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“I refuse to prove that I exist, ” says God, “for proof denies faith, and

without faith I am nothing”.

“But,” says Man, “the Babel fish is a dead giveaway, isn’t it? It could not

have evolved by chance. It proves that you exist, and so therefore, by

your own arguments, you don’t. QED.”

“Oh dear, ” says God, “I hadn’t thought of that, ” and promptly

disappears in a puff of logic.

Hitchhiker’s Guide to the Galaxy, Douglas Adams



Abstract

The tokamak à configuration variable (TCV) is unique in its ability to create a variety

of plasma shapes and to heat the electron population in high density regimes using

microwave power at the third harmonic of the electron cyclotron frequency. In the frame

of this thesis, the impact of plasma shaping and heating on the properties of the edge

transport barrier (ETB) in the high confinement mode (H-mode) was studied. This mode

of operation is foreseen as one of the reference scenarios for ITER, the International

Tokamak Experimental Reactor, which is being built to demonstrate the feasibility of

thermonuclear fusion using magnetic confinement.

A feature of H-mode regime operation are edge localized modes (ELMs), instabilities

driven by the steep pressure gradients that form in the plasma edge region due to a trans-

port barrier. During an ELM event, energy and particles are expelled from the plasma in

a short burst. This will cause serious problems with respect to the heat load on plasma

facing components in a tokamak of the size of ITER. Understanding of the phenomena

associated with ELMs is thus required and dedicated investigations of their theory and

experimental observations are carried out in many laboratories worldwide. This thesis

presents several experimental and numerical investigations of tokamak behavior for con-

figurations where the plasma edge plays an important role.

From the experimental viewpoint, studies of transport barriers are challenging, as

plasma parameters change strongly within a narrow spatial region. As part of the work

presented here, the TCV Thomson scattering system was upgraded to meet the require-

ments for diagnosing electron temperature and density with high spatial resolution in

the region of internal and external transport barriers. Simultaneously, the data analysis

was significantly improved to cope with statistical uncertainties and alleviate eventual

systematic errors.

For measurements of the time evolution of density and temperature profile during the
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ELM cycle, the low repetition rate of the lasers used for Thomson scattering is a limiting.

Although the system on TCV comprises 3 laser units that may be triggered in sequence

with time separations down to 1 ms, time evolution over longer periods can only be

reconstructed from repetitive events. In this context, an adjustment of the laser trigger

to improve the synchronization with the ELM event is an advantage. A method was

developed and implemented to generate a synchronizing trigger sequence, by a real-time

monitoring of the D-alpha emission, which provides a marker for the ELM event.

Recently, a “snowflake” (SF) divertor configuration, proposed as a possible solution

to reduce the plasma-wall interaction by changing the divertor’s poloidal magnetic field

topology, was generated, for the first time, in TCV. A numerical code (KINX), based

on a magnetohydrodynamic model (ideal MHD), was used to investigate the stability

limits of this configuration under H-mode conditions and compare them with a similar

standard single-null equilibrium. In a series of experiments, improved energy confinement

was found and explained by improved stability of the edge region in the SF configuration.

The influence of the pedestal structure in ELMy H-mode plasmas on the energy con-

finement and on ELM energy losses was investigated. The different ELM regimes found

in TCV were analyzed, in particular the transition between type-III to type-I ELMs. The

operational boundary of each ELM regime was characterized and verified by ideal MHD

stability simulations for the ETB region. Recent studies on the scaling of the pedestal

width with normalized poloidal pressure were confirmed. Using the capabilities of TCV,

the influence of plasma shaping on pedestal parameters and MHD stability limits was

investigated.

In the past, models were developed to describe the onset of type-I ELMs, which

are associated with modes in the ETB region arising from a coupling of pressure- and

current-driven instabilities (coupled kink-ballooning modes). Experimental studies were

performed to trace the temporal evolution of pedestal parameters characterizing the ETB

during an ELM cycle. The results of these experiments were analyzed using information

from MHD stability calculations. It is concluded that these models are capable of predict-

ing limits as necessary conditions for ELM activity, but are not sufficient to fully explain

ELM triggering.

Keywords: plasma physics, nuclear fusion, tokamak, TCV, Thomson scattering,

high confinement mode, edge localized modes, ideal magnetohydrodynamic model
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Kurzfassung

Der Tokamak “à configuration variable” (TCV) besitzt die einzigartige Fähigkeit,

eine Vielzahl von Plasmaformen zu realisieren und die Elektronenpopulation in

Hochdichteplasmen mit Hilfe von elektromagnetischen Wellen zu heizen. Im Rahmen

dieser Arbeit wurde der Einfluss von verschiedenen Plasmaformen und Heizleistungen

auf die Eigenschaften der Randtransportbarriere (ETB) im “high confinement mode”

(H-mode) untersucht. Die Plasmaentladung in H-mode ist eins der Referenzscenarios

für ITER, “International Tokamak Experimental Reaktor”, welcher sich in der Bauphase

befindet und die Realisierbarkeit von thermonuklearer Fusion basierend auf dem Konzept

des magnetischen Einschlusses demonstrieren soll.

Der H-mode ist gekennzeichnet durch eine Transportbarriere in der äußeren Region

des Plasmas. In der Region der Transportbarriere, Wärme- und Teilchentransport sind

stark verringert, sodaß steile Druckgradienten entstehen können, welche zyklisch auftre-

tende Plasmainstabilitäten, “edge localized modes” (ELMs), hervorrufen. Während dem

Auftreten eines ELMs werden Plasmaenergie und -teilchen in Form eines kurzen Pulses

aus dem Plasma ausgeworfen, der eine Gefahr für die inneren Reaktorkomponenten

darstellt. Das Verständnis dieses Phänomens ist äußerst wichtig für zukünftige Fusions-

reaktoren. Die Physik dieses Phänomen wird weltweit von Forschungseinrichtungen exper-

imentell und theoretisch untersucht. Diese Arbeit präsentiert diesbezüglich ein Vielzahl

von experimentellen Untersuchungen und deren Interpretation durch numerische Simula-

tionen.

Die experimentelle Untersuchung von Transportbarrieren ist sehr anspruchsvoll, da

sich die charakteristischen Plasmagrössen innerhalb der Transportbarriere stark verän-

dern können. Ein großer Teil der experimentellen Untersuchungen wurden mit Hilfe des

TCV Thomsonstreusystems durcheführt. Das System wurde zur Messung von hochau-

flösenden Profilen von Elektronentemperatur und -dichte angepasst und erweitert. Zu-
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dem wurde das Datenanalyseverfahren stark verbessert um statistische und systematische

Fehler zu minimieren.

Die Messung der zeitlichen Entwicklung der Temperatur- und Dichteprofile während

eines ELM-Zyklus war auf Grund der niedrigen Messfequenz der Diagnostik limitiert.

Obwohl das Meßsystem aus 3 unabhängigen Lasereinheiten besteht, welche mit einem

Zeitversatz von minimal 1 ms gefeuert werde köennen, musste die gesamte Profilentwick-

lung mit Hilfe von mehreren wiederholbaren Experimenten rekonstruiert werden. In

diesem Kontext ist die Synchronisierung der Lasersteuerung mit dem Auftreten eines

ELMs ein Vorteil. Zu diesem Zweck wurde ein Kontrollmechanismus entworfen und im-

plementiert, welcher Lasertriggers basierend auf der Messung der Dα-Lichtemission in

Echtzeit generiert.

Die “snowflake” (SF) Divertorkonfiguration wurde kürzlich zur Verringerung der Wech-

selwirkungen zwischen Plasma und Reaktorwand vorgeschlagen. Diese Konfiguration

wurde durch Optimierungen der magnetischen Feldtopologie zum ersten Mal in TCV re-

alisiert. Der numerische Code KINX, basierend auf das magneto-hydrodynamische (ideale

MHD) Plasmamodell, wurde zur Untersuchung der H-mode Plasmastabilitätsgrenzen in

dieser Konfiguration verwendet und dessen Resultate mit der herkömmlichen Plasmakon-

figuration (“single-null”) verglichen. In einer Reihe von Experimenten in dieser Konfig-

uration wurde ein erhöhter Energieeinschluss gemessen, welcher durch die Verbesserung

der Plasmastabilitätsgrenzen erklärt werden konnte.

Der Einfluss der H-mode Transportbarriere auf die Energieeinschlusszeit und die durch

ELMs hervorgerufenen Energieverluste wurde untersucht für drei verschiedene ELM-

Regime. Die Stabilitätsgrenzen von H-mode Plasmen in TCV wurden charakterisiert und

durch ideale MHD-Rechnungen verifiziert. Untersuchungen der Skalierung der Barrieren-

breite als Funktion des normierten poloidalen Drucks wurden bestätigt. Zudem wurde

der Einfluss von verschieden Plasmaformen auf die Barrieren- und Plasmaeigenschaften

untersucht und mit Hilfe der idealen MHD interpretiert.

In der Vergangenheit wurden Modelle entwickelt, die das Auftreten von Typ-I ELMs

beschreiben, welche in Fusionsplasmen erwartet werden und durch hohe ELM-Energien

gekennzeichnet sind. Diese Klasse von ELMs wird mit dem Auftreten von druck- und

stromgetriebenen Instabilitäten (“coupled kink-ballooning mode”) in Verbindung gebracht.

Experimentelle Untersuchungen zur zeitlichen Entwicklung der Barriere wurden durchge-

führt und deren Ergebnisse in Zusammenhang mit der idealen MHD-Theorie gebracht.
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Es konnte gezeigt werden, dass die quantitativen Vorhersagen dieser Modelle gut mit den

Messungen übereinstimmen, allerdings nicht den ELM-Trigger beschreiben können.

Schlüsselwörter: Plasmaphysik, nukleare Fusion, Tokamak, TCV, Thomsonstreu-

ung, “high confinement mode”, “edge localized modes”, ideales magneto-hydrodynamisches

Plasmamodell
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Sommario

Il tokamak a configurazione variabile (TCV) presenta la caratteristica peculiare di per-

mettere la creazione di una grande varietà di configurazioni del plasma (plasma shaping)

ed inoltre di riscaldare la popolazione elettronica in regimi ad alta densità, per mezzo di

microonde alla terza armonica della frequenza elettronica di ciclotrone. Nell’ambito di

questa tesi è stata studiata l’influenza della configurazione del plasma e del suo riscalda-

mento sulle proprietà delle barriere presenti nella zona periferica del plasma stesso (edge

transport barrier, ETB), nel modo di confinamento denominato H-mode. Si prevede che

questo modo di funzionamento sia una delle configurazioni di riferimento per ITER (Inter-

national Tokamak Experimental Reactor). Esso verrà realizzato allo scopo di dimostrare

la fattibilità della fusione termonucleare utilizzando il confinamento magnetico.

Una caratteristica fondamentale del funzionamento in H-mode è il verificarsi degli

ELMs (edge localized modes), instabilità causate dalla presenza di elevati gradienti di

pressione che si formano nella zona periferica del plasma (edge) a causa di una barriera

di trasporto. Durante un ELM le particelle e l’energia sono espulse dal plasma in una

scarica molto rapida. Questo evento potrebbe provocare seri problemi di carico termico

su di alcuni componenti a contatto con il plasma in un tokamak delle dimensioni di

ITER. La piena comprensione dei fenomeni associati agli ELMs è dunque di fondamentale

importanza e studi teorici ed osservazioni sperimentali sono intrapresi in molti laboratori

in tutto il mondo. Questa tesi presenta numerose osservazioni sperimentali e simulazioni

numeriche del comportamento del tokamak in configurazioni in cui la zona dell’edge gioca

un ruolo importante.

Dal punto di vista sperimentale gli studi sulle barriere di trasporto sono di difficile

realizzazione, siccome i parametri di plasma variano ampiamente in una regione spaziale

di dimensioni ridotte. Parte del lavoro qui presentato consiste nel miglioramento del

sistema di scattering Thomson di TCV, al fine di soddisfare i requisiti per la raccolta
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dei dati relativi alla temperatura elettronica e alla densità, con alta risoluzione spaziale,

nella regione in cui sono localizzate le barriere di trasporto esterne ed interne. Contem-

poraneamente l’analisi dei dati raccolti è stata significativamente migliorata per quanto

concerne l’incertezza statistica e la correzione di eventuali errori sistematici.

La bassa frequenza di ripetizione dei laser utilizzati per lo scattering Thomson rap-

presenta un limite alla misurazione dell’evoluzione temporale della densità e della tem-

peratura durante un ciclo ELM. Sebbene il sistema disponibile su TCV sia composto da

3 laser che possono essere azionati in sequenza con un intervallo temporale minimo di

1ms, tuttavia l’evoluzione temporale su intervalli più lunghi puo’ essere ricostruita solo

tramite eventi ripetuti. La regolazione dell’istante di azionamento del laser (trigger), al

fine di migliorare la sincronizzazione con un evento ELM, è stata quindi di grande aiuto

in questo ambito. Un nuovo metodo per la generazione di una sequenza di azionamento

dei laser, basato sul monitoraggio in tempo reale dell’emissione D-alpha (che caratterizza

l’evento ELM), è stato studiato ed implementato.

Recentemente è stata realizzata per la prima volta in TCV una nuova configurazione

di divertore denominata ”snowflake” (SF). Proposta come possibile soluzione per ridurre

le interazioni plasma-parete, prevede la modifica della topologia del campo magnetico

poloidale del divertore. Il codice numerico KINX, basato sul modello magneto-idro-

dinamico ideale (MHD), è stato utilizzato per investigare i limiti di stabilità di questo

regime in condizioni H-mode e per paragonarle ad un simile equilibrio standard ”single-

null”. In una serie di esperimenti si è effettivamente verificato un miglioramento del

confinamento energetico, giustificato da una crescente stabilità nella zona dell’edge nella

configurazione SF.

È stata inoltre investigata l’influenza della struttura del pedestal negli ELMy H-mode

sul confinamento e sulla perdita dell’energia durante il verificarsi di un ELM. Sono stati

analizzati i diversi regimi ELM riscontrati in TCV, in particolare la transizione da tipo-

III a tipo-I. Il limite di funzionamento di ciascun tipo di regime ELM è stato descritto

e verificato tramite simulazioni MHD per la regione ETB. Recenti studi nell’ambito del

variazione (scaling) della larghezza del pedestal con la pressione poloidale normalizzata

sono stati confermati. Sfruttando le possibilità operative di TCV, sono stati studiati

l’influenza della forma del plasma sui parametri del pedestal e sui limiti della stabilità

MHD.

In passato sono stati sviluppati alcuni modelli per descrivere l’insorgere degli ELMs

tipo-I. Essi sono associati alla presenza di un accoppiamento fra le instabilità dovute alla
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pressione e quelle dovute alla corrente (modi accoppiati kink-ballooning). Alcuni studi

sperimentali sono stati realizzati per tracciare l’evoluzione temporale dei parametri del

pedestal che caratterizzano la regione EBT durante un ciclo ELM. I risultati di questi

esperimenti sono stati analizzati utilizando le informazioni ottenute dagli studi di stabilità

MHD. Si conclude che questi modelli sono in grado di predire le condizioni necessarie al

svilupparsi di una instabilità di tipo ELM, ma non sono sufficienti per una spiegazione

esaustiva delle cause scatenanti un ELM.

Parole chiave: fisica del plasma, fusione nucleare, tokamak, TCV, scattering Thom-

son, high confinement mode, edge localized modes, modello magnetoidrodinamico ideale.
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1. Introduction

The enormous destructive power of the 235U-fueled atomic bomb dropped on Hiroshima

on August 6, 1945, which killed 75,000 people, and the 239Pu-fueled bomb dropped on

Nagasaki three days later touched off a violent debate after World War II about the

building of the next superweapon a fusion, or “hydrogen”, bomb. Alumni of the Man-

hattan project, who had developed the atomic bomb, were divided on the issue. Ernest

Lawrence and Edward Teller fought for the construction of the fusion device. J. Robert

Oppenheimer and Enrico Fermi argued against it. The decision was made to develop the

weapon, and the first artificial fusion reaction occurred when the hydrogen bomb was

tested in November 1952.

The history of fusion research is therefore the opposite of fission research. With fission,

the reactor came first, and then the bomb was built. With fusion, the bomb was built

long before any progress was made toward the construction of a controlled fusion reactor.

Almost 60 years after the first hydrogen bomb was exploded, the feasibility of controlled

fusion reactions is still open to debate.

1.1. Nuclear fusion

The reaction that is most likely to fuel the first fusion reactor is the thermonuclear D-T,

or deuterium-tritium, reaction. This reaction fuses two isotopes of hydrogen D and T to

form helium and a neutron:

2
1D +3

1 T → 4
2He (3.5 MeV) + 1

0n (14.1 MeV) (1.1.1)

Its ignition temperature lays above 108 K to overcome the repulsion force of the positively

charged nuclei.

1



1. Introduction

Deuterium is naturally abundant in hydrogen being one part in 6700. The oceans

would provide enough deuterium for approximately 1011 times today’s annual global elec-

tricity consumption [1]. Unlike deuterium, tritium is quasi non-existent in nature due to

its half life time of 12.3 years. However, it can be bred from Lithium by neutron induced

fission reaction:

7
3Li+ 1

0n→ 4
2He+ 3

1T + 1
0n− 2.47 MeV (1.1.2)

6
3Li+ 1

0n→ 4
2He (2.05 MeV) + 3

1T (2.05 MeV) (1.1.3)

Natural resources of Lithium in the sea water are estimated to meet the global energy con-

sumption for 106−107 years [1]. Thus, nuclear fusion promises a practically inexhaustible

source of energy.

1.1.1. Magnetic confinement

At the temperature required for fusion, any substance will exist as a completely ionized

gas, the so called plasma. Globally, the electrostatic charge of the ions is neutralized by

an equal number of electrons. Locally, the charged particles are subjected to the Lorentz

force which bends the particle trajectory to a helical one around the magnetic field lines.

The radial extent, or gyro-radius, of this trajectory for a particle of mass m and charge

q is given by

ρ =
mv⊥
qB

, (1.1.4)

where v⊥ is the velocity of the particle perpendicular to the magnetic field B. In the case

of a homogeneous velocity distribution, v⊥ can be expressed by the plasma temperature

T as v⊥ = (2kT/m)1/2 with the Boltzmann constant k. This effect is used as method

to protect the wall of a reactor from the high temperatures of the fusion plasma by

introducing a gap between the outer plasma surface and the reactor wall.

The presence of the magnetic field highly restricts the perpendicular direction of

motion, whereas the parallel is unaffected. Collisions among particles, however, introduce

a diffusive perpendicular cross field transport of particles and also give rise to a resistivity

in the parallel direction.

1.1.2. Tokamak principle

A straight magnetic field configuration suffers from plasma losses at both ends. This can

be avoided by either compressing the plasma column at its extremities by an additional

2



1. Introduction

Figure 1.1.: Schematic of the coil configuration of a tokamak.

magnetic field - magnetic bottle - or by reconnecting one extremity of the magnetic field

lines with the other in form of a torus. Only latter configuration confines sufficiently well

particles with high velocities parallel to the magnetic field lines and is used for the so

called tokamak design, the Russian acronym for “toroidal chamber with magnetic coils”

(see figure 1.1).

The reconnection of the magnetic field lines in form of a torus leads to bending of

them and hence creates and inhomogeneity in their distribution - a compression of the

field lines on its inner side and a decompression on the outer side. This curvature and

gradient of the field leads to drift motions of ions and electrons in opposite vertical

direction resulting in a separation of charge and consequently an electric field. The

electric field is perpendicular to the magnetic field and causes an outward E×B-drift of

the entire plasma. The outward drift is compensated by a toroidal current Itor producing

a poloidal magnetic field Bpol which, together with a toroidal magnetic field Btor, leads

to a twisted magnetic field topology. An additional vertical magnetic field Bv is required

to attain the balance in the radial forces. The plasma pressure gradient ∇p gives rise to

an outward directed force that is canceled out by the Lorentz force resulting from Bv.

In a tokamak, the transformer principle is used to create the plasma current and to

heat the plasma. The central celenoid acts as the primary coil and the plasma ring as

the secondary coil with a single winding. It has the advantage of retaining the toroidal

symmetry, but allows only pulsed operation which is undesirable for a future fusion

power plant based on the tokamak principle. Thus, a major effort is being undertaken

3



1. Introduction

to develop alternative ways of driving the plasma current, such as beam-wave driven or

pressure gradient driven currents.

The magnetic structure in a tokamak consist of an infinite set of nested toroidal

magnetic surfaces, the so called flux surfaces. These surfaces represent regions of constant

pressure, current density and magnetic field. The twist of the field lines in each surface

is characterized by the safety factor q, whereas

q =
∆ϕ

2π
=
rBφ

RBθ

, (1.1.5)

with plasma minor and major radii r and R and the toroidal and poloidal magnetic fields

Bφ and Bθ. Here ∆ϕ denotes the change in toroidal angle ϕ associated with a change of

2π in poloidal angle when following the field lines on a magnetic surface. The profile of

q is mainly determined by Bpol, or the current density j, and plays a crucial role in the

magneto-hydrodynamic (MHD) stability (see chapter 2). On rational values of q, ideal

MHD instabilities can develop leading to destabilization of parts or the whole plasma.

These events develop on a fast time scale (' ms), decrease the plasma performance and

can damage components of the tokamak, which make it indispensable to study their very

nature.

1.1.3. Plasma heating

As noted before in 1.1.2, the coil in the central celenoid serves also to heat the plasma.

Owing to the plasma resistivity µ, the Ohmic heating power density is

pohmic = µj2. (1.1.6)

The plasma resistivity, however, decreases with increasing plasma temperature as T−3/2

and the maximum current density j is limited by MHD stability (see chapter 2). The

plasma temperature reached by Ohmic heating is not sufficient to start and sustain a

fusion reaction. Thus, additional plasma heating is is required.

One method of additional plasma heating consists of injecting energetic particles into

the plasma by means of neutral beams of hydrogen or deuterium. The neutral particles

travel unaffected by the magnetic field until they collide with ions from the plasma, which

will ionize them. The resulting ions and electron are henceforth confined by the magnetic

field and deposit their energy via further collisions to the rest of the plasma. The beam

absorption depends essentially on the orbits of the created highly energetic particles

within the plasma.
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A second method of additional heating is the injection of high energetic electro-

magnetic waves into the plasma. Once the wave has coupled to the plasma, its energy

is absorbed at fairly high rate at the resonance frequency such as the ion or electron

cyclotron frequencies, lower hybrid frequency and higher harmonics of these frequencies.

1.1.4. Power plant concept and improved plasma scenarios

In a fusion plant the plasma temperature is supposed to be maintained by energy transfer

from the, by the fusion process created, α-particles to the combustibles D and T. The

magnetic field has to confine the charged α-particles long enough so that they can transfer

their energy via collisions and equilibrate their energy with the bulk plasma before leaving

the plasma. In contrast to the α-particles, the neutrons leave the plasma without any

interaction and should be absorbed in a blanket surrounding the reactor vessel to bread

the Tritium from Lithium, equation (1.1.3). The heat is carried away by a suitable coolant

and used to drive vapor steam turbines.

A power balance gives an estimate for the plasma parameters required for a fusion

power plant and culminates in the triple product or Lawson criteria [1]

nTτE > 5× 1021 m−3keV s, (1.1.7)

where T and n are the plasma temperature and density and τE the energy confinement

time. High plasma power, represented by the dimensionless parameter βt,

βt =
〈p〉

B2
tor/2µ0

, (1.1.8)

where p = nT and < . > denotes the volume average, can be achieved by auxiliary heating

and by energy transfer from the α-particles. The dependence of equation (1.1.7) on the

energy confinement time gives reason to develop so-called improved plasma scenarios,

such as high-confinement mode (H-mode) or plasmas with internal transport barriers

(ITB), in which transport quantities decrease significantly minimizing the power loss of

the plasma.

In the case of H-mode, an external transport barrier with a steep pressure gradient

arises at the very edge of the plasma reducing the internal particle and heat transport

to almost neoclassical quantities. This leads to an improvement in confinement, the so

called H-factor [2], by 2 − 3 times. However, this improved plasma scenario gives rise

to resistive or ideal MHD modes developing in the steep pressure gradient region of the
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1. Introduction

Parameter Symbol Value

Major radius R0 0.88 m

Minor radius a 0.25 m

Aspect ratio ε−1 = R0/a ≈ 3.5

Vessel internal full width Rmax −Rmin 0.56 m

Vessel internal full height zmax − zmin 1.54 m

Toroidal vessel resistance Ωtor 45 mΩ

Toroidal field on axis B0 ≤ 1.54 T

Plasma current IP ≤ 1.2 MA

ECH-heating
PX2 ≤ 2.8 MW

PX3 ≤ 1.4 MW

Table 1.1.: Main TCV machine parameters

barrier. The so called edge-localized modes (ELM’s, see subsection 2.2.1) represent, with

its fast ejection of energetic particles, a potential danger to plasma facing components of

the reactor vessel.

ITB scenarios feature high core confinement combined with a non-negligible self-

generated current fraction, the so called bootstrap current, while operating at high nor-

malized pressure and moderate current. This regime suggest a potential route to the

steady-state mode of operation desirable for fusion power plants.

1.2. Tokamak à configuration variable

1.2.1. The Tokamak

This thesis work was carried out on the Tokamak à Configuration variable (TCV), a

medium size elongated machine. It started operation in 1992 with the main aim to inves-

tigate the effect of plasma shape on confinement and stability. It was designed to produce

a large variety of plasma shapes. In addition, TCV is equipped with a powerful electron

cyclotron resonance heating system, which enables to heat the plasma at the second and

third harmonic of the electron cyclotron frequency. The main machine parameters are

listed in table 1.1.

TCV’s plasma shaping is achieved by 16 independently controlled poloidal field coils

which are mounted in two vertical stacks on both sides of the plasma outside the vacuum

6
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X3 system 
(118 GHz)

X2 system
(82.7 GHz)

Launchers #2, 
#3, #5, #6

Launchers 
#1, #4

Figure 1.2.: TCV plasma heating system: The X2 launcher are placed on the two equatorial

(L1, L4) and four upper lateral ports (L2, L3, L5, L6). Two degrees of freedom

in the launcher mirror angles allow a wide range of poloidal (ECH) and toroidal

angles (ECCD). The X3-launcher is mounted on the top of the machine and has

two degrees of freedom to optimize the injection angle radially and poloidally,

whereas the toroidal angle is fixed to 0◦.

chamber. It has the flexibility to operate at high plasma elongation κ ≤ 2.8, high positive

and negative triangularity−0.77 ≥ δ ≤ 0.86, high squareness λ ≤ 0.5, in pear and doublet

shape and in various upper and lower single null and double null divertor configurations.

1.2.2. Electron cyclotron heating

TCV is equipped with a very flexible electron cyclotron heating (ECH) and current drive

(ECCD) system. It consists of six 82.7 GHz gyrotrons for heating at the second harmonic

of the electron cyclotron frequency, and three 118 GHz gyrotrons for heating at the third

harmonic (figure 1.2) [3]. The polarization of each beam can be modified and is usually

set for propagation as an extraordinary wave (X2-, X3-mode).
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The X2-system allows to heat and drive current in plasmas with a density up to the

cut-off density for the X2-mode propagation, ne,cut-off,X2 = 4.25 × 1019 m−3. There are

two launcher (L1, L4) mounted in equatorial ports and four launcher (L2, L3, L5 and L6)

in upper lateral ports. Each launcher has two steering axes, whose combination allows a

huge variety of poloidal and toroidal injection angles. The nominal power of each gyrotron

is 465 kW. The gyrotrons for L1, L2 and L3 and the gyrotrons for L4, L5 and L6 are

powered by two individual power supplies which feature the possibility of power ramps.

The gyrotrons of the X3-system are combined in one launcher at the top of the vessel

and heat plasmas with a density up to the cut-off density for the X3-mode propagation,

ne,cut-off,X3 = 11.5 × 1019 m−3. The microwave beam is injected nearly tangentially to

the resonant surface to maximize the beam absorption. The launcher mirror can be

moved radially and steered poloidally to optimize the injection angle and the relative

position of the beam path in respect to the resonant layer. The nominal power of each

gyrotron is 480 kW. All three gyrotrons are powered by the same power supply which

does not support power ramping. However, half the power of one or three gyrotrons can

be attained using power modulations with 50 % duty cycle [4].

During this thesis work, the EC-heating system has been extensively used. One has

to mentioned that for the case of heating with X3, uncertainties in the calculation of the

absorption coefficient by TORAY-GA [5] can become non-negligible. As the injection of

the X3-heating beam is along the resonance line to maximize the first-pass absorption,

small deviations from the optimal launcher angle and position leads to large variations

in the computed power absorption coefficient ηabs. An error in the absolute calibration

of the launcher angle θX3 by only ±0.5 deg. or of the launcher radial position RX3 by

±0.5 cm can lead to changes of ηabs in the range of 0− 75%.

During the experiments, the beam absorption was maximized by keeping an optimal

RX3 fixed and sweeping θX3 by few degrees observing the response on the central soft

X-ray emission. The optimal launcher parameters were kept throughout the experiment,

however, uncertainties in the launcher calibration could impede the determination of the

total absorbed power.

1.2.3. Selected diagnostics

The following section will shortly present the main diagnostics used for the results pre-

sented in this thesis.
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Magnetic probes

Magnetic probes and flux probes are installed at four separate toroidal locations, which

are toroidally separated by 90◦ [6]. One poloidal arrays consists of 38 probes installed

behind the graphite protection tiles. These probes measure the poloidal component of

the magnetic field tangential to the vessel wall.

3 sets of 8 probes on the high field side (HFS) and 17 probes on the low field side

(LFS) are installed in form of toroidal bands at the vessel midplane, 35 cm above and

below, which allow the measurement of the toroidal mode number n ≤ 16.

Thomson scattering

The Thomson scattering system measures electron temperature (Te) and density (ne)

profiles. It measures the light emitted from electron excited by high energetic laser

light. A spectral analysis of the scattered light permits the reconstruction of the bulk

electron velocity distribution and thus the bulk electron temperature and density [7].

The Thomson scattering installed on TCV comprises three pulsed, Q-switched, solid

state Nd:YAG lasers with a beam energy of ≤ 1.5 J and pulse duration of 10− 15 ns [8].

The lasers emit in the near-infrared at the wavelength of 1064 µm, each with a repetition

frequency of 20 Hz. The electron temperature and density are measured at 35 different

local positions along the beam path. More details are given in chapter 3.

Far-infrared interferometry (FIR)

The FIR interferometer is of Mach-Zehnder type and provides line integrated electron

density nel along 14 vertically aligned chords [9]. A continuous wave CO2 laser excites

the light emission of a CH2F2 filled cavity at the wave length of 214.6 µm. The laser beam

is then divided into a reference beam, which is frequency shifted by a rotating grating,

and 14 probe beams passing the plasma at different radial positions. When the probe

beams pass through the plasma, the difference in refractive index will cause a phase delay

with respect to the reference beam. Since the reference beam is frequency shifted, the

phase delay can directly be obtained from a comparison of the detector signals (He cooled

InSb bolometers with 5kHz bandwith) at the difference frequency (beat frequency). For

the wavelength and polarization of the FIR beams, the refractive index of the plasma

is directly related to the electron density. Therefore, the system will provide continuous

measurements of the line-integrated density along 14 chords.
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Figure 1.3.: Line of sights of the CXRS diagnostic indicated as blue dashed line for a standard

H-mode discharge, whose magnetic poloidal flux surfaces are shown in red.

At the chosen frequency, beam refraction is negligible up to very high line integrated

densities of nel ∼ 2 × 1020 m−2 and measurements are typically made at a precision of

δnel ∼ 5×1017 m−2 [8]. The system is fully automated and part of the basic and essential

diagnostic set in operation for each TCV shot. The measurement along the central chord

is used for real time control of the plasma density.

Change exchange spectroscopy (CXRS)

TCV is equipped by a Charge eXchange Recombination Spectroscopy (CXRS) diagnos-

tic. The analysis of the momenta of a charge exchange line emitted when an impurity

ion interacts with a neutral atom yields impurity temperature, density and fluid veloc-

ity. The diagnostic observes the CVI line (529.1 nm), emitted when a charge exchange

reaction takes place between a C6+ atom in the plasma and a neutral H0, injected by

a low power diagnostic neutral beam (DNBI) at the vessel mid-plane, figure 1.3. For

TCV, carbon is the main impurity and can be considered thermalized with the main ion

species (deuterium). The CCD detector (Xcam Ltd., back-illuminated e2v CCD57-10)

of the diagnsotic has a typical integration time of 10− 100 ms, depending on the carbon

concentration in the vacuum vessel. The typical spatial resolution is ∼ 1 cm.
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Figure 1.4.: Line of sights of the DMPX diagnostic indicated as blue lines for a standard

H-mode discharge, whose magnetic poloidal flux surfaces are shown in red.

The arrangement of the DNBI and CXRS diagnostic allows full profile measurement

of the ion temperature and density only in plasmas with their magnetic axis located at

the vessel mid-plane. In the case of H-mode discharges, usually situated in the upper half

of the vacuum vessel, the diagnostic measures only the plasma edge up to a normalized

poloidal flux radius of ρ ∼ 0.8.

Duplex Multiwire Proportional X-ray counter (DMPX)

Soft X-ray emission from a hot plasma with energy below 50 keV is typically composed out

of Bremsstrahlung, electron-ion recombination and line emission. The Duplex Multiwire

Proportional soft X-ray counter (DMPX) is a 64-channel soft X-ray detector located

underneath TCV and viewing the plasma vertically. The detector is made up of two

superimposed wire-chambers sensitive to soft X-ray emission with energy between 3 −
30 keV. The DMPX has high resolution in time and space: the acquisition rate is 200 kHz

and, at the equatorial plane of TCV vacuum vessel, the mean distance separating two

lines-of-sight is of 7.9 mm.
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1.3. Motivation for the thesis

The H-mode pedestal, a narrow region of reduced turbulent transport at the plasma edge,

sets the boundary conditions for core plasma performance. Understanding the physics

of the pedestal dynamics and predicting its performance in future devices is the key to

reduce the uncertainties associated with the realization of burning plasma conditions. For

next step tokamaks, such as ITER, H-mode operation at the maximum possible pedestal

pressure is needed. However, the H-mode pedestal with its high pressure gradient is

subject to periodic relaxation processes driven by MHD (ELMs) causing high energy

losses. ELMs considerably degrade the plasma performance and, with their associated

high power exhaust, pose serious problems to plasma facing components. Today’s research

is concentrated on the understanding of ELM physics, development of predictive models

for ELM losses, regimes with suppressed ELM activity and ELM control.

The main study of this work relates to the ELM physics in H-mode plasmas on TCV.

It combines the aspect of (1) diagnosing the pedestal, (2) the investigation of the influ-

ence of pedestal properties on macroscopic plasma quantities, e.g. energy confinement

and transport, (3) the role of plasma shaping and heating on the pedestal and ELM

characteristics, and (4) addresses the behavior of pressure and current driven instabilities

in the pedestal region.

The powerful ECR heating system of TCV permits efficient heating of H-mode plasmas

and gives the unique possibility to study the influence of electron heating on pedestal and

plasma parameters. The capability of TCV for plasma shaping is well suited for MHD

analysis, since the MHD stability can strongly depend on the plasma geometry, and for

investigating new divertor concepts, e.g. the snowflake divertor.
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1.4. Outline of the thesis

The thesis work is structured as following:

• Chapter 1: A brief introduction to nuclear fusion and the tokamak concept as

possible future fusion device is given. The TCV tokamak with its ECRH system,

control system and diagnostics is presented.

• Chapter 2: This chapter describes the analysis tools used throughout the thesis

work. It explains the computation of the plasma equilibria by the CHEASE code,

introduces the H-mode and ELMs. The MHD theory, its basic assumptions and

validity are shortly presented. Emphasize is given on the numerical calculations of

the MHD stability by the KINX code and the explanation of the calculation scheme.

• Chapter 3: This chapter is devoted to the Thomson scattering diagnostic. The

upgrades of the diagnostic hardware towards measurements of transport barriers are

explained and the method of synchronization of the diagnostic with MHD events

in realtime is described. The improvements in the data analysis are discussed.

Measurements of the electron and ion pedestal in H-mode plasmas are presented.

• Chapter 4: A brief introduction to the snowflake (SF) magnetic divertor is given.

The realization of SF diverted discharges on TCV is presented. MHD stability

limits in the pedestal region of H-mode plasmas with SF divertor are discussed and

experimental results are shown and interpreted.

• Chapter 5: This chapter is devoted to the investigation of the role of the H-mode

pedestal on energy confinement and ELM energy losses. The study includes H-mode

discharges with variable heating power, ELM characteristics and plasma shapes.

Pedestal scalings are tested against models and the MHD stability limits of the

pedestal are analyzed for a variety of discharges.

• Chapter 6: The temporal evolution of the electron temperature, density and pres-

sure profiles during an ELM cycle is analyzed for three different heating powers.

The results are interpreted in the frame of ideal MHD.

• Chapter 7: In this chapter, conclusions are drawn on the presented work.
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• Appendices A-D: In these chapters, additional material is given. This comprises the

used code settings, convergence studies of the KINX code for the problems treated

in this work, details from MHD stability calculations for the snowflake diverted

H-mode and the electron profile measurements during an ELM cycle.
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2. Selected chapters of Tokamak

physics

In this chapter, a introduction is given to the physical models and descriptions used

throughout this work. The ideal MHD description of a plasma and its application to

analyze stability is briefly described. In addition, a short summary to the present under-

standing of H-mode is given.

2.1. Ideal MHD

A brief description of the ideal MHD, its assumptions, validity and basic predictions is

outlined in the following. We want to refer to text books [1, 10] for a more detailed

explanation.

2.1.1. Assumptions and validity

The MHD equations are derived from the Boltzmann equations by calculating moments

and introducing physical variables, such as density and velocity. Each moment equation

contains the next higher moment thus forming a infinite set of fluid equations. A complete

description of a plasma is achieved by coupling this set of fluid equations with the Maxwell

equations. The full derivation of the MHD equations itself can be found for example in [10]

and is beyond the scope of this work.

The description of a plasma can be considerably simplified by the following approxi-

mations: (1) The plasma is assumed to be fully ionized and composed of electrons and

ions of hydrogen or isotopes. (2) The displacement current and net charges are neglected

in Maxwell’s equations (low frequency limit ε0 → 0). (3) The plasma is assumed to be
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macroscopically quasi-neutral (ni = ne = n). These assumptions have as consequence

that phase velocities of electromagnetic waves have to be much slower than the speed

of light and the characteristic thermal velocities are limited to non-relativistic velocities.

