we have measured the time for vibrationally excited phenylalanine to cool back to its 
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vibrational zero-point level in our cold ion trap. Figure 6.5 illustrates the gain in the 

photofragment signal of conformer B of phenylalanine while the IR laser is fixed at a 

transition belongs to conformer A. The curve shows an increase in the signal after which it 

stays stable for 7ms. The cooling occurs during the first microseconds, and reaches a 

maximum after 200 µsec. This clearly puts our population transfer experiment in the cold ion 

trap under slow cooling conditions as defined by Evans et al. [11]. It is thus difficult to 

imagine the possibility that collisional cooling quenches the vibrational energy fast enough 

restrict the molecule from crossing the isomerization barrier. 

 

Figure 6.5: The gain in the photofragment signal, of phenylalanine conformer B, detected as a function 

of time delay between the IR and UV lasers, fixed in wavenumber. The IR laser is set to a vibrational 

transition of conformer A at 3122 cm-1 while the UV laser probes conformer B at 37 529.6 cm-1.  
 

On the other hand, excited PheH
+
 ions have more internal energy (~ 3100 cm

-1
) 

compared to the room temperature molecules that initially arrive at the trap with an internal 

energy estimated to 1852 cm
-1

. While this additional energy allows the molecule to explore a 

wider region of the potential energy surface and in principle could make other deactivation 

pathways accessible, it is difficult to imagine how this would result in increased population in 

a conformer (B), which is not the lowest in energy. This fact could be verified if the 

transitions in the CO stretching region did not overlap. However we did not find any 

fundamental explanation for this unexpected result.   This point will be discussed in more 

detail in Section 6.3.  
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It is interesting to extend this experiment to larger, flexible molecules to probe the 

isomerization dynamics following the excitation of specific vibration. We will show in the 

next sections the application of the infrared population transfer spectroscopy on peptides of 7- 

and 12 amino acid residues.   

6.2.1.2 IRPT spectroscopy of Ac-Phe-(Ala)5-Lys-H+ 

 The secondary structures of Ac-Phe-(Ala)5-Lys-H
+
 and its different intramolecular 

hydrogen bonding patterns were reported in section 4.2.2. Spectroscopic studies together with 

DFT calculations inferred helical structures with α- or 310 helix-like hydrogen bonded rings as 

the most stable conformers [25, 26],  and this was confirmed by isotopic substitution. These 

studies reveal the existence of four conformers. The lowest energy conformer, D, contains 

two C10 and two C13 rings, and together with conformer C constitute backbone family I. The 

second-lowest-energy hydrogen-bonding pattern (conformer B) has three C10 rings and one 

C13 ring, and together with conformer A constitutes backbone family II. Within the same 

family the backbones are identical but the orientation of the phenylalanine side chain changes 

by rotation around the C -C  bond. After the lowest energy minima were identified, we 

applied conformational isomerization spectroscopic techniques, initiating the transfer via 

vibrational excitation of a specific NH or CO stretch transition and detecting, after a delay 

time to allow collisional relaxation, the resulting distribution with a UV probe laser. The hole-

filling spectroscopic studies described Chapter 5 prove the possibility of the transferring 

population to conformers within the same family, which involves rotation of the 

phenylalanine side chain around the C -C  bond, as well as between backbone families, 

which requires rearrangement of the helical backbone (breaking and forming hydrogen 

bonds). Here we present the results of infrared population transfer studies of cold Ac-Phe-

(Ala)5-Lys-H
+
. The peptide ions were first irradiated with a scanned infrared laser followed 7 

ms later with an UV probe laser fixed at the origin transition of a specific conformer. Figure 

6.6 shows the infrared population transfer spectra (black) for all four conformers and their 

respective IR-UV spectra (red).  
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Figure 6.6: The black traces correspond to the infrared population transfer spectra of conformer A-D 

of Ac-Phe-(Ala)5-Lys-H+. The red traces are the IR-UV double resonance spectra of the respective 

conformers, taken under the same condition of the population transfer experiment.   
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The outcome of these population transfer experiments shows how the excited 

population redistributes itself for each IR absorption band. Gain signals in the spectra measure 

the additional population that the probed conformer gains from the relaxation of the excitation 

of another conformer (i.e., the one corresponding to each vibrational band). In the absence of 

overlapping IR bands, the depletion signals represent the amount population that is transferred 

from the probed conformer to the others. If there are overlapping bands in the IR spectrum, 

gains from the transfer in to the probed conformer may compensate the transfer of population 

out of this conformer, and the depletion will be less pronounced. The IR-UV spectra show 

that almost all the vibrational absorption bands are at least partially overlapped, due to the 

structural similarity between each pair of conformers (i.e. conformers within a given family). 

While we were able to find specific infrared wavenumbers to selectively excite individual 

conformers in this region for hole-filling spectroscopy (conformation A at 3447 cm
-1

, 

conformation B at 3374 cm
-1

, conformer C at 3444 cm
-1

 and conformer D at 3442 cm
-1

), it is 

impossible to extract isomerization quantum yields using these partially overlapped 

transitions.  In order to extract the quantum yields we need experimental determination of the 

intensities of the bands in each of the four infrared population transfer spectra, and in the 

partially overlapped transition every single value will include contributions from different 

conformers.  

