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Chapter 1

Introduction

1.1 Motivation

The history of mankind and civilisation is closely linked to the history of tribology1

ever since early humans around 500,000 B.C. learnt to exploit frictional dissipation of

mechanical work to light fire by rubbing sticks together [1].

The first evidence of humans learning to reduce friction work stems from ancient Egypt

around 1880 B.C. on drawings depicting the use of sledges, wooden rollers and lubrication

for the transport of large building stones [2]. About the same time, the invention of the

axle perfected the principle of the use of a rolling (rather than a sliding) motion for

transport. For the following millennia, tribological advances were aimed at reducing

frictional losses through the use of different animal fats or vegetable oil for lubrication

and the improvement of the wheel.

Tribology seized to be an engineering discipline exclusively in 1495, when Leonardo da

Vinci performed the first scientific investigation of friction [1, 2], and formulated what

were later called the two basic laws of friction:

1. Friction is independent of the apparent contact area.

2. Friction is proportional the normal load.

In 1699, Amontons [3]2 rediscovered these basic laws. He, and after him Coulomb

(1785) and Morin (1833), [5] interpreted the friction force as the result of interlocking

mechanical asperities. An illustration of this roughness hypothesis is shown in Figure 1.1.

1This account of the history of tribology concentrates mainly on dry contact and intentionally skips
large areas of lubricated contact which is out of the scope of the present study.

2This article has been translated in English in Amontons [4].
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It could explain why both static friction is proportional to the load and independent of

the apparent contact area. However, it failed to explain the origin of kinetic friction.

The main alternative explanation — the adhesion hypothesis — was rejected because it

implied a proportionality between friction and contact area, which was contrary to the

experimental evidence.

α

N

F

α

Figure 1.1: Roughness hypothesis: The friction force F is the force necessary to push
a load N over the steepest contacting asperity slope tanα.

The roughness hypothesis was widely accepted until advances in surface chemistry re-

vived the adhesion hypothesis around 1920. In 1942, Bowden and Tabor [6] introduced

the important distinction between the apparent and real contact area, which allowed to

explain both why friction depends on normal load but not on apparent contact area.

Additionally, the distinction makes it conceptually easier to understand the often sub-

stantial difference between the static and kinetic friction coefficients, which was first

clarified by Euler [2]. The definitive demise of the roughness hypothesis can be dated to

1955, when Bailey and Courtney-Pratt [7] showed that atomically smooth mica surfaces

have very high friction.

When the real area of contact is taken into account, friction corresponds to the shear

strength of asperity contacts [8]. This represents a substantial breakthrough in the

study and understanding of friction, because for the first time it links the friction force

to both the geometry and the material properties of the contacting bodies. Although this

observation helps greatly clarify the friction mechanisms and led to more and more so-

phisticated friction models like, rate and state dependent friction coefficients accounting

for ageing of asperity contact3 [9], it is still impossible as of today to accurately compute

friction coefficients a priori. Even the (macroscopic) concept of a friction coefficient itself

becomes difficult to defend when applied to nano scale contacts [10].

3A good description of this development is given in Baumberger and Caroli [8]
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It has become obvious that friction and contact are multi scale problems involving mi-

croscopic contacts with nanoscopic friction mechanisms. The failure of macroscopic con-

tinuum approaches to explain friction [11] calls for multi scale methods to understand

friction and the associated wear and tear.

1.2 Objectives

This study is one of many in the general attempt of explaining and understanding friction

and its consequences. It works towards the long term goal of predicting friction coeffi-

cients for macro scale contact between crystalline metals based on nano scale material

and surface properties.

Friction is a phenomenon involving numerous processes (such as elasticity, plasticity,

asperity locking, lattice vibrations and more) in a complicated interrelationship. It is

known that friction dissipates energy in forms of plastic work and heat, yet the details

are almost entirely unknown. Especially the role of plasticity is poorly investigated and

most macro scale friction models do not include it, unless implicitly in the case of wear

models [2, 5]. Recent molecular dynamics simulations [11] however show that mechanical

contact almost always involves plasticity.

In this frame, the intermediate goal is to understand the nano and micro scale mecha-

nisms involved in sliding friction. Our immediate goal is to develop the numerical tools

necessary for the analysis of these mechanisms with a strong focus on plasticity at several

length scales.

1.3 Challenges

As described in Section 1.1, the hypothesis that solids are continua can no longer be

maintained at the scale of contacting asperities, and methods taking into account the

discrete nature of solids are required. Micro scale plasticity for instance exhibits discon-

tinuous behaviour due to dislocation activity [12–14] and Luan and Robbins [11] show

that even properties at the atomic (nano) scale influence the way contacting asperities

behave.

As long as the study is restricted to mechanical systems at reasonable temperatures

without chemical reactions (i.e., systems for which the second order Born–Oppenheimer

approximation [15] is satisfied) classical molecular dynamics (MD) are the largest-scale
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method to capture contact mechanics without loss of detail. A more detailed argumen-

tation leading to this conclusion can be found in Berendsen [16, Chapter 1] and a short

description of the MD method is given in Section 2.3.

Present day computing clusters are not even close to offering the necessary computa-

tional power nor memory required for modelling entire macroscopic systems in MD.

Furthermore MD requires integration time steps in the order of fs (femtoseconds) [17]

which represents an important time scale restriction. The main challenge in this study is

the development of suitable multi scale models which allow mixed descriptions of solids.