Quasi-neutrality requires that the macroscopic charge separation, which can develop in

the low frequency approximation, is rapidly compensated by electrons, i.e. the charac-

teristic frequencies are much lower than the electron plasma frequency and characteristic

lengths are much longer than the Debye length. A single fluid MHD description of a

plasma is obtained by introducing fluid variables, such as the mass density ρ, fluid veloc-

ity v, and current density j, and combining the equations for electrons and ions under

the assumption that the electron mass is negligible (me → 0). Nevertheless, the closure

of the set of single-fluid equations together with Maxwell equations requires a further

assumption on the pressure tensor.

The ideal MHD model is derived from the assumption that a plasma is dominated

by collisions. This means that the electron and ion distribution functions are nearly

Maxwellian, which give rise to an isotropic pressure p. The condition is satisfied when

considerations are limited to macroscopic phenomena, where the characteristic times

have to be sufficiently long to allow the collisions to make the distribution function

nearly Maxwellian. Resistive terms are neglected in Ohm’s law with the assumption that

resistive diffusion is sufficiently small. This imposes an upper limit on the collisionality,

but can also be expressed as a lower limit of the macroscopic characteristic length scales.

Therefore, the simplification of Ohm’s law implies that resistive diffusion is small and

that the ion Larmor radius is much smaller than the macroscopic plasma dimension. The

ideal MHD equations are then

∂ρ

∂t
=−∇ (ρv) (2.1.1)

ρ

(
∂v

∂t
+ (v · ∇) v

)
=−∇p+ j×B (2.1.2)

E =− v ×B, (2.1.3)

where E and B are electric and magnetic fields. The set of equations is closed by assuming

adiabatic behavior

∂p

∂t
+ v · ∇p = −γp∇ · v (2.1.4)

with γ = 5/3 being the adiabatic coefficient.
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The assumptions required for the formulation of the ideal MHD equations define the

formal validity range of the ideal MHD model and lead to the three basic requirements:

• high plasma collisionality,

• macroscopic scale length of the plasma must be much larger than the ion Larmor

radius,

• large plasma size, so that resistive diffusion is negligible.

In tokamak experiments and fusion plasmas, the first condition is never satisfied

due to the high plasma temperatures and “relatively” low operational densities. The

second condition is valid in the description of macroscopic MHD phenomena, but is not

necessarily satisfied when describing MHD modes with a narrow mode structure, as it is

the case for ELMs. The usually very low resistive current diffusion in tokamak plasmas

satisfies the third condition.

Nevertheless, during many years of fusion research, the ideal MHD theory has proven

to give accurate predictions of macroscopic plasma behavior, since the incorrectly treated

parts, namely the transport of parallel momentum and energy, are of little importance in

equilibrium and stability calculations.

2.1.2. Tokamak equilibrium

The cornerstone of MHD theory of toroidal systems is the Grad-Shafranov equation,

which describes the two-dimensional equilibrium of a toroidal axisymmetric plasma. This

equation provides the basis for subsequent stability analysis.

Grad-Shafranov equation

The time independent form of the ideal MHD equations, i.e. ∂/∂t = 0, can be used to

calculate an equilibrium configuration. According to equation (2.1.2), a static equilibrium,

where the velocities are set to zero (v = 0), requires

∇p = j×B. (2.1.5)

Form this equation one can show that there are no pressure gradient along magnetic field

lines and that the magnetic field lines lie nested on surfaces of constant pressure, referred
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to as magnetic flux surfaces. Using the definition of the poloidal flux,

ψ =

∫
Ator

B · dA, (2.1.6)

where Ator is a arbitrary toroidal cross section of a flux surface, and Maxwell’s equation,

the Grad-Shafranov equation is derived [10],

4∗ψ = −µ0R
2p′(ψ)− T (ψ)T ′(ψ), (2.1.7)

where p′ = ∂p/∂ψ is the pressure derivative, 4∗ = R ∂
∂R

(
1
R

∂
∂R

)
+ ∂2

∂Z2 the elliptic operator

in cylindrical coordinates and T (ψ) = RBϕ with Bϕ the toroidal magnetic field. Equa-

tion (2.1.7) is a nonlinear elliptic differential equation and must, in general, be solved

numerically. However, the problem is ill posed, since p′ and TT ′ must be given as func-

tion of ψ, whose spatial coordinate is not known until equation (2.1.7) is solved and

consequently iterative schemes have to be used.

On TCV, the free-boundary Grad-Shafranov solver LIUQE [11] solves the equilibrium

iteratively by using a series of polynomials for p′ and TT ′ and fitting those to the mea-

surements of the magnetic probes in least-square sense. Having knowledge of the plasma

kinetic pressure profile, e.g. measured by Thomson scattering and CXRS, and the current

density profile, either from direct measurements or from resistivity calculations, allows

for a more accurate and self-consistent plasma reconstruction.

Pressure profile

Measurements of the electron pressure profile on TCV by Thomson scattering can pro-

vide an additional constraint for an equilibrium reconstruction. The ion contribution to

the pressure profile is either obtained from CXRS measurements or from scaling of the

electron pressure. In the case of H-mode discharges, which are usually performed in the

upper half of the TCV vacuum vessel, the CXRS diagnostic only provides edge profile

measurements. Therefore, in this work, the full ion pressure profile pi was usually scaled

from the electron pressure with help of a formula obtained from transport simulations by

PRETOR for the ohmic discharge phase on TCV [12],

pi = 0.07n0.8
el,e19q

0.6
95 pe

2

Zeff
, (2.1.8)

where nel,e19 is the line-integrated density, q95 the safety factor, pe the electron pressure

and Zeff the effective ion charge.
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Current density profile

The parallel ohmic current density profile j||,ohm can be either obtained from the equilib-

rium reconstruction or from resistivity calculations by Ohm’s law. In this work, j||,ohm
was taken from LIUQE yielding a monotonic q-profile.

In the toroidal geometry, a fraction of particle is trapped due to the magnetic field

geometry. They execute banana orbits and, in the presence of a density gradient, carry a

current parallel to the magnetic field. This current is caused by the momentum transfer

between passing and trapped particles induced by collisions, which adapts their velocities

accordingly. From the difference in velocity between passing and trapped particles, a net

current arises, the so-called bootstrap current.

In this work, the bootstrap current was computed by the CHEASE code employing

the Sauter model [13] (valid in the banana regime) with the assumption ∂ lnne/∂ψ =

∂ lnni/∂ψ and equal ion and electron temperature (Ti = Te),

〈j ·B〉BS =T (ψ)p

[
A1
∂ lnne
∂ψ

+Rpe (A1 + A2)
∂ lnTe
∂ψ

(2.1.9)

+ (1−Rpe)×
(

1 +
A3

A1

α

)
A1
∂ lnTi
∂ψ

]
, (2.1.10)

where A1, A2, A3 and α are functionals, ne and ni electron and ion density and Rpe = pe/p

the ratio between electron and total pressure. For standard values of the coefficients A1,

A2, A3 and α, it was found that density gradients are more efficient in driving bootstrap

current. The parallel bootstrap current density reads then j||,BS = 〈j · B〉BS/〈B · ∇φ〉,
where φ is the toroidal flux.

In general, taking into account the set of pressure and current density profiles

(j||,ohm+j||,BS) and the plasma boundary obtained from LIUQE, a more accurate and self-

consistent equilibrium can be computed, e.g. by the fixed-boundary code CHEASE [14].

2.2. High confinement mode

In high confinement mode (H-mode) it was found that energy confinement approximately

doubles to that found in low confinement mode (L-mode), which is due to the formation

of an edge transport barrier in the presence of sufficient plasma heating. When the
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barrier forms, it produces an increase in density over the whole plasma on the timescale

of a confinement time. The H-mode operation is accompanied by the appearance of

edge localized modes (ELMs) leading to a periodical relaxation of the edge pressure

profile. These modes are instabilities driven by the steep gradients at the plasma edge

and produce large particles and heat blasts escaping from the plasma. Not only the

energy confinement is influenced by these modes, also they exhibit a potential danger for

plasma facing components.

The phenomenology of ELMs has been numerously reviewed in literature [15–17].

Here, a short summary of the terminology and general physical understanding is given.

2.2.1. Phenomenology of edge localized modes

ELMs are repetitive instabilities and the ELM cycle is characterized by a quiet phase

during which transport across the H-mode edge barrier is small, so that edge density

and temperature gradients can gradually build up. When the pressure gradient reaches a

stability limit, a phase of magnetic turbulence and associated enhanced radial transport

sets in, which is terminated only after the collapse of the density and temperature profiles

in the edge region. The duration of the refuel and reheat phase in between ELM crashes

is directly related to the ELM losses.

More detailed descriptions about the current understanding of ELMs can be found

in [15, 16], a more theoretical interpretation in [16, 18], and simulations of the pedestal

stability for TCV H-mode discharges in [19–21]. In the following, we want to summarize

the definitions and observations for different ELM types and introduce the terminology

used in this work.

Type-I ELMs

The stability limit associated with type-I ELMs is linked to the edge pressure and edge

pressure gradient and is approximately represented by a hyperbolic curve in n-T space.

They appear to be connected with values of the normalized local edge pressure gradient,

α ≡ −2µ0R0(q2/B2
0) dp/dr near the limit of coupled low or intermediate-n kink (peeling)-

ballooning modes, where q is the safety factor, p the plasma pressure, R0 the major radius

and B0 the toroidal magnetic field.

The ELM repetition frequency fELM increases with the energy flux Psep through the
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separatrix as
dfELM
dPsep

> 0. (2.2.1)

Spatially resolved measurements of the electron temperature Te have shown that in some

cases Te drops even inside half of the major radius within a few milliseconds after the

ELM event.

Type-III ELMs

Type-III ELMs are found below a certain critical temperature at an edge pressure at or

below that of type-I ELMs. The critical edge temperature for type-III ELMs appears to be

independent of density at high edge density (resistive type) and can follow a n×T ≈ const.

tendency at low density (ideal type).

The ELM repetition frequency decreases with the energy flux through the separatrix:

dfELM
dPsep

< 0. (2.2.2)

Large ELMs

In TCV and COMPASS-D, at Ptot >> Pthr, where Ptot is the total plasma power, another

class of ELMs was found which exhibits larger energy an particle losses than what is

usually observed for type-III ELMs. These ELMs are sometimes referred to as “large”

ELMs [16]. In TCV, these ELMs slow down and increase in amplitude with increasing

heating power and the pedestal pressure gradient is found to be limited by ideal ballooning.

The ELM characteristics seem to be related to that of type-III ELMs at low collisionality.

L-H transition

It was found that the Alfvén drift wave instability (ADW) plays a essential role in the

edge plasma physics and represents the threshold for the L-H transition. The stability

theory shows that, with increasing plasma pressure, the Alfvén waves mix with electron

drift waves and suppress the unstable long wavelength perturbations, which are dominant

in the transport. Analysis of the turbulent transport coefficients yields a scaling for the

edge electron temperature Te at the L-H transition [22],

Te (a−∆x) [eV ] = 32.6A−1/5 s3/5n
−3/10
el,e19 B

3/5
0 I

3/5
MA a

−6/5
m ∆xcm, ν∗ > 1 (2.2.3)

Te (a−∆x) [eV ] = 23.3A−1/2 s n−1
el,e19B0 IMA a

−2
m ∆xcm, ν∗ < 1, (2.2.4)
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where a the plasma minor radius, ∆x the width of the pedestal, A the plasma surface, s

the magnetic shear, nel,e19 the line-integrated density, B0 the vacuum toroidal magnetic

field, IMA the plasma current and ν∗ the plasma collisionality.

The power threshold for L-H transition in TCV is given by [23],

Pthr = 1.42n0.58
el,e20B

0.82
0 a0.81R1

0. (2.2.5)

For Psep ≈ Pthr, repetitive L-H-L transitions occur.

2.2.2. Confinement and transport in H-mode

The H-mode exhibits global energy confinement values about a factor of two better than

L-mode. Part of this is due to the formation of the edge transport barrier, another

part of this improvement is due to a reduction in local transport throughout the plasma

after the L-H transition. Experiments comparing L- and H-mode local transport rates

under similar conditions have shown reductions in the electron thermal diffusivity, ion

thermal diffusivity and angular momentum diffusivity, with the reduction in the electron

thermal diffusivity being especially prominent. To quantify the enhancement of energy

confinement with respect to L-mode in this work, we use the ITER-IPB98(y,2) scaling [2]:

τE =
We

Ptot
(2.2.6)

τIPB98(y,2) = 5.62× 10−2I0.93
MAB

0.15
0 n0.41

e19 P
−0.69
MW R1.97κ0.78

a (a/R0)0.58M0.19
amu (2.2.7)

HIPB98(y,2) =
τE

τIPB98(y,2)

, (2.2.8)

where We the electron plasma energy, Ptot the total heating power, I is the plasma

current, B0 the vacuum toroidal magnetic field, ne19 line average density, R the major

radius, κa = area/πa2 with a the minor radius, andM the average ion mass. The thermal

diffusivity, attributed to H-mode, seems to be consistent with gyro-Bohm scaling,

χgB = 3.25T
3/2
e,keVB

−2
0 M0.5

amuZ
−2a−1 m2/s, (2.2.9)

where Te is the electron temperature and Z the ion charge [24]. Confinement studies of

core and pedestal energy as function of the magnetic geometry have lead to the following
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scalings of the pedestal pressure pe,ped [25]:

pe,ped ∝ IB0/a×
(
B0R

1.25
)−0.1 (2.2.10)

pe,ped ∝
I (mTe,ped)

0.5

qa2 (1 + κ2)
(2.2.11)

pe,ped ∝ I1.7B0.4
0 V −0.5P 0.2m0.5

(
q95

qcyl

)1.67

(2.2.12)

where m is the ion mass, κ the plasma elongation, q95 the safety factor at 95% normalized

poloidal flux radius and qcyl = (2πB0a
2κ) / (µ0IR) the cylindrical safety factor.

2.2.3. Scaling of pedestal height and width

It is desirable to have a predictive capability for the pedestal pressure height and max-

imum gradient to identify MHD critical gradients. The pedestal pressure Pped can be

expressed as

Pped =

(
dP

dr

)
crit

∆r,ped, (2.2.13)

where (dP/dr)crit is the critical pressure gradient inside the pedestal region and ∆r,ped

the pedestal width. As for the critical pressure gradient, a simple analytical formula for

the ideal ballooning critical gradient [26] is given by(
dP

dr

)
crit

=
1

2µ0

1

R

(
RBθ

a

)2(
2

1 + κ2

)
. (2.2.14)

Here, R, κ,Bθ and µ0 are major radius, elongation, poloidal magnetic field and perme-

ability in the vacuum. This expression is only a simplified analytical formula for the

critical pressure gradient limited by the infinite-n ballooning instability. Recent theoreti-

cal, numerical and experimental studies have shown that with increasing plasma shaping,

ballooning and external kink modes decouple due to the effect of the magnetic well and

the critical pressure gradient is dominated by intermediate n’s [18, 19, 27, 28]. In this

situation, the expression of equation (2.2.14) is significantly modified. Examination of

the International Pedestal Database gives suggestions of these modifications [29].

A previous study [28] indicated that the maximum stable pressure gradient is only

weakly dependent on width over a range of conditions, ∇pcrit ∝ ∆
−1/4
r,ped and thus Pped ∝

∆
3/4
r,ped. The increase in the pedestal height with increasing width is somewhat less than

linear because the typical unstable modes have eigenmodes with finite spatial extent and

respond to the whole pedestal profile and not just the highest local pressure gradient.
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Due to the weak dependence of the critical pedestal pressure gradient on the pedestal

width, relatively large uncertainties in the width measurement result in only small uncer-

tainties in the modeled pressure gradient. Since the measurement of pedestal height is

more accurate than pedestal gradient or width, and the pedestal gradient can be obtained

from pedestal height and width, various scalings of the pedestal pressure width have been

proposed thus far based on experiments and theories. In the following, the basic assump-

tions are shortly presented; more details can be found in the literature [26, 30, 31].

Width scaling based on magnetic and flow shear stabilization

This model assumes that the turbulence that drives the transport with gyro-Bohm scaling

is stabilized by the magnetic and flow shear γE×B in the pedestal region. It assumes

that the maximum growth rate associated with this drift turbulence scales as γmax ∝
(cs/∆) s−2, where ∆ is the pedestal with in normalized poloidal flux, cs the ion sound

velocity and s the magnetic shear. The turbulence is suppressed when the E×B shearing

rate is equal to or larger than the maximum growth rate γE×B ≥ γmax. The pedestal

width is found to be

∆ = C1ρs
2 (2.2.15)

with ρ the ion gyro radius and C1 some constant.

Width scaling based on flow shear stabilization

In this model, the E×B suppression of long wavelength modes is assumed to be relevant

for establishing the edge transport barrier. The local growth rate is related to the con-

nection length between the bad curvature region, on the outer side of the torus, and the

good curvature region, on the inner side of the torus, in the pedestal region and reads

γlocal ∼ cs/ (qR), where R is the major radius and q the safety factor. It is assumed that

the turbulence is suppressed when γE×B ≥ γlocal. The pedestal width is found to be

∆ = C2

√
ρRq, (2.2.16)

where C2 is some constant.

Width scaling based on diamagnetic stabilization

For this model, the ideal ballooning mode growth rate is approximated by γb ≈ [2c2
s/(LpR)]

1/2,

where Lp = −p/ (dp/dr) is the pressure gradient scale length. It is assumed that the
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pedestal width is approximately equal to V∗i/γb, where V∗i = ρ2ωci/Lpi is the ion diamag-

netic velocity. Assuming further that Lp ∼ Lpi ∼ ∆, one finds

∆ = C3ρ
2/3R1/3, (2.2.17)

where C3 is some constant.

Width scaling based on neutral penetration

Neutral particles, which usually come from the scrape of layer (SOL) region, can penetrate

inside the separatrix and affect the H-mode by modifying the particle, momentum and

energy balance of the main plasma. From the neutral particle diffusion coefficient one

finds the neutral penetration length ∆x for steady-state neutral density proportional to

the pedestal density n−3/2
ped . In this model, the width of the barrier is assumed to be the

length that neutral particles penetrate into the plasma and hence

∆ = C4
1027

n
3/2
ped

(2.2.18)

where nped = ni is the pedestal density and C4 some constant.

Width scaling based on ion orbit loss

In Shaing’s model based on ion losses [32], the predicted width of the pedestal is ∆ ∝
√
ερθ/
√
sorbit, where ε = a/R is the inverse aspect ratio, ρθ the ion poloidal gyro radius

and sorbit a term due to the squeezing of the banana orbits by the electrical field. Assuming

that sorbit is constant, the scaling of the pedestal width is

∆ = C5

√
ερθ ≈ C5ε

−1/2qρ/κ95 (2.2.19)

with κ95 the elongation at the 95% normalized poloidal flux radius and C5 some constant.

Width scaling based on normalized poloidal pressure

In this model, the scaling of the pedestal width is based on a model proposed by Os-

borne [33]. Its argument is based on the onset of strong electromagnetic kinetic balloon-

ing mode (KBM) turbulences near a critical value of normalized pressure gradient, which

leads to the expectation of a strong dependence of the pedestal width in normalized

poloidal flux space ∆ψ on the normalized plasma pressure βθ at the top of the pedestal.
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Furthermore, the model describes a weak or no dependence of the width on other normal-

ized parameters, such as the toroidal or poloidal gyroradius or the plasma collisionality.

The scaling reads

∆ψ = C6β
γ
θ , (2.2.20)

where C6 is some constant. The exponent γ was found to range in between 0.4− 0.5.

Empirical scalings

An empirical model treating the ionization length of neutrals into the pedestal [34] is

given by

∆r/R0 = C7

(
dne
dr

)−1/2

, (2.2.21)

where ∆r is the pedestal width in real space, R0 the major radius and C7 some constant.

Another scaling of the normalized pedestal width ∆r/R0 as function of the pedestal

electron temperature Te [35] is given by

∆r/R0 = C8

T 0.46
e,ped

B0.51
θ

, (2.2.22)

with a constant C8. Both scaling were found to satisfy the DIII-D results [30]. The

combination of both scalings reads

∆r/R0 = C9,1

√
ne,pedTe,ped
∇ne,ped

1

B0.5
θ

= C9,2

√
βθB

3/4
θ

∇ne,ped
, (2.2.23)

where C9,1 and C9,2 are some constants.

2.3. Ideal MHD stability analysis

In this section, a brief description of the ideal MHD stability analysis is given; a more

detailed can be found in [10]. The numerical codes used to compute equilibria and ideal

MHD stability are presented. The method and organization of these codes to compute

stability maps of the pedestal region is described.

2.3.1. Normal mode formulation and eigenvalue problem

A plasma equilibrium is MHD stable, when the forces that act on the system are com-

pletely balanced. The force balance is changed by the occurrence of plasma perturbations,
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which is inevitable in a real system. The evolution of the equilibrium depends then on

the behavior of these forces, which can either restore the initial equilibrium state or en-

hance the perturbations. MHD instabilities arise on the ideal MHD time scale, typically

in the order of milliseconds, and usually cause significant degradation or even complete

destruction of the plasma confinement.

We want to study the linear response of an equilibrium state ρ0, j0 and B0 to a

perturbation described by the vector displacement ξ of a fluid element. The linearized

and integrated form of equations (2.1.1, 2.1.3, 2.1.4) reads

ρ1 =∇ · (ρ0ξ) (2.3.1)

Q ≡ B1 =∇× (ξ ×B0) (2.3.2)

p1 =− γp0∇ · ξ − ξ · ∇p0. (2.3.3)

The perturbed quantities on the right hand side of the linearized momentum equation

(2.1.2),

ρ0ξ̈ = ∇p1 + j1 ×B0 + j0 ×B1 (2.3.4)

can be replaced by using equations (2.3.1,2.3.2,2.3.3) to obtain a single vector equation

for the displacement ξ,

ρ0ξ̈ = F(ξ), (2.3.5)

where F is the force operator

F(ξ) = ∇ (γp0∇ · ξ + ξ · ∇p0) +
1

µ0

[(∇×B0)×Q + (∇×Q)×B0] (2.3.6)

The coefficients in F do not depend on time and thus allow to formulate a normal mode

problem using the Fourier ansatz ξ(x, t) = ξ̂(x)eiωt, which leads to the eigenvalue equation

− ω2ρ0ξ̂ = F(ξ). (2.3.7)

The operator F is self-adjoint [10]; its eigenvalues ω2 are real. A positive eigenvalue

ω2 > 0 corresponds to a pure oscillations and is hence considered stable, whereas ω2 < 0

implies a solution which grows exponentially with the rate γ =
√
−ω2, thence unstable.

2.3.2. Extended energy principle

Equation (2.3.7) has a direct relation with the change of potential energy δW of the

system associated with the perturbation ξ = ξ(x)1. Multiplication of equation (2.3.7) by
1The hat notation of ξ has been dropped.

27



2. Selected chapters of Tokamak physics

ξ∗ and integration over the plasma volume yields the conservation of energy

ω2K(ξ∗, ξ) =
ω2

2

∫
ρ0|ξ|2dV =− 1

2

∫
ξ∗F(ξ)dV = δW (ξ∗, ξ) (2.3.8)

ω2 =
δW (ξ∗, ξ)

K(ξ∗, ξ)
, (2.3.9)

where K(ξ∗, ξ) is proportional to the kinetic energy of the plasma. δW can be interpreted

as the work done against the force F(ξ), when the plasma displaces by ξ. The sign of

δW determines thence the stability, since δW < 0 implies ω2 < 0. The energy principle

states that for any allowable test function ξ, for which δW becomes negative, is sufficient

for instability.

Taking appropriate boundary conditions into account, the potential energy δW can

be separated into a plasma (P), a surface (S) and a vacuum (V) contribution,

δW = δWP + δWS + δWV , (2.3.10)

where the individual contributions are given by [10]

δWP =

∫
P

dV

 |Q|2µ0︸︷︷︸
>0

+ γp0|∇ · ξ|2︸ ︷︷ ︸
>0

+ j · (ξ ×Q)︸ ︷︷ ︸
≷0

+ (∇ · ξ) (ξ · ∇p0)︸ ︷︷ ︸
≷0

 (2.3.11)

δWS =

∫
S

dS|n · ξ|2n
[
∇
(
p0 +

B2
0

2µ0

)]
(2.3.12)

δWV =
1

2

∫
V

dV
|B̂2

1 |
µ0

, (2.3.13)

with B̂1 denoting a perturbation of the vacuum field.

The surface component δWS usually vanishes unless currents flow on the surface of

the plasma-vacuum boundary. The term δWV is identical to the perturbed magnetic

energy in the vacuum region. The presence of a ideal conducting wall close to the plasma

surface is stabilizing, whereas a large vacuum region is destabilizing.

The terms in δWP have the following physical interpretation. The |Q|2 term represents

the required energy to bend magnetic field lines and is stabilizing. The γp0|∇ · ξ|2 term

represents the energy required to compress the plasma and is stabilizing. The third

and fourth term are proportional to j|| and ∇p and can be positive or negative and, if

destabilizing, are sometimes referred to current- and pressure-driven modes.
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2.3.3. Basic types of instabilities and numerical approach

The terminology of current- and pressure-driven modes and their numerical computation

is briefly explained in the following.

The external kink mode

Current-driven modes can even exist in zero-pressure force-free plasmas with parallel

current. Among these current-driven modes, the modes with long parallel wavelengths

and macroscopic perpendicular wavelengths (k||/k⊥ � 1, k⊥a ∼ n ∼ 1, where n is the

toroidal mode number) are the most dangerous and are called kink modes.

In this work, the KINX code [36] was extensively used to solve the ideal MHD stability

problem in order to test plasma equilibrium stability against external kink modes. The

code provides the option to compute either the growth rate of the mode by using the full

description of the kinetic energy in flux coordinates, or to find only the stability index,

i.e. the sign of the lowest eigenvalue, by using a reduced norm of the kinetic energy K,

as it is for example given by equation (2.3.8). The results of the code compare well with

those of ELITE, MISHKA and GATO [37].

The code decomposes the normal plasma displacement ξr = ξ · ∇ψ into its harmonics

by using trigonometric basis functions,

ξr =
∑
m,n

ξm,n(ψ)ei(mθ+nφ), (2.3.14)

with n the toroidal and m the poloidal mode number. In this frame, the helicity of the

magnetic field lines coincidences with the helicity of the dominant (m,n) contribution of

the perturbation. The Fourier modes ξneinφ with different toroidal mode number n are

decoupled and equation (2.3.9) becomes an 2-dimensional eigenvalue problem for each

ξn, which yields a continuous spectrum of stable solutions and cluster points as unstable

ones.

When using a sufficiently fine-meshed equilibrium, the KINX code features N−2 con-

vergence of the mode growth rate as function of the grid size, where N is the number of

grid points. The growth rate γ∞ for an infinite dense mesh can be then extrapolated by

γ∞ =

(
γ1

N2

− γ2

N1

)
×
(

1

N2

− 1

N1

)−1

(2.3.15)

from the eigenvalues γ1 and γ2 obtained from equilibria with grid size N1 and N2. Con-

vergence studies of the growth rate obtained from KINX, for the H-mode equilibria with
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various shapes studied in this work, can be found in appendix B. The study showed that

grid sizes of Nψ×Nχ = 256×256 and 320×320 are sufficient to yield a good convergence

of γ for single null and snowflake diverted discharges, respectively. Nψ and Nχ correspond

to the number of radial and poloidal grid points.

The ballooning mode

The most important pressure-driven instabilities are the interchange and ballooning

modes. Former modes are usually stabilized for q > 1 and high magnetic shear

s = (r/q) (dq/dr) by the average curvature of the toroidal magnetic field; their stabil-

ity is given by the Mercier criterion [10].

Latter modes destabilize for high pressures and thus determine one set of criteria

which limits the maximum achievable value of β. The mode is concentrated in the

unfavorable curvature region in the low field side of the magnetic surfaces and can lead

to more unstable situations than the simple interchange perturbation. Magnetic shear can

be helpful in stabilizing ballooning modes, yet the most effective way to stabilize given

magnetic field profiles is to keep β below some critical value [10]. The most unstable

modes have long parallel and short perpendicular wavelengths (k||/k⊥ � 1 and k⊥a ∼
n� 1).

The CHEASE equilibrium code solves the ballooning mode criteria in the limit of an

infinite toroidal mode number n, where the potential energy reads

δWP (n→∞) =
1

2

∫ +∞

−∞

{
c1

∣∣∣∣∂ξr∂χ
∣∣∣∣2 + c2|ξr|2

}
J dχ. (2.3.16)

ξr is the radial component of the displacement vector, as noted before, and χ is a general-

ized poloidal angle in straight field line coordinates. The quantities appearing in equation

(2.3.16) are given in the literature [14, 38]. In general, the ballooning stability is com-

puted by truncating the integral in equation (2.3.16). It often, but not always, turns out

that χ = 0 is the most unstable case. Therefore, it is standard practice to use a rather

moderate integration interval, e.g. χ = [−10π, 10π].

Diamagnetic stabilization

Instabilities with short perpendicular wavelengths that exhibit a narrow radial mode

structure will be subject to finite ion Larmor effects. For these instabilities, finite dia-

magnetic drift frequency effects must be taken into account, especially if one wants
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to treat the edge plasma region between the separatrix and the high density side of

the pedestal in H-mode. Extensions to the ideal MHD theory have been formulated

to investigate the finite gyroradius stabilizing effect of ion diamagnetic drift frequency,

ω∗i = (m/r) (Ti/eiB0) (d ln pi/dr) ∝ 1/pi, on linear ideal MHD eigenmodes [27, 39]. Here,

Ti, ei and pi are temperature, charge and pressure of the thermal ions of the plasma, B0

is the equilibrium magnetic field, r is the radial coordinate, and m is the poloidal mode

number.

In these models, the growth rate γMHD of an ideal MHD mode, such as finite-n

ballooning or low-n kink (peeling) mode, is compared with ω∗i. The mode is stabilized

by ion diamagnetic effects, if γ ≤ ω∗i/2 is satisfied. For the H-mode pedestal it was

found that for low enough plasma density the ω∗i stabilization can lead to a second zone

of ballooning stability, in which all the ballooning modes are stable for any value of the

pressure gradient. One example is the MISHKA-D code, which includes these effects [27].

Although a rough estimate, a practical formula including effects of ω∗i stabilization is

given by Huysmans [27] for the maximal unstable toroidal mode number nmax and reads

nmax ∼=
ε2Lp
qρi

, (2.3.17)

where ε = r/R0 with r the radius of the magnetic surface and R0 the major radius,

Lp = Lpi = |d(ln pi)/dr|−1 the characteristic ion pressure gradient scale length, ρi =
√
TiMi/ (eiB0) the ion Larmor radius with ion temperature Ti and mass Mi, the vacuum

toroidal field B0, and q = (rBt) / (R0Bp) the safety factor with Bt and Bp the toroidal

and poloidal magnetic field.

In this work, the corresponding values in equation (2.3.17) are taken at the flux surface

where the pedestal gradient is maximal and Lpi is assumed to be equal to Lpe.

2.3.4. General organization of the calculations

The organization of the calculations is presented as following: First, a general description

about the coupling of the individual codes is given, which explains the computation of the

ideal MHD stability limits of a plasma equilibrium. Secondly, the method to compute the

stability limits of an H-mode edge pedestal is described. When computing the stability

map of the edge pedestal, general task consists of scanning the pedestal pressure gradient

and bootstrap current fraction.
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Ballooning and external kink mode stability

An initial plasma equilibrium is created, either set artificially or taken from the LIUQE

equilibrium reconstruction and kinetic and current profiles, and is given as input to the

CHEASE code. A self-consistent equilibrium is computed and tested against ballooning

stability. Additional informations, such as flux surface averaged quantities, bootstrap

current density etc. can be extracted by a Perl-script. The CHEASE-equilibrium is passed

via an interface to the CAXE equilibrium code [40], which recalculates the equilibrium on

an optimized flux mesh for KINX calculations. Then, the KINX stability calculations are

performed by iteration on the initial guess of the mode growth rate; the lowest eigenvalue

is obtained as output.

The computations were performed on a Intel R© Core 2 Duo or Core i7 CPU. A typical

calculation cycle CHEASE-CAXE-KINX takes less than 5 minutes and depends on the

grid sizes and stability of the mode. Initially stable configurations require more time,

because in this case the initial eigenvalue guess has to pass all the way from the initial

value to the lowest absolute preset value.

Edge pedestal stability map

The analysis of the edge stability requires an accurate description of the pressure and cur-

rent density profiles in the pedestal region. The slightest misalignment of the bootstrap

current with respect to the edge pressure gradient can change stability significantly. Par-

ticular care needs to be taken to ensure that the ratios between the pressure gradient at the

separatrix and the maximum pressure gradient are kept constant. As consequence, due

to the alignment of the bootstrap current with the pressure gradient, the ratio between

bootstrap current density at the separatrix and maximum bootstrap current must be also

constant. This makes it possible to compare stability properties of a series of equilibria

with different pedestal pressure gradient and bootstrap current density. The following

generalized recipe was followed to compute the stability map of the edge pedestal:

1. An initial self-consistent equilibrium is created with CHEASE from an artificial or

experimental plasma shape, pressure gradient p′ and current density j|| profile.

2. The Heaviside function H(x) ' 1/
[
1 + e−2kx

]
is constructed from the pedestal

parameters, where k = 1/2δ with the pedestal width δ, and x = ρ − (ρ0 − δ) with

the location ρ0 of the pedestal center (see figure 2.1). The p′ profile from the initial
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Figure 2.1.: Schematic representation of the barrier position ρ0 and width w for (a) the pres-

sure profile derivative dp/dψ and (b) the bootstrap current density parallel to the

magnetic field 〈j ·B〉BS (flux surface averaged).

equilibrium is rescaled, p′new = p′ × [1 + (A− 1)H/max(H)], to obtain an adapted

pressure gradient profile.

3. The collisionless bootstrap current jBS is computed by CHEASE based on p′new

using the formulas given by Sauter [13] (see subsection 2.1.2), assuming equal tem-

peratures Ti = Te. Only the edge bootstrap current density jBS,edge, i.e. for ρ & 0.97,

is used for further calculations.

4. A self-consistent equilibrium is computed by CHEASE based on the scaled pressure

derivative profile p′new and j||,new = j|| + B × jBS,edge, where B is a preset scaling

factor of the edge bootstrap current. The total plasma current is kept constant.

5. Ideal MHD-stability analysis is performed:

• Calculation of the ballooning stability criteria by CHEASE.

• Computation of the growth rate of external kink modes for various n’s with

CAXE-KINX (reduced energy norm) on two different grid sizes and using

equation (2.3.15) to extrapolate the growth rate of the mode for a infinite

dense grid.

The stability map is scanned with help of the two scaling factors A and B for the pressure

derivative and bootstrap current density profile in the edge, respectively. To obtain a
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sufficiently high resolved stability map, 20− 25 values each for A and B are needed. The

stability of external kink modes was usually computed for the toroidal mode numbers

n = {1, 3, 5, 8, 10, 15, 20, 30, 40} for each grid point in the stability diagram. The results

of each code are saved in serial in a central text file and are further processed for analysis

in MATLAB R©.

UNIX shell scripts control the computation cycle with the possibility to recover, if

the automatic preparation of a self-consistent equilibrium by CHEASE failed. Since the

computation of the mode growth rates for various n’s is time-consuming and certain

modes appear only in a narrow parameter range, a configuration file allows to set-up

regions of interest in the stability map beforehand, for which the computation of growth

rates is carried out or skipped. The total computation time strongly depends on the

grid size of the stability map, total number of toroidal mode numbers, the grid size

of the equilibrium and stability codes, and the choice of regions of interest. A typical

computation time is around 3− 7 days on a Intel R© Core 2 Duo or Core i7 CPU.
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3. Thomson scattering diagnostic

The theory of light scattering by electrons in a magnetized plasma and its practical

application as Thomson scattering diagnostic is beyond the scope of this thesis, but can

be found in numerous textbooks [7, 41]. In this chapter the basic principles of Thomson

scattering and its realization as diagnostic on TCV are briefly discussed. The upgrade

of this diagnostic with regard to higher spatial resolution for the measurements of high

electron pressure gradients associated with transport barrier as in eITB and H-mode

discharges, is presented. Further, the interpretation of the scattered signal by non-linear

fitting to evaluate electron emperature and density is described. Finally, the possibility

of laser triggering in synchronization to MHD events like ELMs is discussed.

3.1. Theory of Thomson scattering

Under the influence of an electric field Ei with angular frequency ωi, free electrons can

be excited to oscillate at the same frequency. In the non-relativistic limit, they will emit

radiation in a dipole pattern in directions different from that of the incident wave. If the

photon energy is much smaller than the rest energy of the electron, this effect is called

Thomson scattering. Basically, this effect can be described by classical, no-relativistic

electrodynamics. A relativistic correction becomes significant in the scattering spectrum

when electron thermal energies exceed a fraction of a percent of their rest mass, i.e.

Te > 1 keV.
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3. Thomson scattering diagnostic

3.1.1. Non-relativistic dipole approximation

In the dipole approximation for the non-relativistic limit, the scattered electrical field by

a single electron is derived from the Maxwell equations and can be expressed as

Es =
re
R

[̂s× (̂s× Ei)] (3.1.1)

where ŝ is the direction in which the scattered signal is detected, R the distance to the

charge and

re =
e2

4πε0m0c2
= 2.82× 10−15 m. (3.1.2)

the classical electron radius. The operator ŝ× ŝ× ≡ ŝŝ− 1 = Π in (3.1.1) represents the

polarization tensor in dipole approximation. The scattered power per unit solid angle Ωs

is given by
dP

dΩs

= R2cε0|Es|2 = r2
e sin2 φcε0|Ei|2, (3.1.3)

with φ the angle between ŝ and Ei. The differential scattering cross section, the ratio of

dP/dΩs to the incident power per unit area cε0|Ei|2, is defined as

dσ

dΩs

= r2
e sin2 φ. (3.1.4)

The integral of this expression over all solid angles, where dΩs = 2π sinφdφ, gives the

total Thomson scattering cross section

σ =
8π

3
r2
e = 6.65× 10−29 m2. (3.1.5)

The scattered field of many electrons can be calculated by superposing the electrical

field contributions of all electrons in the observation volume, which requires information

on the relative phase of each contribution as well as the amplitude. In a plasma, a test

electron is surrounded by a cloud of other charged particles. This charged cloud will lead

to a screening of the electrical field of the test electron within a typical distance, the

Debye-length,

λD =

√
ε0eTe
nee2

(3.1.6)

with Te in eV. A test electron has a shielding cloud of charge +e consisting purely of

electron holes. The thermal ions do not contribute to the shielding, because they move

much slower than the electrons. If the scattered fields of electron and shielding cloud are

incoherent, the phase difference from both scattered fields will be large, i.e. |k|λD � 1.
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Assuming that the scattering induces only a small change in the wavelength of incident

and emitted wave, |ki| ≈ |ks|, a phase correlation parameter α can be written as

α =
λi

4πλD sin (θ/2)
, (3.1.7)

with θ = π − φ the angle between ks and the axis of the observation optics.