Even if these spectra do not allow us to extract the isomerization quantum yields, they 

are still of a great importance as they contain information on the fractional abundance of the 

four conformations in the 22-pole ion trap. The previously measured IR-UV hole-filling 

spectra demonstrate that the excited population is relaxed back to fill the zero energy levels of 

conformers A, B, C and D and hence show no evidence for the formation of new 

conformations. As a consequence, at all IR wavelengths the changes in population in the four 

conformers must sum to zero, satisfying the following equation: (c.f. annex A) 

 .    .  .    .  0C CA B B DA Dp IRPTS p IRPTS p IRPTS p IRPTS  Eq.6.7 

where IRPTSX represents to the intensity of the population transfer spectra at a given 

frequency and pX the fractional population of conformer X. This equation is used to find the 

abundance of the four conformers in the absence of the infrared excitation. As shown in 

Figure 6.7, the black trace representing the weighted sum of infrared population transfer 

spectra is almost zero and thus Equation 6.6 is satisfied with the fractional population of 

conformers A-D:   



Chapter 6    

120 

 

pA= 0.31±0.02 

pB= 0.34±0.02 

pC= 0.18±0.02 

pD= 0.17±0.02 

with an error bars of ±0.02. These fractional populations of different conformations are 

completely independent of the dissociation quantum yields or the electronic oscillator 

strengths of vibronic transitions in the photodissociation spectra of the conformers and thus 

represent a direct measurement of the conformational abundance of this peptide in the trap.  

 

Figure 6.7:  The back trace is the weighted sum of the infrared population transfer spectra of 

conformer A (red), B (blue) C (Green) and D (violet) of Ac-Phe-(Ala)5-Lys-H+. 

The conformer assignments of the bands in the electronic spectrum of this molecule 

were made by comparing the corresponding conformer-specific infared spectra taken by IR-

UV spectroscopy with calculated spectra [25, 26]. This procedure suggests conformation D to 

be the lowest in energy followed by conformers B, C and A with respective energies of 2.6, 

4.2 and 6.8 kJ/mol higher than the global minimum. The conformational search was done 

using AMBER force field [27] in Macromodel [28] that gives an initial collection of over 

1000 structures under 50 kJ/mol in energy, nearly all of which are helical. The choice of the 

force field was not driven by a particular reason, although it performed rather favorably in 

previous calculations on protonated amino acids and dipeptides [21, 29]. In calculations of 
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protonated amino acids, AMBER tends to overestimate the stabilizing effect of an NH … OH 

C5 interaction at the C-terminus by about 15 kJ/mol, so all structures that had this type of 

interaction were eliminated from further consideration, retaining instead those with the more 

favorable NH … O=C C5 structure. Single-point energies were calculated using B3LYP/6-

31G** in Gaussian03 [30] for the remaining structures and a full geometry optimization and 

harmonic frequency analysis were performed on a subset that included all major degrees of 

flexibility of the backbone, the phenylalanine side-chain, and other flexible coordinates. In all, 

45 structures were optimized, and vibrational frequencies were calculated for the 21 most 

stable of these. The energies we report are corrected for zero-point energies using the 

unscaled harmonic frequencies, while the hydride stretch frequencies are scaled by a factor of 

0.952 for comparison to the measured infrared spectra. The theoretical and experimental 

spectra are in a good agreement, and to help test the accuracy of theoretical predictions, 

isotopic substitution experiments were performed [26]. However, the predicted relative 

conformational energies D<B<C<A are different from the experimental results described 

above, which proposes B-A<C-D.  In conclusion, this energy difference may vary strongly 

between different force fields and DFT [31], and thus the results presented here provide an 

additional reference point that can be used to critically assess, compare, and improve the 

choice and parameterization of both methodologies, empirical force fields  and DFT, used in 

biomolecular simulations. 

Because of the overlapping of different bands in the IR spectra we were not able to 

extract the quantum yields to isomerization and thus we could not investigate the possibility 

of mode- or conformer-specific isomerization. In order to overcome this limitation one might 

think of investigating more flexible molecules, in which the lowest energy conformations may 

have very different structure and hence spectra.  The next section presents infrared population 

transfer results of a twelve residue peptide that was designed with the objective of 

destabilizing the helical structure of the Ac-Phe-(Ala)n-Lys-H
+
 peptides [25, 26, 32] by the 

addition of four glycine residues.   

