Abstract

In the nanocomposite bone, inorganic material is combined with several types of organic molecules, and these complexes have been proposed to increase the bone strength. Here we report on a mechanism of how one of these components, human osteopontin, forms large mechanical networks that can repeatedly dissipate energy through work against entropy by breaking sacrificial bonds and stretching hidden length. The behavior of these in vitro networks is similar to that of organic components in bone, acting as an adhesive layer in between mineralized fibrils.

Details

Actions