For the Thomson scattering on TCV, with scattering angles of 60◦ ≤ θ ≤ 120◦ and

laser wave length λi = 1064 nm, the condition of incoherent scattering, i.e. α << 1, is

well satisfied. For the most unfavorable case of phase correlation, i.e. low temperature

Te ∼ 10 eV, high density ne ∼ 1020 m−3 and θ ∼ 60◦, one obtains α ∼ 1/14.

In order to calculate the total incoherently scattered power from an assembly of elec-

trons within a specified volume element dxdv in phase space (x,v), one needs to know

the position and velocity of each electron for every time. For this purpose, equation

(3.1.1) is evaluated in Fourier space for the far field approximation. The scattered field

from one electron becomes

Es (ωs) =
ree

iks·x

2πx
2πκΠ · Eiδ (k · v − ω) , (3.1.8)

using κ = |d (k · v − ω) /dωs| = |1 − ŝ · v/c|. The scattered field of this electron has a

single frequency

ωs = ωi + k · v = ωi + (ks − ki) · v, (3.1.9)

which is the double Doppler-shifted frequency of the input wave. The shift arises from

the electron motion with respect to the source of the incident wave ki · v and from its

motion with respect to the observation point ks · v.
The total incoherently scattered power spectrum is equal to the number of particles

in the element
∫
fdxdv with distribution function f . If the electrons are in thermal

equilibrium, f = f (x,v) is given by the Maxwellian distribution function at temperature

Te, and we can write

d2P

dΩsdωs
= r2

e

∫
V

〈Si〉
∫
|Π · ê|2κf (x,v)κδ (k · v − ω) dvdx (3.1.10)

where V is the scattering volume from which the scattered radiation is observed and 〈Si〉
the mean incident Poynting vector usually expressed as Pi/A, the total incident power

divided by the total input beam area.
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3.1.2. Relativistic effects and spectral density function

At the electron temperature values achieved in TCV, 1 eV ≤ Te ≤ 15 keV, it is essential

to treat the Thomson scattering process relativistically. The relativistic corrections affect

the polarization of the scattered radiation and the scattered spectrum.

The polarization operator Π in equation (3.1.1) becomes dependent on β = v/c when

the relativistic equations of motion are introduced. This changes the orientation of the

incident field vector seen by the electron. A small fraction of the scattered light, in

the order of β2 = eTe/mc
2, will be polarized in a direction orthogonal to the incident

polarization. For TCV’s typical high temperature plasmas, where Te ∼ 10 keV, the

depolarization factor reaches values of ∼ 2%.

The scattered spectrum is modified by the effect of the relativistic aberration, where

uniformly emitted radiation in the rest frame of the electron becomes a light cone in

forward direction in the frame of a stationary observer. This implies that we observe

preferentially greater scattering intensity from electrons moving towards the observation

point. Additionally, scattering from relativistic plasma will modify the Doppler effect and

shift the spectrum towards the blue. In case the relativistic corrections are neglected in

the interpretation, the asymmetry in the spectrum leads to an over-estimation of Te by

approximately (1− eTe/m0c
2)

2 ∼ 4% for the above used value of Te and scattering angle

of θ = 90◦.

A simple analytic form of the relativistic Thomson scattering spectrum was derived

by Selden [42], in which k and ω are replaced by equivalent and more accessible variables

θ and λs. For 100 eV ≤ Te ≤ 100 keV, the relativistic spectral density function reads

S (Te, ε, θ) =
1

λi
a(ζ)

e−2ζB(ε,θ)

A(εθ)
. (3.1.11)

where

ε =
λs
λi
− 1, ζ =

mec
2

2eTe
, (3.1.12)

A(ε, θ) =
(
1 + ε3

) [
2 (1− cos θ) (1 + ε) + ε2

]1/2
, (3.1.13)

B(ε, θ) =

[
1 +

ε2

2 (1− cos θ) (1 + ε)

]
− 1, (3.1.14)

a(ζ) =

√
ζ

π

(
1− 15

16ζ
+

345

512ζ2
+ · · ·

)
. (3.1.15)

The scattered spectral power can then be written as
dPs
dλsdΩ

= PineLr
2
eS (Te, ε, θ) , (3.1.16)
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with the laser input power Pi, the electron density ne and the length L of the observation

volume.

Assuming a known (Maxwellian) velocity distribution function, and a given geometry

(θ), the free parameter in S is Te. The total scattered intensity is directly proportional to

density. Measuring the scattered intensity in a number of spectral channels gives access to

Te and ne. The Te measurement requires only a relative calibration of the spectrometer,

whereas ne relies on absolute calibration of the system.

Major advantages of a Thomson scattering system are that (1) it measures local quan-

tities due to well defined observation volumes, (2) it provides instantaneous measurements

due to a laser pulse in nanosecond range and (3) the interpretation of the measured signals

is unambiguous, since they represent a velocity distribution.

3.2. The Thomson scattering system on TCV

The small total Thomson scattering cross section, equation (3.1.4), indicates very low

values for the incoherent scattered signal. As a rough estimate for TCV, using rep-

resentative values for the size of the observations volume, L = 13 mm, the solid angle,

∆Ωs ≈ 1.5×10−2 sr, and the electron density, ne ≈ 1×1019 m−3, and assuming the optical

throughput of the detection system to be 100%, only a fraction of neLr2
e∆Ωs ≈ 1.5×10−14

of the incident photons will reach the detector. This estimate illustrates the severe require-

ments on the high power light source and the need for an efficient and sensitive detection

system. This implies the careful adaption of the observation optics to the needs of the

experiment and an elaborated and reliable analysis of the acquired data.

3.2.1. Laser system and beam path

As light source three commercially available high power Q-switched Nd:YAG-laser, model

Quanta-Ray PRO 290 from Spectra-Physics, are used. They consists of an oscillator and

amplifier unit and emit at a wavelength of 1064 nm with a repetition frequency of 20 Hz.

The nominal output energy of one laser unit is 1.5 J with a typical pulse length of

10 − 15 ns. The beam diameter at the exit of the laser unit is ∼ 10 mm, its beam

divergence < 1 mrad.

The lasers are located in a room separated from TCV, where the beams of the three

individual lasers are grouped in an horizontal plane on a optical table. The beam bundle
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Figure 3.1.: Laser beam path of the TS-system on TCV: Three laser beams (red,yellow,blue)

are conducted by multiple mirrors from the laser room to a box underneath TCV.

In the box, each beam is independently aligned and after focusing send to the

vacuum vessel. A fraction of light scattered from a glass surface is directed to

an integrating sphere and used to monitor the laser pulse energy. Individual

reflecting mirrors and the Brewster windows are monitored by web-cams.

is then guided by means of five steering mirrors from the laser room to an box underneath

TCV, where six individual mirrors, two for each laser beam, align the individual beams

for their passage through the vessel. The linear polarized laser beams, with the electrical

field parallel to the toroidal magnetic field, enter and leave the TCV vacuum vessel via

windows oriented at Brewster’s angle, figure 3.1.
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To stay well below the damage threshold of the optical components (∼ 1 GW/cm) in

the beam path, the beam diameter is increased by a Galilean telescope in the laser room,

which consists of a defocusing and focusing lens, and refocused by a second double lens

telescope to the midplance of the TCV vessel.

Along the beam path, commercially available web-cams, with their IR-filters removed,

are installed for monitoring and alignment purposes. The fraction of scattered laser

light from the mirror or lens surfaces is sufficient to allow for surveillance of the surface

treatments of these components as well as the beam alignment during TCV operations.

3.2.2. Collection optics and fiber bundles

The scattered light from the vertical laser beams is collected by wide angle camera lenses

installed on three horizontal ports of TCV (setup in 2006). The lenses are positioned

behind vacuum windows, which are protected by automatic shutters from coating during

boronization and glow discharges. The optical axes of the camera lenses and the laser

chords are arranged such that the scattering plane is perpendicular to the toroidal field,

figure 3.2(a).

The wide angle camera lenses have been specially designed for this application. Their

f-number is adapted to the numerical aperture of the fibers. The scattered light is pro-

jected to the highly transmissive fiber bundles (CeramOptec, Optran WF 1000/1100),

which consist of 8 or 9 single quartz glass, large core fibers (� = 1 mm). Mounted in

line, figure 3.2(b), their front ends define the scattering volume dimension. At the poly-

chromator end, fiber bundles with rectangular and circular sections are used with the

3-channel and 4-channel versions, respectively.

3.2.3. Polychromators and detectors

The small Thomson scattering cross-section together with the short-pulse operation of the

Nd:YAG-laser require fast and sensitive detectors in the visible and near infrared spectral

range. Silicon avalanche photodiodes (APD) have become a widely used detector type

due to their favorable quantum efficiency of between ρ = 0.8 at λ = 960 nm and ρ = 0.2 at

λ = 1060 nm and to their high internal gain factors (M ∼ 100) at a noise equivalent power

(NEP) of the order of 10−13 W/
√

Hz. The sharp drop in the efficiency towards longer

wavelengths in the infrared limits their application to the use of shorter wavelengths then

the used laser wavelength.
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Figure 3.2.: (a) Setup of the viewing chords of the TCV-TS system in 2006 covering the full

vessel cross section. The vertical dash-dotted magenta line shows the path of the

laser beam. The viewing chords represent different observation volume lengths:

∆z ≈ 38 mm (blue) and ∆z ≈ 13 mm (green). (b) Support structure for the

optical fibers and camera lens.

The TS system consist of two different types of polychromators, one version with 3

spectral channels using APDs (RCA, model C30974E) with a electrical bandwidth B of

20 MHz as detectors. Each detector incorporates a preamplifier such that responses of

up to 370 kV/W at 900 nm are achieved when the diodes are operated close to their

maximum bias voltage, which is typically 340 − 380 V at room temperature. These

polychromators are employed in the TS-EDGE system.

The second version of polychromators, used in the TS-MAIN system and shown in

figure 3.3, features 4 spectral channels using APDs (RCA, model CD1787) with a electrical

bandwidth of 50 Hz. Their temperature is stabilized by a Peltier thermo-electric circuit

to a value of 13.2± 0.1◦ C.

A disadvantage of APDs is the strong dependency of their responsivity on the diode

temperature. Heat dissipation in the preamplifier leads to a gradual rise in the detector

temperature and a consequent decrease in its response. To monitor the detector response,

each one is irradiated with short light pulses from a LED diode before and after the plasma
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detector/amplifier modules
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Figure 3.3.: Schematic view on the 4-channel filter polychromator.

discharge. Variations in sensitivity are measured by comparing the signal from a given

detector with a reference. This information can be used to disable faulty detectors in the

latter analysis of the signals.

The signal-to-noise ratio of a APD detection circuit in the case of a narrow-band

detection system is given by [43]:

S

N
=

(
is
in

)2

=
(RP0)2

B (NEP ·R)2 , (3.2.1)

where P0 is the average value of the intensity of light incident on the detector and R

the responsivity of the APD, which includes the internal gain factor. A more realis-

tic estimation, which is used to estimate the temperature resolution capability of each

polychromator in section 3.3.2, is given by

S

N
=

(τRP0)2

B (γNEPNEP ·R)2 + 2e0B · τR (Pscat + γbremsPbrems)
, (3.2.2)

which takes into account the spectral transmission τ of the optical system, photon statis-

tics in the scattered signal Pscat and background radiation Pbrems, a noise enhancement

factor γbrems to include line radiation from recombination processes in the plasma and

high background radiation in the case of strong additional EC-heating, and the excess

noise factor γNEP for additional noise multiplication.
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3.3. Optimization for the measurement of transport

barriers

The TS system was initially designed to cover a wide variety of possible plasma equilib-

ria [8]. The scattered light was collected at 35 observation volumes (spatial channels)

distributed along the laser beam to cover the full vertical height of the vacuum vessel.

During this thesis work, the system has been reconfigured in order to match needs for

measurements with high spatial resolution with the following goals: (1) Resolve gradients

associated with eITBs in the plasma core. (2) Keep a set of channels for measurements

of the H-mode pedestal (ETB). (3) Expand the Te range of the edge channels. Some of

the following general considerations concerning spatial resolution apply to both ITBs and

ETBs.

Part of the viewing optics were regrouped and re-attributed to the regions of interest

covering now only the middle and upper poloidal part of the vessel. One has to note

that these modifications were subject to several boundary conditions. The available laser

power, the desired minimum detectable electron density and the optical throughput of

the detection system imposed conditions on the choice of the size of the scattering volume

and hence the spatial resolution of the system. Further restrictions on the operational

regime were imposed by the application of strong EC-heating leading to a substantial

increase in background light and hence a severe decrease in signal-to-noise ratio (S/N).

In this section, the technical considerations and compromises to optimize the TS system

for the measurement of transport barriers are presented.

3.3.1. Optimization of the viewing optics for the high resolution

measurement of transport barriers

In the past there were several reasons to believe that the electron temperature and density

gradients in eITB, measured by the TS-system, were limited by the spatial resolution of

the system. The following subsection is a short summary of the experimental observations

and theoretical simulations suggesting the need of improvements towards higher spatial

resolution. The hardware modifications are presented and measurements of the gradients

in Te and ne in fully non-inductive eITB discharges are discussed.
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width original R0/Lx R0/Lx after profile convolution

δ ∆z = 40 ∆z = 20 ∆z = 13 ∆z = 4.5

60 30 26 29 30 30

40 45 35 42 43 45

30 60 41 53 57 60

20 90 47 70 79 88

10 180 52 94 122 168

7 250 53 101 137 220

5 350 53 104 148 280

Table 3.1.: Limits of measurable normalized gradient R0/Lx: Width of the gradient region

δ [mm], length of the scattering volume ∆z [mm] determining the spatial resolu-

tion and the normalized gradient R0/Lx after profile convolution. The maximum

achievable R0/Lx for an error of ≤ 20% is labeled in bold.

Profile convolution

In order to study profile gradients characterized by a width that is comparable to the

effective size of the TS observation volume, it is necessary to address the effect of gra-

dient smoothing due to limited spatial resolution. To quantify the effect, a convolution

procedure has been applied, which uses a simple box-shaped function of width ∆z as

the instrumental profile, figure 3.4(a). The results are presented in table 3.1, showing

the normalized gradient R0/Lx before and after smoothing, where R0 = 0.88 m is the

major radius and Lx the gradient scale length of a quantity x. As seen from the simula-

tion, significant smoothing (ratio > 1.2) will occur if the width δ of the original profile

is approximately ∆z. The value ∆z = 4.5 mm corresponds to the “effective” spatial reso-

lution of the TS-EDGE system after mapping on the mid-plane, but depends on the flux

expansion and thus on the particluar shape of the plasma cross section.

It was found that the former standard spatial resolution of ∆z = 40 mm of the TS-

MAIN system, along the laser beam path, was not sufficient to resolve normalized gradients

R/Lx in eITBs exceeding values of 25 − 30 without altering the results considerably.

Several options for ∆z were analyzed and are shown in figure 3.4(b). A good compromise

between S/N, range of measurable R/Lx, availability of polychromators and financial

costs, suggested to double the spatial resolution, i.e. ∆z = 20 mm.

One has to keep in mind that the operation of deconvolution is only defined for linear
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Figure 3.4.: (a) Convolution of a test profile, R/Lx = 30, with the box response function

for low spatial resolution, ∆z = 40 mm. (b) Dependence of R/Lx after the

convolution as function of the real R/Lx for ∆z = 40, 20, 13 mm and different

response function representations: box as solid line and Gaussian as dashed line.

systems. Temperature and density profiles from Thomson scattering are obtained as the

result of non-linear operations. The recorded signals from a given observation volume

may be regarded as a linear superposition, but the relation to the relevant parameters -

density and temperature - is non-linear. Therefore, deconvolution of a smoothed profile

cannot be used to recover the original.

Cross-check with soft X radiation profile from DMPX

On TCV, the Thomson scattering is the only system to measure directly the electron tem-

perature in EC-heated discharges. The electron cyclotron emission (ECE) system suffers

from signal pollution by suprathermal electrons during periods of EC-heating. However,

valuable information about the temperature profile can be deduced from the plasma soft

X ray emissivity measured by the Duplex Multiwire Proportional X-ray counter (DMPX).

Inversion of the line integrated DMPX measurements by the Fisher algorithm [44] yields

spatial emissivity profiles which can be approximated as

gsoft X ∝ Zeffn
2
eT

α(Te)
e . (3.3.1)

Figure 3.5 shows that the profile reconstruction of the DMPX signals indicates a
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Figure 3.5.: Comparison of the soft X emissivity profile from an eITB, (a) low spatial resolution

∆z = 40 mm and (b) after the upgrade to high spatial resolution ∆z = 20 mm.

The black line is the cubic spline fit of the soft X-ray emissivity profile measured

by DMPX (normalized). The red line is the cubic spline fit of the normalized

soft X-ray emissivity with α = 0.35 computed from the TS measurements. The

light red dashed and dash-dotted line represent the soft X-ray emissivity profile

computed with α = 0.1 and 0.5, respectively. The blue solid and dashed line

represent the normalized gradients R/LTe and R/Lne from the Te and ne profiles,

respectively.

higher gradient in Te and/or ne as could be resolved by the former low spatial resolution

with ∆z = 35− 40 mm of the TS system.

One has to keep in mind that the inversion process of the soft X-ray emissivity profile

yields no unique but a class of possible solutions in terms of temperature and density

making an absolute quantification of profile shape difficult. Furthermore, the DMPX

profiles can be also polluted by contributions from impurities and variations in α(Te) as

function of the plasma radius are difficult to estimate.

Predictions from theory

Gyrokinetic studies of the stationary density gradient (R/Lne)stat in eITB discharges

have shown that relatively large values of 10 − 15 can be sustained [45]. In the regime

of low or negative magnetic shear, which is inherent with these plasma scenarios, the

trapped electron mode (TEM) leading to an outward particle flux is strongly stabilized,
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such that the density profile is coupled to Te via the thermodiffusive pinch, (R/Lne)stat ∼
0.45R/LTe, and Te is tailored by local changes in the q profile. Due to this coupling,

theoretical values of R/Lne ∼ 20 were reported suggesting the existence of an inward

pinch in reverse shear eITB scenarios. These results were interpreted to be either an effect

of neoclassical inward thermodiffusion in the absence of anomalous activity, suppressed

by negative magnetic shear, or an effect of another mechanism whose physics is still linked

to turbulence. The latter micro-instability should lead to weaker radial energy transport

and to an inward thermodiffusion pinch localized near the s = 0 region. Temperature

gradient modes are a possible candidate for the last mechanism for typical values of R/LTe
reached in TCV [46, 47].

These numerical predictions underlined the necessity to improve the spatial resolution

capability of the system. More accurate measurements of R/LTe and R/Lne could give

valuable information for future data modeling and the analysis of the underlying physics.

Arrangement of spatial channels

The modification and re-attribution of the viewing chords were determined by the neces-

sity to keep the ability to diagnose various plasma scenarios. There are several possibilities

to place the channels with different spatial resolution to cover certain parts of the plasma

cross section. The mounting plate comprises 10 slots that can be used for different sets of

fiber bundles. The available sets of fibers were bundles with 2×4 fibers for high-resolution

core channels, where one bundle feeds two polychromators, and bundles with 3× 3 fibers

for high-resolution edge channels, where one bundle feeds three polychromators. Several

regions of interest, as the location of the eITB barrier or the H-mode edge pedestal, were

identified and had to be taken into account.

Figure 3.6 presents the general layout of the viewing chords with the color coding for

the length ∆z of the observation volume blue/magenta/green = 35− 39/16− 19/12 mm,

respectively. The chords of the TS-MAIN system were arranged such that measurements

of high spatial resolution, ∆z = 16 − 19 mm, can be done in eITB discharges with the

magnetic axis at z ≥ 0 m. The position of the TS-EDGE chords (green) with high spatial

resolution of ∆z = 12 mm for the measurement of the H-mode pedestal was adapted to

the needs of the respective H-mode experiment.
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Figure 3.6.: Optimization of the TCV-TS viewing chords for various plasma scenarios covering

only the mid and upper part of the TCV vessel cross-section: (a) high spatial

resolution in the core (magenta chords) and low edge resolution (blue) for eITB

measurements in 2008, (b) high core resolution and TS-EDGE (green) adapted for

snowflake diverted H-mode discharges in 2009-2010 and (c) high core resolution

and TS-EDGE adapted for single-null diverted H-mode discharges in 2010. Black

lines show the plasma flux surface region.

Fiber splitting

As discussed before, there were several limitations of different nature to the hardware mod-

ifications towards higher spatial resolution. The best compromise of all constraints, which

also involved as little hardware modifications as possible to ensure backwards compatibil-

ity, suggested to install modified fiber bundles on the former fixations of the observation

optics. For this purpose, fiber bundles (CeramOptec, WF 1000/1100N) consisting of 2×4

single quartz glass (� = 1 mm) were purchased that are composed of one single head

facing the plasma and then split into two branches to feed the scattered light into two

different polychromators, figure 3.7.

The limitation of the number of available polychromators made it necessary to re-

attribute the viewing chords such that only plasmas in the upper half of the plasma

vessel are covered.
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Figure 3.7.: Technical design of the fiber bundles: The compact front piece facing the plasma

is composed of 2 × 4 fibers, view A, which split into two separate bundles and

feed the scattered light into two different polychromators, view B and C.

Results from eITB measurements

The comparison of the Te and ne gradient measurements from comparable eITB discharges

after and before the hardware upgrade shows that there was indeed profile smoothing by

the limited spatial resolution. For the comparison, a series of fully non-inductive eITB

discharges was repeated under similar conditions. In order to enlarge the parameter

space, a scan in density for line-integrated densities of ne,lin = (6− 12) × 1018 m2 and

EC-heating power of PECH = 500 − 750 kW was done, varying the bootstrap current

contribution to the total current in the range of 35−50%. For TCV, the highest reported

normalized gradients measured by low spatial resolution were R/LTe = 20 − 25 and

R/Lne = 9 − 12 [48]. The new measurements, whose results are shown in figure 3.8,

revealed about 20% higher Te and almost identical ne gradients, suggesting (R/Lne)stat. ∼
c1R/LTe with c1 = 0.25− 0.45.

The profiles hint that there could be even higher gradients in ne comparable to those as
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Figure 3.8.: Gradient measurements in eITB discharges: R/LTe as function of R/Lne in fully

non-inductive eITB discharges, averaged over the stationary phase of the dis-

charge. Black dots represent all gradients from the profiles fitted by splines.

edge core

spectral channel λcenter [nm] FWHM [nm] λcenter [nm] FWHM [nm]

F1 1054 6 1041 20

F2 1041 20 1012 38

F3 1012 38 950 85

F4 950 85 810/830 160

Table 3.2.: Interference filter characteristics for the polychromators of the TS-MAIN system

predicted by theory [45]. These profiles correspond to times shortly before the appearance

of MHD events, such as infernal modes, that degrade considerably the transport barrier.

A more thorough scan in parameters will be needed to throw more light on this issue.

Furthermore, eITB discharges with central counter-current drive leading to even higher

gradients in Te and ne should be investigated for this purpose. However, this was beyond

the scope of this thesis work.
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default high Te
spectral channel λcenter [nm] FWHM [nm] λcenter [nm] FWHM [nm]

F1 1054 6 1041 20

F2 1041 20 1012 38

F3 1012 38 950 85

Table 3.3.: Interference filter characteristics for the polychromators of the TS-EDGE system

3.3.2. Optimization of the polychromators for high temperature

measurements

The spectral filter settings of both polychromator types, the 3-channel and 4-channel

model, were modified to meet the measurement requirements of high Te in additional

heated H-mode discharges and eITB. Table 3.2 lists the combination of wide band filters

that have been chosen for the 4-channel model to cover a range of Te from 10 eV→ 7.5 keV

at the plasma edge and a range of Te from 150 eV → 25 keV in the plasma core. The

relative filter transmission of the two different setups and the estimation of the signal-to-

noise ratio for each spectral filter, computed with equation (3.2.2) and γbrems = 200 and

γNEP = 5, is presented in figure 3.9.

Table 3.3 lists the combination of wide band filters that have been chosen for the

3-channel model to cover a range of Te from 25→ 1 keV or 50→ 2.5 keV.

The spectral filter setting and an approximation of the signal-to-noise ratio using

γbrems = 20 and γNEP = 10 in Te are shown in figure 3.10.
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Figure 3.9.: Spectral response function and S/N approximation for the 4-channel polychroma-

tor: spectral response function for (a) low and (c) high Te, approximation of the

signal-to-noise ratio for each spectral filter as function of Te for (b) low and (d)

high Te
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3.4. Improvements in the data processing

The calculation of electron temperature Te and density ne from the scattered signals

requires that the emission spectrum can be described by a known function of these two

parameters. The measured signals refer to the scattered light intensity in the different

spectral channels of a polychromator. The full emission spectrum can be reconstructed

by use of equation (3.1.16). Te and ne can be obtained by either a straight-forward

comparison of signal ratios in the individual filters, section 3.4.1, or a more elaborated

non-linear fitting of the signals in least-square sense, section 3.4.2. In this section the

improvements in the data analysis and treatment are discussed.

3.4.1. Ratio evaluation method

A simple and fast method to obtain Te from a set of signals measured in different spectral

channels uses signal ratios from pre-calculated look-up tables. This method is known as

ratio evaluation method (REM). Using equation (3.1.16), the scattered power collected

by the detector j of a polychromator m reads

Pjm = Pir
2
eLm∆Ωmne,m

∫ ∞
−∞

τjm (λ)S (Te,m, θm, λ) dλ, (3.4.1)

where ∆Ωm represents the solid angle, under which the collection optics is see by the

observation volume. The absolute spectral transmission τjm between observation volume

and detector element includes the imaging lens, polarizer, fiber bundles and the complete

imaging and filter optics in the polychromator and includes the spectral variation of the

detector sensitivity. For the analysis of the individual channel signals, an effective spectral

transmission τ ∗mj is used instead of τjm. It represents a normalized spectral responsivity

for the spectral channels in each polychromator with the maximum set to unity.

The ratio of the scattered signals in two neighboring channels is derived from equa-

tion (3.4.1) and reads

Rq =
Ejm
Ekm

=

∫
τ ∗jm (λ)S (Te,m, θm, λ) dλ∫
τ ∗jk (λ)S (Te,m, θm, λ) dλ

. (3.4.2)

These ratios Ejm/Ekm can be pre-computed as function of Te and stored as conversion

functions in form of look-up tables, since the spectral response functions is known from

the polychromator calibration. Thus, the determination of the electron temperature Te,q
from a signal ratio becomes a simple table look-up in the calculated conversion functions.
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Under experimental conditions, however, equation (3.4.1) is an idealization, since it does

not account for errors in signals, calibration etc. A more realistic representation is

R∗q =
E∗jm
E∗km

=

∫ (
τ ∗jm ± δτ ∗jm

)
(Sm ± σbg) dλ±∆Sen,jm∫ (

τ ∗jk + δτ ∗jk
)

(Sk ± σbg) dλ±∆Sen,jk
, (3.4.3)

where δτ ∗ is a calibration error of the spectral response function of each filter, σbg rep-

resents the fluctuation in the contribution from plasma radiation and ∆Sen is caused by

electronic noise of the detector. These uncertainties can lead to errors in Te,q in case of

an inaccurate calibration or strong fluctuation in a particular wavelength range or when

electronic noise dominates, i.e. for cases with low S/N ratio.

An average Te,avg is obtained from channels where the signals have a reasonable S/N ,

usually > 3. The weighted average electron temperature is based on the following ex-

pression, where each Te,q comes from a different probability distribution with variance

(∆Te,q)
2:

Te,avg =

∑
q wqTe,q∑
q wq

, wq =
1

(∆Te,q)
2 , (3.4.4)

The uncertainty of Te,q are evaluated as following:

• The plasma background which is composed by Bremsstrahlung and line radiation.

Since every measurement is a single event in 100 ns-time scale, it can be perturbed

by fast-time scale fluctuation in the plasma background radiation σbg and in the de-

tector itself ∆Sen,j. A second measurement without laser pulse is shortly done after

the Thomson scattering measurement to provide an estimate of this background ra-

diation. A single-event S/N ratio can be evaluated, whose uncertainty on scattered

signals in the spectral channels can be written as

∆Sj =

√(∫
σbgdλ

)2

+ ∆S2
en,j. (3.4.5)

To avoid under and overestimation of the signal error, different methods have been

tested to quantify the background light fluctuations. It was found that a moving

average or robust LOESS1 filter yields to a more reliable signal error estimation

then a simple analysis of the standard deviation of the fluctuation level, since it
1LOcally wEighted Scatterplot Smoothing (LOESS) combines the simplicity of linear least squares

regression with the flexibility of nonlinear regression by fitting polynomials to localized subsets of the

data to build up a function that describes the deterministic part of the variation in the data, point

by point.
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fails in discharges where parameters change significantly [49]. Since the moving

average is prone to “outliers” and includes no time information in the averaging

process, the robust LOESS filter (RLOESS) was chosen. We represent the filtered

fluctuation level by ∆S∗j (t) = rloess{∆Sj (t)}. For numerical issues, an additional

offset is added, such that ∆S∗∗j (t) = ∆S∗j (t) + 0.05Sj(t) = ∆Ej

• Having the knowledge of the ratio S/N = E∗j /∆Ej for each spectral channel, the

upper and lower limits of the signal ratios from two different channels p and q are

evaluated as:

Rmax,min
q =

E∗p ±∆Ep

E∗q ∓∆Eq
for q 6= p. (3.4.6)

• Estimation of the error of each Te,q becomes:

∆Te,q = 0.5
[
Te
(
Rmax
q

)
− Te

(
Rmin
q

)]
. (3.4.7)

The error in Te,avg is also determined in the sense of weighted averaging and reads:

∆Te,avg =

√
1∑
q wq

, wq =
1

(∆Te,q)
2 , (3.4.8)

Having computed an average electron temperature, one can reconstruct the spectral

emission function. The surface underneath the curve is proportional to the electron

density. By using the absolute calibration of the system, one obtains ne based on Te,avg.

Therefore, any error in the evaluation of Te,avg will be also reflected in ne.

One has to underline that this method may lead to biased results when channels with

low S/N have to be excluded from the analysis [49]. Channels with a low signal level

cannot be used to compute a electron temperature, but provide additional information

to boundary conditions of the spectral emission function. These boundary conditions can

be used in a more sophisticated model to reduce uncertainties in the evaluation of Te and

ne.

3.4.2. Robust non-linear least-square fitting approach

Consistency checks, i.e. reverse calculation of synthetic signals for each spectral channel

based on the ne and Te values obtained from the forward analysis, have shown occasional

but significant deviations from the acquired signals in plasma discharges with unfavorable

parameters for the diagnostic. These deviations appear in discharges with strong heating
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and low density, where S/N is low, and have the highest impact on the measurements

with the 3-channel polychromator. For this reason a least-square fit method (LSQM)

using the signals from all spectral channels was found to be a better candidate for the

computation of reliable Te and ne. Furthermore, an approach in least-square sense gives

better possibilities to treat “outliers” more efficiently.

For the interpretation and fitting of the scattered spectrum, a Levenberg-Marquardt

algorithm [50] was modified such that it includes M-estimators [51], closely related to the

method of maximum-likelihood. For data with probability density function pdf(z), the

method requires to minimize the functional

S(a) = −
n∑
i=1

log{pdf(zi)} =
n∑
i=1

ρ(zi),

in solving ∑
i

yi − f(xi; a)

σ2
i

∂f

∂aj
w(zi) = 0

with ρ(z) the maximum likelihood estimator, the weight function w(z) = (1/z) (dρ(z)/dz),

the residual zi = (yi − f(xi; a)) /σi, the parameter vector a of the fit function f and xi the

individual signals. In standard theory of least-square fitting, the estimator is ρ(z) = 1/2z2

and thus the weight function is simply a constant. In the robust least-square fitting

approach ρ(z) is represented by a more complex analytical function overweighting data

with small residual and vice versa, which decreases the effect of “outliers” on the final

fit result. The latter approach has, however, high requirements on the convexity of the

M-estimator in order to ensure good convergence for several reasons:

• convexity guarantees the stability with respect to the input

• no parameter graduation and/or annealing is necessary

The developed fitting algorithm implements four commonly used M-estimators, namely

the Cauchy-, Tukey biweigth-, Green- and Huber estimator [50–52]. The best estimator

was chosen by optimizing the three criteria:

• Comparison of the number F of fit divergence from standard and robust least-square

fitting.

• Comparison of the fitted Te obtained from REM, standard and robust least-square

fitting to identify the normalized number of fit artifacts Nartifact/Ntot by an empir-
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Frobust/Fstd. Nartifact/Ntot Rrobust/Rstd.

Huber 1.04 0.12 1.02

Cauchy 0.90 0.23 1.08

Tukey-biweight 0.88 0.08 1.11

Green 0.95 0.01 1.07

Table 3.4.: Properties of M-estimators: Normalized fit divergence Frobust/Fstd., number of

outliers Nartifact/Ntot and signal residual Rrobust/Rstd. for different M-estimators

ical formula. We judge the result Te,robust to be a fit artifact, if

|Te,robust − Te,std.|
|Te,std. − Te,REM |

> 1.

• Comparison of the fit residuals R = |Eexp − Eth| from standard and robust least-

square fitting to verify efficiency of signal weighting, where Eexp is the acquired and

Eth the reverse-calculated signal in a spectral channel based on the fitted Te .

Table 3.4 presents averages of the result from the analysis of the TS data from ∼ 630

TCV discharges. Greens’s estimator, represented by the analytical formula

ρ(z) = log{cosh(z)} (3.4.9)

w(z) = tanh(z)/z, (3.4.10)

turned out to be the best compromise for good fit convergence, accuracy and CPU time.

Figure 3.11 shows a comparison of the results obtained from the REM and LSQM. The

results from REM are computed using the standard deviation analysis to quantify the

fluctuation level; results from LSQM include RLOESS-filtering and Green’s estimator.

A sketch of the work-flow of the new data analysis algorithm is presented in figure 3.12.

The data is read from the acquisition modules of the diagnostic. In the data pre-treatment

step, the fluctuation level and S/N ratio is computed and low signal levels are masked

for REM. The REM computes Te and ne as starting parameters of the LSQM. After

removal of “outliers” in Te, an approximate value for the global minimum is sought on a

non-equidistant grid in least-square sense. The grid is chosen such that it is relatively

coarse but mesh-packed in the vicinity of the initial parameters in order to minimize com-

putational effort. The least-square iterations are initialized with this “global” minimum

and minimize the χ2 cost function. If the fit did not converge, it is re-initialized with
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Figure 3.11.: Comparison of results from REM and LSQM for polychromator 16 (MAIN) and

42 (EDGE): (a) Te and ne profiles at t = 1.2 s from REM and LSQM, (b)

observation volumes and flux contours of both polychromators on same flux

surface, (c)-top Te from REM and LSQM for polychromator 42 and (c)-bot. Te
from LSQM for both polychromators with power trace from the X3-gyrotrons
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Figure 3.12.: Work-flow sketch of the LSQM algorithm: The raw data is loaded from the

FERA acquisition modules and pre-treated. REM provides the initial parame-

ters for the LSQM. After spike removal and global minimum search, the χ2 cost

function is minimized and the fit results are checked for consistency. Finally, the

data and a status mask containing additional informations about the individual

spectral filter signals is written to the MDS database.
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adapted starting parameters, otherwise the results are verified for consistency with the

raw signals. For this purpose, synthetic signals are recomputed using the results from

LSQM. If two or more out of three or four2 synthetic signals match the raw signals within

error bars, the fit result is accepted, otherwise masked. The fit results and the data mask

containing S/N ratio and fit information for each time and spectral filter are eventually

written to the TCV shot file. The whole procedure was optimized such that a total of

1000− 4000 fits per shot, including data loading and storage, are performed in less than

10 s on one core of an Intel R© Xeon R© CPU E5430.

3.5. Calibration of the Thomson scattering system

The analysis of the scattered signals relies on the calibration of the system that must

provide the relative spectral response function of the polychromator channels and the

absolute sensitivity of the complete system. The relative spectral response functions can

be measured separately, while the absolute calibration has to be performed with the

complete system in experimental conditions. The following section presents the processes

of calibration. Finally, a cross-calibration of the TS system with the interferometry

measurements is described.

3.5.1. Laboratory calibrations

The spectral response function, as already discussed in section 3.3.2, describes the re-

sponse of the detection system to a radiation source of constant spectral emissivity. Dur-

ing the calibration process of the polychromators, the response function is measured by

illuminating the polychromator input including the fiber bundle with a radiation source of

known spectral emissivity and recording the detector output as a function of wavelength.

The response function are normalized such that the maximum value of the three or four

functions for a given polychromator is equal to unity. This calibration is relatively time

consuming and is only carried out when optical components in the polychromator and/or

the fiber bundles are modified.

During this thesis work all 35 polychromators were re-calibrated following the two

methods described above. A more detailed description and thorough analysis of error

sources and absolute calibration errors can be found in Franke’s thesis work [8].

2The total number of signals depends on the number of detectors in a polychromator.
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3.5.2. In-situ calibrations

As discussed in section 3.4, Te measurements are based on signal ratios and therefore

require only relative calibration of the spectral channels. For the measurement of ne,

however, the absolute sensitivity of the detection system, including optics, polychroma-

tors, amplifiers and data acquisition, must be known. Thus, an absolute calibration must

be carried out under identical conditions to those of a Thomson scattering measurement.

Rotational Raman scattering from nitrogen gas in the vacuum vessel is routinely

used for the absolute calibration. The excitation of the gas by the laser light results

in a multitude of spectral lines on both sides of the excitation wave length, the Stokes

and anti-Stokes branch. Only wavelength in the anti-Stokes branch are covered by spec-

tral channels of the polychromators closest to the laser wavelength. A full Raman scan

comprises scattering measurements at 3 − 4 different gas pressures in the interval of

0 − 75 mbar. The spectral channel sensitivity and a possible stray light contribution is

determined by a linear regression of the acquired Raman scattering signals as function of

the gas pressure [8].

Raman scattering calibrations of the system are frequently repeated, e.g. after mod-

ifications of optical components in the beam path or of the vertical position of viewing

chords or after realignment of the laser beams.