6.2.1.3 IRPT spectroscopy of Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H+ 

Using ion mobility spectrometry, Jarrold et al. reported a study of the formation of 

helical secondary structure from the solution phase in vacuo for a series of charged 

polyalanine  peptides Ac- Alan-Lys-H
+
 (n=5-20) [33]. Further studies followed to establish the 

nature of the helix by coupling ion-mobility cross-sections to molecular dynamics results [34-
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38]. On the other hand, the combination of spectroscopic measurements with DFT and MP2 

calculations has led to the identification of the helical structure exhibited by the alanine-based 

peptides [25, 26, 39, 40]. The key element for disturbing the helical shape of these alanine-

based peptides is the addition of glycine, it is well known that this amino acid has a low helix-

forming propensity [38, 41]. We thus substituted four alanines by four glycines in the 12-

residue helical peptide Ac-Phe-(Ala)10-Lys-H
+
 [26] to tune the stability of the helical structure 

to the point where helical and non-helical conformers might have similar stability. On the 

theory side, we employ the AMBER force field to generate the initial conformational searches 

on the designed molecule, Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H
+
, which gives an initial 

collection of both folded and unfolded conformers with similar energies under 50 kJ/mol. On 

the experimental side, however, the conformational-specific IR-UV spectra reveal no 

significant structural differences between the lowest energy minima of the glycine-containing 

peptide (c.f. section 4.2.3). Based on the common transitions in the amide II and amide A 

regions between these spectra and those of conformers C and D of Ac-Phe-(Ala)5-Lys-H
+
, we 

suggested that this molecule adopts a helical shape. While the substitution of four alanines by 

glycines does not seem to destabilize the helical structure, it is still interesting to investigate 

the dynamics of this molecule following selectively vibrational excitation. The hole-filling 

spectra show that the photon energy of the infrared excitation is able to move population 

between the minima that had already population in them. The nonappearance of any new 

minima means that there is no net change in the population of the two conformers, and 

thereby one can extract their fractional populations by measuring infrared population transfer 

spectra.  

 Figure 6.8 presents the population transfer spectra of Ac-Phe-(Ala)3-(Gly)4-(Ala)3-

Lys-H
+
. The red and blue curves were recorded by fixing the UV probe laser wavenumber at 

the origin transition of conformer A and B respectively and scanning the IR, with a time delay 

of 7 ms between the lasers. The black curves underneath are the corresponding IR-UV double 

resonance spectra recorded by firing both lasers after 20 ms of the arrival of the ions into the 

trap, with a delay of 200 ns.  
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Figure 6.8: Infrared population transfer spectra of conformer A (red) and B (blue) of Ac-Phe-(Ala)3-

(Gly)4-(Ala)3-Lys-H+. The black traces correspond to the IR-UV double resonance spectra of the 

respective conformers, taken under the same condition of the population transfer experiment.   

The black trace in Figure 6.9 is the weighted sum of the population transfer spectra of 

the two conformations A and B, satisfying equation 6.1 over the entire wavelength range:  

 .    .  0A A B Bp IRPTS p IRPTS   

with IRPTSX the intensity of the population transfer spectra at a given frequency and pX the 

fractional population of conformer X. The fractional populations for conformation of A and B 

are pA= 0.51 and pB= 0.49, respectively, with an error of ±0.03. This additional information 

on the conformational abundance could be useful for the theoretical simulations since the 

conformational structure should be, in addition to the similarity of the helical backbone, very 

close in energy. This was also observed in the case of the previous molecule  
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Ac-Phe-(Ala)5-Lys-H
+
, where conformers within the same family having identical backbones 

had nearly equal fractional populations.  

 

Figure 6.9: The back trace is the weighted sum of the infrared population transfer spectra of conformer 

A (red) and B (blue) of Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H+. 

In the region below 3380 cm
-1

 corresponding to strongly hydrogen bonded NH groups, 

the transitions in both spectra severely overlap, and due to this fact, no net gains or depletions 

are clearly observed in the IR-population transfer spectra. If both NH stretches of 

conformation A and B are pumped simultaneously, it is evident that after relaxation the 

excited populations refilled equally the lowest minima. In order to induce a large population 

change one has to selectively pump vibrations. At the highest energy, we could isolate 

vibrations specific for a particular conformation: A at 3448 cm
-1

 and B at 3384 and 3054 cm
-1

, 

and thus extract the quantum yields to isomerization making use of the set of equations 

developed in Annex A and reported in the first part of this chapter (equations 6.3 and 6.4). 

Table 6.2 and Figure 6.10 present the quantum yields for conformer A and B of Ac-Phe-

(Ala)3-(Gly)4-(Ala)3-Lys-H
+
. The values are quite similar to one another within the error bars, 

which are somewhat large due to the low fragmentation yields of this molecule. At the same 

time these values are close to the fractional populations of the conformers in the absence of 

infrared excitation. This resemblance mainly means that the energy deposited in the NH 

stretching mode of a particular structure is rapidly redistributed among all the modes via 

intramolecular vibrational relaxation (IVR) and the isomerization process guides the 

population to the equilibrium distribution. As mentioned previously, the conformers should 

have similar energy, and since they receive almost equal amounts of energy by vibrational 
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excitation, it is not surprising that all transitions in both conformers would distribute their 

excited population in an identical way under the low density of buffer gas (i.e., slow cooling 

conditions) in the 22-pole ion trap. Contrary to the case of the protonated phenylalanine, this 

molecule did not show any evidence for conformation selectivity. We cannot provide specific 

information on the pathway of the energy relaxation in this large molecule, but it is likely that 

energy dissipation and isomerization process adopt the same pathways in dictating the 

population redistribution as for cooling the room temperature molecule. 

