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ABSTRACT

We consider the problem of distributed average consensus
where sensors exchange quantized data with their neighbors.
We deploy a polynomial filtering approach in the network
nodes in order to accelerate the convergence of the consen-
sus problem. The quantization of the values computed by the
sensors however imposes a careful design of the polynomial
filter. We first study the impact of the quantization noise in
the performance of accelerated consensus based on polyno-
mial filtering. It occurs that the performance is clearly penal-
ized by the quantization noise, whose impact directly depends
on the filter coefficients. We then formulate a convex opti-
mization problem for determining the coefficients of a poly-
nomial filter, which is able to control the quantization noise
while accelerating the convergence rate. The simulation re-
sults show that the proposed solution is robust to quantization
noise while assuring a high convergence speed to the average
value in the network.

Index Terms— Distributed averaging, distributed con-
sensus, polynomial filtering, uniform quantization.

1. INTRODUCTION

Distributed average consensus (DAC) algorithms are becom-
ing increasingly popular and are attractive for applications in
wireless network systems. They are mainly used in ad-hoc
sensor networks in order to compute the global average of
sensor data in a distributed fashion, using only local inter-
sensor communication. Some of their most important applica-
tions include distributed agreement and synchronization prob-
lems, distributed coordination of mobile autonomous agents
and distribution data fusion in sensor networks (e.g., [1,2]).
Without any communication rate restriction and consid-
ering that the data are sent over a reliable channel, the con-
vergence rate of the distributed average consensus problem is
accelerated significantly. Apart from the classical approach
based on linear iterations (successive multiplications of the
network weight matrix with the vector of initial sensor values
[3]1, [4]) a more efficient method tries to accelerate the conver-
gence rate by using previous estimates [5]. This approach can
be achieved by applying a matrix polynomial on the weight
matrix, in order to shape its spectrum by minimizing its sec-
ond largest eigenvalue. Polynomial filtering has been shown
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to outperform the simple iterative method in terms of con-
vergence speed and robustness to dynamic topologies. Both
methods allow every node state to converge to the average of
the initial values after some iterations.

Note that these approaches have been designed and opti-
mized based on the assumption that there is no error in the in-
formation exchanged among nodes. However, in practice, this
assumption is generally infeasible due to several constraints
such as limited communication bandwidth, unreliable com-
munication channels, limited computation power, etc. The
information exchanged by the nodes has therefore to be quan-
tized in order to reduce the communication overheads. As a
result, however, this incurs quantization noise that is accumu-
lated during the iterations. Therefore, existing consensus ac-
celeration solutions only provide limited performance in the
presence of quantization noise.

While there exists a substantial body of work that dis-
cusses average consensus problems with quantized commu-
nication (e.g., [6-13]), they all assume that consensus is
achieved by linear iterations. Thus, these prior works do not
explore the impact of the quantization noise on the acceler-
ation methods. In this paper, we propose an algorithm that
enables the polynomial filtering acceleration method to be-
come robust to quantization noise, while ensuring fast con-
vergence. We analytically investigate the impact of the quan-
tization noise on the performance of this approach and show
that both the convergence rate and the accuracy of the av-
erage consensus depend on the filter coefficients. We show
that the coefficients can be efficiently obtained by solving a
convex optimization problem. Finally, we study the tradeoff
between the convergence rate and the accuracy of the aver-
age consensus, which provides a guideline for the polynomial
filter design.

The rest of the paper is organized as follows. In Section 2,
we briefly review the distributed average consensus problem
based on the polynomial filtering methodology. We propose
a noise robust polynomial filter design in Section 3. Several
simulation results are presented in Section 4, and the conclu-
sions are drawn in Section 5.

2. PRELIMINARIES

A sensor network topology is modeled as an undirected graph
G = (V,E), where V € {1,...,m} represents the sensor nodes
and m = |V| denotes the number of nodes. An edge that rep-
resents a link between two sensor nodes i and j is denoted by



an unordered pair {i, j} € E, which can be established if sen-
sors i and j communicate with each other. We denote the set
of neighbors for node i as N; = {j|{i, j} € E}.