3.5.3. Cross-diagnostic calibration

During TCV operations, mechanical stress on the mounts of optical components in the

beam path and thermal expansion effects due to changes in the ambient temperature can

lead to a misalignment of the leaser beams that leads to the loss of calibration. The

beam misalignment can be analyzed by the installed web-cams and manually corrected

between two discharges. The absolute calibration, however, is not always recovered and

recalibration becomes necessary.

The FIR interferometer, introduced in section 1.2.3, provides a second measurements

of ne at TCV. Profiles of ne can be obtained by inversion of the line-integrated mea-

surements, e.g. by Fisher regularization or singular value decomposition (SVD) method.

One has to keep in mind that the 14 observation channels of the FIR interferometer are

insufficient to yield a unique profile reconstruction on a radial grid with 41 equidistant

points used when interpreting the TS profiles - or in other word, the inversion is largely

underdetermined. To partly overcome these drawback, a profile inversion by SVD was
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Figure 3.13.: Interferometer measurement inversion by SVD: (a) The black solid line repre-

sents the polynomial fit of TS ne raw data ◦, together with dash-dotted ne

profiles from FIR inversion by SVD for basis functions based on the linear com-

bination of 1 − 3 topos. (b) Logarithmic singular value of each topos. (c) χ2

from each FIR chord and the corresponding line-integrated ne from the inverted

profile as function of the FIR chord.

developed [53]. Furthermore, this method can be only applied on L-mode profiles, where

profile gradients are small and well reproduced by the inversion procedure.

The SVD method expands the local ne profiles from the FIR interferometer measure-

ments into a limited series of orthogonal basis functions, topos, formed from the SVD of

TS measurements, which are obtained at much lower sampling rate than the interferom-

eter data. Because these basis functions are formed from a polynomial fit of the local

measurement of ne in the same plasma, they are well adapted to the class of density

profiles to be reconstructed. Using this expansion, the inversion of the interferometer

data is reduced to solving an overdetermined set of equations. Therefore, the local ne
can be approximated as ne(ρ, t) ∼=

∑
ak(t)τk(ρ), where τρ are the topos retained and the

coefficients ak(t) are determined by interferometry. These profiles are then time averaged

64



3. Thomson scattering diagnostic

to reduce effects of sawteeth and resampled on the TS times. Correction factors for ne
for each TS observation channel are computed by comparing the averaged local FIR and

TS density; the standard deviation gives the individual errors.

Figure 3.13 shows an example of reconstructed ne profiles from FIR interferometry

that are represented by the linear combination of the first three topos and used to recali-

brate the sensitivity of each TS observation chord. Studies have shown that a maximum of

3−4 topos is sufficient to reconstruct an appropriate profile, when plasma configurations

with smooth ne profiles (L-mode) are chosen. The relative error of each ne correction

factor normally stays below 10%, however, uncertainties quickly increase because of:

• low S/N ratio in FIR signals

• bad reference profiles from TS for SVD method

• no or few data in individual TS channels

• poor coverage of the plasma edge by the FIR channel

3.6. Measurement and interpretation of the pedestal

profiles

Several improvements of the TCV Thomson scattering edge system (TS-EDGE) have

permitted measurements of the pedestal height and gradient of electron density and

temperature profiles near the separatrix during ELMy H-mode. This section gives a

short introduction and few examples about the measurement of the edge pedestal and

the interpretation of the profiles in terms of pedestal height, width and gradient.

3.6.1. Measurement of the electron contribution by Thomson

scattering and its interpretation

The TS-EDGE system measures the electron temperature Te and density ne edge profiles

in the upper part of the TCV plasma vessel. During the stationary ELMy phase of

the discharge, the plasma position is moved vertically by circa ±1 cm around its initial

position. This z-movement sweeps the plasma in front of the TS-EDGE viewing chords

in order to improve the coverage of the edge pedestal by the diagnostic. This method
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Figure 3.14.: TCV vessel cross section and viewing chords of TS-EDGE: The TS-EDGE view-

ing optics, dark green, measuring the electron temperature and density profiles

at the plasma edge along the vertical laser beam depicted as magenta dash-

dotted line. For data fitting and interpretation, the observation volumes, blue

crosses, are mapped onto the radial coordinate along the plasma midplane, blue

dashed line.

provides a profile measurement without radial gaps, which would be the case for a fixed

plasma z-position, and hence decreases uncertainties in the fitting process.

The spatial profiles of Te and ne are measured along the vertical laser beam that

intersects the plasma at the radial position of R = 0.9 m. For the interpretation of this

data in tangible quantities and for comparison with other tokamaks, the data is mapped

onto radial coordinates in the plasma midplane, where gradients are largest. Figure 3.14

shows the cross section of the TCV vessel and an example of the configuration of the

TS-EDGE viewing chords; the observation volumes mapped onto radial coordinates at

the plasma midplane are also represented.

After mapping, temperature and density profiles close to the separatrix are fitted by

the analytical expression [35]

F = a5 − a1 tanhX − a1a4
Xe−X

eX − e−X , (3.6.1)

where X = (R− a2) a−1
3 is a normalized radial coordinate. The parameters provide a

simple desciption of the edge pedestal properties, namely height = a1 + a5, width = 2a3
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Figure 3.15.: Examples of H-mode pedestal profile measurements by TS-EDGE: (a) Electron

temperature edge profile measurement with error bars during the inter-ELM

phase and pedestal fit for different ECH powers and (b) the corresponding elec-

tron density measurements and profiles fits. The data is mapped onto a radial

coordinate at the plasma midplane, where R − R(LCFS) represents the radial

position in respect to the radial location of the separatrix. The corresponding

plasma parameters are listed in table 3.5.

and gradient = a1a
−1
3 at the location of steepest slope. This analytical function provides

a good description of the H-mode pedestal profile when restricting the interval to the

range from −4 cm inside to +2 cm outside the separatrix.

Figure 3.15 shows examples of Te and ne measurements of the pedestal for three

different ECH powers in H-modes with identical shape and plasma parameters. The

data is mapped and fitted by equation (3.6.1) on a normalized radial coordinate at the

midplane. The plasma parameters and pedestal properties of the chosen examples are

listed in table 3.5.

3.6.2. Measurement of the ion temperature by CXRS

The diagnostic neutral beam injector (DNBI) provides the diagnostic neutral beam used

by the charge-exchange recombination spectroscopy (CXRS) to measure plasma ion tem-

perature and impurity (carbon) density. The DNBI beam is injected radially at the TCV

vessel midplane thus constraining CXRS measurements at this position. The standard

H-mode scenario at TCV, however, permits reproducible discharges only in the upper
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#37470 #40091 #40893

Ip [kA] 370 370 370

q0 ∼ 0.9 ∼ 0.9 0.9

q95 ∼ 2.4 ∼ 2.4 2.3

〈ne〉 [103m−3] ∼ 3.6 ∼ 3.4 ∼ 3.7

ELM type III III I

PECH [kW] - ∼ 340 ∼ 930

ηabs - X3 ∼ 70% X3 ∼ 75 & O2 ∼ 20%

Te,ped [eV] 325± 30 392± 47 477± 38

∆Te [mm] 11.8± 0.7 10.7± 0.9 8.8± 0.7

R/LTe 132± 31 132± 50 194± 45

ne,ped [1019m−3] 3.69± 0.26 3.88± 0.27 4.02± 0.20

∆ne [mm] 10.5± 0.5 12.4± 0.8 11.0± 0.6

R/Lne 162± 29 138± 29 139± 22

Table 3.5.: Plasma parameters of the pedestal profile measurement examples: Plasma current

Ip, safety factor q0 and q95 at normalized poloidal flux radius ρ =
√
ψN = {0, 0.95},

line-integrated density 〈ne〉, absorbed ECH power PECH with absorption coefficient

ηabs by TORAY-GA [5], electron temperature pedestal height Te,ped, width ∆Te and

normalized gradient R/LTe and, respectively, electron density pedestal parameters

from profile fitting by equation (3.6.1) of the TS-EDGE measurements.

half of the TCV vessel. This is due to an asymmetry in the poloidal field distribution of

the machine and the plasma stabilization by the wall, which makes it difficult to maintain

a stationary H-mode discharge with the magnetic axis close to the vessel midplane. For

that reason, the measurements of the whole radial ion profile in H-mode was not possi-

ble, only edge measurements in the divertor region with normalized poloidal flux radius

ρ =
√
ψN ≥ 0.8 were feasible.

Figure 3.16 shows the ion temperature measured by CXRS of the H-mode edge

pedestal for the shot #40091 during the stationary ELMy phase. Features of expelled

ions by an ELM event are visible in the individual Ti profiles due to the long integration

time, 60 ms, of the CXRS detector. This integration time exceeds the ELM cycle duration

several times, hence providing only an averaged Ti profile.
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Figure 3.16.: Pedestal ion temperature measurement by CXRS: Ti measurements, green, of the

discharge #40091 during the stationary ELMy H-mode phase showing features

of expelled ions by an ELM; the corresponding spline fit depicted in red. For

comparison, the Te profile, fitted by equation (3.6.1).

3.6.3. Dependence of ion temperature as function of electron

temperature in the pedestal region

Measurements of the ion temperature Ti in the pedestal region could be obtained for the

ECH power steps (nominal power) PECH = {0.5, 1.0, 1.5, 2.0} MW, but no measurements

were done for pure ohmically heated discharges. Nevertheless, we want to investigate for

which range of pedestal electron we can assume Ti ≈ Te. Since the energy transfer from

electrons to ions is Qe ∝ n2 (Te − Ti) /T 3/2
e [1], we expect a decoupling of both species

when lowering the plasma density and/or increasing Te by EC-heating.

Figure 3.17 shows Ti as function of Te in the pedestal region for different ECH power

and at different radii ρ = {0.80, 0.85, 0.90, 0.95}. The Ti profiles from CXRS, which are

available for ρ ≥ 0.8 in these plasma types, were fitted by splines. Similar, the Te profiles

were spline fitted and values at different radial positions were taken from the Ti and Te
fits. We observe that Ti = Te is a good approximation for ρ > 0.85 and hence at the po-

sition of the upper pedestal shoulder ρped ∼ 0.95. Normalized ion temperature gradients

R/LT i could not be estimated from the CXRS measurements for the two reasons: (1)
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Figure 3.17.: Ion temperature versus electron temperature at the pedestal: abc

The programmed vertical plasma movements for improving the TS-EDGE measurements

considerably smoothed the Ti pedestal gradient. (2) Due to the high integration times of

the detectors in the CXRS spectrometer, only Ti averaged over several ELM cycles could

be obtained.

Measurements of the pedestal ion profile in other machines (DIII-D [30, 54], NSTX [55],

ASDEX-Upgrade [56], JT60 [30]) showed that Ti,ped ≥ Te,ped and ∇Ti,ped ' ∇Te,ped. For

the ion density ni, we assume quasi-neutrality and a single impurity C6+ and obtain

ni = ne
Zimp − Zeff
Zimp − 1

(3.6.2)

nimp = (ne − ni) /Zimp, (3.6.3)

where Zeff is the effective charge, Zimp the charge of the impurity and nimp the density

of the impurity. For typical TCV H-modes with ECH, we find Zeff ∼ 3 and hence

ni/ne ∼ 3/5.

3.7. Synchronized laser triggering on ELMs

The investigation of H-mode edge profile properties during an ELM cycle requires diag-

nostics with sufficiently high acquisition rates. Especially the conditions shortly before

the ELM crash are of particular interest, since they enter for example in MHD stability
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calculations of the edge pedestal. On TCV, the TS system is the only diagnostic able to

provide Te and ne of the edge pedestal with high spatial resolution. Unfortunately the

low repetition frequency of 20 Hz of the lasers does not allow to trace the profile evolution

in time during an ELM cycle. In discharges with low input power, the ELM frequency of

fELM ∼ 100−300 Hz is sufficiently high to obtain profile measurements relatively close to

the ELM event. However, in strongly EC-heated discharges, where fELM ∼ 50 Hz and be-

comes comparable with the laser frequency, the probability of measuring a profile shortly

before an ELM is very small. In order to obtain a reliable profile nonetheless, identical

discharges have to be repeated many times. To partly overcome this drawback of low

sampling rate of the TS system, a real time (rt) algorithm was developed to synchronize

the laser trigger with ELM events.

This section presents technical details about the trigger cycle of the TS lasers, the

implemented real time algorithm, results from the synchronized laser triggering and an

approach of magnetic triggering of ELMs to control and/or stabilize their frequency.

3.7.1. PC-based multi-channel controller

On TCV, the signals of many diagnostic, e.g. photodiodes, soft X-ray emission and

line-integrated density from interferometry, are acquired by D-tAcq 196 Compact-PCI

(C-PCI) acquisition modules3. One module acquires up to 96 differential channels of

16bit data per card and stores data for post-shot analysis. These cards are combined in

a C-PCI crate to provide acquisition of hundreds of channels and also have the capability

to send acquired data to the memory of a host PC for data processing in realtime (rt).

The default clock rate of the crate is set to 10 kHz, limited by the number of treated

channels, although the individual D-tAcq modules can work at frequencies up to 100 kHz,

leaving less computational time for algorithms.

Linux is used as the rt PC operating system. Simulink R© and the rt workshop for

embedded targets have been integrated with the D-tAcq drivers to facilitate rapid de-

velopment and testing of algorithms. The rt workshop generates and compiles C code

from the Simulink block diagrams which is then sent to the real time PC over the net-

work. This platform gives the unique possibility to easily develop algorithm to control

plasma parameters and properties [57], trigger diagnostics on MHD events, reconstruct

the magnetic equilibrium etc. in real time.

3D-tAcq Solutions Ltd. http://www.d-tacq.com/
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3.7.2. Modes of operation and laser triggering

The TS system comprises three repetitively pulsed Nd:YAG laser units connected to

individual controller units which set the operational parameters and select the mode of

operation and the trigger mode. The controller units are connected via RS-232 interface to

a second controller (TCV-slave), which receives trigger pulses and laser settings from the

TCV control system. The TCV-slave generates the timing pulses for external triggering

of the lasers, supervises the operation of the lasers, e.g. interlocks, and controls the

external laser shutters as part of the security system.

In external trigger mode operation, trigger pulses for flash lamps and Q-switch are

provided by the slave and sent to the laser power supplies via 50 Ω coaxial cable. The

slave triggers on the positive edge of pulses with rectangular waveform of amplitude

2.5 → 6 V and > 500 ns duration sent by the TCV clock. If the trigger is accepted by

the TCV-slave, a TTL4 trigger is sent to the laser unit and the laser fires.

Simultaneous triggering

This mode of operation is used to increase the total laser pulse energy for scattering

measurements. Since the three laser beams are combined in a narrow fan focused into

the TCV vessel, they appear to the observation optics collecting the scattered light as one

single beam with tripled energy. In this mode the timing sequence is determined by the

parameters of laser unit #1, which serves as master in this case. Common trigger pulses

are sent to all laser units; adapted length of the coax-cables ensures laser synchronization

with minimum jitter.

Burst mode

In this mode of operation, the lasers are triggered independently from each other and are

fired one after the other within a small time interval (∆t ≥ 1 ms). After one burst of

laser pulses, the time interval until the next burst is fixed by the repetition rate of the

lasers. This mode of operation is of particular interest, since it allows to measure profiles

(maximal 3) within a very short time interval, which can give insight into transitory

effects in the profiles.

4Logic 0 (“low”): 0− 0.8 V, logic 1 (“high”): 2− 4.75/5.25 V

72



3. Thomson scattering diagnostic

Synchronization with TCV events

To extend the capability of the system to measure TCV events, the slave is equipped with

a separate input for external synchronization signals conform to TTL standard. If the

signal happens to fall within a specified time window before the preset trigger time, the

trigger is accepted and a laser pulse is generated after a fixed delay of about 200µs. The

length of this synchronization time window is limited by the laser hardware to ∼ 10% of

the natural repetition period of 50 ms of the lasers.

The trigger timings and delays for default and synchronized trigger mode are:

• default trigger, i.e. when no synchronized trigger is sent or accepted:

T = Tclock + ∆T1 + Tsync-win + ∆TFL-Qsw, (3.7.1)

where Tclock is the time vector of the TCV clock, ∆T1 a user defined delay, ∆Tsync-win

the synchronization time window and ∆TFL-Qsw the delay of the Q-switch.

• synchronized trigger, i.e. when the trigger is accepted:

T = Text + ∆TFL-Qsw, (3.7.2)

where Text is an external trigger derived from a TCV event.

A sketch of the timing scheme for synchronized triggering is shown in figure 3.18. In

combination with burst mode operation of the lasers, where the individual lasers are

fired within a short time period (∼ 2 − 3 ms), and a suitable pre-trigger, this option

provides enhanced probability for synchronization with fast repetitive events, like ELMs

or sawtooth activity.

3.7.3. Triggering on ELMs

For synchronized laser triggering on ELMs, aiming at measurements before and after the

same ELM event by operating the lasers in burst mode, the vertical Dα signal from the

photodiodes, acquired by a D-tAcq module in the crate, is used as observer. The signal

is transferred on the CPU unit on which the rt algorithm is executed.

In the algorithm, the observer signal is filtered to reduce noise effects. The low-

frequency background in the observer signal is suppressed. In the next step, the MHD
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Figure 3.18.: Timing scheme for external triggering: (a) Master clock pulses, (b) user-defined

delay ∆T1 that initializes (c) the synchronization window. (d) The external

trigger, (e) a pre-set delay time and (f) the laser pulse.

event is identified by analyzing the time derivative of the observer signal applying thresh-

old detectors. A local and averaged event frequency is generated. The local event fre-

quency results from two events, latter is composed by the local frequency and the former

event history by applying a lowpass filter. If the times of the MHD events in the dis-

charge and the event frequency happen to satisfy predefined parameters, the detected

event will be identified as ELM and further examined. If the algorithm has identified the

event as ELM, the next future ELM time is computed and it is verified, if this next ELM

happens to fall in the predefined synchronization window of the lasers. If this is the case,

a TTL trigger pulse is send to the laser slave by the digital output of the D-tAcq module,

otherwise the lasers are triggered by the D-tAcq at its default time.

Usually the lasers are operated in burst mode; the time intervals between the three

individual lasers are defined by the user before the discharge, but remains the same during

the rt control. In the post-shot phase, only a selected set of traces from the algorithm is

saved to MDS, since all informations can be retrieved by manually rerunning the algorithm

in off-line mode. The algorithm is conceived such that it can be also used to trigger the

diagnostic on sawtooth oscillations. A simplified scheme of the working principle of the

algorithm is shown in figure 3.19.

The probability to trigger the diagnostic synchronized to an ELM event within a 2 ms
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Figure 3.19.: Sketch of the rt laser control algorithm: Red items correspond to the control

of the TS diagnostic; blue items represent the treatment of the observer signal.

For every rt trigger on a MHD event, its compatibility with the laser settings is

verified, green item. In the post-shot processing the data is written to the TCV

shot file, gray item.
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Figure 3.21.: Shift of the TS laser pulse (blue) away from its default trigger (green) closer

towards the ELM crash. 400 µs after the rt trigger from the d-tAcq (magenta),

the laser light is registered by a reference detector (TRCF, gray box) at the

entrance to the TCV vessel. The laser unit is coded in binary, the time delay

between the three individual laser pulses is 1 ms.

time window is ∼ 10− 25%, if the time delay between the individual lasers is chosen to

be 1.5 → 2.5 ms. The probability of a successful trigger strongly depends on the initial

76



3. Thomson scattering diagnostic

phase shift between the ELM event and laser pulse, ELM frequency and regularity, the

number of laser pulses during the stationary ELMy phase of the discharge, the time delay

between the individual lasers and the maximum length of the synchronization window

∆Tsync-win. It was found that the natural laser frequency can not be changed by more

than 5%, i.e. ∆Tsync-win ≤ 2.5 ms, instead of the 10% as given by the manufacturer. This

restricts the success rate of the synchronized triggering considerably.

Figure 3.20 shows the result from the rt trigger control during the ELMy phase of an

H-mode discharge. The ELM frequency is computed from the spikes in the Dα observer

signal and then low-pass filtered to provide a stable estimate for the next ELM event. The

rt synchronization of the laser on ELMs was activated in the time interval 0.40→ 1.55 s.

Figure 3.21 shows an example of laser synchronization with the ELM crash. The rt

algorithm moves the trigger pulses away from their default times towards the time of the

event. Shortly after the trigger is sent, the laser light is registered on a reference detector

(TRCF).

The usual delay between a trigger sent by the D-tAcq and the time when the laser

light is registered by the TRCF is 400 µs. This delay is composed by a refresh delay of

100 µs due to the internal clock rate of the C-PCI crate at 10 kHz, ∼ 50 µs of latency

in data transfer from the host PC running the algorithm to the DAC output, the laser

Q-switch delay ∆TFL-Qsw = 160 µs and the delay of 50− 100 µs of the TRCF module at

a clock rate of 10/20 kHz. Taking this delay into account, the algorithm has to either

detect a precursor long before the ELM appears or predict the next ELM crash ∼ 0.5 ms

before it actually happens in order to fire the laser shortly before the event.

Up to the present day, only the prediction of next ELM events based on their former

history is implemented which requires ELMs with fairly regular frequency. Since the ELM

frequency depends on many parameters as for example EC-power coupling or density, it

is difficult to do an accurate estimate for the time of the next event thus decreasing the

probability to fire the lasers at the right time. Magnetic triggering [58–60] has been tested

to lock the ELM frequency to an imposed vertical plasma oscillation in order to improve

the predictions of the rt algorithm. The results are presented in section 3.7.4.

For the future, additional observer would be needed to improve the capability of the

algorithm to predict ELMs. The detection of a toroidal mode of low or medium n as type-

I ELM precursor in the signals of the magnetic probes could be one possibility, although

they do not exist always [16, 17] and might be too difficult to detect in realtime. Another
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Figure 3.22.: Some plasma parameters during ELM cycle: (a) Dα trace from the vertical

photodiode, (b) soft-X ray radiation from DMPX looking at the plasma edge

(channel 52 LFS, channel 12 HFS), (c) normalized internal inductance li, (d) nor-

malized βpol and (e) normalized plasma volume. Traces (b)-(e) are normalized

by their median, traces (c)-(d) are from the LIUQE equilibrium reconstruction

at 5 kHz.

issue is that the diagnostic needs a trigger sufficiently early with respect to the time of

the next ELM, since ∼ 500 µs of time delay have to be taken into account.

Another approach based on plasma property changes on relatively “long” time scales

during the ELM cycle would be more promising. Figure 3.22 shows traces from the

equilibrium reconstruction by LIUQE and soft-X ray emission of the plasma edge (on HFS

and LFS) measured by the DMPX for a type-I ELMy H-mode with strong additional EC-

heating. The plasma volume variation during an ELM cycle resembles a n = 0 like global

ballooning mode which tends to saturate and eventually invert the trend at 7−9 ms before

the ELM event occurs. At the same time soft-X ray radiation from the edge measured by

the DMPX and Dα emission increase. This observation suggest that the gradual increase

in plasma volume due to the extensive heating, in this case the plasma shape control is in

feed-forward, is inverted by loss of energy confinement due to increased transport across
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the edge barrier. The internal inductance 5 undergoes a similar cycle; its maximum is

attained ∼ 13 ms before the ELM crash. After the maximum li is passed the current

profile relaxes hence increasing the edge current fraction. High edge current density is

favorable to trigger external kink modes which are the common explanation of the type-I

ELM event.

Since the energy confinement time τE and internal inductance li are linked by

τE ∝ Ipli [61], a observer combining information from both plasma energy losses and

internal inductance, for example from a real time equilibrium reconstruction or indepen-

dent li observer, seems promising to give a better prediction of the next ELM event.

However, this was out of the scope of this thesis work.

3.7.4. ELM pacing

Magnetic triggering of ELMs was reported first from TCV in ohmic plasmas showing

type-III ELMs [58]. This method, showing successful locking of the ELM frequency to an

imposed vertical plasma oscillation, was also demonstrated in the type-I ELM regime in

ASDEX Upgrade [59]. Therefore, this method seemed to be a good candidate to stabilize

the ELM frequency and improve the probability in predicting the next ELM event by the

rt algorithm.

For the plasma movement required, a series of pulses were added to the reference

signal for vertical position control. Frequency and amplitude of the pulses (drive) were

varied for different heating power to find locking of ELMs to the magnetic perturbations.

The pulse length of the vertical displacement was 1 ms; the displacement was a down-

up movement with |dz/dt| being largest in the upwards direction. The ELM pacing

experiments were conducted during the stationary ELMy H-mode phase, where plasma

parameters were kept constant. The shown experimental results were obtained from a

series of similar discharges.

Experiments, in which the drive frequency fdrive was varied by ∼ 25% around the

natural ELM eigenfrequency fELM, showed that some locking appears only when fdrive ≈
fELM. A scan in drive amplitude δzdrive with fdrive ≈ fELM showed no direct dependency

of the capability to trigger an ELM on δzdrive. The ELM is “triggered” with relatively

small probability 2− 5 ms after the pulse, independently of its amplitude. These results

5measure of the peakedness of the current profile, defined as li =
∫
dV B2

p/
[
V B2

p (a)
]
with 〈Bp(x)〉 =∮

x
dlBp/

∮
x
dl and 0 ≤ x = [V (x)/V (a)]

1/2 ≤ 1
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Figure 3.23.: (a) Histogram of the probability to trigger an ELM for the drive amplitudes

δzdrive = {0.4, 0.8, 1.2} cm. (b) Histogram of the probability to trigger an ELM

for the different nominal EC-heating powers PECH = {0, 250, 500, 1000} kW.

The histogram was computed from the set of data, where δzdrive = {0.8, 1.2} cm.

are presented in figure 3.23(a), a histogram showing the probability of a triggered ELM

as function of the time between drive and ELM pulse for δzdrive = {0.4, 0.8, 1.2} cm and

nominal EC-heating power PECH = 0− 500 kW.

Figure 3.23(b) shows the results from magnetic triggering of ELMs with δz =

{0.8, 1.2} cm and fdrive ≈ fELM for PECH = {0, 250, 500, 1000} kW with 50 − 65% ab-

sorption computed by TORAY-GA [5]. The histogram depicts the probability to trigger

the ELM as function of the drive-ELM delay. We find ∆tdrive→ELM ≈ 2 − 5 ms and the

probability decreases roughly with PECH. For the highest heating power, PECH = 1 MW,

no correlation between drive and ELM can be found.

Figure 3.24 shows an example where the ELM frequency locked to the drive during a

time interval of ∼ 400 ms. The magnetic perturbations are applied during the stationary

H-mode phase of the discharge, i.e. in the time interval t = 0.65 − 1.40 s. After a

initial phase 0.65 ≤ t ≤ 1.05 s in which fELM appears to be perturbed by the drive,

the ELMs lock to the drive and their frequency is stabilized. However, the ELM crashes

follow the drive with a relatively large delay of ∆tdrive→ELM = 4 − 5 ms and keep also

a fairly regular frequency once the magnetic triggering is stopped. In other cases the

relation between the occurrence of an ELM after a magnetic perturbation is less clear;

there are even examples were fELM is rather destabilized than stabilized by the magnetic
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Figure 3.24.: Example of successful locking of the ELM frequency to the imposed vertical

plasma oscillation: (a) line-integrated density from interferometry, (b) delay

∆tdrive→ELM and (c) drive (blue) and ELM (red) periods ∆t.

perturbations. The reason for this behavior is not yet clear and should be investigated

in future experiments. Therefore, the magnetic triggering was abandoned for all further

H-mode studies.

3.8. Conclusion

During this thesis work, the TS system was successfully upgraded to the needs of mea-

surements of transport barriers in eITB and H-mode discharges. The hardware upgrades

were carried out keeping the flexibility of the system to adapt to various discharge scenar-

ios. The interpretation of the scattered signal was highly improved leading to a better

accuracy in Te and ne and allowing for measurements even in extreme situations were

S/N is very low.

Results from measurements of the normalized gradients R/LTe and R/Lne in fully

non-inductive eITB discharges confirmed profile smoothing by the former low spatial

resolution of the system. With the upgrade towards higher spatial resolution, the pro-

file simulations and experiments are now in better agreement. These results show that

measurements are not anymore influenced by the diagnostic itself.
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Measurements of the electron and ion temperature in the H-mode pedestal region

suggest approximately equal temperatures for both species.

The synchronization of the diagnostic trigger with MHD events as a new method to

trigger the Thomson scattering lasers, taking into account all its inherent limitations, has

been tested successfully. Some suggestions were given for further improvements in the

prediction of ELMs. ELM pacing by magnetic perturbations to stabilize and/or control

their frequency was tested to improve the probability of triggering the diagnostic on an

ELM event. However, these experiments did not yield conclusive results and hence require

further investigations.
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4. The snowflake divertor

The reduction of heat flux on plasma facing components (PCFs) in a tokamak is a cru-

cial issue for future large nuclear fusion experiments. In diverted plasma configurations,

energy and particle losses are channeled primarily into the divertor region through the

scrape-off layer (SOL). However, high power flux on the relatively small divertor strike

region causes overheating of the divertor PFCs which may undergo destructive erosion.

In the case of H-mode, the reference scenario of ITER, plasma energy loss attributed to

ELMs may exceed the maximal tolerable power load of these components.

The “snowflake” (SF) divertor configuration [62, 63] was proposed as a possible solution

to reduce the plasma-wall interaction by changing the divertor’s poloidal magnetic field

topology. This configuration also exhibits increased magnetic shear in the edge region

predicted to improve the pedestal stability and to influence ELM activity [18]. The first

realization of a SF magnetic divertor was experimentally demonstrated on TCV [64].

In this chapter, an overview on the SF experiments in L- and H-mode on TCV is

given. The ideal MHD stability limits of the edge pedestal are computed for a set of SF

equilibria. Sensitivity studies are presented to study the effect of edge magnetic shear

and plasma shaping on the stability limits. Finally, experimental results of SF diverted

type-I ELMy H-mode are presented and discussed.

4.1. Snowflake divertor magnetic configuration

This section gives a short introduction to the SF divertor, its physical properties and

its advantages compared to a standard single-null divertor. Further, a SF experiment in

L-mode is shortly presented.
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4. The snowflake divertor

4.1.1. Properties of the snowflake divertor

By using a set of poloidal field coils, one can create a divertor in which the poloidal

magnetic field null in the divertor region is of second order (∇2ψ = 0, where ψ is the

poloidal magnetic flux), not of first order (∇ψ = 0) as in the usual single-null (SN)

divertor [62]. The separatrix in the vicinity of the null point splits the poloidal plane into

six sectors which generates a hexagonal snowflake-like shape. This arrangement, shown in

figure 4.1, is supposed to spread the heat load over a much broader area than in the case

of a standard divertor. Also the edge magnetic properties are substantially altered [63]:

• The flux expansion near the null-point becomes about two times larger in TCV.

• The connection length of the open field lines from the equatorial plane to the

divertor plate increases by factor of about 2.5 for TCV parameters.

• The safety factor and the magnetic shear in the edge of the plasma becomes much

larger for finite current density at the edge. However, in the case of H-mode, this

effect is partly neutralized by the bootstrap current fraction resulting from the

pressure gradient near the edge, as demonstrated in subsection 4.2.2.

• In the open field line region, the elongation of the flux tubes near the null-point

increases leading to a reduction of plasma turbulence in the divertor legs and the

scrape-of-layer (SOL). In TCV, the elongation of the flux tubes is increased by a

factor of ∼ 2.5, when compared to a SN configuration [64].

4.1.2. L-mode experiments on TCV

The snowflake divertor plasma was created starting from a SN configuration with both

strike points on the central column. The high field side (HFS) strike points are then

subsequently moved towards the low field side (LFS) producing the SF configuration.

Perturbing the exact SF configuration by shifting the plasma column away from the

null point or towards it, while keeping divertor currents and plasma current constant,

produces the SF+ and SF- configuration. The SF+ configuration exhibits vertically

aligned X-points, whereas the SF- is represented by two X-points aligned in a horizontal

plane [64].

The magnetic equilibria of the SF configurations are reconstructed by LIUQE [11]

using the magnetic measurements. The reconstructed equilibria are shown in figure 4.1.
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#36151 − 0.458s

(a)

#36151 − 0.505s

(b)

#36151 − 0.310s

(c)

Figure 4.1.: Magnetic equilibrium reconstruction of snowflake diverted discharge in L-mode

#36151: (a) SF, (b), SF minus (SF-) and (c) SF plus (SF+).

The plasma current was Ip = 230 kA, the line integrated density nel ∼ 3.5 × 1019 m−2,

central electron temperature Te(0) ∼ 0.65 keV, safety factor q0 ∼ 0.8 and q95 ∼ 3.5,

plasma elongation κ ∼ 1.6 and triangularity δ ∼ 0.2.

The vertical stability, i.e. the n = 0 mode, where n is the toroidal mode number, was

computed for all configurations by using the KINX code [36] and imposing a conformal

and perfectly conducting wall with wall radius rw. The conformal wall radius is defined

as rw = rwall/amin, where amin is the plasma minor radius and rwall the radius of the

wall with a shape conformal to the plasma contour. The growth rate γ (Nχ, Nψ) was

computed as function of the conformal wall radius on a grid of Nχ×Nψ = 160× 160 and

Nχ × Nψ = 192 × 192 grid, where Nχ is the number of poloidal and Nψ the number of

“radial” grid points. The obtained growth rates were then extrapolated for infinite grid

size (N →∞) assuming 1/N2 convergence of γ (N) in KINX (section B.1, appendix B).

Figure 4.2 shows γ (N →∞) as function of rw. All growth rates converge to asymptotic

values for rw > 5, the so-called no-wall limit, which is usually used to approximate

resistive effects not taken into account by ideal MHD codes.

The numerical values of γ, together with the central Alfvén wave frequency ωA, are

given in table 4.1 for rw = 10. No major differences in the growth rate of the n = 0 mode

are found between the configurations. Thus, the SF configuration has no drawbacks in

terms of vertical stability when compared with a SN divertor. The growth rates of all
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Figure 4.2.: Vertical stability of snowflake diverted discharge #36151 (L-mode): Growth rate

γ of the n = 0 ideal MHD mode as function of the normalized conformal wall

radius rw.

configuration ωA [106 s−1] γ [s−1]

SN 1.30 265

SF 1.28 245

SF+ 1.32 250

SF- 1.26 260

Table 4.1.: Growth rate γ of the n = 0 ideal MHD-mode for rw = 10 (no-wall limit) and the

central Alfvén wave frequency ωA.

configurations are well below the threshold of the TCV control system, which is able to

stabilize plasmas with open loop growth rates up to 4400 s−1 [65].

4.2. Ideal MHD stability properties of snowflake diverted

H-mode

In this section, the ideal MHD stability of the edge pedestal is studied with equilibria

modeling TCV discharges that were purely ohmically heated and exhibited type-III ELMs.

The influence of the bootstrap current on the safety factor and magnetic shear profile is
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Figure 4.3.: Current density and pressure profile for synthetic snowflake-diverted H-mode equi-

libria: a) Ohmic and bootstrap current density as function of the normalized

toroidal flux radius ρφ =
√
φN . The profiles johm and johm + jBS are scaled to

the same total plasma current, Ip = 320 kA. b) Total pressure profile taken from

a SN type-III ELMy H-mode (#32715).

quantified for the pedestal region. Finally, the stability limits of the SF-configurations

are compared and discussed.

4.2.1. Construction of the equilibria

As discussed before, the SF divertor has several advantages when being employed in H-

mode discharges. One of them is that the MHD stability of the pedestal region is supposed

to improve by higher magnetic shear. In order to investigate possible improvements

of MHD-stability in H-mode, equilibria were constructed using the plasma boundary

of the SF discharge (#36151, Ip = 230 kA, nel ∼ 3.2 × 1019 m−2) in L-mode. The

electron pressure profile was taken from a type-III ELMy H-mode (#32715, Ip = 370 kA,

nel ∼ 3.5 × 1019 m−2) in SN configuration with high ohmic heating power. So far, no

reliable pedestal data were available from type-I ELMing discharges. Figure 4.3 shows

the ohmic and bootstrap current density and the total pressure profile as function of the

normalized toroidal flux radius ρφ =
√
φN .

The ohmic current density was taken from the LIUQE reconstruction of the reference

H-mode discharge. The electron pressure profile was obtained from Thomson scattering
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Figure 4.4.: Plasma boundary of the SF-like SN and SF equilibria: Shown is the constructed

SF-like SN plasma boundary, and the SF+, SF- and SF boundary from discharge

#36151.

data of the same discharge including the edge pedestal fit by a modified tanh-function [35],

equation (3.6.1). The ion pressure profile was obtained by scaling the electron pressure

with a fixed ratio pe/ptot = 0.7 obtained from equation (2.1.8), which was found to be a

good approximation for ohmic H-mode discharges in TCV. The ion density profile was

obtained by scaling the electron density profile using Zeff = 2.5 and C6+ as single impu-

rity, equation (3.6.2). The value of Zeff was obtained from soft X-ray measurements and

conductivity calculations for the discharge #32715. The ion temperature profile is then

derived from ion pressure and density. This approximation agreed with ion temperature

measurements by Charge eXchange Recombination Spectroscopy (CXRS) for a similar

shot. The bootstrap current was computed with Sauter’s model [13] based on the kinetic

profiles. Finally, self-consistent equilibria were computed using the CHEASE equilibrium

code. The total plasma current was re-scaled to 320 kA, a value given by the limitation

of the current in the TCV plasma shaping coils in the case of a SF configuration.

In order to have a better comparability of the results from the pedestal stability

analysis with those of a SN configuration, a synthetic SN configuration (SF-like SN) was

constructed as follows: (1) The HFS part of the boundary, below z = 0 m, was cut off

till the double X-point magnetic divertor. (2) The X-point was constructed by keeping

the LFS boundary unchanged. (3) The former cut off region was reconstructed including
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4. The snowflake divertor

configuration δ κ li q0 q95

SF-like SN 0.30 1.73 0.72 1.2 5.3

SF 0.30 1.73 0.75 1.2 8.8

SF+ 0.24 1.60 0.82 1.0 5.2

SF- 0.25 1.79 0.80 1.0 7.7

Table 4.2.: Shape and plasma parameters from the SF-like SN and SF equilibria: Plasma

triangularity δ, elongation κ, plasma inductance li, safety factors q0 and q95.

the X-point by keeping the boundary angles unchanged. To stay consistent with the

SF configurations, the total plasma current of the SN configuration was renormalized to

Ip = 320 kA. The shape and some plasma parameters of the synthetic equilibria are

given in table 4.2, the plasma boundaries are shown in figure 4.4.