These models should preserve the atomic scale resolution of MD where needed and at

the same time reduce drastically the degrees of freedom by modelling large parts with

higher scale methods such as the finite element method (FEM) or discrete dislocation

dynamics (DD), described in Sections 2.1 and 2.2.
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Chapter 2

State of the Art

2.1 Finite Element Method

The finite element method (FEM) is an approach to solve the equations of continuum

mechanics.

In general, solids are governed by local non-linear partial differential equations (NLPDE).

Such equations do not usually have an analytical solution and need to be linearised and

discretised in both time and space in order to obtain (approximated) linear algebraic

equations (LAE) which can be solved using standard linear algebra [18].

The FEM is a well established method for the spatial discretisation from NLPDE to non-

linear ordinary differential equations (NLODE). The NLODEs can then be linearised

and discretised in time using the linear iterations method (LIM) and the finite differences

method (FDM) [19]. No description of the method is given here as it is a well-known and

established method. For a more exhaustive description of the FEM for fully non-linear

time-dependent problems refer to Curnier [19], Belytschko et al. [20] or Zienkiewicz [21],

for linear time-dependent problems to Hughes [22] and for simple linear static problems

to Gmür [23].

The main idea behind the FEM is the decomposition of a continuum domain into small

elements for which the integral form of the governing PDE is solved approximately.

FEM has classically been used for contact mechanics, however Luan and Robbins [11]

showed that contact mechanics are dominated by nano scale asperities, where contin-

uum mechanics (and therefore FEM) drastically underestimates plastic deformations.

Furthermore, continuum mechanics usually fails to capture size effects, unless special

theories such as strain-gradient plasticity [see 24] are used.
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2.2 Discrete Dislocations Dynamics

A model that can capture size effects is the discrete dislocations dynamics method (DD)

[14].

A dislocation is a mobile line defect in a crystal and collective dislocation motion is

the mechanism of crystal plasticity [12, 25]. Two types of dislocations are depicted if

Figure 2.1. Imagine to cut a half-plane (red line/plane) in the crystal and shift (slip) the

layers of atoms on each side of the cut by one atom spacing against each other. Figure

2.1(a) shows a schematic of a so-called edge dislocation, which occurs when the slip

direction is normal to the end of the cut half-plane and Figure 2.1(b) is a representation

of a screw dislocation obtained when the slip direction is parallel to the end of the cut.

Force

Edge Dislocation

(a) Edge dislocation (b) Screw dislocation

Figure 2.1: Schematic representations of dislocations

In both cases the end of the cut is referred to as the dislocation line, around which the

defect in the crystal structure is concentrated. Any combination between edge and screw

dislocation can occur and is then called a mixed dislocation. The slip direction and length

define the Burgers vector and the cut plane is called slip-plane. The displacement field

due to a dislocation line is known for most crystal structures [12, Part 2]. The resolved

shear stress in the slip plane is the driving force for dislocation mobility. For details

about dislocation mobility, refer to Hirth and Jens [12, Chapter 7]. Dislocations have a

stress field surrounding them which can interact with the stress fields of neighbouring

dislocations. In a perfect crystal, the interactions of entangled dislocations can act as

sources of new dislocations or obstacles to the motion of existing ones. Refer to Hirth

and Jens [12, Chapters 5 and Part 4] for more details.

Discrete dislocation dynamics (DD) is a fairly recent method for the simulation of

crystal plasticity in which dislocations are individually described as line singularities in

an elastic solid. The key idea is that the discontinuous displacement fields in crystal

plasticity can be computed as a superposition of the elastic response û of the solid and
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the displacement field ũ of the dislocation within the solid. That way, classic linear

finite elements are used to solve the elastic field, which is then in turn used to drive the

dislocations accordingly.

Both simple planar [26] and full 3D models [27] of DD exist. There is a fundamental

difference between the planar and the 3D method: In two dimensions, dislocations

are parallel to one another and form neither obstacles nor sources which then have

to be modelled separately [13, 14, 28], whereas a fully three-dimensional simulation of

dislocations forms sources and obstacles on their own [29]. Two examples of DD solvers

are briefly presented here.

• Needleman 2D [26] Dislocation sources and obstacles are supposed to be pre-

existing in the solid and distributed over a grid of slip planes. Figure 2.2(b) shows

three slip plane orientations, in the complete grid, each of the slip planes is re-

peated periodically throughout the crystal. If a source and an obstacle lie on the

same slip plane, they can interact as depicted in Figure 2.2(b). If the resolved

shear stress τ on a source exceeds the nucleation stress τnuc a dipole of disloca-

tions (two dislocations with opposite Burgers vectors) is nucleated. The position

of an edge dislocation is marked with the symbol l. The nucleated dislocations

then move with a velocity proportional to τ until they hit an obstacle, which they

overcome if τ exceeds the obstacle strength τobs.

ϕ1 ϕ2 ϕ3

τ

(a) Orientations of different slip systems

source obstacle 2obstacle 1

τ

τ

τnucτobs τobs

(b) Schematic of source-obstacle interaction

Figure 2.2: Planar discrete dislocation dynamics

Among others, this planar approach has been used successfully in contact mechan-

ics [13, 28] and in the prediction of yield stress [14].

Also a 3D version based on the Needleman method has been implemented by

Weygand et al. [29]

• Cai 3D [27, 30]

A dislocation structure is discretised in linear segments as shown if Figure 2.3.