By denoting with z (i) a real scalar assigned to node i at
time ¢, the node states (i.e., node values) over the network at
t can be expressed as a vector z; = [z,(1), ...,z (m)]”. Corre-
spondingly, the initial node state is zg. Then, the distributed
average consensus problem consists of computing iteratively
at every node the average U = %Z;”ZO z0(Z). In order to com-
pute u, we consider distributed linear iterations at each sensor
of the following form:

a1 (D) = Wi,z () + Y, Wi, jlz (), (D
JEN;

where Wi, j] represents the weight associated with edge
{i, j}. The weight matrix W can be specified by the topology
of the network graph. In this paper, we assume that W sat-
isfies the conditions that are required to achieve asymptotic
average consensus [3], expressed as

Tw=1", wi=1, pW—-11"/m) < 1,

where p(-) denotes the spectral radius of the matrix. It is
known that a smaller value of the second largest eigenvalue
A2(W) of W leads to faster convergence [3]. Moreover, the
convergence rate can be accelerated by applying a polynomial
filter py(+) of degree k every k+ 1 steps [5]. Specifically, given
W, a polynomial filter py is applied to W, leading to

k
W)=Y aW' =aol +a;W + ... + qW*.
=0

This is equivalent to applying the iterative method to py(W)
and in practice, it implies a periodic update of the current sen-
sor’s values while exploiting the memory of the sensors:

k
Zkr1 = p(W)z = aoze +aitWz + ... + Wz,
=aoy +aiz+1+ ...+ g4k

©))

The polynomial filter update is followed by the distributed
linear iteration of Eq.(1). It is known that the eigenvalues of
pr(W) are simply the polynomial filtered eigenvalues of W,
i.e., pr(A;(W)). Thus the application of the polynomial fil-
ter on the spectrum of W can impact the magnitude of A,(W)
which mainly drives the convergence rate. As a result, the
convergence rate can be significantly influenced by the poly-
nomial filter design (i.e., selection of the polynomial coeffi-
cients). Two alternative techniques for computing the coef-
ficients a; of the filter p; are discussed in [5]. The first ap-
proach, Newton’s interpolation polynomial, is based on Her-
mite interpolation and its objective is to dampen the smallest
eigenvalues of W by imposing smoothness constraints of py
at the endpoints of the interval of the spectrum of W. The
second technique is based on solving a semi-definite program
(SDP) for computing the optimal coefficients. The optimiza-
tion problem can be formulated as:

a=argminn
k
subjecttop | ¥ ;W' — 11T/m) <n 3)
1=0
(TfgaW)1=1,
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Fig. 1. Average consensus performance of polynomial filter
based approaches [5] (no error, quantization with 2 and 12
bits).

This approach outperforms the Newton’s interpolating poly-
nomial approach in terms of convergence rate.

The above mentioned filters have been originally de-
signed without considering quantization effects. If quantiza-
tion noise is introduced, they may provide a limited perfor-
mance as we show in the following example. We consider
that the sensors quantize their state by using a uniform quan-
tizer with 2 and 12 bits respectively. For more details about
the simulation settings see Section 4.1. Fig. 1 shows the abso-
lute error ||z, — 1|2 over ¢ iterations when SDP-based poly-
nomial filter and Newton’s interpolating polynomial filter are
deployed. The red curves follow [5] and correspond to the
performance of the SDP and the Newton method in the noise-
less case. As expected, if quantization noise is introduced
in the distributed average consensus, the existing filter based
solutions provide only a limited performance. Interestingly,
polynomial filtering with Newton’s polynomial seems to per-
form better than the one with SDP polynomial. This result
confirms that the optimal coefficients computed with Problem
(3) were designed for ideal conditions, without taking into
consideration rate constraints. More importantly, both solu-
tions do not improve the consensus performance even when
refined quantizers are deployed. This can be attributed to
the fact that by applying the polynomial filter, the introduced
noise is amplified, resulting in significant performance degra-
dation. Therefore, we can conclude that the polynomial filters
need to be redesigned by explicitly considering the impact of
the noise on their average consensus performance. This is
discussed in the next section.

3. FILTER DESIGN FOR QUANTIZED CONSENSUS

We assume that sensors exchange gquantized information,
which enables them to reduce the communication overhead.
Thus, additive quantization errors are introduced in the ex-
changed information. In particular, we assume that z(i) € R
lies in a finite interval of size S and is quantized by a g-bit
uniform quantizer before it is transmitted to the neighbor sen-
sors. The g-bit uniform quantizer output of a scalar z can be



expressed as

Z— Zmi A
Q(Z):\; AmmJ XA+§+Zmina

where A is the quantizer step-size and z,,;; is the minimum
dynamic range. Note that the quantizer step size and the range
S are linked by the relation S = 29A.