Isomerization quantum yields for Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H
+
 

   Conformer A                                             Conformer B             

Quantum                3448 cm
-1

              3384 cm
-1

               3446 cm
-1

    

yields 

ФXA                                  0.58±0.15                                                     0.52±0.14                 0.52±0.16 

ФXB                                  0.42±0.16                                                     0.48±0.15                 0.48±0.14 

Table 6.2: IR-induced isomerization quantum yields for Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H+. 

ΦXA/B is the quantum yield for formation of conformer A/B following IR excitation of conformer X. 

Quantum yields have been normalized so that their sum equals 1. 

 

 

Figure 6.10: Quantum yields for isomerization following IR excitation of the indicated NH stretch of 

conformation A and B Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H+. Φxy is the quantum yield for formation 

of conformer y following IR excitation of conformer x. 

 



Chapter 6    

126 

 

6.3  Comparison between the isomerization quantum yields  

The isomerization dynamics of molecules of different size were studied through 

infrared population transfer techniques. The isomerization process after the absorption of an 

infrared photon showed quite different behavior in the single amino acid phenylalanine and 

the 12-residue peptide Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H
+
. In the case of PheH

+
, the 

quantum yields extracted seem to indicate evidence of conformational selectivity. The excited 

molecules out of conformer A are redistributed in such a way as to form mostly the lowest 

energy conformation (which is conformer A), and the final population distribution is almost 

the same as in the absence of IR excitation. Upon exciting different NH stretches of 

conformer B, however, the energy dissipation and isomerization process drives 70% of the 

excited molecules back to form conformer B instead of reaching the “equilibrium” 

distribution (that is, the distribution formed in the initial cooling process of room temperature 

molecules). For the larger molecule, Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H
+
, the quantum yields 

after IR excitation are such that they produce the same population distribution as in the initial 

cooling  process (i.e., in the absence of  infrared), with no conformational selectivity. 

Conformational specificity in the quantum yields would only be possible if on the time 

it takes for the molecule to be recooled collisionally, IVR would be complete within a given 

conformational well but not fully complete between wells of other minima. In other words, 

coupling to states that have character of other conformational isomers would have to be slow 

on the timescale of collisional cooling.  In this case the cooling will capture the isomerization 

process in different ways if the isomerization is initiated through conformation specific 

vibrational excitation from different conformational wells. This appears to be what we 

observe in the quantum yields of PheH
+
. Nevertheless, given the long time scale of collisional 

cooling in our experiment, which is in order of tens of µs, it is difficult to imagine that energy 

could be trapped in a particular conformer for that long. It is not clear why with such a slow 

cooling rate we detect conformational specificity in the case of phenylalanine. To help us rule 

out any systematic error in our determination of the isomerization yields, we compare the 

overall behavior of protonated phenylalanine with that of Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-

H
+
. The absence of such behavior in the case of the glycine containing peptide, even though 

its quantum yields were extracted using the same equations as in the case of the single amino 

acids, suggests that the treatment of the data is correct. Perhaps our assumption of γ=1 (the 

overlap factor) is incorrect – could this distort the quantum yield results for protonated 
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phenylalanine? From the experimental spectra we could put a lower limit on this factor of 0.7, 

and while within this limit γ will have an impact on the value of the quantum yields, it does 

not affect the overall picture and thus could not be the cause the mode specificity seen in 

PheH
+
. Moreover, the experimental procedure followed to maximize the laser overlap was 

identical for the set of population transfer experiments of different molecules studied in this 

thesis. These also reduce the possibility of any experimental manipulation leading to the 

conformational specificity in case of phenylalanine.   

Even though the number of internal modes and the complexity of the two systems are 

not comparable, we should point out that the difference in excitation energy relative to the 

initial thermal energy is largely different in case of both molecules. The energy gained by the 

protonated phenylalanine from the excitation of the NH stretches is about the double of what 

it has at room temperature when it first arrives at the cold ion trap, while the energy put into 

Ac-Phe-(Ala)3-(Gly)4-(Ala)3-Lys-H
+
 via excitation at 3400 cm

-1
 is about five times lower than 

the internal energy of the room temperature molecule (16’000 cm
-1

). Conclusions regarding 

the unusual result in protonated phenylalanine may have to await both more extensive 

calculations as well as additional test experiments. 