The self energy E(r1, r2, · · · ) of such a discretised dislocation network is given by

the elastic energy due to its displacement field [31]. The force acting on node i is

obtained by derivation,
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Fig. 1. Dislocation network represented as a set of “nodes” interconnected
by straight segments. The Burgers vectors are defined on every arm with
line direction pointing away from the node. For example,�b01 is the Burgers
vector of the arm going from node 0 to node 1, and�b10 is the Burgers
vector of the same arm going in the reverse direction. Consequently there
exist sum rules for every arm, e.g.�b01 + �b10 = 0, and for every node,
e.g. �b01 + �b02 + �b03 = 0.

On the other hand, the computation of nodal velocities
in response to the driving forces, as inEq. (1), is strongly
material specific. This is because how dislocations move is
largely controlled by the atomistic structures and energetics
of the dislocation core, which can vary significantly from
one dislocation (or material) to another. Such information
is beyond the realm of linear elasticity theory and can only
be obtained from more detailed, atomistic-level simulations.
For example, a molecular dynamics (MD) simulation can
compute the velocity of a specific dislocation under a given
temperature and stress condition[4]. However to make such
data accessible to DD simulations, they need to be assembled
into a “constitutive law”, which describes the dislocation
velocity as a function of temperature, force, and dislocation
characters.

2. Mobility of discretization nodes

For simplicity we will neglect the temperature depen-
dence, i.e. we will consider DD simulations at a fixed tem-
perature. We will also limit our discussion to the mobility
of discretization nodes. Because these nodes are sampling
points of a presumably smooth dislocation line, it suffices
to consider the velocity function of differential dislocation
segments,�v = M(�f ,�l, �b), where �f is the force per unit
length,�l the line direction and�b the Burgers vector, as in
Fig. 2. Equivalently we can write the velocity function as
�v = M(�f , θ, φ), whereθ andφ describe the orientation of
�l with respect to�b. Because motion of a line along itself is
unphysical, we restrict�v and �f to the 2-dimensional space
perpendicular to�l.

To use this mobility law in a node-based code such as
DD3d, we need to translate nodal information into segment
properties�f and�l. Consider for example a discretization

Fig. 2. Geometry of vectors in mobility function�v = M(�f , θ, φ). �b and
�l are dislocation Burgers vector and line direction, respectively. The unit
vector�n is the glide plane normal, i.e.�n||�l×�b, and unit vector�t is parallel
to �l×�n. Both dislocation velocity�v and driving force�f are 2-dimensional
vectors in the tangent (shaded) plane spanned by�n and�t (see text).

node i with two neighbors, 0 and 1. We can approxi-
mate the local dislocation line direction near nodei to be
�l = (�r1 − �r0)/|�r1 − �r0| and the force per unit length to be
�f = �fi/L, where

L = 1
2|�r1 − �r0| (3)

3. A simple FCC model

The simplest mobility law is perhaps the one that describes
the generic dislocation behavior in face-centered-cubic
(FCC) metals (e.g. Cu, Al) in low temperatures. Let us call
it FCC0. Here we focus on ordinary dislocations with 1/2
[1 1̄ 0] type Burgers vectors. The core of this dislocation
splits planarly into two partials on (1 1 1) planes, bound-
ing a stacking fault area. As a result, dislocation motion is
entirely confined within the dissociation plane, except for
cross slip events which will be discussed later. Ignoring
cross slip, the glide plane normal vector�n remains the same
as specified in the initial condition. It should be taken into
account as an extra input for the mobility law function, i.e.,
�v = M(�f ,�l, �b, �n)..

For simplicity, we can assume that dislocation velocity is
isotropic within the glide plane. We may also assume that
dislocation velocity is linear to the driving force. This is
a reasonable approximation because the Peierls stress (the
critical stress below which dislocation does not move at 0 K)
in FCC metals is very low. Thus, we arrive at a mobility law
described by a single parameterM,

�v = M · �f − M · (�f · �n) · �n (4)

The second term ensures that velocity�v remain orthogonal
to glide plane normal�n. The mobility coefficientM can
be determined from a molecular dynamics simulation at a
constant stress. In generalM can depend on temperatureT

Figure 2.3: Dislocation network represented as a set of ”nodes” interconnected by
straight segments (Figure from Cai and Bulatov [30])

f i = ∇riE(r1, r2, · · · , rn), (2.1)

and its velocity vi is determined according to a constitutive law. In the example

of FCC metals such a law could be a linear viscous one, e.g.,

vi = B (I − n⊗ n)f i, (2.2)

where B is a drag coefficient and depends on the magnitude of the Burgers vector

and n is the normal unit vector of the slip plane. Note the similarity with a MD

calculation scheme. The details of this method can found in Cai [32]

Such fully three-dimensional DD methods are used to predict strain hardening,

among others [27, 29, 33]. A massively parallel open source implementation of this

method can be found in Cai et al. [34].

The main drawback of DD methods is that dislocation nucleation is not yet fully un-

derstood [see 28]. For DD to work, dislocations must be preexisting or nucleated using

ad-hoc nucleation criteria. This problem can be solved by molecular dynamics (presented

in the next section), where dislocations arise naturally.

2.3 Molecular Dynamics

Classical molecular dynamics (MD) is a method to simulate matter (fluid or solid) at

the atomic scale.

8



9

In MD, matter is modelled as point mass atoms subject to interatomic potentials. Born

and Oppenheimer [15] formulated this approximation which is well founded if the nu-

clei move much slower than the electrons (i.e., in mechanics at moderate temperatures

without chemical reactions). In such a case, the distribution of electrons adapts in a

quasi-static manner to the positions of the nuclei, and the interatomic forces (forces

between nuclei) depend only their respective positions. It can be shown that the forces

are therefore conservative and derive from a potential. The force on atom i is

f i = −∇riU(r1, r2, · · · , rN ). (2.3)

The equation for the evolution of a system modelled by MD is Newton’s second law

mir̈i = f i. (2.4)

Different (explicit) integration schemes such as Verlet, Leap-Frog, but also any classical

mechanics integrator such as Newmark’s corrector-predictor algorithm are used. More

details can be found in Berendsen [16], Rapaport [17].