4.2.2. Impact of bootstrap current on edge magnetic shear

In the SF configuration, safety factor q and magnetic shear s in the pedestal region are

expected to be than in a SN configuration [63]. However, a finite current density in the

pedestal region will reduce this increase in q and s. In reality, we have to take into

account a finite edge current fraction due to the bootstrap current jBS resulting from

the steep pressure gradient in the H-mode edge barrier. The q and s profiles with and

without including the bootstrap current were computed using the CHEASE code [14]

and are presented in figure 4.5 as function of the normalized toroidal flux ρφ =
√
φN .

We have to note that a finite edge current density may change the angle of the plasma

boundary close to the X-point(s) [66, 67]. This effect was neglected, since CHEASE is a

fixed-boundary code that cannot compute this self-consistently.

The comparison of the q-profiles between SN and SF, 4.5(a), yields a ratio of

qSF/qSN ∼ 2.2 between q of the SF and SF-like SN at the separatrix, when the boot-

strap current is not included, and to qSF/qSN ∼ 1.6, when it is included. A similar

behavior is observed for the shear profiles, when jBS is taken into account. The overall

change of edge q and s by including jBS is larger for the SF configuration. In the case

of SF+ and SF-, figure 4.5(b), the differences in the ratios qSF−/qSF+ ∼ 1.6 w/o. and

∼ 1.5 with jBS is somewhat less pronounced. In this case, the decrease in q and s when

adding the jBS is more important in the SF- configuration.

When comparing q and s of all configurations, one observes that the SF+ configura-
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Figure 4.5.: Safety factor q and magnetic shear s from the SF-like SN and SF equilibria as

function of ρφ: (a) SN and SF configuration with (solid line) and without (dashed

line) bootstrap current, (b) SF+ and SF- configuration with and without boot-

strap current and (c) all equilibria with the bootstrap current included.

tion exhibit an overall lower q. This is explained by the fact that its plasma surface is

smaller compared to the other configurations while having the same total plasma current

(compare with figure 4.4).

In terms of improved edge pedestal stability, high magnetic shear is desirable to stabi-

lize coupled kink-ballooning modes [18, 68]. We remark that the SF and SF- configuration

are more likely to provide high edge magnetic shear. However, in terms of actively control-

90



4. The snowflake divertor

ling the position of the two X-points during the plasma discharge, these two configurations

are the most difficult to handle.

4.2.3. Ideal MHD stability analysis of the edge pedestal region

The analysis of ideal MHD stability in the pedestal region was carried out with a confor-

mal and perfect conducting wall with rw = 1.2, instead of the TCV wall. This eliminates

effects of plasma-wall distances, being different for the various configurations, on mode

stabilization and hence ensures better comparability of the MHD-stability limits. By

choosing the conformal wall, we expect current-driven modes to be slightly more stable

than in the case of the TCV wall. In the equilibria, the maximum pressure gradient was

fixed at ρ0,ψ =
√
ψN = 0.984, where ρ =

√
ψN and the width of its peak was ∆ρ = 0.015.

The bootstrap current profile was aligned with the pressure gradient profile, so that the

ratios jedge/j(ρ0,ψ) ≈ 0.32 and p′edge/p
′(ρ0,ψ) ≈ 0.32 were constant. All equilibria were

renormalized to a total plasma current of Ip = 320 kA, a feasible value for H-mode

operation in TCV with such configurations.

For the stability diagram, we use the definition α ≡ −µ0p
′V ′
√
V/ (2π2R)/2π2 [35]

for the normalized pressure gradient at the point of its maximum in the pedestal, where

prime denotes d/dψ, p is the total pressure, V is the plasma volume, R the major radius

and ψ the poloidal flux. The normalized current density J///〈J〉 is taken at the position

where the pressure gradient is maximal. 〈J〉 is the total plasma current normalized to

the plasma cross sectional area. The method explaining the computation of the stability

map is described in subsection 2.3.4 of chapter 2. For the sake of clarity, only a condensed

form of the stability limits is shown here, figure 4.6. We refer the reader to subsection C.1

in appendix C, where all stability maps are given in detail.

The MHD-stability limit for each configuration is given by a solid or dashed line with

the respective color coding. In the gray region, all configurations become MHD-unstable.

From the experimental point of view, a pure SF configuration is difficult to sustain and

may eventually form a SF+ or SF- configuration. For that purpose, the region in which

the different SF configurations are marginal stable is represented in blue-gray color. The

points with a diagonal line as error bar correspond to the experimental values of α in

type-III H-mode. The large error bar reflects uncertainties in the measurement of the

electron pedestal pressure gradient and the determination of the total pressure gradient.

We observe that in general the SF configurations may improve stability, probably due
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4. The snowflake divertor

Figure 4.6.: Comparison of the edge pedestal stability of the SF-like SN and SF equilibria:

Shown are the stability limits of the SN, SF, SF+ and SF- configuration. Colored

lines depict the stability limits of each configuration. In the gray region, all

configurations are MHD-unstable. Some representative mode numbers n are given

for unstable external kinks.

to their higher magnetic shear in the pedestal region. Surprising is the better stability of

the SF-, especially against ballooning modes, when compared to the true SF configuration.

In the following, a more detailed analysis of the most unstable modes is given.

Ballooning modes

The ballooning limits for the SN and SF configuration are comparable within certain

uncertainties due to the computation grid. This is due to the fact that pressure-driven

modes are less affected by magnetic shear than current-driven modes [18]. For the stability

of ballooning modes, the plasma boundary shape plays a more important role. Since the

last closed flux surface (LCFS) of both configurations and the length of magnetic field

lines in the bad curvature are comparable, only small differences in the ballooning limit

are expected.

The n → ∞ stability of the SF+ configuration is somewhat difficult to compare

with the other configurations, since triangularity and elongation, table 4.2, are reduced,

hence destabilizing pressure and current-driven modes [18]. In general, we can only
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conclude that its stability limit is not too different from a SN configuration, which is not

surprisingly considering the fact that, among all SF configurations, the SF+ magnetic

divertor region resembles the most a SN configuration. The SF- has a critical normalized

pressure gradient αcrit. which is ∼ 15% higher compared to the SF and SF-like SN in the

zero-bootstrap current limit. This difference originates from a somewhat larger value of

dV/dψ in the expression for α reflecting the fact that the magnetic divertor region is very

distinct and the poloidal flux ψ changes only little across the entire region whilst volume

does1.

Low-n external kinks

The n = 1 global kink mode becomes more unstable in the SF than in the SN which

is connected to the plasma current and q-profile, figure 4.7. In the case of the SF, the

proximity of the q = 4 rational surface to the separatrix, figure 4.7(b), leads to a desta-

bilization of the m/n = 4/1 mode, whereas in the SN this rational q surface does not

exist at the chosen current density, figure 4.7(a). We note that the shear reversal in the

pedestal region of the SF takes place at slightly higher J||/〈J〉 than in the SN, which

results from the fact that the magnetic shear in the SF is in general higher.

In the SF+, the global kink mode n = 1 is more unstable than in the SN configuration.

This is due to the fact that the equilibrium is renormalized to the same plasma current

with a somewhat smaller volume, hence leading to smaller values of q. The mode spectrum

of the SF+, figure 4.7(c), shows a destabilization of the m/n = 3/1 mode in the vicinity

of the inflection point in the q-profile, i.e. q′′ = 0 (shear reversal). The external kink

modes with low n are also more destabilized in the SF-, figure 4.7(d), which results from

shear reversal at a lower value of J||/〈J〉.
In general, we note that the stability limits of the low-n modes are strongly governed

by the shear reversal. The proximity of the inflection point q′′ = 0 to a rational q-surface

generally leads to a destabilization of modes related to this q-surface.

1Comparison with the cylindrical representation αcyl ≡ −2µ0R0

(
q2/B2

0

)
dp/dr, where R0 is the major

plasma radius, q the safety factor, B0 the toroidal field and dp/dr the pressure gradient, yields the

same tendencies.
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(d) SF-

Figure 4.7.: Mode structure versus the poloidal flux radius for n = 1 of (a) the SF-like SN,

(b) SF, (c) SF+ and (d) SF- configuration. The first three modes with the largest

normal displacement are shown and labeled by their poloidal mode number m.

The q-profile is plotted as bold black line. The equilibria were computed with

α ≈ 1.4, corresponding to the experimental value of the normalized pressure

gradient αexp, and J||/〈J〉 = 1.3.

Medium- and high-n external kinks

The destabilization of the medium and high-n modes appears at higher α in the case

of the SF compared to the SN, so that the MHD-stable region is expanded to higher

pressure gradients. This effect is mainly due to increased edge magnetic shear in this

configuration and agrees well with the literature, where coupled kink-ballooning modes

are stabilized at higher magnetic shear [18, 68].
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Regarding the medium and high-n stability limits of the SF+ and SF- configurations,

which have both similar magnetic shear profiles in the pedestal region, the SF+ resembles

more the SN while the SF- is clearly more SF-like. This is comprehensible since the

magnetic divertor topology of the SF+, two vertically aligned X-points, is closer to a

SN than to a SF-configuration. Additionally, medium- and high-n are certainly more

unstable due to a decreased δ and κ in this configuration. The SF- gains in stability

of medium- and high-n current-driven modes in respect to the SN due to its increased

magnetic shear.

The results of the MHD-stability calculations show that some improvements in

pedestal stability can be achieved by employing a snowflake divertor. Furthermore, no

major disadvantages of this configuration in respect to vertical stability or low-n mode

destabilization was found, which encourages to give experimental evidence. However, this

analysis assumed that kinetic profiles are identical in all configurations and that the edge

barrier is located at the same radial position and has a fixed width. If the ELM charac-

teristics and/or energy confinement and transport properties are in some sense different

for each configuration, this assumption may not hold anymore and needs experimental

verification. Furthermore, improved shaping of a SN discharge may lead to the same

stability enhancement as seen for the SF.

4.3. Dependence of pedestal stability on plasma

parameters

The interpretation of the pedestal stability requires a thorough investigation of the sensi-

tivity of such an analysis on various plasma parameters. In the following, we will study

the influence of the radial position of the maximum pedestal pressure gradient, which is

inherent to the equilibrium, on the pedestal stability. Further, we want to investigate

if plasma shaping, which is accessible to external control, can further improve pedestal

stability. We will carry out this analysis for the SF, but, in general, these results are

universally valid.
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4.3.1. Procedures to modify equilibrium

In order to investigate the dependence of the edge pedestal stability upon plasma shaping

and radial position of the edge barrier, a series of equilibria was constructed, where only

one single quantity was changed at a time.

For the purpose of studying the sensitivity of the analysis on shape, the upper plasma

boundary of LCFS has been modified in the following way:

1. The upper plasma boundary of the snowflake was fitted with the analytical formulas

R = R0 + a [1 + λ cos (θ)] cos (θ + δ sin (θ)− λ sin (2θ)) , (4.3.1)

Z = Z0 + κa sin(θ), (4.3.2)

where δ is the triangularity, κ the elongation, λ the squareness, a the minor radius

and (R0, Z0) the radial and vertical position of the magnetic axis.

2. One of the obtained shaping parameter was changed and the upper LCFS was

reconstructed with the formulas from above. The new plasma boundary was then

combined with the lower and unchanged part of the LCFS.

3. A self consistent plasma equilibrium was computed with CHEASE; the total current

was renormalized to a fixed value.

The radial position of the barrier was adapted by rescaling the p′ and j|| profiles

from the reference discharge #32715 as function of the radial normalized poloidal flux

coordinate ρ =
√
ψN . This modification has also an impact on the plasma core, but is

negligible for the changes of ∆ρ0,ψ ≤ 4 × 10−3 used in these studies. Effects of the edge

current density on the plasma boundary shape close to the X-point(s) are neglected.

4.3.2. Radial position of the maximum pressure gradient

As noted before, a higher value of magnetic shear in the edge region of the plasma is

supposed to suppress coupled kink-ballooning modes [18, 68]. This gives the motivation

to investigate the role of the edge magnetic shear on the ideal MHD-stability limits and

to compare between SN and SF. For that purpose, the radial position of the maximum

pressure gradient and thus also bootstrap current is artificially varied. Note that in

the experiment, the barrier position cannot be directly controlled but will be defined by

plasma parameters and the equilibrium.
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ρ0,ψ jedge/j0 p′edge/p
′
0 qSN qSF sSN sSF

0.980 0.15 0.13 4.2 4.3 14 21

0.984 0.31 0.32 4.5 4.7 17 28

0.988 0.51 0.52 4.7 5.1 20 35

0.992 0.74 0.75 5.2 6.2 25 55

Table 4.3.: Some parameter of the MHD-stability analysis with varying radial position of the

maximum pressure gradient: jedge/j0 is the ratio between the parallel current

density at the separatrix and at the radial position of maximum pressure gradient,

p′edge/p
′
0 the ratio between pressure gradients at the same radial positions, safety

factor q and magnetic shear s for SN and SF.

Another reason for this study is to quantify the sensitivity of the stability analysis

on the radial position of the edge barrier, since uncertainties in the determination of this

position can easily appear due to uncertainties in the equilibrium reconstruction [67] and

profile fitting procedure [69].

For this purpose, the reference current density and pressure gradient profiles as

function of ρψ were mapped on a rescaled ρψ-axis, hence marginally stretching or

compressing the profiles. In the following step, the equilibrium was computed by

CHEASE and its total current rescaled to Ip = 320 kA. The ideal MHD-stability lim-

its were computed for the different radial positions of the maximum pressure gradient

ρ0,ψ = {0.980, 0.984, 0.988, 0.992}. For the sake of clarity, only a general representation

of the results is given here, figure 4.8. The detailed stability maps for each radial position

can be found in section C.2 of appendix C.

The gray region represents the MHD-unstable zone regardless of ρ0,ψ or the configura-

tion. The blue-colored region with black dashed lines as boundary depicts the variation

of the stability limits as function of ρ0,ψ for the SF, respectively, the magenta tube with

red dashed for the SN.

Table 4.3 gives the ratios between the parallel current density jedge/j0 and the pres-

sure gradient p′edge/p′0 at the separatrix and at the radial position of maximum pressure

gradient. Further, the safety factor q and magnetic shear s are given for SN and SF config-

urations. In the following, we want to summarize the differences between the individual

MHD-stability diagrams.
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(a) SF

(b) SN and SF

Figure 4.8.: Ideal MHD-stability limits of the pedestal as function of the radial position ρ0,ψ

of the maximum pressure gradient: (a) Pedestal stability of the SF as function of

ρ0,ψ = {0.980, 0.984, 0.988, 0.992}. (b). Comparison of the MHD limit of SF and

SF-like SN for the extrema ρ0,ψ = {0.980, 0.992}.
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ρ0,ψ qSF(q′′ = 0) qSN(q′′ = 0)

0.980 3.4 3.7

0.984 3.5 3.8

0.988 3.7 3.9

0.992 3.8 4.0

Table 4.4.: Inflection point (q′′ = 0, shear reversal) in the safety factor q profile for the radial

positions ρ0,ψ of the edge barrier in the SN and SF equilibria.

Ballooning modes

The ballooning stability boundary is shifted towards higher α’s for all configurations

when the radial position of the maximum pressure gradient ρ0,ψ increases, even for the

ideal ballooning limit, where J||/〈J〉 = 0. This effect is due to the sufficiently large q in

the edge region close to the separatrix, which increases the magnetic well and, therefore,

stabilizes pressure-driven instabilities.

Low-n external kinks

The stability limits of the global kink mode n = 1 do change by about 30%. The limiting

value of J||/〈J〉 for the n = 3, 5 modes is decreasing with increasing ρ0,ψ for both SN and

SF, which is the result of an increase of edge current. The mode structure exhibits modes

with large amplitudes appearing in the proximity of the rational surfaces q = 3 and 4,

where the magnetic shear is low. Table 4.4 gives the positions of the inflection points in

the q-profiles taken from the equilibria with α = αexp and J||/〈J〉 = 1.3.

Medium- and high-n external kinks

A general effect, being valid for SN and SF, is the destabilization of medium- and high-

n external kink modes when increasing ρ0,ψ. By increasing the parallel current density

close to the separatrix, one destabilizes these modes that close the access to the second

ballooning stable region. The medium- and high-n modes are more stable in the case of

the SF for all ρ0,ψ which results from the overall higher magnetic shear compared to the

SN (see table 4.3).

In summary, the results of the stability analysis strongly depend on the radial position
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of the maximum pressure gradient at the edge; small uncertainties in this position have

large effects. Therefore, a comparison between different configurations should be done

with identical profiles, if only the relative changes linked to the magnetic configuration

are of interest. We also conclude that the snowflake configuration has general advantages

in edge pedestal stability when compared to a single-null configuration. The pedestal

stability benefits from the somewhat higher magnetic shear in the SF, however, it remains

open whether the kinetic profiles in the SN and SF are comparable or if they exhibit

essential differences that may diminish the pedestal stability enhancement in the SF

configuration.

4.3.3. Upper triangularity and upper squareness

Plasma shaping is known to increase the β-limit and to stabilize certain classes of ideal and

resistive MHD instabilities [10]. Local changes in plasma triangularity and/or squareness

were found to influence the stability of ballooning and medium- and high-n kink modes [19,

70]. Here, we investigate the influence of these local changes of plasma shape on the

pedestal stability. These effects are expected to be valid also for SN configurations, as

reported in [20] or demonstrated in section 5.3, and give indications by how much the

plasma shape of a SN configuration has to be altered to obtain similar stability limits as

found for the SF.

The ideal MHD-stability limits of the pedestal were computed for a set of dif-

ferent upper triangularities δtop = {−0.25, 0, 0.25, 4} and upper squareness λtop =

{−0.15, 0.15, 0.30} in SF configuration. Once more, the detailed MHD-stability diagrams

can be found in the appendix C, section C.3 and C.4. A schematic representation of the

MHD-stability analysis for δtop and λtop are shown in figure 4.9 and 4.10, respectively.

The colored lines depict the stability limits of each configuration while the gray region

represents the MHD-unstable zone for all configurations. The mode numbers of unstable

external kinks are given in the corresponding color to δtop or κtop. In the following, the

differences in the ideal MHD-stability limits are shortly discussed.

Ballooning modes

Positive upper triangularity improves the stability of pressure-driven modes, which is

related to the Mercier criterion. It is related to the fact that for such cross sections a

magnetic field line has a relatively large fraction of its trajectory located in the favorable
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Figure 4.9.: Sensitivity of the MHD-stability limits of the pedestal upon upper triangularity

δtop: Schematic representation of the ideal MHD stability limits of the SF config-

uration for δtop = {−0.25, 0, 0.25, 0.4}.

curvature region on the high field side (HFS). Thus, decreasing the triangularity increases

the effective length of field lines in the bad curvature region and destabilizes the pressure-

driven modes. For such a case, an increase in the current density is required to reduce

the magnetic shear to a low value and to give access to the second ballooning stable

region [10].

The ballooning stability reacts only little on changes in upper squareness. Only for

high positive squareness, where field lines cover a somewhat longer distance in the bad

curvature region, noticeable destabilization takes place.

Low-n external kinks

The stability of low-n external kink modes for both δtop and λtop is rather limited by

J||/〈J〉 ∼ 1, hence less susceptible to shaping [19]. The stability limit of n = 1 is reduced

in the cases of δtop = −0.25 and δtop = −0.15, where modes appear in the mode structure

at q ∼ 4 and 5 close to the separatrix.
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Figure 4.10.: Sensitivity of the MHD-stability limits of the pedestal upon upper squareness

λtop: Schematic representation of the ideal MHD stability limits of the SF con-

figuration for λtop = {−0.15, 0.15, 0.3}.

Medium- and high-n external kinks

Increasing δtop or decreasing λtop improves the stability of external kink modes, mainly

medium- and high-n. We observe that δtop has a larger influence on the medium- and

high-n modes than λtop. At low value of δtop, the external kink and ballooning mode

couple at finite n and close access to the second stability region. Since the strength of

the coupling is a function of n, the second stability gap opens more easily for higher n

modes when shaping improves [18].

A change in squareness can be also seen as a modification of triangularity both on the

high field and low field side of the torus, so that a decrease in λtop has as consequence

an increase in δtop on HFS and LFS. Since the stability of external kink modes is more

susceptible to changes of the plasma boundary at the LFS, it is not surprisingly that

stability limits are modified by squareness in a similar manner as by triangularity.

4.3.4. Elongation

As for shaping of the plasma cross section at high triangularity and low squareness,

increased plasma elongation κ can stabilize certain classes of MHD instabilities and in-
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Figure 4.11.: Sensitivity of the MHD-stability limits of the pedestal upon elongation: Ideal

MHD stability limits of the SF for κ = {1.25, 1.50, 1.75, 2.00, 2.25}.

creases the β-limit, although very large values of κmay imply saturation of β [10]. Further,

transiting from one SF-configuration to another during a plasma discharge may eventu-

ally alter the plasma elongation due to changes in the divertor region. For that purpose,

it is necessary to investigate how sensitive the MHD stability limits of the pedestal are

to plasma elongation.

The ideal MHD-stability limits were computed for a set of different elongations κ =

{1.25, 1.50, 1.75, 2.00, 2.25} in SF configuration. For these equilibria, however, the plasma

current was not renormalized to one value but was increasing with κ such that q95 was

kept approximately constant. Again, the detailed MHD-stability diagrams can be found

in the appendix C, section C.5. A schematic representation of the MHD-stability is shown

in figure 4.11. Colored lines depict the stability limits of each configuration while the gray

region represents the MHD-unstable zone for all configurations. The mode numbers of

unstable external kinks are given in the corresponding color to κ. We want to shortly

discuss the differences in the ideal MHD-stability limits in the following.

Ballooning modes

It is evident that an increase in κ strongly improves the ballooning stability. A com-

bination of elongation and positive triangularity is, according to the Mercier criterion,
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stabilizing for n→∞ modes [6, 10]. This is related to the fact that for this plasma shape

a magnetic line has a relatively large fraction of its trajectory located in the favorable

curvature region on the inside of the torus.

Low-n external kinks

As in the former cases with modified triangularity or squareness, the stability limit of

low-n external kinks is set by J||/〈J〉 ∼ 1 and does not change significantly as function

of κ.

Medium- and high-n external kinks

Medium- and high-n external kink modes are strongly stabilized by increased κ. The

magnetic well increases with increasing κ, hence suppressing short-wavelength radial

pressure-driven instabilities. This leads, at finite n, to a decoupling of external kink

and ballooning modes providing access to the second ballooning stable region.

In summary, the MHD stability of the pedestal is highly sensitive on the plasma

shaping parameters. Already small changes in one shaping parameter can have strong

influences on the critical pressure gradient in the pedestal region, if it is limited by ideal

MHD. The stability limit of current-driven modes is most sensitive to triangularity and

elongation, whereas ballooning stability is more sensitive to elongation. In experiments,

particular attention is required to maintain shaping parameters as close as possible when

comparing the individual SN and SF-configuration.

4.4. Snowflake experiments

This section is dedicated to the snowflake diverted type-I ELMy H-mode experiments on

TCV [71]. It presents experimental results from a discharge in H-mode which transits

from a SN to a SF+ configuration. The edge pedestal properties from Thomson scattering

measurements are presented for both configurations. Safety factor and magnetic shear

are computed including the collisional bootstrap current density based on the kinetic

profiles. Finally, the stability of the edge pedestal from experiment is analyzed in the

frame of ideal MHD.
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Figure 4.12.: (a) SN and (b) SF+ configuration in H-mode: The ECH-X3 beam, injected from

the top of TCV, is shown in red together with the location of the resonance layer.

The ECH-X2 beam, injected from the low-field side, is presented in blue. The

null-points are marked as X’s, the strike-points enumerated. (c) Comparison of

the LCFS of the SN (black) and the SF+ (red) configuration.

4.4.1. H-mode experiments on TCV

The SF+ configuration with its two vertically aligned X-points was chosen to demonstrate

SF diverted H-mode on TCV [64]. This choice was made because the plasma shape of

the SF+ resembles most the SN shape. Additional fine-tuning of the SN and SF+ shapes

provided a good matching of the LCFS, thus minimizing influences of plasma shape on

the pedestal stability. Furthermore, out of the three possible SF configurations, it is the

easiest to achieve under experimental conditions on TCV.

The SF+ and its equivalent SN configuration are shown in Fig. 4.12(a) and (b), re-

spectively. In the two scenarios, the B × ∇B ion-drift is directed towards the X-point.

The plasma current was Ip = 300 kA at a toroidal magnetic field of 1.43 T. The plasma

was heated with 1.5 MW of ECH: 1 MW injected at the 3rd electron cyclotron harmonic

(X3) from the top of TCV and 0.5MW injected from the low-field side (LFS) at the 2nd

harmonic (X2). The absorbed fraction computed by the ray tracing code TORAY-GA [5]

was 75% for the X3, primarily in the core region, and 100% for the X2, localized near

the plasma edge. Differences between the two shapes are only significant in the null
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Figure 4.13.: Plasma parameters of SN and SF+ configuration in H-mode: (a) Hα edge emis-

sion detected by a wide-angle filtered photodiode at the top of the vessel; (b)

volume averaged electron plasma temperature TeV ; (c) line averaged electron

plasma density nel; (d) ohmic power POH (red solid line), ECH-X2 power PX2

(black dashed line), ECH-X3 power PX3 (red dashed line), and total ECH power

PECH (black solid line).

point region where the larger flux expansion of the SF+ configuration results in a small

modification of the plasma separatrix geometry. For comparison, the LCFS of the two

configurations are shown in Fig. 4.12(c).

At the transition from SN to SF, which is visible in figure 4.13 by a change in the Hα

signal, the X-point X2 is moved towards the main X-point X1 by changing the currents

in the poloidal coils. At the same time, the divertor recycling signal Hα is significantly

changed, figure 4.13. The ELM frequency νELM is 2-3 times lower and the ELM energy

loss normalized by the total plasma energy increases by ∼ 30%. The energy confinement

increases which, for constant input power, results in an increase of volume-integrated

electron temperature TeV by ∼ 15%, whilst the line-integrated density is kept constant.
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Figure 4.14.: ELM frequency variation as a function of (a) the plasma elongation and (b) the

position of the X2 absorption for the SN (black) and the SF+ (red) configura-

tions. The solid points represent the reference scenario.

Experiments investigating the dependence of ELM frequency and amplitude upon

plasma elongation and ECH deposition location revealed that, within the uncertainty

range, the difference of ELM behavior between both configurations is indeed due to the

different null-point topology and not to the change in plasma elongation, figures 4.14(a)

and (b).

4.4.2. Edge pedestal properties

The temperature and density pedestal profiles were measured by Thomson scattering for

the SN and the SF+ configurations. The edge profile data was taken from the last 20%

(∼ 2 ms for SF, ∼ 1 ms for SN) of the time interval before the ELM crash and fitted by

a modified-tanh function, equation (3.6.1), and is shown in figure 4.15(a). No significant

difference in the pedestal profiles is visible, except for a slightly steeper temperature

gradient just inside the pedestal region and a slightly larger density pedestal width of

the SF+ configuration. The pedestal quantities from profile fitting by equation (3.6.1)

are given in table 4.5. We notify that the measured normalized pedestal gradient R/Lx
exceeds the limits set by the spatial resolution of the edge Thomson scattering system

(compare with table 3.1 in subsection 3.3.1). Therefore, the measured gradients are

already affected by smoothing.

The safety factor and magnetic shear (here s = (ρvol/q) (dq/ρvol), where ρvol is the

normalized radius calculated as
√
V (ψ)/Vtot) is computed for the two configurations using

CHEASE and is shown in Fig. 4.15(b). Inclusion of the collisional edge bootstrap current,

calculated from the electron temperature and density profiles [13], decreases the edge

safety factor from qSF+ = 7.5→ 4.5 and the edge magnetic shear from sSF+ = 124→ 43
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Figure 4.15.: (a) Electron temperature Te and density ne profiles for SN (blue) and SF+ (red)

configuration as function of normalized radius ρvol. For comparison, the q/4- and

s/4-profile including the edge bootstrap current calculated from the profiles are

shown as dashed lines. (b) Safety factor q and magnetic shear s from equilibrium

with ohmic profile only (dashed line) and including the bootstrap current (solid

line) versus ρvol for SN (blue) and SF+ (red) configuration.

SN SF+

Te,ped [eV] 465± 40 480± 80

∆Te [mm] 5.8± 0.6 6.1± 0.4

R0/LTe 290± 50 275± 45

ne,ped [1019m−3] 2.7± 0.2 2.8± 0.2

∆ne [mm] 8.6± 0.6 9.8± 0.6

R0/Lne 190± 30 165± 30

Table 4.5.: Pedestal profile quantities of the SN and SF+ configuration: Electron temperature

pedestal height Te,ped, width ∆Te and normalized gradient R0/LTe and, respec-

tively, the quantities of the electron density pedestal, where R0 = 0.88 m is the

major radius.

for the SF+, and also decreases qSN = 4.0 → 3.3 and sSN = 67 → 28 for the SN. The

SF+ configuration has ∼ 1.4 times higher magnetic shear and safety factor just inside

the plasma separatrix and a slightly lower bootstrap current fraction.

The experimental profiles confirm the trends of assumptions taken earlier, which were

presented in subsection 4.2.2. We remind that edge safety factor and edge magnetic shear,
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when the bootstrap current is included, were qSF+ = 5.2 and sSF+ = 57 and qSN = 5.7

and sSN = 31 for the model equilibria. Although the absolute values differ, especially for

the safety factor, the qualitative results are similar.

4.4.3. MHD stability of the edge pedestal

An analysis of the stability of the plasma edge was undertaken to assess the nature of

the ELMs for the two configurations. For the ideal MHD analysis, a conformal and

perfectly conducting wall with rw = 1.2 was chosen to ensure good comparability of the

results for the two configurations. The mode stability was computed on a grid with size

Nχ ×Nψ = 320× 320; the growth rate γ was extrapolated for infinite grid size assuming

inverse quadratic convergence in γ as function of the grid size [36]. Figure 4.16 shows the

MHD stability diagrams in the space of normalized parallel current density in the pedestal

(J‖/<J>) versus the normalized pressure gradient α ≡ µ0p
′V ′
√
V/ (2π2R0)/ (2π2) [72],

where prime denotes d/dψ.

The ballooning unstable region is marked by red crosses, its boundary by a thick solid

red line. The external kink modes modes are represented by solid cyan lines with toroidal

mode numbers n, added. High-n external kink modes are stabilized by diamagnetic

effects (section 2.3.3); the maximal number for unstable toroidal modes is nmax ∼ 20 for

the SF+ and nmax ∼ 25 for the SN calculated by equation (2.3.17). The black square

and cross represents the operational point obtained from the equilibrium including the

bootstrap current density under the assumption of Ti = Te. The ion temperature has been

measured by Charge eXchange Recombination Spectroscopy (CXRS) near the plasma

edge for similar discharges (see subsection 3.6.3). The ion density is scaled from ne by

equation (3.6.2) with Zeff = 3 from conductivity calculations and C6+ as single impurity.

The uncertainties in the parameters of the operational point (square) are indicated by

horizontal and vertical bars. The horizontal error bar is determined by progression of

the uncertainty in the measurement of the edge electron pressure gradient into the total

pressure gradient using above assumptions for the ion contribution. The vertical error

bar represents the uncertainty in the bootstrap current estimation. The uncertainty in

the ion contribution can only be estimated, since no appropriate ion pressure gradient

measurements are available till today. The horizontal dashed line represents the limit for

local reversal of the magnetic shear s near the edge. A diagonal dash-dotted line refers
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configuration q0 q95 κ δtop δbot

SN ∼ 1 ∼ 2.3 1.7 0.16 0.22

SF ∼ 1 ∼ 2.6 1.8 0.16 0.28

Table 4.6.: Safety factor q and shape parameters elongation κ, upper and lower triangularity

δtop and δbot for SN and SF+ phase of discharge #39874.
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Figure 4.16.: Ideal MHD-stability maps of the edge pedestal for (a) the SN and (b) the SF+

phase of discharge #39874.

to the collisionless bootstrap current. Some representative plasma parameters of the SN

and SF+ phases of discharge #39874 are given in table 4.6.

Figures 4.16(a) and 4.16(b) show that the second stability region is slightly larger for

the SF+ configuration, i.e. coupled kink-ballooning modes at intermediate-high toroidal

mode numbers are more stable, whereas low-n modes are less stable. This is a general

feature of SF configurations and was also confirmed when calculating the stability diagram

with identical profiles (compare with subsection 4.2.3). The experimental point of the

SF+ has ∼ 20% higher normalized pressure gradient (αSNmax ∼= 2.6 and αSF+
max

∼= 3.1).

Furthermore, the ideal ballooning limit αcrit, i.e. where J||/〈J〉 = 0, is shifted towards

higher α’s for the SF+ (αSNcrit ∼= 1.94 and αSF+
crit

∼= 2.16). These differences are mainly

caused by an increase in the term dV/dψ in the expression for α, which is due to the

null-point topology. In the SF+, the poloidal magnetic field changes less quickly in a

relatively large volume in the null-point region than in the SN.

It remains unclear if the improvement in edge stability of the SF+ is sufficient to
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explain the difference in ELM characteristics between the two configurations. It may

partly explain the increases in plasma energy and ELM energy loss which has been also

observed in plasmas with stronger shaping, where the second ballooning stable region is

also enlarged [25, 70, 73, 74]. However, it cannot give an explanation for the fundamental

change in ELM frequency. It is also possible that small differences in the pedestal electron

pressure gradient of both configurations are smoothed by the limited spatial resolution of

the edge Thomson scattering diagnostic. Further improvements in the spatial resolution

of the edge Thomson scattering system and measurement of the ion contribution are

required to obtain a more accurate information about the edge pedestal.

4.5. Conclusion

In this chapter we addressed the MHD stability of the pedestal region in the SF diverted

H-mode. The analysis of a set of equilibria revealed that an enhancement of pedestal

stability is indeed possible in a SF configuration due to increased edge magnetic shear.

A study was performed to investigate the sensitivity of the analysis on the radial

position of the maximum pressure gradient. It was found that the MHD limits strongly

depend on the barrier position, whose exact determination from the experiment point

of view is particularly challenging. In general, due to its higher magnetic shear in the

edge, the snowflake remains the more stable configuration when radially shifting the edge

barrier.

Plasma shaping has significant effects on the stability of the pedestal and needs to be

taken into account when comparing different configurations. One may also want to use

shaping to optimize the configuration in terms of pedestal characteristics, stability and

ELM behavior.

Measurements in H-mode conditions revealed that there are no significant differences

in the pedestal quantities between the SN and SF+ configuration. Even if the absolute

values measured may suffer from smoothing, a comparison is still possible, since signif-

icant differences would be visible. More accurate measurements would be needed for

verification.

The MHD stability calculations predict slightly more favorable limits for the pressure

gradient in the case of the SF+. While a higher ELM energy loss in the SF+ may be

explained by this result, it remains unclear what causes the fundamental change in ELM

frequency.
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In this chapter we investigate the H-mode scenarios in TCV. The general H-mode pedestal

and profile behavior is studied in a machine with dominant electron heating. A general

survey of all the parameters, for which a possible scaling is extractable, is presented.

The ELM regimes are analyzed, the transition between type-III to type-I ELMs is

described. The operational boundary of each ELM regime is shown and verified by

ideal MHD stability simulations of the edge pedestal. Further, we analyze the edge

pedestal properties as pedestal height, width and gradient and their influences on global

plasma parameters and confirm the scaling of the pressure pedestal width as a function of

normalized poloidal pressure. Finally, the dependence of pedestal properties upon plasma

shaping is investigated and verified by ideal MHD stability calculations for the pedestal

region.

We will note where results are obtained in agreement or disagreement with previous

publications and where data is not sufficient to test the current view.

5.1. H-mode regimes with type-III, large and type-I

ELMs

On TCV, the L- to H-mode transition can be achieved by Ohmic heating alone. A stable

ELMy H-mode discharge is sustained by ohmic power only within a narrow parameter

space: the line-integrated density nel ∼ 2.5−4.5×1019 m2, ohmic power Pohm ≈ 500 kW,

safety factor 2 < q95 < 4 (at 95% normalized poloidal flux radius), plasma elongation

1.6 ≤ κ ≤ 1.8 and triangularity 0.2 ≤ δ ≤ 0.5.

In the past, the lack of additional heating power limited initially the operational space,

but also made a study of pedestal and ELM properties as a function of heating power
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Parameter SN SF-like SN and SF+

Ip [kA] 330− 480 230− 320

q0 0.7− 1.1 0.7− 1.5

q95 1.8− 2.3 1.9− 2.7

nel [1019m−2] 2.6− 5.4 1.9− 6.7

ne,ped [m−3] 2.4− 4.7 1.5− 5.4

Te(0) [keV] 0.8− 3.2 0.7− 4.5

Te,ped [keV] 0.2− 0.7 0.2− 0.8

PECH,nom. [MW] 0− 2.0 0− 2.9

ν∗ped 0.35− 2.70 0.12− 10

κ 1.50− 1.90 1.65− 1.95

δ 0.15− 0.62 0.17− 0.26

δtop −0.30− 0.40 0.13− 0.22

δbot 0.55− 0.85 0.16− 0.36

λtop 0− 0.15 0

Table 5.1.: H-mode plasma parameters for single null (SN), snowflake plus (SF+) and SF-like

SN configurations: Plasma current Ip, safety factor q0 and q95, line-integrated

electron density nel, central electron temperature Te(0), pedestal electron density

ne,ped, temperature Te,ped and collisionality, nominal EC-heating power PECH,nom.,

plasma shaping parameters elongation κ, total δ, upper and lower triangularity

δtop and δbot and upper squareness λtop.

impossible. With the availability of electron cyclotron heating at the 3rd harmonic, which

can efficiently heat the high density H-mode discharges, a more thorough investigation

of the H-mode properties in presence of plasma heating became possible.

