The problem of designing network-wide traffic signal control strategies for large-scale congested urban road networks is considered. One known and two novel methodologies, all based on the store-and-forward modeling paradigm, are presented and compared. The known methodology is a linear multivariable feedback regulator derived through the formulation of a linear-quadratic optimal control problem. An alternative, novel methodology consists of an open-loop constrained quadratic optimal control problem, whose numerical solution is achieved via quadratic programming. Yet a different formulation leads to an open-loop constrained nonlinear optimal control problem, whose numerical solution is achieved by use of a feasible-direction algorithm. A preliminary simulation-based investigation of the signal control problem for a large-scale urban road network using these methodologies demonstrates the comparative efficiency and real-time feasibility of the developed signal control methods. (C) 2008 Elsevier Ltd. All rights reserved.