Before state information is exchanged, the value Z (i) of a
sensor node i at each step ¢ is quantized, such that

Z (1) =z (i) + &), “

where & (i) is the incurred quantization error in step ¢, Z (i)
is the current state of sensor i (before quantization) and 2 (i)
is the quantized value that the sensor i will send to its neigh-
bors. We set as initial condition Zy(i) = zo(i) which means
that Zo(i) = Zo (i) + €0 (i) = z0(i) + € (). Then, each node up-
dates its state as a linear combination of its own quantized
state as well as the quantized states of its neighbors based on
the recursive update in (1):
L1 =W-(Z+8&), t>0

where & = [&(1),&(2),...,&(m)]T. After k iterations, the

state 7, can be correspondingly expressed as

k—1
5 ks k—1
=W+ Y Wley,.
=0

After polynomial filtering (see also Eq. (2)) the resulting
Zr k11 can be expressed as

k
Zttket1 =aoZ + Z a1z
=1
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The obtained values from the above equation are quan-
tized and sent to the neighboring sensors. We observe that the
quantization error due to the previous k steps, is accumulated
over the iterations and it is represented by the second term
of the above equation. As shown in Eq. (5), the accumulated
quantization noise of each sensor significantly depends on the
filter coefficients. Specifically, the output of the polynomial
filter is a linear combination of the quantization noise vec-
tors (&,...,&4) introduced during the previous iterations,
the weight matrix W and the filter coefficients. We observe
also that each quantization noise vector is multiplied by a ma-
trix polynomial of W. Note that the weight matrix depends
on the topology and it is fixed. Also, the quantization errors
depend on the number of the available bits (rate constraints).
Hence the only factor that we can modify in order to reduce
the impact of the noise in the consensus performance is the
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value of the coefficients. Therefore, given W and a polyno-
mial degree k, the polynomial coefficients should be deter-
mined such that they can lead to a fast convergence while at
the same time reducing the accumulated error.

In order to limit the effects of the quantization noise, the
filter coefficients need to be computed such that they min-
imize ):]J‘;ll al+jo in Eq.(5) for 0 <[ < k—1. This can
be achieved by minimizing the L2-norm of the above ma-
trix polynomials which leads to diminishing the effect on the
quantization noise vectors. Moreover, in order to accelerate
the convergence rate and assure convergence, the spectral ra-
dius p(Xf_yaw! — L117) also needs to be minimized sub-

ject to the constraint (Y5_oa;W')1 =1 [5]. Putting all the
above facts together, the filter coefficients a = (ay,...,a;) €
R**! can be determined as

a=argminm

k
subject to p (): aW! — llT/m> <n

| (6)
|t Wi <vom0<i<k-1

(T paw)1=1,

where 1 € R is an auxiliary variable. The new optimization
problem consists of the constraints in Problem (3) and one ad-
ditional constraint that controls the allowable amount of quan-
tization noise. Since the spectral radius is a convex function
of the polynomial coefficients [5], Problem (6) is also a con-
vex optimization problem. Thus, a global optimal solution
can be efficiently obtained. Notice that a parameter v is in-
troduced in the inequality constraints of Problem (6), which
determines the tolerable noise level. A lower spectral radius
(i.e., faster convergence speed) can be achieved by allowing a
higher tolerable noise level (i.e., a larger v), as a larger value
of v leads to an enlarged constraint set in Problem (6). Since
our primary goal of filter design is to accelerate the conver-
gence speed, we assume that v > 1. However, the impact of
quantization noise on the average consensus performance in-
creases as v increases. This tradeoff between convergence and
robustness to noise will be quantified and investigated in the
next section.

4. SIMULATION RESULTS

In this section, we quantify the performance of the proposed
noise robust filter design for distributed average consensus
and we compare it with that of the already existing methods.
The performance is estimated in terms of the convergence
speed and the accuracy of the achieved consensus value.

4.1. Simulation setup

We consider a network that consists of 40 sensors (i.e., m =
40) uniformly distributed over the unit square [0, 1] x [0, 1].
We assume that two neighbor sensors are connected if their
Euclidean distance is less than the connectivity radius r =
v/ (logm)/m. Each sensor performs 200 iterations. As an
illustration, we consider the maximum-degree weight matrix,
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Fig. 2. Impact of v on the spectral radius and the consensus
accuracy.

defined as
1/m, if {i,j} €E
0, otherwise

where d(i) denotes the degree of the i sensor. We assume
static network topologies. This implies that the edge set does
not change over the iterations so the matrix W is considered
fixed. We deploy a polynomial filter of degree kK = 4 and we
investigate the average performance based on 400 random re-
alizations of the sensor network and random initial measure-
ments. For more details about the chosen degree of the poly-
nomial see [5]. In the simulations, the quantization step-size
is chosen to be A = 1 /24 and the exchanged data are quantized
uniformly with ¢ = 2,6, 12 bits.

4.2. Performance of Noise Robust Polynomial Filters

In this section, we quantify the performance of the noise ro-
bust polynomial filter proposed in Section 3. As an illustra-
tion, we assume that k = 4 in Eq.(6). The filter coefficients
are determined by solving the convex Optimization Problem
(6) in MATLAB using the SeDuMi solver .