 

6.4 Conclusion  

Having already demonstrated the feasibility of the population transfer experiments in 

the 22-pole ion trap and its application on large protonated molecules in Chapter 5, we 

presented here in Chapter 6 the results or products of conformational isomerization induced 

by infrared excitation. From these experimental data we first extracted the fractional 

population of different conformations of the investigated molecules. This piece of information 

is of great importance for the theoretical work, as it furnishes additional critical information 

that would be extremely useful to compare and improve the parameterization of empirical 

force fields and the accuracy of DFT functionals, both of which are used in simulating 

biomolecular structures. The combination of force field and DFT basis set in the case of 

phenylalanine predicts the structural conformation with the right energetic order; the global 

minimum determined theoretically (conformer A) had the highest abundance extracted 

experimentally. For the helical seven residue peptide, the fractional abundances determined 

by the IRPT spectra indicate a similar abundance for conformations within the same backbone 
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family. From the extracted values we can conclude that backbone family II has higher 

fractional population than backbone family I, and, if the molecules are fully annealed, should 

be of lower energy. This suggested order of conformational stability based on the fractional 

populations differs from that proposed by our theoretical simulations, meaning that this later 

was good enough in assigning the structure but not in predicting their energy order. The third 

system reported here is the twelve residue peptide, whose extracted fractional populations 

suggest an equal partitioning between its two stable conformations that should have barely 

similar structures.  

In addition to allowing us to extract absolute conformer populations, the infrared 

population transfer spectra enable us to probe the dynamics of isomerization following the 

excitation of single vibrational modes of specific conformation. In association with IR spectra 

taken under the same conditions, the IRPT spectra allow the extraction of the isomerization 

quantum yields subsequent to excitation of different NH stretches in PheH
+
 and Ac-Phe-

(Ala)3-(Gly)4-(Ala)3-Lys-H
+
. Depending on which conformation was excited, protonated 

phenylalanine showed distinguishable isomerization patterns revealing a conformational 

specificity. This may suggest the existence of different pathways on its energy landscape that 

could be accessible at different internal energies. Theoretical studies on the accessible 

pathways between the minima on the potential energy surface at different excitation energies 

would help in drawing better picture of the dynamics in this molecule. In the case of Ac-Phe-

(Ala)3-(Gly)4-(Ala)3-Lys-H
+
, the conformational distribution produced after the IR excitation 

is the same as in the initial cooling step from room temperature. 
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Chapter 7 

Conclusions and perspectives  

 

 

This thesis investigated the energy landscapes and conformational dynamics of 

biological molecules in a cold ion trap using a variety of photofragmentation-based double-

resonance techniques. In the first part, spectroscopic studies in the Amide A, I and II stretch 

region provided information about local minima on the potential energy surfaces of the 

different systems studied, starting from the single amino acid phenylalanine and moving to 

molecules of increasing size: the 7-residue peptide Ac-Phe-(Ala)5-LysH
+
 and the 12-residue 

peptide Ac-Phe-(Ala)3-(Gly)4-(Ala)3-LysH
+
. The second part focuses on the conformational 

isomerization of these molecules, implementing infrared and ultraviolet hole-filling 

spectroscopy. In the last chapter, the fractional conformer populations and the isomerization 

quantum yields are determined through infrared-induced population transfer spectroscopy.  

The study of the phenylalanine infrared spectra, in combination with DFT 

calculations, allowed the identification of two stable conformations that differ in the 

orientation of the backbone with respect to the ring by a rotation of the angle 1 [1]. In the 

case of the lysine-capped polyalanine peptide, the lowest energy conformer adopts a helical 

three-dimensional structure, and thus the presence of the phenylalanine chromophore does not 

change the helical shape predicted by the ion mobility studies [2, 3]. The measured infrared 

spectra, in comparison with theoretical simulations and isotopic substitution experiments, 

allowed the identification of four helical conformers that are sorted out in two families 

according to the hydrogen-bonding scheme of their peptide backbone [4, 5]. The NH, CO and 

OH stretch vibrations have proven to be sensitive probes of hydrogen bonding (or the lack 

thereof) and thus of the folding of the peptide backbone in these structures. These fingerprints 
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are used to suggest a helical shape for the most stable conformer of the glycine containing 

peptide, which is too large for us to compare with theory. The spectroscopic evidence thus 

suggests that the addition of four glycines was not enough to disturb the helical structure of a 

lysine-capped polyalanine helix. Also the number of detected conformers decreased from four 

to two, which may indicate an increased tendency to relax to the global minimum -- behavior 

that was also reported by Bakker et al. using IR-UV double-resonance spectra of jet-cooled 

Trp, Trp-Gly and Trp-Gly-Gly [6].  

In the second part of this thesis we demonstrated the feasibility of infrared hole-filling 

spectroscopy in the 22-pole ion trap. This method was initially developed in the Zwier group 

to probe the isomerization of neutral biomolecules cooled in a supersonic expansion [7]. For 

the systems investigated here, an infrared excitation that selectively interacts with a single 

conformation was able to create a new population distribution among the conformations 

initially having population in them (i.e., in the absence of the IR). Vibrational relaxation to the 

buffer gas cannot compete with the early stages of isomerization (i.e., IVR), but it is likely 

that towards the end of the sequence such a competition may occur and the molecule gets 

trapped kinetically, and this is proven by the detection of population in several stable minima. 