MD is conceptually very simple and the main difficulty in its use is the sheer size of

molecular systems. As an illustration, the number N of atoms in V = 1 mm3 of iron is

N = Na
ρV

mFe
≈ 8.5 · 1019, (2.5)

where Na = 1.6022 ·1023 is Avogadro’s constant, ρ and mFe are the solid density and the

molar mass respectively, see Table 2.1. Such a number of atoms is at least ten orders of

Table 2.1: Properties of iron

atomic mass mFe = 55.845 g
mol

density1 ρ = 7874 kg
m3

magnitude larger than what single computer nowadays can handle. MD relies heavily on

high performance computing of parallel machines and is restricted to small simulation

boxes.

Furthermore, the time steps necessary in the integration (2.4) is of the order of 1 fs =

1 · 10−15 s (femtoseconds), which is extremely small from a (contact) mechanics point of

view.

9
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2.4 Coupled Atomistics and Discrete Dislocations

The idea behind coupled atomistics and discrete dislocations (CADD) is to combine

the strengths of MD and DD. The problem is cut into an MD zone and a linear elastic

continuum zone. That way, only the parts of the domain in which strongly non-linear

discontinuous behaviour is expected is modelled with the computationally expensive MD

while the bulk of the domain is modelled with DD. CADD was first proposed by Shilkrot

et al. [35] who developed it based on the quasicontinuum method [36].

Figure 2.4(a) explains the decompositions necessary for the coupling. The atomistic part

is straight-forward MD. At the continuum-atomistic interface, pad (dummy) atoms on

the finite elements interact with the “true”atoms, see Figure 2.4(b). The continuum part

is straight-forward DD. The band of dark grey triangles in Figure 2.4(b) has a special
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individual dislocations at positions d i. We denote the total
field as the ˜ field. Problem I generates tractions T̃ along
≠VT and displacements ũ and ũI along ≠Vu and ≠VI that
differ from the prescribed values of T0, u0, and the uI

imposed by the atomistic region. Problem II is designed
such that, when superimposed with Problem I, the desired
boundary conditions imposed on the continuum problem
are satisfied exactly. Problem II thus consists of a linear
elastic continuum with no dislocations but subject to “cor-
rective” tractions T̂ � T0 2 T̃ on ≠VT and “corrective”
displacements û � u0 2 ũ on ≠Vu and û � uI 2 ũI on
≠VI . All discontinuities and singularities of the disloca-
tions are contained in the ˜ fields of Problem I, so the
fields of Problem II, denoted as ˆ fields, are smooth and
obtainable numerically. The total fields in the continuum
are the superpositions of the fields from Problems I and II:
u � ũ 1 û, s � s̃ 1 ŝ , and e � ẽ 1 ê.

Problem III in Fig. 1 deals with the atomistic region.
Away from the interface it is treated in a standard manner
using interatomic potentials as functions of the atom posi-
tions rA. The subtlety in any atomistic/continuum method
lies in treatment of the interface. Numerous approaches
exist to connect a strictly local continuum region to an in-
herently nonlocal atomistic region (due to the range rcut
of the potentials); e.g., [4–8]. Abruptly cutting the model
along an atomic plane as in Fig. 1 introduces spurious sur-
face energy and relaxation at the interface. To minimize
such errors, we introduce a pad of atoms (positions rP) of
thickness rcut outside of the defined atomistic region and
overlapping the continuum region, as shown in Fig. 2(a),
with a free outer surface. With such a pad, the atoms rA

behave more like proper “bulk” atoms. The pad of atoms
introduces extra energy by double counting the overlapped

material and makes the region artificially stiff against de-
formation parallel to the interface, but mitigates the major
problems associated with a sharp interface cut. Other in-
terfacing schemes could be employed here but neither the
detecting nor passing of dislocations in CADD are affected
by the method for handling the interface.

With the above decomposition of the desired b.v.p., the
energy functional for the entire system can be expressed as

C �
1
2

Z
VC

�s̃ 1 ŝ� : �ẽ 1 ê�dV

2
Z

≠VC

T0 ? udA 1 Eat�rA, rI , rP� 2 fA ? uA ,

where Eat is the atomistic energy, subscripts A, I, and P
distinguish bulk, interface, and pad atoms, respectively,
uA denotes atom displacements, and fA denotes the ap-
plied tractions T0 resolved into forces on individual atoms
along ≠VT .

We then discretize the ˆ fields (Problem II) using a
standard finite element mesh with nodal displacements ûC

in VC and ûI along ≠VI , where nodes correspond ex-
actly to atoms. The interface atom-node pairs are forced
to have the same displacements throughout the deforma-
tion to ensure compatibility. Fully anisotropic linear elastic
finite elements are used to match the crystalline elastic con-
stants. The ˜ fields (Problem I) use dislocation fields based
on isotropic elasticity, introducing a small error. After
discretizing and using the reciprocal theorem, the energy
functional becomes

C �
1
2

Z
VC

s̃ : ẽdV

1
1
2

�ûC ? CCC ? ûC 1 ûI ? CII ? ûI �

1 ûC ? CCI ? ûI 1 t̃I ? ûI 2 t̃C ? ûC 2 t̂0 ? ũC

1 Eat�rA, rI , rP� 2 fA ? uA ,

(a) (b)

Plane 1

Plane
2 Pl
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e

3

FIG. 2. (a) Closeup of the atomistic/continuum interface.
Continuum elements are light gray. The sharp interface of
atoms/nodes is shown by filled circles; unfilled circles in the
continuum region constitute the “pad” of atoms to mitigate sur-
face effects; other unfilled circles show atoms in the atomistic
region. The dark gray elements are the dislocation “detection
band.” (b) A closeup of one detection element, indicating the
three slip planes passing through it.