This section addresses the classification of observed ELM types, discusses the role

of the heating power on ELM energy loss, on pedestal properties and on the opera-

tional boundary and verifies pedestal scaling models. The analysis is based on H-mode

discharges with a parameter space listed in table 5.1. In the following, we make a distinc-

tion between SN and SF or SF-like configurations for the reason that latter had, besides

X3-heating, additional X2-heating in the plasma edge at the normalized poloidal flux

radius ρabs ≈ 0.9 − 0.95. This feature is unique to these configurations because of their

edge density below the X2 cut-off and their vertical position being advantageously for
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#40894 − 0.850s

(a)

#40346 − 1.255s

(b)

#40378 − 1.253s
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#40350 − 1.255s

(d)

#40103 − 1.150s

(e)

#39874 − 0.600s

(f)

#39874 − 1.200s

(g)

Figure 5.1.: H-mode plasma shapes and their symbolic representation in figures: (a) standard

single null (SN) configuration with elongation κ ∼ 1.7, upper triangularity δtop =

0.23 and upper squareness λtop = 0 [�]. (b) SN with κ ∼ 1.5 [�] and (c) with

κ ∼ 1.9 [�], where δtop = 0.23 and λtop = 0. (d) SN with δtop = −0.25 [J], (e)

with λtop = 0.15, (f) Snowflake-like single-null (SF-like SN) [•] and (g) snowflake

plus (SF+) [H].

the mid-plane X2-launcher. For the figures, the following identification of the magnetic

configurations is kept throughout the chapter, if more than one configuration is shown at

the same time: � single-null (SN) with δtop > 0 and κ = 1.5 − 1.9, J SN with δtop < 0

and κ = 1.7, H snowflake plus (SF+) and • snowflake-like single-null (SF-like SN).

5.1.1. Influence of the input power on the ELM characteristics

On TCV, the typical type-III ELM frequency is fELM ∼ 100− 300 Hz with ELM power

loss normalized to the total plasma energy ∆WELM/Wtot ∼ 7−2% using the diamagnetic

loop, respectively, figure 5.2. This class of ELMs occurs for heating power Ptot < 0.8 MW,

where Ptot = Pohm + PECH with Pohm the ohmic and PECH the absorbed EC-heating

power. Observation of their frequency as a function of Ptot show a slowdown when in-

creasing Ptot while their ELM amplitude increases. This is consistent with the accustomed

definition dfELM/dPsep < 0 [15], where Psep is the power crossing the separatrix (see sub-

section 2.2.1). Above this power threshold one enters the region where large ELMs occur

with fELM ∼ 100 − 35 Hz and ∆WELM/Wtot ∼ 8 − 25%, where an increase in heating

power leads to a decrease in ELM frequency. Further increase in heating power acceler-

ates the ELM frequency, ranging between 35−300 Hz, and decreases the normalized ELM

power loss ∆WELM/Wtot ∼ 25−10%, respectively, which is consistent with the definition
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Figure 5.2.: ELM energy loss versus ELM frequency: ELM energy loss ∆WELM normalized

by total plasma energy Wtot versus the ELM frequency fELM , resolved by the

logarithmic collisionality ν∗ped at the pedestal top.

dfELM/dPsep > 0 of type-I ELMs. Figure 5.3 shows examples of the divertor recycling

signal, Dα emission, for H-mode discharges with different EC-heating power. Also given

is the time averaged ELM frequency fELM and the ELM energy loss normalized to the

total plasma energy ∆WELM/Wtot.

The ELM frequency is plotted in figure 5.4 as a function of the reciprocal normalized

pedestal collisionality ν∗ped, which is a rough measure of the heating power Ptot. The

normalized pedestal collisionality is defined by ν∗ped = 10−14 ZeffR0ne,pedT
−2
e,ped [75], where

Zeff = 3 and ne,ped and Te,ped are electron density and temperature at the top of the

pedestal.

We observe the typical type-III ELM behavior below a total absorbed power threshold

of approximately 0.8 MW. The strong variations in fELM in this region may be ascribed

to different plasma properties, shapes, SN and SF+ divertor. When exceeding the power

threshold, a speed-up of fELM is observed, followed by a separation in ELM behavior of

the SF+ and SF-like SN divertor configuration.

Interesting is the clear separation between SF+ and SF-like SN configuration while

heating power increases. The ELMs are less frequent in the SF+ than in a comparable SN

configuration. This seems to be linked to the improved edge pedestal stability properties

of the SF+ configuration caused by higher magnetic shear in the edge [21, 71]. Pedestal

measurements by Thomson scattering in comparable SF+ and SF-like SN discharges,
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Figure 5.3.: Examples of normalized Dα emission: a) resistive type-III ELMs (unfavorable ion

B×∇B drift), b) type-III ELMs close to ideal ballooning limit, c) type-III ELMs

with additional EC-heating of PECH ∼ 0.5 MW (X3-only), d) large ELMs at

PECH ∼ 1.0 MW (X3-only, change in ELM frequency and amplitude for t < 0.9 s

is caused by an increase in density) and e) type-I ELMs at PECH ∼ 2.0 MW

(X3+O2). The gray box represents the time interval in which averaged ELM

frequency fELM and relative ELM energy loss ∆WELM/Wtot were computed.

however, did not reveal significant differences in the edge pedestal height, width and

gradient (see subsection 4.4.2) requiring further studies to clarify this issue.

Another way to represent the data is to plot the ELM energy loss normalized to the

total plasma energy, ∆WELM/Wtot, and the fractional power loss per ELM, ∆WELM ×
fELM/Ptot as a function of the pedestal collisionality, figure 5.5. The relative ELM energy

loss increases gradually with decreasing pedestal collisionality, figure 5.5(a). Large ELMs

occur at ν∗ped ∼ 1 (− log(ν∗ped) ∼ 0) indicating the region of transition between type-III

and type-I ELMs. The ELM amplitude decreases for ν∗ped < 0.5 (− log(ν∗ped) > 0.3). No
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Figure 5.4.: ELM frequency versus reciprocal collisionality: ELM frequency fELM averaged

over the stationary ELMy phase of each discharge; collisionality ν∗ped computed

from the edge pedestal fit of Te and ne of the stationary ELMy phase, resolved by

the pedestal top electron temperature Te,ped. Grey dashed line represent approxi-

mately the absorbed ECH power. At low ν∗ped, i.e. high ECH power, we observe

the typical type-I ELM behavior, however, more pronounced in the SF-like SN

than SF+ configuration.
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Figure 5.5.: Fractional power loss per ELM: (a) Energy loss per ELM normalized to the total

plasma energy and (b) fractional power loss per ELM, ∆WELM × fELM/Ptot,

versus the logarithmic pedestal collisionality, resolved by the electron temperature

Te,ped at the pedestal top.

117



5. H-mode scenarios in TCV

striking difference can be seen between the two magnetic configurations, SF+ and SF-like

SN.

The fractional power loss per ELM, figure 5.5(b), remains approximately constant at

∼ 25% over a large range of ν∗ped = 0.5 − 4. Note that the large scatter in the data

is introduced by the normalization of the ELM power loss by the absorbed total power

Ptot = Pohm+PECH , where uncertainties are large for PECH . For low pedestal collisionality,

ν∗ped < 0.5, we observe a separation of SF+ and SF-like SN discharges. Discharges with SN

divertor remain at ratios of ∼ 25 − 35%, while SF+ diverted discharges have a reduced

power loss per ELM, ranging between ∼ 10 − 25%. This behavior is due to the very

different ELM frequency of both configurations at high ECH power, whilst the ELM size

in both configurations is somewhat comparable.

The ELM frequency increases gradually with power in the case of the SN, while it

increases only little or even saturates at ∼ 100 Hz in the case of the SF+. Therefore, the

normalized ELM power loss in the SF+ is lowered by 10− 15% with respect to the SN at

the same total absorbed power (see also figure 5.4). The reason for this behavior is still

unclear.

5.1.2. Operational boundary in pedestal region in ELMy H-mode

plasmas

The classification of ELM behavior as a function of the pedestal properties, i.e. in the

space of pedestal density ne,ped and pedestal Te,ped, provides some insight into the opera-

tional domain. The electron temperature and density profiles were measured by Thomson

scattering. The inter-ELM edge profiles of the whole stationary ELMy phase were av-

eraged and fitted by a modified hyper-tangent function, equation (3.6.1). The pedestal

heights are shown in figure 5.6 together with the ideal MHD stability limits of the pedestal

region described by pe,ped ∼ const. contours obtained from an approximation of the criti-

cal normalized pressure gradient α for large-n ballooning and intermediate-n kink modes.

The normalized pressure gradient is obtained from edge pedestal stability calcula-

tions (see subsection 5.3.3). The critical values for ballooning stability, αb = 2.75, and

intermediate-n kink stability for SN, αk,SN = 4.0, and SF+, αk,SF = 4.9, configuration

have been found to represent well the chosen class of plasma parameters (κ ∼ 1.7, δtop > 0,

λtop ∼ 0, q95 ∼ 2.5). In order to compute the stability limit contour in the n − T space,

the cylindrical approximation αcyl ≡ −2µ0R0 (q2/B2
0) dp/dr was used, where R0 is the
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Figure 5.6.: Operational boundary in pedestal region: The H-mode threshold, Alfvén drift

wave stability, is shown as dashed-pointed line. The limit of the critical normalized

pressure gradient for ballooning modes, αb, is represented by the dashed line.

External kink mode stability limits, αk, are depicted by the solid line for SN and

by the dotted line for SF+ and SF-like SN shots.

major plasma radius, q the safety factor, B0 the toroidal field and dp/dr the pressure

gradient. We assume pe ≈ pi and use for the sake of generality q = 2.5, B0 = 1.43 T and

dp/dr ≈ p/∆r with ∆r = 10 mm as width of the pedestal. Note that these assumptions

do not necessarily hold for all discharges, as will be shown in subsections 5.1.3 and 5.1.4.

The Alfvén drift wave stability boundary, equations (2.2.4) and (2.2.3), is shown as

dash-dotted line for both approximations, ν∗ped ≷ 1. Below this boundary, discharges re-

main in L-mode, at the boundary we observe L-H mode dithering. Above the boundary,

type-III ELMs occur, whose pedestal temperature is low (Te,ped ∼ 200 eV). They are

characterized by their high ELM frequency fELM ∼ 180− 300 Hz with relatively low nor-

malized power loss per ELM ∆WELM/Wtot ∼ 2− 5%. These discharges are distinguished

by Ptot ' Pthresh, which is often the case for ohmic discharges where the ion B×∇B drift

points away from the X-point.

In configurations with favorable ion drift, i.e. ion drift towards the X-point, and

ohmic heating, where Ptot > Pthesh and Te,ped ∼ 250 − 400 eV, we enter the region
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where the pedestal pressure gradient is limited by ideal ballooning modes, represented

as αb (see also section 6.3). The ELMs are of type-III with fELM ∼ 70 − 100 Hz and

∆WELM/Wtot ∼ 8 − 12%. Adding additional ECH power increases further Te,ped to

values ranging in between 400 − 500 eV, approaching the external kink stability limit.

The ELM frequency decreases to ∼ 40 Hz, their amplitude increases up to values of

∆WELM/Wtot ∼ 20 − 25% (large ELMs). Further increasing the ECH power, type-I

ELMs occur, where the pedestal is limited by current-driven modes represented as αk,SN .

The ELM frequency increases with power, fELM ∼ 40 → 350 Hz, and their amplitude

decreases, ∆WELM/Wtot ∼ 25→ 10%.

The edge temperature for type-III ELMs appears to be independent of the density at

high values of pedestal density, ne,ped ≥ 3.5× 1019 m3, and follows a n×T = const. curve

at low density. This may be explained by change in the underlying physics due to the

transition from resistive to ideal type-III ELMs at lower collisionality.

The limit of pped associated with type-I ELMs generally correspond to a hyperbolic

curve in n− T space [17] and is represented by the αk,SN -limit in figure 5.6. We observe

that the increase of ne,ped accompanies the decrease of Te,ped, as effect of the increasing

collisionality, so that the pedestal pressure pe,ped and hence the kinetic energy stored in

the pedestal are kept constant. This is due to the fact that the limitation of pped is

imposed by the destabilization of type-I ELMs.

5.1.3. Properties of the electron pedestal parameters

We want to study the impact of additional EC-heating on the pedestal height, width and

maximum gradient. Since we have to face important uncertainties in the determination of

the absorbed X3-power (see subsection 1.2.2), we use pedestal temperature and collision-

ality as a measure of total input power. The absorbed X3-power increases with increasing

temperature and is maximal at central electron densities of 4−6×1019 m−3 (corresponds

to ne,ped ∼ 3 − 4.5 × 1019 m−3). Here, we concentrate on the electron temperature and

density pedestal only and want to describe their trends, independently of their underlying

physics, as polynomial of 1st order and as power law. A more complete analysis including

physical models is presented in subsection 5.1.4, where the scaling of the pressure pedestal

width with the normalized poloidal pressure βθ [33] is analyzed. The following analysis

includes pedestal measurements from 115 H-mode discharges in single-null configuration

with various plasma shaping, whose plasma parameters are given in table 5.1. Note that
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the SF-like SN and SF configurations are excluded from this analysis because of the fact

that pedestal properties may be affected by the X2-heating in the pedestal region.

Electron temperature pedestal

Figure 5.7 shows the normalized electron temperature pedestal width ∆Te/R0 and max-

imum pedestal gradient ∇Te as a function of the electron pedestal temperature height

Te,ped and density height ne,ped, where R0 is the major radius. Figures 5.7(a) and 5.7(b)

indicate that ∆Te/R0 scales differently for low and high pedestal collisionality ν∗ped. We

observe the following tendencies:

• for ν∗ped > 0.6 (− log(ν∗ped) < 0.2), ∆Te/R0 increases weaker than linearly as a

function of Te,ped (1/LTe increases faster than Te,ped) and decreases weakly as a

function of ne,ped

• for ν∗ped < 0.6 (− log(ν∗ped) > 0.2), ∆Te/R0 decreases strongly as a function of Te,ped
(fast increase in 1/LTe) and increases as a function of ne,ped

• ∆Te/R0’s of the discharges with negative upper triangularity (δtop < 0) are clearly

separated from discharges with δtop > 0

Figures 5.7(c) and 5.7(d) show the same bifurcation in ∇Te for the two different collision-

ality regimes ν∗ped ≷ 0.6 as was found for ∆Te/R0:

• for ν∗ped > 0.6 (− log(ν∗ped) < 0.2), ∇Te increases weaker than linearly as a function

of Te,ped (1/LTe decreases weakly) and is a linear function of ne,ped

• for ν∗ped < 0.6 (− log(ν∗ped) > 0.2), ∇Te strongly increases with Te,ped (1/LTe in-

creases) and strongly decreases with ne,ped, i.e. 1/LTe is maximal at low collisional-

ity

The results from the polynomial and power law scaling of ∆Te/R0 and ∇Te as a function

of Te,ped and ne,ped for ν∗ped ≷ 0.6 are listed in table 5.2.

Electron density pedestal

Figure 5.8 shows the normalized electron density pedestal width ∆ne/R0 and maximum

pedestal gradient ∇ne as a function of Te,ped and ne,ped. Figures 5.8(a) and 5.8(b) show

that ∆ne/R0 scales similarly for low and high pedestal collisionality ν∗ped: ∆ne/R0 increases
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Figure 5.7.: Electron temperature pedestal properties: Normalized temperature pedestal

width ∆/R0 as a function of (a) pedestal temperature height Te,ped and (b)

pedestal density height ne,ped. Maximum temperature pedestal gradient ∇Te as

a function of (c) Te,ped and (d) ne,ped. The inverse temperature gradient scale

length ∇Te,ped/Te,ped as function of (e) Te,ped and (f) ne,ped.
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ν∗ped linear regression power law

∆Te/R0(Te,ped) > 0.6 +0.10Te,ped + 0.01 0.015T 0.2
e,ped

∆Te/R0(Te,ped) < 0.6 −0.05Te,ped + 0.03 0.003T−1.6
e,ped

∆Te/R0(ne,ped) 0.3− 3.0 n.a. n.a.

∇Te(Te,ped) > 0.6 +70Te,ped + 3 70T 0.9
e,ped

∇Te(Te,ped) < 0.6 +300Te,ped − 90 300T 2.5
e,ped

∇Te(ne,ped) 0.3− 3.0 n.a. n.a.

∇Te,ped/Te,ped(Te,ped) > 0.6 −32Te,ped + 90 70T−0.15
e,ped

∇Te,ped/Te,ped(Te,ped) < 0.6 400Te,ped − 80 320T 1.5
e,ped

∇Te,ped/Te,ped(ne,ped) 0.3− 3.0 n.a. n.a.

Table 5.2.: Temperature pedestal width ∆Te/R0 and gradient ∇Te as a function of pedestal

temperature Te,ped and density ne,ped. Dependencies are fitted by 1st order poly-

noms and power law for ν∗ped ≷ 0.6. Errors in the fit coefficients are below 10%.

weakly or is constant as a function of ne,ped (1/Lne increases) and increases as a function

of Te,ped. The data does not satisfy the model which predicts that ∆ne is proportional

to the characteristic neutral penetration depth and that the relation ∆ne ∝ 1/n
3/2
e,ped,

equation (2.2.18), should be approximately obeyed. Figures 5.8(c) and 5.8(d) show the

dependence of ∆ne/R0 and ∇ne as a function of ne,ped and Te,ped:

• ∇ne increases either linearly or more than linear with ne,ped (1/Lne increases)

• ∇ne generally decreases with Te,ped:

– discharges with negative upper triangularity have small ∇ne indicating deteri-

oration of the pedestal

– discharges in unfavorable ion drift directed away from the X-point exhibit

stronger density gradients than in favorable ion drift which is due to their

high ne,ped and relatively small ∆ne/R0

– ∇ne may be nearly constant for ν∗ped ∼ 0.6 → 2.0 (− log(ν∗ped) ∼ 0.2 → −0.4)

and standard parameters (δtop > 0, favorable ion B × ∇B drift) and slightly

decreasing for ν∗ped < 0.6

The polynomial and power law scaling of ∆ne/R0 and ∇ne as a function of Te,ped and

ne,ped for ν∗ped ∼ 0.3→ 3.0 are listed in table 5.3.
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Figure 5.8.: Electron density pedestal properties: Normalized density pedestal width ∆/R0 as

a function of (a) pedestal temperature height Te,ped and (b) and pedestal density

height ne,ped. Maximum density pedestal gradient ∇ne as a function of (c) Te,ped
and (d) ne,ped. The inverse density gradient scale length∇ne,ped/ne,ped as function
of (e) ne,ped and (f) Te,ped
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ν∗ped linear regression power law

∆ne/R0(ne,ped) 0.3− 3.0 n.a. n.a.

∆ne/R0(Te,ped) 0.3− 3.0 n.a. n.a.

∇ne(ne,ped) 0.3− 3.0 +140ne,ped − 160 50n1.5
e,ped

∇ne(Te,ped) 0.3− 3.0 n.a. n.a.

∇ne,ped/ne,ped(ne,ped) 0.3− 3.0 −140ne,ped − 150 50n−0.5
e,ped

∇ne,ped/ne,ped(Te,ped) 0.3− 3.0 n.a. n.a.

Table 5.3.: Density pedestal width ∆ne/R0 and gradient ∇ne as a function of pedestal temper-

ature Te,ped and density ne,ped fitted by 1st order polynoms and power law. Errors

in the fit coefficients are below 10%.

The bifurcation of the trends in the Te pedestal takes places in the range of ν∗ped ∼
0.6 → 0.8 where the transition from the type-III to type-I ELM regime occurs (see

subsection 5.1.2, figure 5.6). In contrary, the density pedestal seems to be less affected by

this transition or more generally by the pedestal collisionality. Only in the case of ∇ne

we have indications of different behavior for discharges with δtop < 0 and high pedestal

collisionality (unfavorable ion B×∇B drift).

In general, the pressure pedestal width ∆p is expected to scale with the ion Larmor

radius as ∆p/R0 ∝ ργi , where γ = {1, 1/2, 2/3} is an exponent different for the respective

model (see also chapter 2, subsection 2.2.3). Since we have ρi ∝ T
1/2
i at constant toroidal

magnetic field, the pedestal width should increase with the pedestal temperature, which is

observed for the case of the electron density profile. In DIII-D H-mode discharges, both in

the initial ELM-free and in the later inter-ELM phase, it was found that ∆ne ∝ T
1/2
e,ped [69,

76], however, with the width measured in normalized poloidal flux. The exponent ∼ 2/5

found for the TCV discharges is rather close to 1/2.

One would expect that the above mentioned arguments should also explain to some

extent the behavior of the electron temperature width. This could be partly true for

ν∗ped > 0.6, however, an inverse trend of ∆Te as a function of Te,ped is seen for ν∗ped < 0.6.

It is not clear whether this effect can be only attributed to the transition from type-

III to type-I ELMy regime at ν∗ped ∼ 0.6, or if transport properties across the pedestal

change significantly at the same time. A possible explanation could be that cooling of the

pedestal at the very edge by re-ionization of neutrals has an impact on the temperature
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5. H-mode scenarios in TCV

pedestal width, and that it is more visible at higher Te,ped. Experiments with a more

thorough scan of pedestal collisionality would be needed to clarify this issue, but were

beyond the scope of this work.

As observed above, ne and Te are not independent from each other and, therefore,

make it necessary to investigate the scaling of the pressure pedestal width rather as

function of the pedestal pressure than its components.

5.1.4. Scaling of the pedestal width

Electromagnetic gyrofluid and gyrokinetic simulations [77, 78] have found the onset of

very strong electromagnetic turbulence near a critical value of the normalized pressure

gradient. This turbulence persists even when the ideal ballooning mode enters the second

stable regime that provides a mechanism for constraining the edge gradient.

Several models treating the scaling of the pedestal height and width as a function

of plasma parameters were developed to predict the limiting pressure gradient. Their

underlying physics is shortly discussed in subsection 2.2.3. Here, we want to test the

model developed by Osborne [33] and find how the pedestal width ∆ψ, where ψ represents

the normalized poloidal flux ψN , scales with the normalized poloidal pressure. We rewrite

equation (2.2.20) for the sake of clarity:

∆ψ = Cβγθ,ped, (5.1.1)

where βθ,ped = 2µ0pped/〈Bθ,ped〉2 is the local normalized poloidal pressure, 〈Bθ (ψ)〉 =∮
ψ
dlθBθ/

∮
ψ
dlθ the flux surface averaged poloidal field, pped ≈ 2ne,pedTe,ped. The position

of the barrier in normalized flux coordinates is given by ψped = 1−∆ψ.

We alter equation (5.1.1) such that we replace βped by a simplified expression,

βθ,ped,X ≡ 2µ0pped/B
2
θ,X , (5.1.2)

where Bθ,X = µ0Ip/Lp is an averaged poloidal magnetic field at the separatrix with perime-

ter Lp in the poloidal cross-section [35]. The main reason for re-defining equation (5.1.1)

is the reduction of uncertainties caused by the 〈Bθ〉2 term. The poloidal magnetic field

is computed from the equilibrium reconstruction LIUQE [11], which does not take into

account the bootstrap current in the pedestal region. Another advantage of this choice is

a better comparability of the results with calculations of the edge pedestal stability [21].

For reduction of errors, the total 3870 time slices of SN diverted discharges in the

database are averaged in the time interval of the stationary phase of each discharge thus
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Figure 5.9.: Normalized poloidal pressure βθ,ped at the pedestal top as a function of a simplified

normalized poloidal pressure βθ,ped,X at the pedestal top with the relation βθ,ped '
2.34βθ,ped,X from linear regression, dashed red line.

providing values averaged over the whole ELM cycle. SF and SF-like SN discharges are

not included in the analysis because of their X2-heating close to the edge pedestal top.

The edge profiles measured by Thomson scattering in the inter-ELM phase were fitted

for each shot. All further quantities are derived from these averages, encompassing the

data of 115 discharges, and are plotted using cross and plus signs. The data is binned

according to values of the abscissa and weighted averaging is employed one the data in

each individual bin. Horizontal error bars reflect the width of the bins, vertical error bars

reflect the data scatter in the bin normalized by the individual error bar. The averaged

plot data is color-coded using the quantity indicated next to the color bar.

Figure 5.9 shows βθ,ped plotted versus βθ,ped,X , the raw data as blue cross (δtop > 0)

and red plus (δtop < 0) and the averaged values binned in βθ,ped,X . Linear regression of the

dependence yields the relation βθ,ped = (2.34± 0.25) βθ,ped,X . Note that there is a large

scatter in βθ,ped for βθ,ped,X > 0.2, where plasma collisionality is low and the bootstrap

current becomes important. This effect may be attributed to an underestimation of the

〈Bθ〉2 term in equation (5.1.1) by LIUQE.

Figure 5.10 shows the averaged data from 115 experimental discharges and their in

βθ,ped,X binned averages. The solid red line shows an optimal fit, the dashed colored lines

show the variation of the fit for γ = {1/4, 1/3} with the same constant CX . The green

dash-dotted line, γ = 1, shows a linear dependence ∆ψ ∝ βθ,ped,X for reference. From
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Figure 5.10.: Pedestal width ∆ψ plotted as a function of the normalized poloidal pressure

βθ,ped,X at the pedestal top. The obtained functional dependency ∆ψ =

0.13β0.28
θ,ped,X , excluding data from discharges with negative upper triangularity,

is shown as solid red line; the range of possible fit exponents with fixed constant

is represented by colored dashed lines. A linear dependency, ∆ψ ∝ βθ,ped,X , is

plotted as green dash-dotted line.

fitting of the averaged pedestal width ∆ψ by the formula ∆ψ = CXβ
γ
θ,ped,X , we obtain

CX = 0.13± 0.03 and γ = 0.28± 0.11.

The fitted exponent from the TCV data set is smaller than the range of γ = 2/5−1/2

that was found for the H-mode database of DIII-D [31, 35, 79] and γ = 1/2 from ASDEX

Upgrade (AUG) [80]. This may result from the fact that the only additional heating

source for H-mode discharges in TCV is electron cyclotron heating at the 3rd harmonic

(X3), whereas the main heating of DIII-D and AUG is by neutral beam injection (NBI).

The result also indicates that this kind of work may be influenced by the heating scheme

and, on ITER, the conclusions may not be valid. Another uncertainty in the result may

arise from the fact that only the electron pressure profiles were used. The assumption of

pped = 2ne,pedTe,ped may not hold anymore at high Te,ped and low ne,ped, i.e. low values of

collisionality.

One has to note that the pressure pedestal width in discharges with δtop < 0 is

approximately ∼ 25% larger than in those with δtop > 0 at the same βθ,pol,X . This

is mainly due to an increase of the width of the electron temperature pedestal, which is

shown in more detail in subsection 5.1.3. This result is consistent with former studies [73]
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which report that the measured pedestal width is below the scaling predictions at high

triangularity and above the scaling at low triangularity, indicating an inverse dependence

on triangularity. For this reason and to keep similar plasma shapes, as were used in the

analysis of the DIII-D and AUG shots, discharges with δtop < 0 remain disregarded in

the following analysis, but are included in the figures for comparison.

We expect that the constant CX is somewhat too large with respect to published values,

since we used βθ,ped,X instead of βθ,ped. Applying the formerly obtained relation βθ,ped =

(2.34± 0.25) βθ,ped,X , leads to C = 0.10±0.03, which agrees within some uncertainty with

C = 0.076 found for the DIII-D discharges [79] and C = 0.11 for the AUG discharges [80].

Onjun [26] finds values for C ranging between 0.05 − 0.10 depending on the model and

whether or not an approximation of the bootstrap current is included. For AUG, it should

be noted that the pedestal width cannot be distinguished from a linear dependence in

βθ,ped [80]. This could be also the case for the TCV data and must be verified in the

following.

Next, we explore whether other dependencies of the edge pedestal width play a role,

after the dependence on βγθ,ped,X is accounted for. This should also reveal the param-

eters space in which the model is satisfied. We define a normalized pedestal width

F = ∆ψ/
(
0.13β0.28

θ,ped,X

)
and expect F ∼ 1, if there are no other dependencies. In fig-

ure 5.11, the measured value of normalized width is plotted as a function of the nor-

malized toroidal (Fig. 5.11(a)) and poloidal (Fig. 5.11(b)) gyro radius. No significant

dependence of the normalized width F is found on either ρ∗ = ρ/a or ρ∗θ,ped/a [81], where

ρ = 4.57× 10−3
√
MDTe,ped[keV ]/ (Zeffa[m]B0[T ]) (5.1.3)

ρ∗θ = q95ρ
∗/κ95 (5.1.4)

with the unit ion mass MD, the minor radius a, the toroidal field B0, the safety factor

q95, the plasma elongation κ95 and the effective ion charge Zeff = 3. The results compare

with those of DIII-D [79]. For ρ∗ & 0.013, a slight deviation from F ∼ 1 is visible, which

suggest that a scaling ∆ψ ∝ ρα with some exponent α becomes important, as mentioned

in subsection 2.2.3. The quality of the data and the small range in ρ∗, however, does not

allow further interpretation.

We further note that the measured value F is found to be essentially independent

of density for ne,ped & 3.3 × 1019 m−3, figure 5.11(c). Similarly, we find that F is also

approximately independent of the normalized collisionality, figure 5.11(d). However, at

very low collisionality, ν∗ped < 0.4, deviations from the scaling become visible. The same
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Figure 5.11.: Normalized pedestal width F = ∆ψ/
(

0.13β0.28
θ,ped,X

)
, plotted as a function of (a)

normalized toroidal gyro radius ρ∗, (b) normalized poloidal gyro radius ρ∗ped,

(c) pedestal electron density ne,ped, collisionality ν∗ped at the pedestal top for (d)

γ = 0.28 and (f) for γ = 1 and (e) an empirical scaling given by equation (2.2.23).
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discharges correspond to the set of data for which ∆ψ/F deviates from unity as a function

of ne,ped and for which ∆ψ stays below the scaling, figures 5.9 and 5.10. Further exper-

iments have to be done to clarify if this effect is physical or if it is simply due to large

uncertainties in the data. Figure 5.11(f) shows ∆ψ/Flinear versus ν∗ped assuming linear

scaling ∆ψ ∝ βθ,ped,X . The strong linear deviation indicates an overestimation of βθ,ped,X ,

i.e. γ needs to be smaller then unity to hold the requirements. Similar deviations are

visible when plotting ∆ψ/Flinear against the other quantities presented here (not shown

for simplicity of reading).

Finally we cross-check the pedestal width scaling for empirically found scaling laws,

as explained in subsection 2.2.3. Scaling of the pedestal width ∆ψ as a function of

(∇ne,ped)−1/2, equation (2.2.21), could be identified, but did not conform to the scaling of

the normalized width ∆ψ/F . The model assuming pedestal width scaling proportional to

T 0.46
e,ped/B

0.51
θ yields ambiguous results not allowing any conclusions. The combination of

both empirical scalings, equation (2.2.23), is presented in figure 5.11(e) which reveals that

F is also a good representation for this case. Further on, the density pedestal width shows

correlation with Bθ,ped,X as ∆ne,r ∝ Bθ,ped,X which has been also found on AUG [80].

5.2. Influence of the pedestal on energy confinement

and transport

In this section we want to examine the influence of the pedestal properties in TCV H-

mode plasmas on the energy confinement and on central electron temperature and density.

We investigate the density peaking, crucial for efficient future fusion power plants, in

the presence of EC-heating over a wide range of collisionality and outline the pedestal

transport scaling.

5.2.1. Energy confinement

From the viewpoint of thermal energy stored in the core plasma Wcore and, in general,

of energy confinement in H-mode discharges, a higher pedestal stored energy Wped is re-

quired [82]. The ELM energy loss ∆WELM , however, usually increases with high pedestal

stored energy [83]. Since the ELM is essentially a relaxation of the steep pressure gradient

that occurs at the pedestal, it can be expected that ∆WELM is a significant fraction of

Wped. Here, we examine the variation of ∆WELM as a function of pedestal parameters

131



5. H-mode scenarios in TCV

0 1
ρ

PEDESTAL

CORE

pedestal
shoulder

W
core

W
ped

(a)

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

W
ped

 [kJ]

W
co

re
 [k

J]

 

 

W
core

=3.5W
ped

SN
SF−like SN
SF+

(b)

Figure 5.12.: (a) Schematic representation of the thermal energy stored in the pedestal plasma

Wped and in the core plasma Wcore. (b) Wcore plotted as a function of Wped for

SN, SF-like SN and SF+ configuration. The dashed frey line assumes a linear

relation between Wcore and Wped, which seems valid for SN configurations (blue

markers).

by assuming that ∆WELM can be expressed as ∆WELM = Wpedf
(
ν∗ped, ρ

∗, βθ, . . .
)
. Fig-

ure 5.12(a) shows a schematic representation of the definitions used for Wped and Wcore.

First, we want to verify that Wcore is indeed proportional to Wped. In figure 5.12(b),

Wcore is plotted as a function of Wped; for TCV we find the relation Wcore ∼ 3.5 ×Wped

for a large range of Wped. There is some scatter in the data of discharges with SN config-

uration due to different plasma shapes, e.g. varying plasma elongation or negative upper

triangularity. The SF-like SN and the SF+ configurations deviate from this tendency at

higher pedestal energy, Wped > 4 kJ, which may explain the behavior Te,ped 6= f (ne,ped) in

figure 5.6. This may be due to off-axis X2-heating being applied besides the usual central

X3-heating. The additional X2-power raises the pedestal temperature and thus pedestal

energy without affecting much the plasma core energy leading to a perturbation between

the proportionality between Wcore and Wedge.

Figure 5.13(a) shows the variation of the ELM energy ∆WELM against the pedestal

energy Wped, resolved by the logarithmic pedestal collisionality. In JT-60U and ASDEX

(AUG) it was found that ∼ 10% of the pedestal energy is released by a typical type-I

ELM [84]. This values is largely exceeded in TCV. The smallest ELMs have normalized

energy losses in the range of ∆WELM/Wped ∼ 20− 40%, where the pedestal collisionality
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Figure 5.13.: ELM energy loss versus pedestal stored energy and poloidal beta: (a) Relation

between the energy loss per ELM, ∆WELM , as a function of the pedestal energy

Wped, resolved by the logarithmic pedestal collisionality. The dashed line corre-

sponds to 100% of the pedestal energy which is released by one ELM. The gray

shaded region represents the rescaled parameter space for JT-60U and ASDEX

Upgrade (AUG) and corresponds to ∆WELM/Wped = 10%. (b) Normalized

ELM energy loss ∆WELM/Wped as a function of the normalized poloidal pres-

sure in the pedestal βθ,ped,X with the normalized pedestal ion Larmor radius ρ∗ped
as additional parameter (color-coded).

is found to be ν∗ped > 1 or < 0.2. In the region of transition between type-III to type-I

ELMs, i.e. ν∗ped ∼ 0.6, large ELMs occur that exhaust nearly 100% of the energy stored

in the pedestal.

The normalized ELM energy loss ∆WELM/Wped is plotted in figure 5.13(b) as a func-

tion of the normalized pedestal poloidal pressure βθ,ped,X . The color-coding represents

the normalized pedestal ion Larmor radius ρ∗ped. The ejected energy by an ELM event

increases strongly with the pedestal pressure and attains its larges value at βθ,ped,X ∼ 0.2,

where large ELMs are observed. Further increase in βθ,ped,X decreases the relative ELM

energy loss. Care must be taken in the interpretation of this data since values of

βθ,ped,X > 0.2 represent a different magnetic configuration, SF-like SN and SF+, which

is additionally heated by X2 in the region of the pedestal upper knee. The X2-heating

could destabilize type-I ELMs by reducing the pedestal resistivity thus reinforcing current

driven modes and increasing the pedestal pressure gradient faster than for the standard

ELM cycle, which would lead to smaller and more frequent ELMs. Additional measure-
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Figure 5.14.: (a) The H-mode energy confinement enhancement factorHIPB98(y,2) plotted as a

function of the normalized power Ptot/Pthr, where Ptot is the total heating power

and Pthr the L- to H-mode transition power. (b) Central electron temperature

Te(0) plotted as a function of Ptot/Pthr. Regions with different heating schemes

are indicated by a gray dashed line.

ments of the temporal evolution of the pedestal profiles would be needed to clarify this

behavior. A similar effect has been demonstrated on AUG, where EC-current drive in

the plasma edge was used to control ELMs [85].

The energy enhancement factor HIPB98(y,2) for H-mode, equation (2.2.8), is plotted

in figure 5.14(a) as a function of the normalized power Ptot/Pthr, where Ptot is the total

absorbed power and Pthr the threshold power of the L- to H-mode transition, described by

equation (2.2.5). Beginning from the onset of the H-mode, Ptot/Pthr ∼ 1, the H-factor in-

creases gradually with absorbed heating power. The maximum for the SN configurations

is achieved where Ptot/Pthr ∼ 2.5, i.e. Ptot ∼ 1 MW. After the maximum in HIBP (y,2), the

enhancement factor decreases with increasing power. Figure 5.14(b) shows the central

electron temperature Te(0) plotted versus Ptot/Pthr.

We note that for higher heating power solely discharges in SF-like SN and SF config-

uration exist, which have additional ECRH (X2) injected in the plasma edge. As seen

before, the proportionality between Wcore and Wped is no longer valid. Thus, the increase

in X2-heating in the edge for these configurations distorts the trend and leads to a strong

decrease of HIPB98(y,2). However, it is important to mention that the H-factor is not

the same for these configurations, in spite of their similar plasma parameters. The in-

crease in HIPB98(y,2) for the SF+ is, when compared to the SF-like SN, due to an increase
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in Te and hence We by ∼ 20%, which has been identified as a particularity of the SF

configuration [71].

Due to the limiting X3-heating power, it is still unclear how the ELM energy loss and

H-factor would evolve for the SN configuration, without the presence of X2-heating in the

plasma edge. Experiments with central EC-heating in O-mode at the second harmonic

(O2) are planned for the next TCV campaign to further explore the type-I ELMy regime.

5.2.2. Relation between central and pedestal electron temperature

and density

To evaluate the edge core relationship in ELMy H-mode plasmas, we investigate the de-

pendence of the central electron temperature and density on the Te and ne pedestal height

For that purpose, the quantities of the individual time slices in the H-mode database, usu-

ally they correspond to the times of the Thomson scattering diagnostic, were averaged

over the whole stationary phase of the discharge. This method averages profile fluctua-

tions which can be induced by ELM and sawtooth activity. The error bars correspond

to the standard deviation of the averaged profiles. Pedestal quantities are obtained from

tanh-fitting, equation (3.6.1), of the edge pedestal data in the inter-ELM phase from the

whole stationary phase.

Figures 5.15(a) and 5.15(b) show the relations between central and pedestal electron

temperature and density, where the color-coding shows the logarithmic collisionality ν60

at 60% of normalized poloidal flux radius. We observe that the central electron density

ne(0) scales linearly as a function of the pedestal electron density ne,ped for a wide range

of collisionality, as was also found for other tokamaks [84].

In purely ohmic heated (OH) discharges, Te(0) is only a weak function of Te,ped. Vari-

ations in ν∗ped in OH discharges change Te,ped, but do not, in principle, influence the core

electron temperature. This is not surprising, since the only power source is the ohmic

drive becoming rapidly less efficient for Te(0) & 1keV. Further, we have to keep in

mind that Te,ped and ne,ped will vary such that pe,ped ∼ const. (see also subsection 5.1.2),

permitting some variation in Te,ped.