Nevertheless, the relaxation process after IR excitation did not lead to the formation of any 

new conformational minima, even though in the case of the single amino acid the excited 

molecule had double the amount of internal energy of the room temperature molecule initially 

arriving in the trap. Such a result is perhaps not surprising for the two larger peptides, since 

the amount of internal energy gained via the infrared excitation is approximately 3 times less 

than that of room temperature molecules.  After infrared excitation, it appears that the 

recooling process follows a similar path as the initial cooling of the room temperature 

molecules. We also attempted to use infrared hole-filling spectroscopy to probe the height of 

the isomerization barrier in Ac-Phe-(Ala)5-LysH
+
. In order to define a tighter upper limit to 

this barrier, we went to the mid-infrared region and selectively pumped the CO vibrational 

transition of conformation B of this molecule.  The fact that we were still able to induce 

conformational isomerization means that the barrier for this process is less than 1654 cm
-1

.  

We attempted to probe the excited-state isomerization dynamics of the peptides using 

a UV-UV hole-filling method. The activated molecule could dissociate on the electronic 

excited state or undergo internal conversion and dissociate on the electronic ground state. We 

attempted to observe whether subsequent to UV excitation and recooling some molecules 

might form new conformations as internal conversion would allow the exploration of a much 
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wider part of the potential energy surface. Since no new conformational minima were 

observed, we could not tell whether this means that the fraction of excited molecules that 

dissociate following internal conversion to the ground state is small or whether even with this 

large amount of internal energy the cooling process results in the same conformational 

distribution.  A further elaboration of this work might be the study of molecules that act as 

photo-switches, in particular these peptides can switch conformation in solution either by 

changing pH or by irradiation with light [8].  In the case of the UV switch peptide, a bulky 

side chain is broken, and this might make a large conformation change that could easily be 

detected. This type of molecules is used to investigate biological dynamics and get insight 

about the mechanism of folding and aggregation that occurs in living cells [8, 9]. 

We extracted fractional populations of different conformations of the three molecules 

we studied in a cold 22-pole ion trap. These quantities are independent of the dissociation 

quantum yields or oscillator strengths of the vibronic transitions in the photodissociation 

spectra of the different conformers, and thus correspond to the fractional abundance of the 

conformers. The combination of different force fields, DFT functionals and basis sets may be 

sufficient to help assign the infrared spectra, but they seem not to be particularly accurate for 

predicting the relative conformer energies. These fractional population values thus provide 

valuable information that could help improve the theoretical modeling of peptides. In the case 

of protonated phenylalanine, the level of theory used was good enough to assign the structures 

and predict their relative energy ordering, but in the case of the seven-residue peptide the 

theoretical studies need to be improved in this respect.  

Finally, in this work we presented quantitative data concerning isomerization quantum 

yields that reflect the dynamics of conformational isomerization following the excitation of 

single vibrational modes of a specific conformation. Surprising results on protonated 

phenylalanine show evidence of conformational selectivity.  The excited molecules out of a 

specific conformer are redistributed in a way to form mostly the same conformer. Although it 

might be that the additional amount of energy deposited in the excited molecule opens 

different pathways on the potential energy surface than those adopted by the room 

temperature molecule and hence drives the population into the well of the excited conformer. 

The overlapping of the transitions in the CO stretching region did not allow us to selectively 

excite a single conformer in order to confirm this speculation. However the extracted quantum 

yields of Ac-Phe-(Ala)3-(Gly)4-(Ala)3-LysH
+
 reflect an equilibrium distribution independent 

of which conformation is excited. In this case, energy dissipation and isomerization results in 
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the same conformational distribution as the initial cooling process from room temperature, 

perhaps implying that the excited molecules follow the same pathways after IR excitation as 

they do initially.  

One of the limitations in applying these techniques is the overlapping of the 

vibrational bands in the spectra of different conformations. It would therefore be useful to 

separate the conformers prior to their entrance in the mass spectrometer. We expected to 

achieve this type of separation by coupling a Field Asymmetric Ion Mobility Spectrometer 

(FAIMS) [10] to our tandem mass spectrometer. If then we allow the transmission of only a 

single conformer through FAIMS, the hole filling experiment will be conducted on a zero 

background, and this will make the detection of the new conformational distribution much 

more sensitive. In addition, this zero background will provide the possibility to selectively 

excite out of what would otherwise be overlapped transitions, which will greatly increase the 

applicability of this technique to larger molecules. 

On the other hand, adding FAIMS to our machine might give insight into the 

processes that the ions undergo during their separation in this device, since we are able to give 

structural details by double resonance techniques, and hence better understand the mechanism 

of ion separation in FAIMS.  However, one must address the possibility of interconversions of 

the conformer-selected ions after being selected by FAIMS. This drawback is currently being 

addressed in our group.   
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Appendix A 

 

 

This appendix contains the development of the equations used to extract the fractional 

population and the quantum yields to isomerization.  

1. Extracting the fractional population 

The IR-population transfer spectrum detects the population changes induced in a 

single conformation by the absorption of an IR photon. Consider the case of a molecule with 

population in three stable conformations in the ion trap, labeled A, B and C. If the hole-filling 

spectra of all the stable conformers of a given molecule do not show evidence of any new 

minima, this will mean that there is no change in the total ion population and the following 

equation will be satisfied:   

  XA XB XCΦ  Φ Φ 1    Eq.1 

where Φ  XY is the isomerization quantum yield going from conformer X to conformer 

Y.  