025501-2 025501-2

(a) Decomposition in MD and DD
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individual dislocations at positions d i. We denote the total
field as the ˜ field. Problem I generates tractions T̃ along
≠VT and displacements ũ and ũI along ≠Vu and ≠VI that
differ from the prescribed values of T0, u0, and the uI

imposed by the atomistic region. Problem II is designed
such that, when superimposed with Problem I, the desired
boundary conditions imposed on the continuum problem
are satisfied exactly. Problem II thus consists of a linear
elastic continuum with no dislocations but subject to “cor-
rective” tractions T̂ � T0 2 T̃ on ≠VT and “corrective”
displacements û � u0 2 ũ on ≠Vu and û � uI 2 ũI on
≠VI . All discontinuities and singularities of the disloca-
tions are contained in the ˜ fields of Problem I, so the
fields of Problem II, denoted as ˆ fields, are smooth and
obtainable numerically. The total fields in the continuum
are the superpositions of the fields from Problems I and II:
u � ũ 1 û, s � s̃ 1 ŝ , and e � ẽ 1 ê.

Problem III in Fig. 1 deals with the atomistic region.
Away from the interface it is treated in a standard manner
using interatomic potentials as functions of the atom posi-
tions rA. The subtlety in any atomistic/continuum method
lies in treatment of the interface. Numerous approaches
exist to connect a strictly local continuum region to an in-
herently nonlocal atomistic region (due to the range rcut
of the potentials); e.g., [4–8]. Abruptly cutting the model
along an atomic plane as in Fig. 1 introduces spurious sur-
face energy and relaxation at the interface. To minimize
such errors, we introduce a pad of atoms (positions rP) of
thickness rcut outside of the defined atomistic region and
overlapping the continuum region, as shown in Fig. 2(a),
with a free outer surface. With such a pad, the atoms rA

behave more like proper “bulk” atoms. The pad of atoms
introduces extra energy by double counting the overlapped

material and makes the region artificially stiff against de-
formation parallel to the interface, but mitigates the major
problems associated with a sharp interface cut. Other in-
terfacing schemes could be employed here but neither the
detecting nor passing of dislocations in CADD are affected
by the method for handling the interface.

With the above decomposition of the desired b.v.p., the
energy functional for the entire system can be expressed as

C �
1
2

Z
VC

�s̃ 1 ŝ� : �ẽ 1 ê�dV

2
Z

≠VC

T0 ? udA 1 Eat�rA, rI , rP� 2 fA ? uA ,

where Eat is the atomistic energy, subscripts A, I, and P
distinguish bulk, interface, and pad atoms, respectively,
uA denotes atom displacements, and fA denotes the ap-
plied tractions T0 resolved into forces on individual atoms
along ≠VT .

We then discretize the ˆ fields (Problem II) using a
standard finite element mesh with nodal displacements ûC

in VC and ûI along ≠VI , where nodes correspond ex-
actly to atoms. The interface atom-node pairs are forced
to have the same displacements throughout the deforma-
tion to ensure compatibility. Fully anisotropic linear elastic
finite elements are used to match the crystalline elastic con-
stants. The ˜ fields (Problem I) use dislocation fields based
on isotropic elasticity, introducing a small error. After
discretizing and using the reciprocal theorem, the energy
functional becomes

C �
1
2

Z
VC

s̃ : ẽdV

1
1
2

�ûC ? CCC ? ûC 1 ûI ? CII ? ûI �

1 ûC ? CCI ? ûI 1 t̃I ? ûI 2 t̃C ? ûC 2 t̂0 ? ũC

1 Eat�rA, rI , rP� 2 fA ? uA ,

(a) (b)

Plane 1

Plane
2 Pl
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FIG. 2. (a) Closeup of the atomistic/continuum interface.
Continuum elements are light gray. The sharp interface of
atoms/nodes is shown by filled circles; unfilled circles in the
continuum region constitute the “pad” of atoms to mitigate sur-
face effects; other unfilled circles show atoms in the atomistic
region. The dark gray elements are the dislocation “detection
band.” (b) A closeup of one detection element, indicating the
three slip planes passing through it.

025501-2 025501-2

(b) Close-up on interface. Continuum elements
in light grey, detection band in dark grey

Figure 2.4: CADD decomposition of a generic domain. Figure from [35]

role, it is a detection band for dislocations: dislocations can nucleate and move within

the atomistic domain. They cannot, however, move close to the interface because the

discontinuity they carry with them is repulsed by the elasticity within the continuum.

The detection band is sufficiently far from the interface, so dislocations reach it without

being repulsed by the interface, and if one is detected, an equal discrete dislocation (same

Burgers vector and slip plane) is created within the continuum a bit further down the slip

plane. The slip trace of the discrete dislocation absorbs the atomistic dislocation (details

in Shilkrot et al. [35]). Dislocations can effectively travel from MD to DD (and back,

but not described here). This solves the main drawback of the DD method; dislocations

10
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do not need to be explicitly nucleated within the DD zone but occur naturally in the

MD zone.