Adding central ECH power increases Te(0) and Te,ped accordingly; we find the linear

dependence Te(0) ' C × Te,ped, where C is a constant. At very high ECH power, where

data is only available for the SF-like SN and SF+ configuration, the linear dependence
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Figure 5.15.: Electron temperature and density profile stiffness: (a) The central electron tem-

perature Te(0) is plotted as a function of the pedestal electron temperature

Te,ped. Regions with different heating schemes are indicated by a gray dashed

line. (b) The central electron density ne(0) plotted versus the pedestal electron

density ne,ped. The data is resolved by the logarithmic collisionality at 60% of

the normalized poloidal flux radius
√
ψN .

between central and pedestal electron temperature does not hold anymore, probably due

to the X2-heating in the plasma edge.

5.2.3. Electron thermal transport in the pedestal

The pedestal density and temperature profiles may also be analyzed to determine the

underlying transport controlling the pedestal gradients. The edge pedestal data of 115

discharges is represented by Thomson scattering data fitted in the inter-ELM phase of the

whole stationary phase. The collisionality ν∗ped is computed from the fitted pedestal values.

The fitted data of the individual discharges is plotted as crosses and plus-signs. The data

is then binned according to values of ν∗ped employing weighted averaging. Horizontal error

bars reflect the width of the bins, vertical error bars reflect the data scattering in the

bin including the individual uncertainties from the fit. The data in the scatter plot is

resolved by the averaged quantity indicated next to the color bar.

Plotting the ratio σe = LTe/Lne versus the pedestal collisionality, where LTe and

Lne are the gradient scale lengths of electron temperature and density in the pedestal,

indicates σe ∼ 0.5 − 1.25 or ηe = σ−1
e ∼ 0.8 − 2. In type-I ELMy H-mode plasmas it
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Figure 5.16.: Electron thermal transport in the pedestal region: Pedestal LTe/Lne plotted

versus the logarithmic collisionality log10(ν∗ped) at the pedestal top with color-

coding showing the EC-heating power.

was found that the electron density scale length is twice the temperature scale length,

i.e. ηe = 2, which is indicative of drift wave turbulence dominating electron thermal

transport [31]. A similar scale length ratio in type-I ELMy H-mode plasmas has also

been observed in DIII-D [72] and AUG [86], indicating some universality of this transport

mechanism in the pedestal. The scale lengths of the ion temperature and density could

not be measured, however, data from AUG [87] indicates that ion temperature gradient

driven drift modes were not thought likely to set the ion temperature profile. Modeling

of the AUG data with the fluid code SOLPS indicated that neoclassical ion transport

was sufficient to match the measured ion temperature profile.

A value of ηe ∼ 2 has also been found to describe well the electron transport in

strongly EC-heated eITB discharges in TCV [45, 48]. The simulations showed that in

these low collisionality eITB regimes, the role of ITG driven turbulence decreases and

TEM turbulence is dominant but stabilized by the magnetic shear in the barrier region,

so that ITG driven turbulence is still probable.

5.2.4. Density peaking

On the basis of H-mode experiments on JET, AUG and TCV, empirical relations, sup-

ported by gyrokinetic transport calculations, were found that describe the density peaking
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Figure 5.17.: (a) Density peaking ne(0)/〈ne〉 as a function of the collisionality at ρ = 0.6,

(b) the ratio between central and pedestal density ne(0)/ne(ped) and (c) the

normalized density gradient R0/Lne in the edge pedestal. The color-coding

represents the fraction of ECH power.

as a function of collisionality [75, 81, 88–90]. The general conclusion is that ν∗ plays the

most important role in the density gradient formation in the core. Extrapolation of these

experimental observations to ITER parameters predicts moderately peaked density pro-

files for the baseline H-mode scenario, n0/〈n〉 ∼ 1.45, which is expected to improve fusion

performance, as reported in [91]. For temperature profiles as predicted for the inductive

scenario [92], a peaking factor n0/〈n〉 = 1.5 results in an approximate 30% increase in

fusion power for a given average density and normalized toroidal pressure βN [91].

One of the main difficulties of an extrapolation towards reactor conditions is that

the majority of H-mode plasmas were obtained with dominant NBI heating, few of them
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with pure ion or electron cyclotron resonance heating (ICRH & ECH). Theory predicts

a strong trapped electron mode (TEM) destabilization [93] in case of dominant ECH

which may result in density profile flattening by the appearance of an outward convective

particle flux. Former studies of TCV H-mode discharges [90] indicated that significantly

peaked profiles can persist in EC-heated H-mode plasmas at reactor relevant values of

βN ∼ 2.

During this work, the TCV H-mode database was expanded to a range in normalized

toroidal pressure of βN = 0.2−1.9. Here, we consider only discharges with SN divertor and

line-integrated electron density ne ≥ 3.5×1019 m−2, but all plasma shapes as indicated in

section 5.1. We observe that the density profile, measured by Thomson scattering, flattens

considerably in the presence of strong EC-heating, contrary to what had formerly been

reported.

Figure 5.17(a) shows the electron density peaking, i.e. the central electron density

ne(0) normalized by the volume averaged electron density 〈ne〉, as a function of the

collisionality at ρ = 0.6. Figures 5.17(b) and 5.17(c) show the ratio between central and

pedestal density and the normalized density gradient as function of the collisionality at

the pedestal top. The data from the individual discharges was binned in intervals of

log(ν∗ped). As mentioned above, error bars represent the bin width and the weighted error

bar from the scattering of the data.

We indeed observe that density peaking decreases by ∼ 15% when increasing the

ECRH power as reported in [93]. It is believed that this effect is due to a destabilization

of electron driven modes (TEM and/or ETG), but this must be confirmed by further

studies. To this purpose, gyrokinetic transport simulations with the GS2 code [94] are

ongoing [95] and will be presented elsewhere.

5.3. Impact of plasma shaping on pedestal parameters

While it has long been observed that plasma shaping significantly affects edge MHD

stability and pedestal height [70, 73, 96–98], the contribution of the pedestal stability to

pedestal characteristics has not generally been determined. The variations observed so far

in the normalized pressure gradient in dependence of plasma shaping makes models based

on infinite-n ballooning limits doubtful. To date, it remains unclear if a simple power

law shape dependence is appropriate when the data spans different stability regimes [85].

Considering the plasma shaping capability of TCV, it is uniquely placed to investigate

139



5. H-mode scenarios in TCV

the H-mode pedestal performance dependence upon plasma shape to compare firstly

the results with those of other machines and secondly to extend the parameter space

considerably, even examining extreme shapes such as negative upper triangularity.

It is generally understood that stabilization of coupled kink-ballooning modes per-

mits higher edge pressure gradients. This implies a relatively sensitive dependence of the

pressure limit on discharge conditions such as shape and poloidal beta [70]. Encouraged

by studies of the MHD stability limit of the edge pedestal in variously shaped plasmas,

subsections 4.3.3 and 4.3.4, and also to verify the accuracy of these simulations by exper-

iments, H-mode discharges with various shapes were conducted.

Discharges were designed such that an initial stationary ELMy H-mode phase, elon-

gation κ ∼ 1.7, total and upper triangularity δ ∼ 0.45 and δtop ∼ 0.2 and low squareness

λ ∼ 0, were maintained for ∼ 500 ms (the reference shape). This configuration is of-

ten able to access the second ballooning stable region. After the first phase, an abrupt

change in shape at t ∼ 0.95 s, usually within 50 − 100 ms, initiated the second half of

the H-mode phase with one of the above mentioned shape parameters being changed.

The plasma current was adjusted such that q95 was kept constant during both phases,

however, constant density can only be obtained in the presence of ELMs with approxi-

mately constant frequency. Electron cyclotron heating at the third harmonic (X3) with

a nominal power PECH ranging between 0.5 − 1 MW, dependent on the discharge, was

applied throughout the discharge to keep pedestal parameters as close as possible at the

ideal MHD stability limit. The poloidal angle of the X3-launcher was pre-programmed

such that it followed the resonance position to optimize the absorbed power. Due to

variation in energy confinement related to the plasma shape, the X3 power absorption,

strongly dependent on the electron (central) temperature, varied to some extend. The

local plasma shaping parameter were obtained by fitting the upper plasma boundary with

the formulas (4.3.2).

The method of performing single discharges featuring two different shapes has general

advantages: (1) Switching the shape in an established discharge to more extreme parame-

ters avoids instabilities which could occur during direct plasma formation of a somewhat

less stable configuration. (2) Passing through two different plasma shapes during one

discharge generally facilitates the comparability of plasma and pedestal parameters be-

tween different shapes. However, the acquired data for one shape is also halved making

the statistical analysis of pedestal profile evolution during an ELM cycle more difficult.

The plasma parameters are presented in figures 5.18(c), 5.18(a), 5.19(a) and 5.19(c),
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ness λtop. Dashed vertical lines represent the discharge phase with different
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with subplot a) line-integrated density nel, central electron temperature Te(0), plasma

current Ip, subplot b) divertor recycling signal Dα, total absorbed power Ptot, subplot c)

safety factor q95, elongation κ, upper triangularity δtop, and subplot d) energy confinement

time τE, normalized toroidal beta βN and H-factor HIPB98(y,2). The corresponding shapes

are shown in figures 5.18(d), 5.18(b), 5.19(b) and 5.19(d).

We observe that a decrease in λtop or an increase in δtop yields higher toroidal beta and

confinement, figures 5.18(a) and 5.18(c). Shaping that decreases the length of the field

lines in the bad curvature region (on the LFS), is generally associated with improvements

in the edge MHD stability limit generally leading to a higher pedestal pressure. The

global energy confinement then responds to the higher pedestal pressure and improves,

when the temperature profile is stiff. Decreasing κ increases βN whilst energy confine-

ment remains approximately, figure 5.19(a) and 5.19(c). The energy confinement factor

increases with decreasing κ and vice versa, because of the dependence τIBP98(y,2) ∝ κ0.78.

This observation suggests that the pedestal pressure height decreases with increasing κ,

which is investigated in more detail in subsection 5.3.2.

5.3.1. ELM behavior

The divertor Dα recycling signal gives a good indication of the pedestal performance.

Improvements in shape and thus pedestal height are usually accompanied by more reg-

ular ELMs at lower frequency and higher ELM energy loss [25, 70]. Figure 5.20 shows

the ELM frequency fELM , the ELM energy loss normalized to the total plasma energy

∆WELM/Wtot, computed from the diamagnetic loop, and the ELM fractional power loss

PELM/Ptot = fELM×∆WELM/Ptot normalized by the total heating power Ptot. The upper

triangularity was varied between δtop = −0.25 and 0.2. The scans in elongation ranged

between κ = 1.55 − 1.85. The quantities of ∼ 5 discharges for each shape configuration

κ and δtop were binned according to values of the abscissa and weighted averaged. Hori-

zontal error bars indicate the scatter of the data in the bins; vertical error bars represent

the weighted standard deviation of the data. Data points from one single discharge with

λtop = 0.15 (instead of λtop = 0) is marked by a gray dashed ellipse.

It can be seen in figure 5.20(a) that upper triangularity strongly affects the ELM

behavior. Increasing δtop from −0.25 → 0.22 decreases fELM by ∼ 80% and increases

∆WELM/W by a factor of ∼ 3×. Thus, the fractional power loss due to ELMs decreases

by ∼ 10%. This result is in good agreement with experimental results from other ma-
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Figure 5.20.: Dependence of ELM characteristics upon plasma shaping: ELM frequency fELM ,

ELM energy loss ∆WELM normalized by the total plasma energy Wtot and

normalized fractional ELM power loss PELM/Ptot as a function of (a) upper

triangularity δtop (κ = 1.67, λtop = 0) and (b) elongation κ (δtop = 0.23, λtop =

0).

chines [25, 73, 96–98] and modeling of the pedestal stability [18, 19, 28, 70, 99–101].

Changes in the ELM behavior as a function of κ, figure 5.20(b), are less pronounced

than in the case of δtop. Increasing κ from 1.55 → 1.85 increases fELM by ∼ 20% whilst

keeping ∆W/Wtot approximately constant, hence increasing PELM/Ptot by ∼ 30%. The

increase in fELM with increasing elongation suggest that the operational point is closer

to stability limits throughout the whole ELM cycle, thus causing ELMs more frequently.

Since the normalized ELM power loss increases with increasing κ, we expect that the

pressure pedestal height decreases. In subsection 5.3.2, the electron pedestal properties

for these discharges are investigated in more detail.

Note that the ELM characteristics for modified upper squareness follow well the ten-

dency in δtop. This is most probably due to the fact that δtop and λtop are in some

sense coupled and represent a very local change in magnetic geometry thus selectively

modifying the MHD stability of the pedestal.

5.3.2. Pedestal properties

The electron pedestal temperature and density profile are analyzed by fitting the data

from Thomson scattering measurements time-averaged over the ELM cycle by equa-
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Figure 5.21.: Electron pedestal temperature, density and pressure as a function of plasma

shape: Electron pedestal temperature Te,ped, density ne,ped and pressure pe,ped
and line-integrated density nel as a function of (a) upper triangularity δtop (κ =

1.67, λtop = 0) and (b) elongation κ (δtop = 0.23, λtop = 0).

tion (3.6.1). The height of the Te, ne and pe pedestal extracted from the hyperbolic

tangent fitting and the line-integrated density nel from interferometry are plotted in fig-

ure 5.21(a) and 5.21(b) as a function of δtop and κ, respectively.

Pedestal height

The pedestal pressure increases by ∼ 100% when increasing δtop from −0.25 → 0.22. It

is known that a higher triangularity permits a higher pedestal pressure through a higher

MHD stability limit. The pedestal pressure decreases by ∼ 15% when increasing κ from

1.68 → 1.85, which is mainly due to the strong decrease in ne,ped by ∼ 20%. From the

sparse set of data it is not clear if this decrease in ne,ped is due to a general decrease in

nel, or if other factors may play a role. However, the data suggest that pe,ped decreases

with κ.

The model of Sugihara [102] based on turbulence suppression by the combined effect

of magnetic and E × B shear proposes that the pedestal electron pressure scales as

pe,ped ∝ T 0.5
e,pedκ

−2, equation (2.2.11). One has to mention that this model assumes that

the pressure gradient in the plasma edge is limited by ballooning modes, equation (2.2.14),

which does not have to be the general case when access to the second ballooning stable
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Figure 5.22.: Electron pedestal temperature, density and pressure width as a function of

plasma shape: Electron pedestal temperature Te,ped, density ne,ped and pres-

sure pe,ped width as a function of (a) upper triangularity δtop and (b) elongation

κ.

region is possible. In contrary, a model based on log-linear fit of pedestal data of type-I

ELM discharges from five different machines [103], equation (2.2.12), found pe,ped ∝ κ1/3.

The contradicting scalings highly recommend further studies to clarify this issue. Fur-

ther on, it cannot be ruled out that the X3-heating power density was sufficient to keep

the pedestal close at the current driven MHD limit for high κ’s. For this reason, the

stability limit of the pedestals was analyzed to clarify, if the limiting instability is of

ballooning or external kink character (see subsection 5.3.3).

Pedestal width

The pedestal width of the electron temperature ∆r,Te, density ∆r,ne and pressure ∆r,pe pro-

file in radial coordinates is plotted as a function of δtop and κ in figure 5.22(a) and 5.22(b),

respectively. Increasing δtop from −0.25→ 0.22 decreases ∆r,pe by ∼ 10%, although this

is within the error bar. While ∆r,ne remains approximately constant, despite the large er-

ror bars, the decrease of ∆r,Te by ∼ 20% exists. Increasing κ from 1.68→ 1.85 decreases

∆r,Te and ∆r,ne simultaneously by ∼ 20%, thus ∆r,pe decreases by the same amount.

The pedestal quantities in the discharge with λtop ∼ 0.15 (instead of λtop = 0) are in

good agreement with the trend observed when varying δtop or κ. In the trend of pedestal

width as a function of κ, we observe a swap of sizes of ∆r,Te and ∆r,ne for λtop > 0. It is
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Figure 5.23.: Normalized electron pedestal temperature, density and pressure gradient as a

function of plasma shape: Normalized electron pedestal temperature Te,ped, den-

sity ne,ped and pressure pe,ped gradient as a function of (a) upper triangularity

δtop and (b) elongation κ.

unclear if this effect is related to the different ELM frequency and energy loss as described

in subsection 5.3.2 or just a coincidence.

Normalized gradient

The normalized gradient R/Lx is linked to changes in pedestal height and width. R/Lpe
increases by nearly 30% mainly due to the strong increase in R/LTe by ∼ 25% when

increasing δtop = −0.25 → 0.22, whereas R/Lne increase only little or remains constant.

A similar tendency is observable when increasing κ = 1.68 → 1.85; R/Lpe increases by

∼ 25% due to a simultaneous increase in R/LTe and R/Lne by ∼ 25%. Whereas the most

important contribution of increase in R/Lpe is the pedestal height in case of varying δtop,

the more relevant factor in case of varying κ is ∆r,pe. This could be explained by reduced

pedestal pressure and hence beta. Since ∆p ∝ βγ, where γ > 0 is some positive exponent

(see subsection 5.1.4), we would expect a decrease in pedestal width when decreasing the

pedestal height and thus beta.

Qualitatively we observe that shaping, such that the length of magnetic field lines in

the unfavorable region (LFS) is minimized, increases the maximum pedestal gradient as

predicted by ideal MHD simulations (see also subsections 4.3.3 and 4.3.4). In the case

of higher upper squareness, we observe that the ELM frequency and energy loss are not
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directly linked to the height and width of the pedestal. However, more data would be

needed to make quantitative statements and allow for testing of scaling laws.

5.3.3. Variation of MHD stability with shaping

The MHD stability of the discharges in the shape scan was analyzed to provide insight

into the limits governing the variation of the pedestal pressure observed in the experiment.

We refer to subsection 2.3.4, where the method of calculating the stability diagram is de-

scribed in detail. The experimental point is computed assuming Ti,ped = Te,ped, where

Te,ped is obtained from measurements by Thomson scattering, and (1) ni,ped from equa-

tion (3.6.2) with C6+ as single impurity and Zeff = 3 (magenta square) or (2) assuming

pi,ped = pe,ped (black square). The current density contains the ohmic profile from the

equilibrium reconstruction LIUQE and the edge current density from the bootstrap cur-

rent, equation (2.1.10), that is calculated from the experimental profiles. A self-consistent

equilibrium including these profiles was then computed by the CHEASE code.

Uncertainties in the experimental points, depicted as horizontal and vertical error

bars, represent the uncertainty in the fitting of the electron edge gradient and height

and the subsequent uncertainty in the determination of the bootstrap current density.

Since the ion profile pressure is not based on independent measurements, but assumed

proportional to the electron pressure profile, no plausible uncertainties can be given for

the gradient and pedestal height of the ion contribution. Keeping these uncertainties in

mind, the two experimental points (magenta and black square) mark the region, where

the true operational point is expected.

The stability diagram shows the ballooning (red line and red dashed line for some

flux surfaces) and external kink stability limits (bluish lines), collisionless bootstrap and

shear reversal as a function of normalized pedestal parallel current density J||/〈J〉 and
normalized pedestal gradient α. J|| is taken at the position where the pressure gradient is

maximal, 〈J〉 is the total plasma current divided by the plasma cross sectional area. We

use α ≡ −µ0 (dp/dψ) (dV/dψ)
√
V/ (2π2R)/2π2 [35] at the point of maximum pressure

gradient in the pedestal, where p is the total pressure, V is the plasma volume, R the

major radius and ψ the poloidal flux. The pedestal width ∆ρ is given in
√
ψN . The

ratio between edge and maximum pressure gradient p′edge/p′0 and the ratio between edge

and maximum current density jedge/j0, which influences the stability of ballooning and

external kink modes, are given for each stability map.
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Figure 5.24.: MHD stability diagram for λtop = 0.15: Ballooning and external kink stability

represented as a function of the normalized pressure gradient. J||/〈J〉 is the

normalized pedestal parallel current density at maximum pressure gradient.

We expect that high-n external kink modes are stabilized due to diamagnetic effects

in the transport barrier [27, 39]. The largest unstable nmax is computed from equa-

tion (2.3.17) with R/Lpi = 100, ne = 3×1019 and Ti = Te for all configurations presented

in the following.

Squareness

Figure 5.24 shows the stability diagram of discharge #40103 (λtop = 0.15) as a function

of normalized pressure gradient α. The access to the second ballooning stable region is

closed off. The increase in upper squareness increases the fraction of the trajectory of

magnetic field lines in the unfavorable curvature region located on the outside of the torus,

hence destabilizing pressure-driven modes. An increase of the current density above the

collisionless bootstrap current density would be required to reduce the magnetic shear to

a value low enough in order to give access to the ballooning second stable regime.

External kink modes with high n are stabilized by diamagnetic effects. Modes with

n > nmax ∼ 20, i.e. all dark green n’s, are expected to be stabilized. Medium n’s are

closed off by the ballooning limit. Low n’s destabilize in the vicinity of the shear reversal,
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Figure 5.25.: MHD stability diagram for δtop = −0.25: Ballooning and external kink stability

represented as a function of the normalized pressure gradient. J||/〈J〉 is the

normalized pedestal parallel current density at maximum pressure gradient.

where the mode structure exhibits modes with m/n = 13/5, 8/3 and 3/1 close to the

plasma edge (not shown here).

Triangularity

Figure 5.25 shows the stability map of discharge #40350 (δtop = −0.25, λtop = 0) as

a function of α. As for the case of λtop = 0.15 (δtop = 0.12), the access to the second

ballooning stable region is closed off. The decrease in upper triangularity reduces the

fraction of the trajectory of magnetic field lines in the favorable curvature region located

on the inside of the torus, hence destabilizing pressure-driven modes. Increased edge

current density cannot improve the edge stability; external kinks destabilize for values of

current density which are comparable to the collisionless bootstrap current density.

External kink modes with mode numbers higher than nmax ∼ 30 are stabilized by

diamagnetic effects, medium and low n’s destabilize well below currents where shear

reversal occurs. This is due to the relatively high ratio of jedge/j0 = 0.64, i.e. high

current density on the separatrix which is in general destabilizing for external kinks. The

mode amplitudes for n = 3 − 5 are largest for the modes m/n = 14/5 and 8/3. It is
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remarkable that n = 1 is destabilized close to the rational surface q = 2, i.e. at high

values of normalized current density.

The two experimental points are far away from any ideal MHD limit indicating that

resistive effects may trigger the ELM. Despite the “relatively” low pedestal collisionality

ν∗ped ∼ 1−2, this result suggests that we observe resistive type-III ELMs as were previously

suggested for TCV [104]. This hypothesis is supported by the degradation of energy

confinement, figure 5.14(a), leading to low central and pedestal electron temperature,

figure 5.15(a), regardless of the coupled ECH power. Further, the high ELM frequency

and the low ELM energy loss, figure 5.18(c), compare well with those of high ν∗ped ELMy

discharges.

High elongation

In figure 5.26, the edge stability of discharge #40378 (κ = 1.85) is presented. The access

to the second ballooning stable region exists due to more favorable shaping. In accordance

with the Mercier criteria [10], a combination of elongation and sufficient outward pointing

triangularity is stabilizing ballooning modes. The improved stability associated with

elongated “D” shaped plasmas is related to the fact that for such cross section a magnetic

line has a relatively large fraction of its trajectory located in the favorable curvature

region on the inside of the torus.

The low ratio of edge current density, jedge/j0 = 0.35, is favorable for the stability

of external kink modes and, also due to the low value p′edge/p′0 = 0.39, high normalized

pressure gradients can be reached before destabilizing ballooning modes. As before, high-

n modes with n > nmax ∼ 20 are stabilized by diamagnetic effects. Medium-n modes

represent the stability boundary for current-driven modes at relatively high edge pressure

gradient. The low-n modes become unstable close to shear reversal; we observe in the

mode spectrum m/n = 13/5, 8/3 and 3/1 . The n = 1 mode destabilizes near the

separatrix, i.e. q ∼ 3, but has also a finite component 2/1 (not shown here).

Small elongation

We expect that decreasing the elongation has the inverse effect on the pedestal stability

than when increasing, as the same arguments mentioned before hold for small plasma

elongation.

Figure 5.27 shows the pedestal stability as a function of α. Not surprisingly, we
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Figure 5.26.: MHD stability diagram for κ = 1.85: Ballooning and external kink stability

represented as a function of the normalized pressure gradient. J||/〈J〉 is the

normalized pedestal parallel current density at maximum pressure gradient.
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Figure 5.27.: MHD stability diagram for κ = 1.55: Ballooning and external kink stability

represented as a function of the normalized pressure gradient. J||/〈J〉 is the

normalized pedestal parallel current density at maximum pressure gradient.
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find indeed opposite behavior of edge stability when decreasing κ. The access to second

ballooning stability closes off, because of an increase in the ratio p′edge/p
′
0 (see figure

title) compared to the case with κ = 1.85. Likewise, external kink modes destabilize

at lower values of normalized pressure gradient. High-n toroidal modes are stable for

n > nmax ∼ 20, medium-n restrict the second ballooning stable region. Low-n modes

become unstable at the plasma edge, with m/n = 13/5 and 8/3 modes appearing in the

mode structure. Modes with n < 5 destabilize at current densities bellow that needed for

shear reversal; m/n = 2/1 is marginal stable (not shown here).

In general we conclude that the ideal MHD analysis of the pedestal stability describes

well the pressure gradient limits met in the experiment for a wide range of different shapes.

Only negative upper triangularity is an exception, where no high enough edge pressure

gradient was attained to be relevant for ideal MHD. This observations suggests that, in

this case, resistive effects play a role in triggering the ELMs.

5.4. Conclusion

In this chapter we investigated the ELMy H-mode regime in terms of ELM characteristics,

pedestal quantities, plasma shape and divertor configuration. There is evidence that the

type-I ELM regime is attainable on TCV at ∼ 1 MW of total heating power. The

operational boundary of the edge pedestal is well explained by the Alfvén drift wave,

ballooning and external kink stability limits. The energy loss per ELM was shown to

vary with the pedestal collisionality; the fractional power loss is approximately constant

over wide ranges of pedestal collisionality, but exhibits a bifurcation between standard

single-null and snowflake configuration. A more thorough exploration of the type-I ELM

regime, however, would require heating powers above 1 MW, which was only available

towards the end of these studies.

We confirmed the scaling of pedestal width for electron pressure as a function of

poloidal beta [79]. Other proposed scalings, based on ion Larmor radius, electron density

of collisionality, did not fit our data very well. The exponent in the β dependence found by

fitting the experimental data is somewhat smaller than what is indicated in the literature,

which may be related to the different heating of H-mode plasmas at TCV compared

to other machines. In order to reduce uncertainties in this model, further studies are
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necessary to extend the parameter space towards higher poloidal pressure and a larger

range in pedestal density.

The pedestal height, width and gradient of the electron temperature and density

edge profile were separately investigated. It was found that their scaling with heating

power follows in general the scalings found on other machines. Exceptions are observed

for discharges with low collisionality, where in some sense inverse trends are observed

suggesting a change in the transport regime from ITG to TEM dominated transport.

This interpretation is backed up by the observation of decreasing density peaking at

lower plasma collisionality, which is contrary to observations on other tokamaks where

ion heating is dominant.

Finally, the dependence of pedestal properties upon plasma shape was investigated

taking advantage of TCV’s unique capability plasma shaping. Important changes in the

ELM frequency and energy exhaust as well as in the pressure pedestal height were found

when varying upper triangularity and squareness. By increasing the plasma elongation,

the maximum stable pedestal pressure gradient could be increased. The limiting pedestal

pressure gradient were computed by ideal MHD and agreed well with the experimental

observations. The H-mode database featuring various plasma shapes, however, is still

sparse and needs further experiments to prove scaling of pedestal quantities with plasma

shape parameters.
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pedestal during an ELM cycle

The behavior of the electron pressure pedestal during an ELM cycle is subject of study

on several machines. It has been found that the gradient of the edge pressure profile

tends to saturate shortly before a type-I ELM, whilst the pressure pedestal height may

still increase [69, 105]. These experimental results are partly in contradiction with com-

mon models of coupled external kink-ballooning modes causing the destabilization of the

pedestal and, eventually, an ELM. Also, distinct phases have been found in the build-up

of the plasma edge profiles after their relaxation caused by an ELM crash indicating that

the recovery of electron temperature and density are correlated [106].

In this chapter, the temporal evolution of the electron pressure pedestal during an

ELM cycle is investigated for type-I, large and type-III ELMs. By means of coherent

data averaging including data from several discharges, draw-backs of the low time res-

olution of the Thomson scattering system can be partly overcome. Composite profiles

are constructed in the millisecond range before and after the ELM crash revealing the

critical pressure gradient before and the pedestal relaxation after the ELM onset time.

Ideal MHD calculations of the pedestal stability have been carried out to interpret the

experimental data and verify the theory of coupled external kink-ballooning modes.
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6.1. Diagnostic methods and discharge operation

parameters

In this section, the method of coherent data averaging is presented, its limitations and

error sources discussed. In the second part, typical plasma parameters for the discharges

used in this study are presented.

6.1.1. Coherent data averaging and binning technique

Coherent averaging of repetitive and reproducible single events is an established technique

to reduce the effects of fluctuations and noise [107]. It is particularly appropriate to ELMs

in the sense that the Dα peak, attributed to enhanced divertor recycling, can be reliably

identified. Assigning the peak in Dα to zero in a new timebase permits for sorting and

averaging of data with respect to this relative timebase, yielding a coherently averaged

set of data. Since the ELM frequency is sufficiently constant, a well defined interval on

either side of the reference time can be fixed. Coherent averaging is also of particular

interest to increase the effective time resolution of a data set if it is acquired at marginal

sampling frequency. In this case, the data from many measurements, from a single shot

or several reproducible shots, are binned in short time intervals according to the new

timebase [76, 104]. Binning of the data decreases the sampling rate of the coherent data

but improves statistics considerably.

For the analysis of the temporal evolution of the H-mode pedestal during an ELM

cycle, the randomly sampled Thomson scattering data from several identical discharges

has been resampled in time with respect to the time of the next ELM event. This

procedure allows to obtain profile measurements with high temporal resolution for a

typical ELM cycle and is applicable, if the ELM frequency does not vary strongly. In

a second step, the profile measurements were binned according to narrow time intervals

in the ELM cycle. The data averaging allows for a better coverage of the pedestal and,

therefore, improves considerably the results of the pedestal fitting.

Figure 6.1 shows the number of individual profiles that are combined as function of

the coherent ELM timebase for the three data sets which will be discussed in this chapter.

The width of the histogram bar represents the width of the bin in time. The binned data

was mapped onto a horizontal plane crossing the magnetic axis and fitted by a modified

tanh-function, equation (3.6.1), yielding pedestal height, width, gradient and normalized
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Figure 6.1.: Histograms of number of profiles used for fitting of temporal evolution of H-mode

pedestal during an ELM cycle: Data set for pedestal fitting in H-mode with (a)

type-I, (b) large ELMs and (c) type-III ELMs.

radial position during a “coherent” ELM cycle. For comparison and verification of the

results, soft X-ray emission traces from DMPX, line-integrated density and the gas flux

were also coherently averaged.

The uncertainties in the pedestal quantities are estimated using standard error prop-

agation techniques. Due to the large number of data points in the fitting procedure, the

statistical uncertainties are usually smaller than one would obtain from a single fitted

profile. The errors of more concern are systematic errors, which might be caused by

(1) variations in individual profiles due to underlying turbulence, (2) limitations of the
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spatial resolution of the Thomson scattering system, (3) limitations in the energetic reso-

lution of the polychromators and other sources. It is possible that there is an additional

systematic error related to the position of the Thomson data in poloidal flux coordinates

relative to the separatrix. Such errors are thought to be small and if they exist, would

cause all estimated pedestal widths to be erroneous in some way but would have little

effect on the temporal trends, which are of primary interest in this chapter.

6.1.2. Discharge characteristics

The temporal evolution of the pedestal height, width and gradient of electron tempera-

ture, density and pressure are examined, in the following, for three different power cases.

Multiple repeat discharges were obtained for each power level and were used to produce

composite data sets for studying the temporal pedestal evolution. Table 6.1 gives the

typical plasma parameters for these discharges. All values are given in absolute values

(except of the normalized ELM energy loss); no renormalization of quantities to ELM

amplitude or others was applied during the pedestal fitting procedure. The first two

series of discharges, exhibiting relatively low values of plasma collisionality, had the ion

B ×∇B drift directing towards the X-point. In the third series of discharges with high

pedestal collisionality, the ion B × ∇B drift was directed away from the X-point. All

discharges had a single-null magnetic divertor.

For a better coverage of the edge pedestal by the spatial channels of the Thomson

scattering system, a slow vertical plasma sweep was programmed with a displacement of

the whole plasma by ∆z ∼ ±1.5 cm during ∼ 0.5 s of the stationary ELMing phase.

6.2. Temporal evolution of pedestal properties

In this section, the temporal evolution of pedestal parameters based on composite pedestal

profiles is presented for type-I, large and type-III ELMs. The behavior of electron temper-

ature, density and pressure pedestal during an ELM cycle is analyzed. Finally, results are

presented that show a radial displacement of the location of maximum gradient during

the ELM cycle.

Here, we will only show the results from the fitting procedure of the electron pedestal

profiles. The individual profiles, including experimental data and the fit, can be found in

chapter D.
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ELM type I large III

nb. 14 14 10

Ptot 1.0 0.6 0.5

Pthr 0.3 0.3 0.4

fELM 40± 10 65± 15 215± 30
∆WELM

Wtot
0.20± 0.03 0.14± 0.03 0.02± 0.01

Ip 370 370 420

q95 2.3 2.3 2.6

nel 3.2± 0.2 3.4± 0.2 4.2± 0.15

δ 0.45 0.45 0.60

κ 1.68 1.68 1.70

ν∗ped 0.40± 0.05 0.65± 0.08 2.5± 0.25

βN 1.05± 0.05 0.80± 0.05 0.45± 0.02

HIPB98(y,2) 0.95± 0.05 0.75± 0.05 0.45± 0.02

Table 6.1.: Operational parameters for discharges used in this study: Given is the ELM type,

the number of discharges used for coherent averaging, the total heating power

Ptot [MW], the threshold power Pthr [MW] for L-H transition, ELM frequency

fELM [Hz], normalized ELM energy loss ∆WELM/Wtot measured by the diamag-

netic loop, plasma current Ip [kA], safety factor q95 at ρ = 0.95, line-integrated

electron density nel [1019m2], plasma elongation κ and triangularity δ, pedestal

resistivity ν∗ped, normalized global toroidal beta βN and confinement enhancement

factor relative to the HIPB98(y,2) scaling prediction.

6.2.1. Type-I ELMs

The analysis of the time evolution of pedestal parameters is complicated due to variable

time delays between adjacent ELMs. In addition, after an ELM crash, it is difficult to

determine when the pedestal starts to rebuild. These problems are addressed by forming

coherent time histories from many ELMs and several reproducible discharges. Composite

pedestal profiles were assembled for a series of 14 identical discharges with high heating

power, whose discharge characteristics are summarized in table 6.1. The ELMs were

identified as type-I at low frequency (∼ 40 Hz) with energy losses of ∆WELM/Wtot ∼ 20%

and a pedestal collisionality of ν∗ped ∼ 0.5. The total plasma energy Wtot and the ELM
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Figure 6.2.: Coherently averaged signals from (a) the gas valve with Dα in black, (b) central

(blue), HFS-edge (red) and LFS-edge (green) line-integrated density and (c) cen-

tral (blue), HFS-edge (red) and LFS-edge (green) soft X-ray emission for a type-I

ELM cycle. The profiles were coherently averaged over ∼ 10 ELMs.

energy loss ∆WELM were measured by the diamagnetic loop. The profiles were measured

during the stationary ELMing phase.

The electron temperature pedestal quantities are generally noisier then those of the

electron density pedestal for two reasons: (1) The ne pedestal is generally more pro-

nounced and broader than the Te pedestal leading to smaller uncertainties in the fits

applying the modified tanh-function. (2) The sensitivity of the TCV edge Thomson scat-

tering system to Te variations is limited due to a configuration with only 3 spectral filters

in the polychromators (see subsection 3.3.2). Simultaneous triggering of several lasers can

improve the signal-to-noise ratio, but at the loss of time resolution (see subsection 3.7.2).

The following analysis contains data from discharges with and without simultaneous laser

triggering as well as from discharges, where the laser triggers were synchronized in real-

time with the ELM events to improve the probability of a measurement close to an ELM

crash (see subsection 3.7.3).

Figure 6.2 shows coherently averaged traces from a) the gas valve (normalized), b)

the central and edge (HFS & LFS) line-integrated density from FIR and c) the central

and edge (HFS & LFS) soft X-ray emission measured by DMPX (normalized). The edge

channels observe a radial position that is approximately located at the pedestal top. The

trace of the gas valve is given as an indicator for time intervals during the ELM cycle, in
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6. Temporal evolution of the H-mode pedestal during an ELM cycle

which we may expect perturbations of the pedestal by re-ionization processes due to gas

injection by the TCV control system. We note a general decrease in the gas flux during

the coherent ELM cycle that is due to a linearly decreasing offset in the time interval

used for the coherent average. The traces of line-integrated density show a clear drop of

density on the LFS and even in the plasma center caused by the ELM event. The density

overshoot on the HFS is due to increased particle flux in the divertor region shortly after

the ELM event. The soft-X ray emission exhibits a clear drop in signal at the ELM crash,

even in the center, and shows sawtooth (ST) activity synchronized with the ELMs, since

every random behavior is averaged out.

The temporal evolution of the pedestal gradient, width and height are shown in fig-

ures 6.3-6.5 for the electron temperature, density and pressure. Steady-state values, i.e.

the average value of the quantity during the ELM cycle, are shown as horizontal dashed

lines.

Temperature profile

The pedestal profiles show characteristic variations during the ELM cycle, figure 6.3.

Gradient and height of the Te pedestal increase throughout the pre-ELM phase, whilst

the pedestal width remains approximately constant. It is unclear, if they start to ap-

proach saturation shortly before the ELM (∼ 1 ms), as was found in ASDEX Upgrade

(AUG) [105, 106, 108], and DIII-D [76]. Approximately 100 µs before the characteristic

ELM peak on Dα, the Te pedestal collapses possibly as a result of the onset of turbulence

that is also observed on the magnetic pick-up coils (not shown here). Note that the Dα

emission is delayed by ∼ 50 − 100 µs with respect to the collapse of the pedestal [107].