We first investigate the impact of the parameter v intro-
duced in Problem (6) on the convergence speed and the ac-
curacy of the average consensus algorithm. Fig.2 confirms
the tradeoff between these two objectives. The accuracy is
measured by computing the absolute error ||z; — p1||o over
the iteration r = 200, with varying v, for a ¢ = 6 bits quanti-
zation. As v increases, the spectral radius decreases (i.e., the
convergence is faster). Note that the improvement rate of the
spectral radius is significant in the range of 1 <v < 15, while
it becomes smaller for v > 16. However, by increasing v, we
loose much in terms of accuracy since we tolerate a high noise
level. As a result, v should be determined by considering this
tradeoff.

Fig.3 presents the average consensus performance
achieved based on the proposed noise robust polynomial fil-
ter (denoted by robust-SDP) which is designed for different
values of v = {3,10,50}. For comparison purpose, we also
present the results achieved based on Newton’s polynomial
methodology and the simple iterative method.

"Publically available at: http://sedumi.mcmaster.ca/
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We compare first the performance of the two polynomial
filtering methodologies. We observe that for a small num-
ber of bits (2 bits) the performance of both methods is ex-
tremely deteriorated. However, if we increase the number of
the available bits, the proposed noise robust polynomial filter
provides a generally improved performance in comparison to
Newton’s interpolating polynomial filter. These simulation
results confirm that the proposed filter is adaptively designed
by considering both the convergence speed as well as the ac-
curacy of the average consensus. As we increase the amount
of the tolerable noise level (v = 50) the performance of the
robust-SDP tends to deteriorate since, for a large value of the
variable v, the additional constraint in the Problem (6) does
not have any impact on the constraint set. Thus the solutions
that we obtain by solving the Optimization Problem (6) are
close to the one obtained by solving the initial Optimization
Problem (3) without the noise constraints. By comparing the
performance of the two filtering methodologies to the results
shown in Fig.1, it becomes clear that the proposed polynomial
filter outperforms both original SDP and Newton’s interpolat-
ing polynomial filter approaches.

For the sake of completeness we compare the robust-SDP
method with the simple iterative method. When v is relatively
small (i.e., v = 3) and when the number of the available bits is
limited, the performance of the noise robust SDP is similar to
that of the simple iterative method. This is consistent with our
discussion in Section 3 since a very small amount of noise is
allowed at the cost of a low convergence speed. Thus the con-
vergence rate of the robust SDP is close to the one achieved by
the simple iterative method as the accelerating effect of poly-
nomial filtering is penalized. As we increase the amount of
noise that we tolerate (v = 10), the convergence speed is sig-
nificantly improved and the robust SDP clearly outperforms
the iterative method. If we keep increasing v, (v = 50) the
impact of the quantization noise on the performance becomes
significant and the achieved performance tend to approach the
one obtained by solving the Optimization Problem (3). This
means that during the first iterations, the sensors will tend
to converge faster to some value (due to the lower value of
the spectral radius) but the difference of the achieved value
from the true average is quite high and it becomes higher each
time that we apply the polynomial filter. So even though we
would expect a gain in the convergence speed, in practice the
increased noise effect does not permit to observe significant
differences in terms of convergence rate compared to the per-
formance achieved when v = 10.

We conclude that even in the case of quantized commu-
nication the proposed filtering methodology outperforms the
classical iterative algorithm even though the gain in the con-
vergence rate is not as high as in the case when communi-
cation is performed under ideal conditions [5]. The above
results confirm that the value of v should be determined by
considering the tradeoff between the convergence speed and
the accuracy of the average consensus.

5. CONCLUSIONS

In this paper, we have investigated the performance of
the polynomial filtering methodology for average consen-
sus when sensors exchange quantized state information. We
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Fig. 3. Average consensus performance of robust SDP vs Newton’s polynomial (a),(b),(c) and robust SDP vs the simple iterative
method (d),(e),(f) when the data are uniformly quantized with 2, 6 and 12 bits.

show that, under the presence of quantization noise, the ex-
isting methods for designing the optimal polynomial achieve
a limited performance. We propose a noise robust approach
for computing the polynomial that is based on a tradeoff
between minimizing the quantization noise and maintaining
a high convergence speed. We conclude that even in the
case of quantized communication, the polynomial filtering
methodology with a proper design of the polynomial coef-
ficients, achieves a better performance than the simple itera-
tive method. Simulation results show the effectiveness of the
proposed methodology which seems to outperform both the
simple iterative method and the Newton polynomial filtering
methodology. Future research work should define the optimal
balance between the two contradicting factors and investigate
its relation to the weight matrix of the network. Moreover, a
challenging problem would be to adapt the polynomial filter-
ing methodology to the proposed iterative scheme in [7].
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