So far, CADD has only been implemented in 2D, because the three-dimensional passing

of dislocations between continuum and atomistics is conceptually complicated. Further-

more, a method for the automatic detection and tracking of dislocation lines in full 3D

MD simulations was not available until very recently [37].

11





Chapter 3

Preliminary Results

This chapter describes two case studies I conducted in the first year of my PhD. They

have been chosen to demonstrate the progress and preparation achieved and to underline

the interest of the project.

3.1 Pure MD Nanoscratching

3.1.1 Motivation

Section 1.2 presented the study of plastic mechanisms in friction as one of the research

focuses of this study. The goal of the nano scratch simulation presented in this section

is to establish a method to quantify plastic work in friction on the simplest possible

(simulated) experimental setup.

3.1.2 Simulation Setup

A single asperity nano scale scratching experiment close to absolute zero temperature is

conducted in MD. Figure 3.1 shows the general setup; A spherical copper indenter (dark

red atoms) scratches over a single crystal copper block. Figure 3.1 shows only one half

of the system for increased visibility.

Initially, all atoms are positioned at their equilibrium lattice positions with zero initial

velocity (i.e., 0 K) and the crystal orientation is such that the 111 plane is indented.

Refer to Hirth and Jens [12], Weertman and Weertman [25] for more details on crystal

structures. The crystal is about 570 Å long, 80 Å high and 200 Å wide, which

13
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Figure 3.1: Nano scratch simulation

corresponds to 64 × 16 × 32 lattice spacings1. Figure 3.2 shows the same setup as a

schematic. The lowest three layers of atoms (represented by the red atoms) are held

F (t)

ri(t), ṙi(t)

Figure 3.2: Simulation setup and boundary conditions

fixed and the indenter path is displacement controlled. Additionally, a thermostat layer

of two atom layers thickness (not shown in the figure) just above the fixed atoms drains

kinetic energy out of the system to avoid a heat buildup. Refer to Berendsen [16] for

more details on thermostats. All other atoms are free to move and subject to the Mishin

embedded atom model potential for copper [see 38].

For initialisation, the crystal is indented vertically to a predefined scratching depth, see

Figure 3.3. For post-treatment and analysis, we evaluate the resistance force F (t) on

l(t)

Figure 3.3: Indenter path

the indenter and the atomic positions ri(t) and velocities ṙi(t) periodically and save

them. Note that F (t) is a scalar equal to the component of the force vector F (t) in the

direction of the indenter path l(t).

The simulation has been performed with a modified version of LAMMPS (Large-scale

Atomistic/Molecular Massively Parallel Simulator) [see 39]. It ran on 64 Intel Xeon

processors in parallel and used about 8000 processor hours per run.

1Note that the lattice is not cubic due to the orientation.
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3.1.3 Molecular Dynamics / Molecular Statics Approach

Energy balance The only energy influx into the system is the mechanical work W

provided by the scratching indenter,

Ein(t) = W (t) =

∫ l(t)

0
F (t) dl. (3.1)

The energy stored in the system Etot is the sum of the kinetic and potential energy,

Etot(t) = Epot(t) + Ekin(t), (3.2)

where Ekin is given by classic mechanics [see 40]

Ekin(t) =

N∑
i=1

1

2
miṙ

2
i (t), (3.3)

and the Epot is given by the evaluation of the Mishin potential [see 38]

Epot(t) =
1

2

∑
ij

V (rij) +
∑
i

Φ(ρ̄i), (3.4)

where V (rij) is a pair potential, rij is the distance between atoms i and j, Φ is the

embedding energy for an electron in the electron density ρ̄i =
∑

j 6=i ρ(rij) at the position

of atom i due to all other atoms. The functions V (r), ρ(r) and Φ(ρ) are mathematical

fitting functions without direct physical meaning.

The thermostat layer drains energy Eout out of the system and the amount lost is not

computed in this simulation. It is only known that the layer is an energy sink

Eout(t) < 0. (3.5)

Main idea At 0 K, a variation of Epot represents elastic loading of the system or

plastic deformation. After initialisation (at the end of the vertical indentation) the

system is elastically loaded and this is taken to be the reference state Eref
pot.

Any variation ∆Epot(0 K) is then the plastic work Wpl in the crystal. The MD snapshots

{ri, ṙi} (t) however are only close to 0 K and need to be quenched prior of evaluating

∆Epot,

Emin
pot (t) = min

{ri(t)}
Epot(t). (3.6)

15
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The conjugate gradient method (CG) [41] is used for the optimisation. The evaluation

of plastic work becomes

Wpl = Emin
pot (t)− Eref

pot. (3.7)

3.1.4 Discussion of Results

Figure 3.4 shows the evolution of scratching work W and plastic work Wpl as functions

of time for two indentation depths. The curves behave smoothly with about a quarter of

the input energy ending up as plastic work. The proportion stays pretty much constant

0 500 1000 1500 2000 2500 3000
t in ps

0

5

10

15

20

E
 in

 k
eV

W at 5 ◦A
Wpl at 5 ◦A

W at 5 ◦A
Wpl at 5 ◦A

Figure 3.4: W and Wpl as functions of time for different indentation depths

for the two indentation depths. To our knowledge, there is no data available to compare

these results to and validate or invalidate them. One concern is that thermal expansion

of the crystal associated with the rise in temperature during scratching might change

the geometry enough to violate the hypothesis of the method. The rise in temperature

is shown in Figure 3.5, we can observe an increase of mere 50 K which corresponds to

about 1.5h which is not a concern.