The peak intensity of an IR-population transfer spectrum is given by subtracting the IR 

laser-on signal and IR laser-off signal and dividing it by the IR off signal acquired almost 

simultaneously. If the IR pulse is fixed at a wavenumber at which all three conformers absorb, 

the UV pulse is tuned to conformer A, and there is enough time for the absorbed IR energy to 

be completely dissipated and the ions to be redistributed in the trap, the IR-population transfer 

peak intensity will be given by:  

 
: , :

:

 
AUV IR AUV

A

AUV

F F
IRPTS

F
 Eq.2 

where,   

:AUVF  is the total number of fragment ions from conformer A; and 
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: ,A UV IRF  is the total number of fragment ions from conformer A after cooling the IR 

excitation. 

Assuming that N  ions are trapped and the UV is tuned to a transition of conformer A, 

the rate equation for the fragmentation of this conformation is obtained by integrating in 

cylindrical coordinates over the rate equation for spatial conformation density in the trap (in 

this case conformation A):   

 :
,  .   .  Ω  .    AUV

A A UV UV A

dF
N rdrd dz

dt
 Eq.3 

where A  and AN is the fragmentation quantum yield of ions in conformation A and 

the number of ions in conformation A, which could be expressed by .A AN N p , with Ap  the 

fractional population of ions in conformation A. ,A UV  is the absorption cross section at the 

utilized laser wavelength. ΩUV  is the photon flux density of the UV laser that is considered to 

be constant along the laser beam parallel to the z axis and is given by  

 Ω
. .

UV
UV

UV UV

E

A
 Eq.4 

Where, 

 UV is UV the laser pulse duration.  

 UVA is the area of the UV laser beam. 

UVE  is the pulse energy of the UV laser pulse. 

If we consider the cylindrical symmetry for the trapping potential, Figure 1, the ion 

density becomes independent of the angle . Assuming further a dilute ion cloud with 

negligible ion-ion interaction the integration of the density over the z axis lead to the 

integration over the ion column density , with 
1

   ,  1
ion

dA
A
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Figure 1: Illustration of the cylindrical ion cloud in the trap. 

 

In this case Equation 3 is given by:  

:
,

 

 .   .  . . 
.   .  

AUV UV
A A UV A

ion UV UV

dF E
p N

dt A
 Eq.5 

The total number of fragments will be the integral of the fragmentation rate over the 

laser pulse time and is obtained by the following expression: 

 :
: ,

 

   .     .   .  . . 
.   

AUV UV
AUV UV A A UV A

ion UV

dF E
F p N

dt A
 Eq.6 

Following the same assumptions, the number of fragments, after the IR absorption is 

dissipated, will be given by:  

 : , ,  .  . .   
.   

UV
AUV IR A A UV A

ion UV

E
F N

A
 Eq.7 

In this case NA is the total number of ions that still populate conformation A after the 

IR pulse and this can be expressed by the sum of the initial total number of ions in 

conformation A and those transferred into A from B and C after IR absorption and recooling, 

minus the number of ions that transferred out of A: 

 

     

, BA

, CA

, AA

. 

          .  .  .   . Φ
.   

          .  .  .   . Φ
.   

          .  .  .   .(1  Φ )
.   

A A

IR
B IR B

ion IR

IR
C IR C

ion IR

IR
A IR A

ion IR

N N p

E
p N

A

E
p N

A

E
p N

A

  

,  XA   , AA.    .     .    . Φ .   .(1 Φ )   
. 

IR
A A X X IR A A IR

X Aion IR

E
N N p p p

A
 Eq.8 
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Replacing AN in by its value in the Equation 7 gives the following expression:  

: ,

XA AA, ,

.  .   .
.   

              .  .     .    . Φ .   .(1 Φ )
.   

UV
AUVIR A A UV

ion UV

IR
A X A A IRX IR

X Aion IR

E
F

A

E
N p p p

A

 

The peak intensity of an IR-population transfer spectrum given by Equation 2 could 

then be expressed by: 

 
: , :

:

 
AUV IR AUV

A

AUV

F F
IRPTS

F
 

, , XA , AA

,

.  .  .   .   .     .    . Φ .   .(1 Φ ) 
.    .   

 

.  . . .   
.   

UV IR
A A UV X X IR A A IRX A

ion UV ion IR
A

UV
A A UV A

ion UV

E E
N p p

A A
IRPTS

E
p N

A

 

 
, XA , AA       .    . Φ .   .(1 Φ )  . 

 
. .  

X X IR A A IR IRX A

A

A ion IR

p p E
IRPTS

p A
  

The weighted sum of the population transfer spectra for the three conformation at all 

infrared wavelengths is given by: 

 .    .    . A A B B C Cp IRPTS p IRPTS p IRPTS  Eq.9 

, , XA , AA

, , XB , BB

, , XC , CC

      .    . Φ .   .(1 Φ ) .
.   

     .    . Φ .   .(1 Φ ) .
.   

   .    . Φ .   .(1 Φ ) .
.   