An idea to support the method has been borrowed from Luan and Robbins [42], where

plasticity is evaluated by counting plastic events. The simple idea is to evaluate the

number Npl of atoms that changed their nearest neighbours during the scratch and

compare them to Wpl. Figure 3.6 shows these comparisons for both indentation depths.

In both cases, Npl and Wpl behave very similarly. Especially the temporal coincidence

of many of the spikes suggests that the way the method computes Wpl is closely linked

to the underlying physics.

Figure 3.7 on page 18 shows a short succession of snapshots of the simulation. The atoms

of the indenter are represented as red balls, the transparent dots represent atoms which

are in normal crystal structure and the atoms in a disturbed neighbourhood are coloured

16
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Figure 3.5: Temperature during scratching for 1 Å indentation depth
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0 500 1000 1500 2000 2500 3000
t in ps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

W
p
l i

n 
ke

V
Wpl

0

10

20

30

40

50

60

70

80

N
p
l/1

00
0

Npl

(b) 50 Å

Figure 3.6: Comparison between Wpl and Npl for different indentation depths

blue. We observe two dislocation loops which have been nucleated at the surface and

travelled into the crystal. The first loop is stuck at the simulation box boundary and the

second loop piles up against the first one. The simulation box is too small for plasticity

to develop fully. Therefore, this problem will have to be studied differently and will be

readdressed in Section 4.1.

3.2 Coupled Indentation

This section presents a case study performed in collaboration with Prof. Curtin from

Brown University, Providence, RI.
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(a) Nucleation of first loop (b) First loop fully formed

(c) Second loop nucleated, first loop travelling into the
crystal

(d) Pile-up

Figure 3.7: Snapshot of a dislocation pattern during the simulation

3.2.1 Motivation and Setup

A simple 2D nano indentation analysis is performed to illustrate the interest of coupling

MD and DD for contact problems. The goal is not so much the results but a demon-

stration of how much computational resources can be saved by employing multi-scale

coupling methods such as CADD. Figure 3.8 shows schematically the general setup of

the simulation. A rigid indenter (red) indents a single crystal of aluminium. Most of

the block is modelled by static linear elastic triangular finite elements with discrete dis-

locations, only the part under the indenter edge — where continuum mechanics predict

singular behaviour — is modelled by MD. The size of the MD box is a twentieth of the

domain. Only the right part of the domain is simulated with a symmetry boundary

condition of the axis of symmetry and fixed at the bottom, free on the lateral side. The

top surface has an imposed displacement under the indenter and is otherwise free.

18
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h = 200nm

w = 90nm

MD

FEM

Figure 3.8: Nano indentation setup

The FEM part is 2D, while the MD part is so-called 2.5D; a slice of 4 lattice layers of

atoms is repeated periodically the third dimension. The simulation has been performed

using the CADD code developed by Shilkrot et al. [35]. It ran on a single Intel Xeon

processor and used about 6 processor hours.

Note that the linear FEM calculation required the inversion of the stiffness matrix only

once, its cost is, thus, negligible compared to the MD model. The speedup due to the

use of CADD instead of full MD is therefore around 20.

3.2.2 Discussion of Results

Figure 3.9 shows a succession of snapshots of the simulation. Only the right symmetric

part of the domain is shown. For visualisation, the atoms are treated as nodes of

triangular finite elements. The elements are coloured according to averaged strain from

red for zero strain to yellow for 0.01 or more average strain. The colour map has been

clipped at that value in order to keep sharp dislocation lines. The black frame present

in every sub-figure shows the size of the atomistic zone.

The first sub-figure shows an early snapshot when the strain concentration under the

indenter edge starts to grow. In Sub-figure 3.9(b), the strain concentration has nu-

cleated a dislocation which travels into the bulk material. Soon, in Sub-figure 3.9(c),

the dislocation core reaches the vicinity of the atomistic/continuum interface where the

detection band (not shown) detects it. Once detected, the dislocation is passed to the

continuum. Sub-figure 3.9(d) shows the dislocation a few time steps after passing into

the continuum. The position of its core is marked with a blue l symbol. Note that the

slip trace of the dislocation now extends into the continuum.
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(a) (b)

(c) (d)

Figure 3.9: CADD simulation
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Chapter 4

Conclusions and Outlook

4.1 Conclusions

In the previous chapter, we have presented a functional MD-based method to quantify

plastic work in contact problems and demonstrated the potential of CADD-based meth-

ods to reduce computational requirements, or — reversely — increase the domain sizes

at low additional computational cost.

It could be seen that the quantification of Wpl suffers from the limited simulation box

sizes; the dislocation motion is clearly restricted, and plastic mechanisms are there-

fore misrepresented. The brute-force solution to this problem would be to increase the

problem size. However, we established in Section 2.3 that there is no hope to solve

contact problems of meaningful size (i.e., engineering-scale) anytime soon by mere MD.

Furthermore, even in the small simulation presented, it is obvious that complex plastic

activity is concentrated in a thin layer under the surface while plasticity in the bulk

material occurs in well ordered dislocation loop, which should be dealt with using the

(computationally) much cheaper DD.

The CADD simulation is an excellent example to show how much can be gained by

combining the strengths of MD and DD. The drawbacks lie essentially in the fact that

the only implementation is 2D only and not parallelised to run on computing clusters.
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4.2 Outlook

4.2.1 CADD parallelisation and extension to 3D

As mentioned in the previous section, the implementation of CADD is its main drawback.

We intend to reimplement the method in the modern framework for parallel computing

Libmultiscale which is being maintained in our laboratory [see 43]. We are in an excellent

position to achieve this for a set of reasons:

1. We have started a close collaboration with Prof. William A. Curtin, the author of

the original CADD. He has already been a great support in using and understand-

ing the existing CADD implementation. The road-map for the reimplementation

and details about the collaboration follow below.

2. With Libmultiscale, our laboratory has a unique know-how in the implementation

of parallel multi-scale methods and a substantial part of the implementation work

is already accomplished.

3. Until very recently, the main obstacle to a 3D implementation of CADD was the

problem of detecting dislocations in full 3D. While their detection in 2D is quite

straight-forward [44], it is a quite complicated endeavour in 3D. However, in March

2010, Stukowski and Albe [37] published a method for tracking dislocation lines

including their Burgers vectors on the fly during MD simulations.

In a short term, the existing 2D CADD will be replaced and allow for much larger

simulations, including 2D scratching simulations which require larger MD zones than

simple nano indentations. Then the 3D coupling will follow, initially without dislocation

passing between continuum and atomistics. Finally the last step of passing dislocations

will follow. We chose this staggered approach, because every step will yield a workable

method with more capabilities than the previous one.

4.2.2 Computation of Wpl

4.2.2.1 Finite Temperature Extension

The way Wpl is computed relies heavily on the condition that the crystal is close to

0 K because of geometric changes due to thermal expansion. At finite temperature, it

is an entirely open question if the 0 K reference configuration can be obtained by direct

minimisation of the potential energy because we do not know how to adapt the boundary

conditions during minimisation.
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We intent to use a new way of computingWpl inspired by the work on dislocation tracking

by Stukowski and Albe [37] and the computation of dislocation network self-energy by

Cai et al. [34]: The ability to track dislocations on the fly in a crystal during an MD

simulation means that the self-energy of dislocation networks in MD can be computed

the same way it is done in the computation of nodal forces in the 3D DD implementation

of Cai et al. [27]. This way, the plastic energy can be computed at nonzero temperature.

4.2.2.2 Introduction of Micro Structure

We have obtained nano crystalline aluminium micro structures from Prof. Helena van

Swygenhoven [45] at the Paul Scherrer Institute. We will apply the method to compute

Wpl will also to them in a collaboration. Nano crystalline materials are especially in-

teresting in the scope of this method because dislocations travel only short distances,

as they are restricted by grain boundaries. This means that the simulation box size

problem becomes manageable.

4.3 Detailed research plan by year

A research plan is presented with goals for each year. Everything concerning the first

year is already achieved.

4.3.1 2009/2010

Goals

• Literature review on dislocations

• Literature review on MD

• Literature review on DD

• Start of a collaboration with Prof. Curtin, 10-day visit at Brown University in

Providence, RI in November 2009

• Presentation of the method to compute Wpl at the first Epfl doctoral conference

in mechanics in February 2009.

• Similar presentation at the IV European conference on computational mechanics

in May 2010 [46].
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Academics

A total of 10 credits have been obtained in four courses.

Course Teacher Credits

Mechanics of composite materials Prof. Alain Curnier 2

Computational solid mechanics Prof. Jean-François Molinari 2

Contact mechanics and tribology Prof. Alain Curnier 2

Optimization and simulation Prof. Michel Bierlaire 4

Two applied programming courses without credits :

• MPI, an introduction to parallel programming

• Python, le langage (niveau 2)

I have also been involved in three courses as a teaching assistant.

Course Teacher Level Semester

Mécanique des solides Prof. Alain Curnier SGM BS6 Spring 2009

Mécanique des structures I Dr. Eric Davalle SGC BS3 Fall 2009

Mécanique des milieux continus Prof. Jean-François Molinari SGC BS2 Spring 2010

4.3.2 2010/2011

Goals

• New work visit of three weeks at Brown University in July 2010

• Reimplement 2D CADD in parallel

• Implement 3D CADD without dislocation passing

• Extend the computation of Wpl to finite temperature

• Publish the computation of Wpl with or without finite temperature extension in a

journal such as Physical Review B, Acta Materialia or similar.

• Publish a second paper on the same method including micro structures in collab-

oration with Prof. van Swygenhoven.
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Academics

I plan on visiting one more course;

Course Teacher Credits

Computational mechanics by reduced basis methods Prof. Gianluigi Rozza 2

I will probably also continue being a teaching assistant in two courses;

Course Teacher Level

Mécanique des structures I Dr. Eric Davalle SGC BS3

Mécanique des milieux continus Prof. Jean-François Molinari SGC BS2

4.3.3 2011/2012

Goals

• Achieve dislocation passing in 3D CADD

• Publish CADD 3D in a journal such as the Journal of the Mechanics and Physics

of Solids

• Publish an application paper in a journal such as Modelling and Simulation in

Materials Science and Engineering

• Combine finite temperature computation of Wpl with CADD 3D

4.3.4 Summary of Goals

• Develop successful collaborations with

– Prof. Helena van Swygenhoven at the Paul Scherrer Institute, Villigen

– Prof. William Curtin at Brown University, Providence RI

• Publish 3-4 papers

• Attend 3-4 international conferences

4.4 Defense

This research proposal will be defended this coming Monday, June 28 at 10 a.m. in

the conference room GC A1 416 at EPFL, see Figure 4.1 to learn how to get to there
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from the main information desk. Any questions or comments are very welcome at

till.junge@epfl.ch.

Figure 4.1: How to get to the defense.
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