IR
X X IR A A IR

X A ion IR

IR
X X IR B B IR

X B ion IR

IR
X X IR C C IR

X C ion IR

IR

E
p p

A

E
p p

A

E
p p

A

E

A

, AB AC AA

, BA BC BB

, CA CB CC

. . (Φ  Φ  (1 Φ ))

.    . . (Φ  Φ  (1 Φ ))
.   

  . . (Φ  Φ  (1 Φ ))

A A IR

B B IR

ion IR

C C IR

p

p

p

 

Since equation 3.2 holds for all conformers, then:  

AB AC AA

BA BC BB

CA CB CC

Φ  Φ  (1 Φ )

Φ  Φ  (1 Φ )  

Φ  Φ  (1 Φ ) 1 1 0
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and therefore, 

 .    .    .  0A A B B C Cp IRPTS p IRPTS p IRPTS  

This equation demonstrates that all the infrared excited population is redistributed 

among the existing conformers. In the meantime the fractional population of the molecule 

sum to 1:  

 1X A B Cp p p p  Eq.10 

The IRPTSX are obtained experimentally and thus from the weighted-sum of the 

infrared population transfer spectra and Equation 10 we can extract the fractional populations 

of the conformation of the molecule under the trap conditions.  

2. Extracting the quantum yields to isomerization 

To extract the quantum yield to isomerization from the IRPT spectra, we need 

information about the amount of molecules that are infrared excited. This piece of information 

could be extracted from an IR dip spectrum taking under the same condition of the IR 

population transfer spectrum. This is done by moving the UV laser pulse in time and so it will 

fire, early in the trapping cycle, 200ns after the IR laser. The IR spectrum peak intensity is 

given by:  

 
: , :

:

 
AUV IR AUV

A

AUV

F F
IR

F
  Eq.11 

The number of fragments from UV only can be expressed as demonstrated earlier by 

Equation 3.4. Under the assumption that the ions do not move between the arrivals of the two 

laser pulses, the number of fragments from the UV laser when the IR is fired first will be 

given by:  

: ,  

,  

  .   .  .  . 
.  

           . .    . . Ω .  . 

UV
AUVIR A A UV A

ion UV

A UV A UV UV A

E
F p N

A

N rdrd

 

: , ,   .   . . .   .  1    . 
.  max( ,  ).

UV IR
AUVIR A A UV A A IR

ion UV UV IR IR

E E
F N p

A A A
 Eq.12 
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The expression for the IR spectrum is then:  

 
: , :

,

:

   . 
max( ,  ).

AUV IR AUV IR
A A IR

AUV UV IR IR

F F E
IR

F A A
 Eq.13 

Substituting ,A IR  into the IRPTS expression:  

 

, XA , AA  

XA AA

     .    . Φ .   .(1 Φ )  . 
 

. .  

     .  (– .max( ,  )) . Φ . ( .max( ,  )) .(1 Φ ) 
             

.

max( ,  )
            

X X IR A A IR IRX A

A

A ion IR

X X UV IR A X UV IRX A

A ion

UV IR

p p E
IRPTS

p A

p IR A A p IR A A

p A

A A

p
XA AA.    .   . Φ . .(1 Φ )

.
X X A A

X AA ion

p IR p IR
A

 

If we consider 
max( ,  )UV IR

ion

A A

A
  

This will lead to a final set of IRPTS equations for the three conformers A, B and C: 

BA CA AA.   . Φ .   . Φ .(1 Φ ) .CB
B C

A A

A A

pp
IRPTS IR IR IR

p p
 Eq.14 

AB CB  .   . Φ   .   . Φ .(1 Φ ) .CA
B A C B BB

B B

pp
IRPTS IR IR IR

p p
 Eq.15 

AC BC   .   . Φ    .   . Φ .(1 Φ ) .A B
C A B C CC

C C

p p
IRPTS IR IR IR

p p
 Eq.16 

However if the quantum yields are extracted at transition where just conformer A 

absorbs, this set of equation will give:  

AA

AB

AC

.(1 Φ ).

.Φ .

.Φ .

A A

A
A

B

B

C C
A

C

IRPTS IR

p
IRPTS IR

p

p
IRPTS IR

p
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In the case of the unique absorption band of conformer B:  

BA

BC

.(1 Φ ).

.Φ .

.Φ .

B

A

B B BB

A

C C
B

C

B

IRPTS IR

p
IRPTS IR

p

p
IRPTS IR

p

 

In the case of the unique vibration band of conformer C, give  

CA

CB

.(1 Φ ).

.Φ .

.Φ .

C

A

C C CC

A

B B
C

B

C

IRPTS IR

p
IRPTS IR

p

p
IRPTS IR

p

 

The only unknown quantities in these equations are the quantum yields since the peak 

intensities of the infrared population transfer and infrared spectra are measured 

experimentally and the fractional population could be extracted from the weighted sums of the 

population transfer spectra us demonstrated in the previous paragraph. We assume to be 

working under optimized conditions for a maximum of overlapping between the lasers and the 

ions and thus γ is assumed to be close to 1.  
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