The gradient drops from ∇Te ≈ 100 → 50 keV/m during the ELM crash, the pedestal

height from Te ≈ 0.6 → 0.4 keV. The pedestal width strongly increases at the onset of

the ELM indicating the disintegration of the barrier (figure 6.2(b)). We have to keep in

mind that, in a narrow time window [−100, 100] µs around the ELM event, the profiles

may be perturbed by filaments and others structures. The tanh-fit is not applicable in

these cases and absolute values are erroneous.

In the first phase, until ∼ 300µs after the ELM crash, pedestal gradient and height

quickly recover almost to the steady value. The observed time for the rebuild of the

pedestal is ∼ 10 times shorter (here Ptot = 1 MW, fELM ∼ 40 Hz, ∆WELM/Wtot ∼ 20%,

HIPB98(y,2) = 0.95) than was found in AUG [105] (Ptot = 5 MW, fELM ∼ 100 Hz,
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Figure 6.3.: Temporal evolution of the electron temperature pedestal in type-I ELMy H-mode:

Shown are (a) pedestal radial gradient ∇Te, (b) pedestal width ∆Te and (c)

pedestal height Te,ped.

∆WELM/Wtot ∼ 5−10%, HIPB98(y,2) ∼ 0.9−1.0) for typical type-I ELMs. The difference

might be attributed to the fact that ELM energy losses in TCV are usually much larger

than in other machines. For this series of discharges, the energy loss per ELM normalized

to the plasma energy was ∼ 20 %, a factor ten higher than for AUG. However, on TCV

there appears to be a connection of the edge to the core region that permits fast energy

exchange. We also observe a fast and significant collapse of Te(0) at the time of the ELM.

A second fluctuation phase is observed after 1− 1.5 ms, where the gradient suddenly

drops and pedestal width increases, whilst pedestal height remains approximately con-

stant. There is evidence of sawtooth (ST) activity during this phase, as can be seen on

the soft X-ray traces in figure 6.2(c). The ST follows the ELM by ∼ 4.5 ms and is visible

on both central and edge chord of the DMPX. We use a coherent ELM cycle, random

behavior and noise should be averaged out, so we conclude that the ST is synchronized

to the ELM. Comparison with the raw signal from a central channel of the DMPX shows

that, in ∼ 80% of all cases, a ST follows the ELM with the time delay given above (not

shown here).

A third phase follows ∼ 4 ms after the ELM indicating some steady-state condition

for the height, while gradient and width slightly fluctuate.
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Figure 6.4.: Temporal evolution of the electron density pedestal in type-I ELMy H-mode:

Shown are (a) pedestal radial gradient ∇ne, (b) pedestal width ∆ne and (c)

pedestal height ne,ped.

Density profile

During the pre-ELM phase, the density pedestal width decreases slightly by ∼ 15% of

the steady value, figure 6.4(b). As consequence, the density gradient increases initially,

whilst pedestal height is constant, yet error bars are within the steady value. At around

2 ms before the ELM, the pedestal width starts to grow. Thus, while the pedestal height

remains approximately constant, the gradient decreases. Analysis of measurements from

the magnetic probes revealed that damped low-n modes can exist during this period.

However, these modes do not seem to be a precursor, since cases with no mode activity

occur as frequently as with activity.

The pedestal width strongly increases at ∼ 500 µs or less before the ELM initiating

the pedestal collapse. This increase happens before the peak on the magnetic probes.

At the ELM, the pedestal density drops from ne ≈ 3.5 → 2.5 × 1019 m−3; the gradient

decreases from ∇ne ≈ 2.2 → 1.3 × 1021 m−4. Pedestal values close to the ELM event

should be used with caution due to the disadvantages of the fitting technique. It is also

noticeable that the ELM crash provokes a peaking and subsequent drop in density even

in the very center of the plasma (compare with figure 6.2(b)).

In the first phase, around 1 ms after the ELM, the density pedestal height has already

reached the steady value, whilst the gradient increases only slowly due to the pedestal
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Figure 6.5.: Temporal evolution of the electron pressure pedestal in type-I ELMy H-mode:

Shown are (a) pedestal radial gradient ∇pe, (b) pedestal width ∆pe and (c)

pedestal height pe,ped.

width that remains large. In the second phase, 1 − 3 ms after the crash, the pedestal

properties exhibit some perturbations, although the general trend is a strong decrease in

width, small decrease in height and increase in gradient. In the third phase starting at

∼ 3 ms, pedestal quantities relax slowly to their steady-state values. The general trends

and the time delays are comparable with those of the density pedestal evolution measured

in AUG [105].

Pressure profile

Figure 6.5 shows the temporal evolution of (a) the pressure pedestal gradient, (b) width

and (c) height. During the pre-ELM phase, pedestal gradient and height gradually

increase, while the pedestal width remains constant or somewhat decreases. During

0.5− 1.2 ms before the onset of the ELM, the pressure gradient appears to have reached

its maximum, whilst pedestal height is still increasing. During this period it is observed

that the temperature gradient increases and the density gradient decreases. The pedestal

pressure height is mainly dominated by the increase in Te, since ne remains approxi-

mately constant. However, the size of the error bars and the “relatively” low time res-

olution does not allow to draw further conclusions. Shortly before the ELM crash, we

observe anew the strong increase of the pedestal width. The pedestal gradient drops from
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6. Temporal evolution of the H-mode pedestal during an ELM cycle

∇pe ≈ 400 → 150 kPa/m, as observed in AUG [106], and the pedestal height exhibits a

decline from pe ≈ 3.5→ 1.8 kPa.

In the first phase, the pressure pedestal starts to rebuild till ∼ 1 ms after the ELM,

which is mainly due to the recovering of the pedestal height (or more explicitly the

pedestal temperature). The pedestal width initially decreases strongly and then fluctuates

at some value above steady-state, while the gradient is gradually evolving. In the second

phase, 1−3 ms after the ELM, the recovery of the profile stagnates or even regresses, which

is correlated with the appearance of ST activity. The pressure gradient decreases mainly

due to a decrease in pedestal height. In the third phase, beginning around 4 ms after

the ELM, pedestal quantities start to relax and approach steady-state values with some

fluctuations mainly due to variations in the temperature pedestal width and gradient.

The small change of pressure gradient and the continuing increase in pedestal pressure,

shortly before an ELM, makes the interpretation of these ELMs as infinite-n ballooning

instability improbable. As MHD simulations will show in subsection 6.3.1, the operational

point of these discharges is close to stability limits set by coupled kink-ballooning modes.

6.2.2. Large ELMs

A series of 14 identical discharges with low additional EC-heating power, whose discharge

characteristics is summarized in table 6.1, was chosen to obtain coherently averaged

profiles. The ELMs were at low frequency (∼ 60 Hz) and decelerated with increasing

heating power, i.e. type-III ELM behavior. However, they exhibited relatively large

ELM energy losses of ∆WELM/Wtot ∼ 15% at relatively low collisionality ν∗ped ∼ 0.7,

typical for type-I ELMs, and are, therefore, called large ELMs.

The coherently averaged traces from (a) the gas valve (normalized), (b) the central and

edge (HFS & LFS) line-integrated density from FIR and (c) the central and edge (HFS &

LFS) soft X-ray emission measured by DMPX (normalized) are shown in figure 6.6. The

locations of the edge signals correspond approximately to the position of the pedestal top.

In this series of discharges we also observe ST synchronized with the ELMs. The traces

of line-integrated density show a clear drop of density on the LFS and even in the plasma

center caused by the ELM event. The density overshoot on the HFS is due to an increase

in density in the divertor region shortly after the ELM crash. The soft-X ray emission

exhibits a clear drop in signal at the ELM crash, even in the center, and exhibits a clear
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Figure 6.6.: Coherently averaged signals from (a) the gas valve with Dα in black, (b) central

(blue), HFS-edge (red) and LFS-edge (green) line-integrated density and (c) cen-

tral (blue), HFS-edge (red) and LFS-edge (green) soft X-ray emission for a large

ELM cycle. The profiles were coherently averaged over ∼ 15 ELMs.

sign of ST activity ∼ 3.7 ms before and after an ELM, whilst heating power was constant

throughout the whole stationary ELMing phase.

The temporal evolution of pedestal gradient, width and height during the ELM cycle

is shown in figures 6.7-6.9 for electron temperature, density and pressure.

Temperature profile

The evolution of the temperature pedestal quantities is presented in figure 6.7. The

temperature pedestal exhibits rebuilding during the pre-ELM phase that is mainly due to

the pedestal height. The gradient remains approximately constant, while pedestal height

and width increase. However, the pedestal build-up undergoes significant perturbations

and trends appear to be broken, when a large ST crash occurs at ∼ 4.7 ms before the

ELM. It is not totally clear what causes the strong break-in of the temperature gradient

at ∼ 1.5 ms before the ELM crash, which is also visible on the density pedestal. It is no

artifact from fitting, but seems to correlate with small ST crashes around this time, which

are not visible on the averaged traces of the soft X-ray emission. Until ∼ 0.5 ms before

the ELM crash, all pedestal quantities appear to be approximately stationary. At around

200 µs before the ELM, the pedestal height starts to drop from Te ≈ 500 → 360 keV at
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Figure 6.7.: Temporal evolution of the electron temperature pedestal in ELMy H-mode dis-

charges with large ELMs: Shown are (a) pedestal radial gradient∇Te, (b) pedestal
width ∆Te and (c) pedestal height Te,ped.

∼ 200 µs after the ELM crash. During the same time interval, the gradient decreases

from ∇Te ≈ 30→ 15 keV/m, whilst the pedestal width strongly increases.

In the first recovery phase, 200−500 µs after the ELM, the pedestal gradient rebuilds

to around 80% of its value shortly before the ELM, while the pedestal height remains ap-

proximately constant below the steady value and the pedestal width strongly decreases.

During the second phase till ∼ 3.5 ms, the pedestal height gradually increases, which

restores the gradient to its steady-state value at approximately constant or slightly in-

creasing pedestal width. In a third phase, between 3.5 − 6 ms, the pedestal parameters

are perturbed by a post-ELM ST. Perturbations are most visible on pedestal height and

width, whereas the gradient appears to be constant. Eventually the pedestal is fully

rebuild ∼ 7− 8 ms after the ELM.

Density profile

Figure 6.8 shows the temporal evolution of the density pedestal parameters during the

ELM cycle. In the pre-ELM phase, only little build-up of the density pedestal is ob-

servable. The pedestal gradient undergoes some perturbations until 1.5 ms before the

ELM crash. Pedestal width and height show similar signs, but seem to be increasing.

Again, the perturbations tend to coincidence with ST activity. The pedestal parameters
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Figure 6.8.: Temporal evolution of the electron density pedestal in ELMy H-mode discharges

with large ELMs: Shown are (a) pedestal radial gradient ∇ne, (b) pedestal width
∆ne and (c) height ne,ped.

appear to change only little in the interval ∼ 0.5− 0.8 ms before the ELM. At ∼ 250 µs,

we observe the onset of strong barrier perturbations. The pedestal width increases, the

pedestal height drops and the barrier starts to collapse. At the onset of the ELM, the

density pedestal disintegrates and the gradient drops from ∇ne ≈ 3.8→ 1.2× 1021 m−4,

the height from ne ≈ 4.2 → 2.1 × 1019 m−3. Central and edge line-integrated density

indicates a change in plasma volume and/or shape and radial position at the time of the

ELM (see figure 6.6(b)).

In the first recovery phase, till ∼ 0.85 ms after the crash, the pedestal height rebuilds

gradually, whilst the gradient recovers only slowly due to a decreasing but still large

pedestal width. In a second phase, around 1.5 ms after the ELM, the gradient recovers

to its steady value, the pedestal height increases but stays below the steady value and

the pedestal width decreases strongly and falls below its steady value. In a third phase,

till ∼ 6 ms after the ELM, the pedestal rebuilds completely to its steady-state proper-

ties. Surprising is the fact that the post-ELM ST activity provokes fluctuations in the

pedestal, as observed in the pre-ELM phase, which restore the steady-state conditions of

the pedestal.
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Figure 6.9.: Temporal evolution of the electron pressure pedestal in ELMy H-mode discharges

with large ELMs: Shown are (a) pedestal radial gradient ∇pe, (b) pedestal width
∆pe and (c) height pe,ped.

Pressure profile

The temporal evolution of the pressure pedestal is shown in figure 6.9. In the pre-ELM

phase, the pedestal quantities exhibit a build-up of the barrier. Pedestal gradient, width

and height increase gradually, but are perturbed by ST activity. It is not clear, if pedestal

parameters saturate before the ELM. There are indications that the pedestal height

approaches saturation around 4 ms and the gradient around 0.5− 1 ms before the crash,

but large uncertainties do not allow further conclusions. At 200 µs before the peak on

Dα, the pedestal start to collapse; the gradient drops from ∇pe ≈ 260 → 120 kPa/m,

the height from pe ≈ 3.2→ 2.0 kPa, whilst the width increases. At the ELM event, soft

X-ray emission drops in the plasma core and edge, figure 6.6(c).

In the first post-ELM phase, the barrier quickly rebuilds till ∼ 1 ms after the ELM.

From there on, during the second phase, the pedestal parameters evolve gradually. The

gradient increases to its steady value mainly due to a decrease in pedestal width, whilst

the pedestal height recovers slowly. Pedestal width and height are perturbed by the post-

ELM ST activity, while the gradient remains constant. A final recovery of the pedestal

is observed in the third phase beginning at around 6 ms after the ELM.

Strong fluctuations in the pressure gradient supposedly caused by ST activity make
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Figure 6.10.: Coherently averaged signals from the (a) gas valve, (b) central (blue) and edge

(green) line-integrated density and (c) central (red) and LFS (green) soft X-ray

emission for a type-III ELM cycle. The profiles were coherently averaged over

∼ 85 ELMs.

it difficult to quantify the change of the pressure gradient before the ELM. However, the

data indicates that the pedestal gradient increases only by ∼ 10% in the last 2.5 ms

before the ELM, which can be mainly attributed to an increase in pedestal height by

about the same percentage. An investigation of the vicinity of the operational point to

MHD stability limits is necessary to clarify this issue and is presented in subsection 6.3.2.

6.2.3. Type-III ELMs

The composite time history of the pedestal evolution during the ELM cycle is ob-

tained from the Thomson data of 10 identical discharges, whose characteristics are

given in table 6.1. The ELMs were identified as type-III at high frequency (∼ 215 Hz,

∆WELM/Wtot ∼ 2− 3%, ν∗ped ∼ 2.5). The total absorbed power of these discharges is of

the order of the threshold power needed to obtain L-H transition. The data was taken

from the stationary ELMing phase, the time marker for the ELM onset was chosen to be

the peak in the Dα signal.

Figure 6.10 shows coherently averaged traces from (a) the gas valve (normalized),

(b) the central and edge line-integrated density from FIR and (c) the central and LFS

soft X-ray emission measured by DMPX (normalized). The edge line-integrated density

is measured at a radial position which is approximately at the pedestal top and shows
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Figure 6.11.: Temporal evolution of the electron temperature pedestal in type-III ELMy H-

mode: Shown are (a) pedestal radial gradient ∇Te, (b) pedestal width ∆Te and

(c) pedestal height Te,ped.

no significant change when the ELM occurs. The X-ray emission from the LFS chord

exhibits a slow drop in intensity, while the central emission is only weakly affected by

the ELM. Temporal evolution of the pedestal gradient, width and height are shown in

figures 6.11-6.13 for the electron temperature, density and pressure.

Temperature profile

In the pre-ELM phase, pedestal quantities are not subject to a pedestal build-up. Pedestal

gradient, width and height slightly vary around their steady values till around 250 µs

before the Dα-peak, when the gradient starts to drop as the pedestal width increases. The

pedestal height remains approximately constant. During the ELM, the pedestal gradients

drops from ∇Te ≈ 19→ 7 keV/m and the height drops from Te ≈ 215→ 150 eV.

In the first post-ELM phase, until ∼ 150 µs after the ELM onset, the pedestal height

has recovered around 90% of its steady value, the gradient overshoots due to a very small

pedestal width and reaches ∼ 125% of its steady or pre-ELM value. In the second phase,

a gradual rebuild of pedestal width and height to steady-state values with a simultaneous

decrease in pedestal gradient takes place until 0.9 − 1.4 ms after the ELM crash. It

appears that the pedestal height recovers slightly slower than gradient and width.
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Figure 6.12.: Temporal evolution of the electron density pedestal in type-III ELMy H-mode:

Shown are (a) pedestal radial gradient ∇ne, (b) pedestal width ∆ne and (c)

pedestal height ne,ped.

Density profile

During the pre-ELM phase, we observe an increase of the pedestal height by about 10%,

while pedestal gradient and width remain approximately constant. At around 100 µs

before the ELM, the density gradient decreases as the pedestal width increases. During

the ELM, the gradient drops from ∇ne ≈ 5.2 → 2.7 × 1021 m−4 and the height drops

from ne ≈ 4.5 → 3.1 × 1019 m−3. In contrary, central and edge line-integrated density

are subject to a small perturbation, but do not exhibit a significant drop in density.

In the post-ELM phase, the gradient rebuilds to steady value rather quickly in the

time ∼ 0.1−0.9 ms after the ELM onset, while the pedestal width reaches it steady value

at around 1.8 ms after the crash. The pedestal height needs the full post-ELM cycle to

recover and reaches steady-state around 2.25 ms after the ELM.

Pressure profile

Apart of some variations, pedestal gradient, height and width remain approximately at

their steady-state values during the pre-ELM phase. Around 100 ms before the Dα-peak,

the gradient starts to decrease while the pedestal width increases. During the ELM crash,

pedestal gradient drops from ∇pe ≈ 150 → 70 kPa/m and pedestal height drops from
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Figure 6.13.: Temporal evolution of the electron pressure pedestal in type-III ELMy H-mode:

Shown are (a) pedestal radial gradient ∇pe, (b) pedestal width ∆pe and (c)

pedestal height pe,ped.

pe ≈ 1.6→ 0.8 kPa. The central soft X-ray emission decreases slowly starting before the

ELM; its drop is less sharp then in EC-heated H-modes.

In the first phase, until ∼ 200 µs after the ELM onset, the pedestal gradient recovers

quickly to around 75% of its steady value, while the pedestal height has regained only

∼ 60% of its steady value. In the second phase till ∼ 1.4 ms after the ELM, the gradient

recovers to steady-state conditions, while the pedestal width seems to continue to increase.

Slowest is the recovery of the pedestal height that approaches its steady value around

2.2 ms after the ELM onset.

The temporal evolution of the pressure profile does not provide evidence of pedestal

build-up in the pre-ELM phase. Solely a relatively slow rebuild of the pedestal height

in the post-ELM phase is visible. These observations suggest that ideal MHD stability

arguments cannot explain this category of ELMs; more information is given in subsec-

tion 6.3.3. Taking into account plasma collisionality, this result is not surprising. A more

realistic interpretation of the experimental results would require a resistive MHD analysis

which is outside the scope of this work.
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6.2.4. Displacement of the edge pedestal during the ELM cycle

A radial displacement of the H-mode pedestal has been predicted by models based on

turbulence suppression by E × B shear flow [109, 110] and recently measured in type-

I ELMy H-mode in AUG [106]. Figures 6.14(a)-6.14(c) show the radial positions (R0)

of the electron temperature (red), density (blue) and pressure (magenta) pedestal center

with respect to the position of the separatrix (RLCFS) for type-I, large and type-III ELMy

H-mode cases. Horizontal colored dashed lines represent the pedestal position in steady-

state condition. The radial position of the barrier is computed from the results of the

modified tanh-fit of the edge pedestal. A distance of 1 mm corresponds approximately

to a difference of ∆ρ = 5× 10−3 in
√
ψN .

The measurements show a clear sign of pedestal displacement from the separatrix

towards the inside throughout the whole pre-ELM cycle for large and type-I ELMs, al-

though the ST activity perturbs significantly the pedestal evolution. The displacement

of the pedestal is mostly seen on the temperature profile and in type-I ELMy H-mode. It

has been observed that the magnitude of this movement increases with increasing heating

power. In type-I ELMy H-mode, the steady value of the radial position of the pressure

pedestal is ρstat. ≈ 0.995 (not included are corrections in case of a high bootstrap cur-

rent fraction). During the pre-ELM build-up of the pedestal, its radial position moves

gradually inwards. Shortly before the ELM is observed on the Dα signals, its position is

ρfinal ≈ 0.985. A similar but somewhat smaller movement is observed in type-III ELMy

H-mode. The steady radial value of the pressure pedestal center is ρstat. ≈ 0.985, the final

position shortly before the ELM ρfinal ≈ 0.980. The data sets suggest that in all cases

the density pedestal is located closer to the LCFS than the temperature pedestal and

that the radial position of the pressure profile is dominated by the temperature profile.

Errors in the absolute and relative values of the pedestal position R0 − RLCFS may

occur for several reasons: (1) The exact determination of the LCFS is a non-trivial

problem and is only accurate to within a few millimeters. For the set of discharges

presented in this study, the equilibrium reconstructions were verified and, if necessary,

corrected by matching the Thomson profiles from the upper and lower part of the plasma.

The maximum correction applied on the vertical plasma position was < 2 mm. (2)

The effect of the bootstrap current density is not taken into account in the LIUQE [11]

equilibrium reconstruction. In the case of a high and steep pedestal, the bootstrap current

fraction is important. For the cases with high bootstrap current fraction, edge current
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Figure 6.14.: Edge pedestal displacement during the ELM cycle: Shown are the positions of

the pedestal center of electron temperature (red), density (blue) and pressure

(magenta) pedestal during a (a) type-I, (b) large and (c) type-III ELM cycle.

increases the differential change in poloidal flux, i.e. the magnitude of radial pedestal

movement would be presumably larger as indicated before. (3) The analysis of coherent

profiles could amplify hidden systematic errors, however, would also average out statistical

errors. Recent measurements of the pedestal electron temperature by ECE at 31 kHz and

pedestal electron density by Li-beam at 20 kHz in AUG [106] reveal very similar trends

of the temporal pedestal evolution.

Figure 6.15 shows examples of the pedestal profile during a type-I ELM cycle taken
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Figure 6.15.: Temporal evolution of electron pedestal during the type-I ELM cycle: Shown

are (a) temperature, (b) density and (c) pressure profile evolution during the

ELM cycle as function of a normalized radial coordinate, where RLCFS denotes

the position of the LCFS. Negative times correspond to the pre-ELM, positive

times to the post-ELM phase. The different times are marked by different colors

and line styles.

from the data set which also produced the results shown in figure 6.14(a). Starting from

the “stationary” profile, i.e. a profile averaged over the whole ELM cycle, the central

position of the Te, ne and pe pedestal propagates towards the plasma center during the
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build-up in the pre-ELM phase. Noticeable is the significant increase in the temperature

pedestal height and gradient. Approximately 1 ms before the ELM onset, the Te pedestal

is fully developed and stationary, while the density profile still evolves. The pressure

pedestal also moves inwards as consequence of Te and ne. In the post-ELM phase, after

collapse of the pedestal, the Te profile recovers quickly and evolves towards the stationary

profile located closer to the LCFS. The center of the ne pedestal moves only little during

the recovery phase. Consequently, the pe pedestal exhibits an outward movement towards

the stationary profile, mainly due to Te. These observations are similar to data from AUG

showing that the radial movement of the Te pedestal is much stronger than that of the

ne pedestal.

At least two different theoretical models exist that describe time-dependent pedestal

expansion [109–111]. Both models predict that the pedestal should expand inwards and

are based on the hypothesis that pedestal transport coefficients are reduced by E × B

shear, which has been successfully modeled with ASTRA for a DIII-D discharge [112].

One model [109] is based on the numerical solution of coupled model equations for

ion density and pressure. Calculated time histories predict a temporal increase in width

and height of the ion density pedestal during an ELM cycle. This quantity could not

be measured on TCV, but similar trends were observed on DIII-D [76]. The temporal

evolution of width and height of the electron density pedestal in the additionally heated

TCV discharges shows increasing height, but rather constant width.

The calculations also predict an increase in width and height for the ion temperature

pedestal, which is consistent with DIII-D measurements, but could not be verified so

far on TCV due to the lack of measurements of the ion pedestal. If one compares the

temporal evolution of the electron temperature pedestal in TCV and AUG [105, 106],

an increase in pedestal height is clearly visible in both machines. The TCV data also

suggest that the electron temperature pedestal width increases during the ELM cycle. In

summary, this numerical model makes several predictions that are qualitatively similar

to the experimental observations on TCV and other machines.

Another time-dependent model describes the temporal evolution of fluctuating density,

poloidal flow shear and pressure [110, 111]. Poloidal flow, radial electric field and pressure

are linked through the force balance equation. The model predicts pedestal propagation

as an advance of the region of reduced confinement that is able to push its way further

into the plasma core.
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Summarizing, both models describe barrier propagation as a natural phenomenon to

be expected when a barrier is formed when turbulence is suppressed by E × B shear.

There is evidence that some of the trends observed in experiments on TCV and other

machines can be described to some extend by these models.

6.3. Identification of the pedestal pressure gradient limit

by ideal MHD

The ideal MHD stability limits of the pedestal were computed for equilibria of represen-

tative TCV discharges in ELMy H-mode (TCV-#: 38008, 37966, 26386). In these shots

different types of ELMs were observed, if we follow the classification described in subsec-

tion 2.3.4. The stability map is computed with the stationary profile presented before,

thus, for the sake of simplicity, does not include effects of pedestal propagation during

the pre-ELM phase. We refer to subsection 4.3.2, where the general effect of the pedestal

location onto pedestal stability is investigated.

The stability maps, figures 6.16-6.18, are plotted as function of the normalized pedestal

parallel current density J///〈J〉 and normalized pedestal gradient α. J// is taken at

the position where the pressure gradient is maximal, 〈J〉 is the total plasma current

normalized to the plasma cross sectional area. For the normalized pressure gradient, we

use the definition α ≡ µ0 (dp/dψ) (dV/dψ)
√
V/ (2π2R)/2π2 [35] taken at the point of

maximum pressure gradient in the pedestal, where p is the total pressure, V is the plasma

volume, R the major radius and ψ the poloidal flux. The diagrams show the ballooning

stability boundary as a solid red line and a dashed red line for the destabilization limit

of the flux surface, where the pedestal gradient is maximal. The external kink stability

limits are presented as cyan lines. Collisionless bootstrap and shear reversal are depicted

as dash-dotted and dashed line, respectively. The pedestal width ∆ρ is given in
√
ψN ,

the pedestal center location ρ0 in the same coordinate. The ratio between edge and

maximum pressure gradient p′edge/p′0 and the ratio between edge and maximum current

density jedge/j0, which influences the stability of ballooning and external kink modes, are

given for each stability map.

The growth rate of the external kink modes was computed on a Nψ×Nχ = 224× 224

and 256×256 grid and then extrapolated for a infinite grid size, where Nψ and Nχ are the

number of radial and poloidal grid points. We expect that high-n external kink modes
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are stabilized due to diamagnetic effects in the transport barrier [27, 39]. The maximum

unstable n is computed from equation (2.3.17) with R0/Lpi = 100, ne = 3 × 1019 and

Ti = Te for all configurations presented in the following. In general we find that high-n

(n & 20− 25) external kinks are stable.

The experimental point corresponding to the stationary profiles is labeled as A and

is computed from the electron pedestal profiles assuming Ti = Te and Zeff = 3 (see also

subsection 2.1.2). The current density is computed from the ohmic profile of the LIUQE

reconstruction and the bootstrap current calculated on the basis of the kinetic profiles (see

also subsection 2.1.2). The equilibrium is self-consistent including all corrections stated

above. The horizontal error bar accounts for the propagation of the uncertainty in the

electron pressure gradient into the total pressure gradient. The vertical error bar takes

into account the uncertainty in the bootstrap current. The points B and C represent the

conditions for certain times shortly before an ELM in the pre-ELM pedestal evolution.

The point D is computed from profiles in the post-ELM phase around 0.5− 1.5 ms after

the ELM crash. For this equilibrium, the current density profile is taken from the last

pre-ELM profile under assumption of negligible current diffusion during a total time delay

of less than ∼ 3 ms during the ELM crash.

6.3.1. Type-I ELMs

In the frame of ideal MHD, high pedestal pressure gradients can lead to the destabilization

of coupled external kink-ballooning modes which are generally associated with ELMs.

The triggering of ELMs does not appear to be a simple threshold effect. Operation near

a stability limit is a necessary but not a sufficient condition for triggering.

Figure 6.16 shows the stability map of a discharge taken from the set of type-I ELMy

H-modes presented in subsection 6.1.2. The point corresponding to the inter-ELM profiles

is marginal stable to high- and infinite-n ballooning modes. Including the data from the

profile build-up during the pre-ELM phase yields the points B (t− tELM = −5 ms) and

C (t − tELM = −1.5 ms). We observe that pedestal conditions gradually evolve in such

a way that they approach the medium-n external kink mode stability limit. Eventually

the ELM occurs and the pedestal relaxes. Point D (t − tELM = 1.5 ms) represents the

pedestal shortly after the ELM crash assuming negligible current diffusion during the

ELM.

In general, experimental observations and predictions based on ideal MHD stability
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Figure 6.16.: Ideal MHD stability map for H-mode plasma with type-I ELMs: Shown is the

experimental point A, which corresponds to the profile of the inter-ELM phase,

and points B,C & D referring to the times t − tELM = {−5.0,−1.0,+1.5} ms

in the ELM cycle with respect to the Dα-peak, where negative times mean pre-

and positive times post-ELM phase.

are in good agreement indicating that a high pressure gradient is a necessary but not

sufficient criterion to trigger an ELM of type-I. At low pedestal resistivity, this pres-

sure gradient can drive enough bootstrap current to destabilize medium-n external kink

modes, which is suggested as the main protagonist for the ELM destabilization. How-

ever, the pedestal shift towards the plasma center during the pedestal build-up in the

pre-ELM phase may change the class of modes responsible for the stability limit (see also

subsection 4.3.2).

6.3.2. Large ELMs

The discharges from the set of H-modes with large ELMs are characterized by a relatively

low value of pedestal resistivity, which makes them well suited for analysis by means of

ideal MHD. Figure 6.17 shows the stability map of one of these discharges and includes

the temporal evolution of the operational point during the ELM cycle.

Under conditions described by the inter-ELM profile A, high-n pressure-driven bal-

looning modes are unstable. Points B (t− tELM = −2.5 ms) and C (t− tELM = −0.8 ms)
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Figure 6.17.: Ideal MHD stability map for H-mode plasma with large ELMs: Shown is the

experimental point A, which corresponds to the profile of the inter-ELM phase,

and points B,C & D referring to the times t − tELM = {−2.5,−0.8,+1.0} ms

in the ELM cycle with respect to the Dα-peak, where negative times mean pre-

and positive times post-ELM phase.

remain in the vicinity of the ballooning limit and show only little profile evolution with re-

spect toA. The separation of pointD (t−tELM = 0.5 ms) from pointsA-C is insignificant.

In general it is observed that the plasma state is in the vicinity of the ballooning stability

limit during the whole pre-ELM cycle. The consideration of the pedestal displacement

would move the experimental points B and C further in the ballooning unstable region.

For this type of discharges we conclude that an interpretation of the stability limits

by ideal MHD gives a good agreement with the experimental data. The pressure gradient

in the pedestal is mainly limited by large-n modes, i.e. a narrow mode structure, which

is coherent with common models.

6.3.3. Type-III ELMs

Type-III ELMs, exhibiting small ELM energy loss and high frequency, are found in dis-

charges with high density and thus relatively high pedestal resistivity. These ELMs are

likely driven by resistive modes beyond the scope of ideal MHD analysis. Data shown in

figure 6.18 supports this hypothesis.
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Figure 6.18.: Ideal MHD stability map for H-mode plasma with type-III ELMs: Shown is the

experimental point A, which corresponds to the profile of the inter-ELM phase,

and points B,C & D referring to the times t − tELM = {−0.7,−0.2,+0.5} ms

in the ELM cycle with respect to the Dα-peak, where negative times mean pre-

and positive times post-ELM phase.

We observe that all experimental points are far off any ideal MHD stability limit,

which agrees with former investigations [104]. The inclusion of the temporal evolution

of the pedestal during the pre-ELM phase does not significantly alter the location of the

experimental points. An interpretation by resistive MHD would be necessary to identify

the corresponding unstable modes, but is beyond this work.

6.4. Conclusion

In this chapter, we investigated the temporal evolution of the pedestal properties during

a type-I, large and type-III ELM cycle using results from Thomson scattering. We found

coherent data averaging to be an appropriate method to study the profile evolution on

a millisecond-scale, which cannot be naturally attained by the Thomson scattering diag-

nostic on TCV. The results show very similar trends to those from DIII-D and AUG. In

particular, they indicate that the pedestal pressure gradient may saturate shortly before
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the ELM onset. From the observations it is concluded that a high pedestal pressure

gradient is a necessary but not sufficient explanation of the ELM event.

An analysis of the radial pedestal position during the ELM cycle was performed. The

data shows clearly that the pedestal moves slightly outwards during the post-ELM and

inwards during the pre-ELM phase, an effect that will clearly have an impact on the

stability limits obtained from ideal MHD. The experimental observations compare well

with results of similar experiments on AUG.

The interpretation of stability limits by ideal MHD agrees well with the experimental

observations. The medium-n current-driven and large-n pressure driven modes play an

important role in setting the maximal achievable pedestal pressure gradient in type-I and

type-III ELMy H-mode, when plasma resistivity is sufficiently low. The limits of the

ideal MHD theory become apparent in the case of small type-III ELMs, observed under

conditions of high plasma resistivity.

183



7. Summary and conclusion

This thesis primarily presents experimental studies and MHD stability calculations in

the investigation of the H-mode pedestal in different plasma configurations in the TCV

tokamak. The pedestal was characterized with experimental results from Thomson scat-

tering and interpreted by modeling of the ideal MHD stability limits in the plasma edge

region. The study comprises type-I and type-III ELM regimes as well as various shapes

in single-null (SN) and snowflake (SF) divertor configurations. It takes advantage of the

unique capabilities of TCV in terms of plasma shaping and heating by electron cyclotron

waves.

Thomson scattering

The TCV Thomson scattering system was upgraded for measurements of transport barri-

ers in the core (eITBs) and near the edge (ETB). This task implied an adaptation of the

optical system for high spatial resolution measurements, optimization of the polychroma-

tors for high temperature regimes, improvements of the analysis of the recorded signals,

development of a cross-calibration against the FIR interferometer and the development

of a method to synchronize the Thomson scattering measurements with plasma events.

These upgrades have contributed to the performance and reliability of the diagnostic for

all scenarios exploited at the present time and for future experiments on TCV.

Snowflake divertor

The H-mode pedestal properties and stability limits of the novel snowflake divertor were

addressed by modeling and experiment.

It was found that H-mode in SF configurations in TCV can be obtained without

penalties from increased vertical instability. Modeling showed that a SF configuration
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in H-mode has higher MHD stability limits in the pedestal region than an equivalent

SN that is mainly due to an increase in edge magnetic shear. This is a consequence of

the magnetic field topology of this configuration and this advantage is retained in the

presence of bootstrap current in the pedestal. Comparison with the SN configuration

however revealed that pedestal stability in the SF is more sensitive to the radial position

of the pressure gradient and edge bootstrap current, which affects the magnetic shear

profile.

Experiments with a SF-plus configurations (a variety of the SF, closer to SN) displayed

improved energy confinement accompanied by a lower average ELM power loss, whilst the

pedestal properties do not change significantly. According to MHD stability calculations,

the achievable pressure gradient ought to be higher, but was not observed experimentally.

These investigations lead to the conclusion that a SF configuration has significant

advantages for H-mode operation with regard to confinement, MHD stability and ELM

characteristics, but further studies are needed. The SF configuration may be varied con-

siderably and a comparison between experiment and modeling over a wider configuration

range may lead to further performance increases.

H-mode scenarios

Experiments in H-mode plasmas, for many plasma shapes, divertor configurations (SN

and SF), and heating power levels were performed, compared and interpreted using ideal

MHD stability calculations. Measurements of pedestal temperature and density allowed

an identification of the operational boundaries for type-III, type-I and large ELM regimes.

Applying additional heating by electron cyclotron waves (ECRH), it was found that

energy confinement increases as a consequence of changes in pedestal properties. The

scaling of the pedestal pressure width was tested against different models and it was

found that, for TCV, the scaling with the normalized poloidal pressure at the pedestal

top is weaker than the square root dependence found elsewhere.

With increasing heating power a transition from type-III to type-I ELM is observed.

The stability limits of the different ELM regimes were identified by means of ideal MHD.

It was found that high-n ballooning modes define the limit in case of type-III and large

ELMs, whereas type-I ELMs are limited by intermediate-n external kink modes.

As already known from experiments on other tokamaks, plasma shaping has strong

impact on the pedestal properties and ELM characteristics. Strong changes in the ELM
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frequency and energy exhaust as well as in the pressure pedestal height were found on

TCV when upper triangularity and squareness were varied. By increasing the plasma

elongation, the maximum stable pedestal pressure gradient was increased. These results

are in good agreement with expectations based on ideal MHD stability.

Temporal evolution of the H-mode pedestal during an ELM cycle

The temporal evolution of the pedestal properties was investigated for different ELM

regimes using Thomson scattering to measure electron temperature and density profile

near the edge with high spatial resolution.

In these experiments, random sampling, combined with coherent averaging, was used

to map out the time evolution of the pedestal on the millisecond scale, with an effective

sampling rate that was not attainable by the intrinsic diagnostic sampling rate.

Results from this analysis agree well with results reported from other machines. The

electron pressure gradient tends to saturate shortly before an ELM, whilst the pedestal

height of the pressure profile still increases. This leads to the conclusion that a critical

pressure gradient only, as derived from MHD stability calculations, is not sufficient to

explain ELM triggering, but rather the combination of pedestal height and gradient.

Most of the H-mode scenarios and plasma configurations presented in this thesis have

implications for the performance of a tokamak in general. The observations contribute to

the validation of theoretical models which will be applied to predict stability and perfor-

mance of future devices. The TCV results have confirmed the strong influence of plasma

shaping on the stability of the H-mode pedestal and the ELM characteristics. These

findings will contribute to the development of advanced scenarios of tokamak operation

in future devices.
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A. Code settings

A.1. CHEASE settings

Input parameter file for CHEASE:

&EQDATA

CURRT=0.37264048600348, R0EXP=8.79999995E-01, B0EXP=1.4347283,

SIGNIPXP=1.00000000E+00, SIGNB0XP=1.00000000E+00,

NSURF=6, ELONG=1.7, TRIANG=0.4, BEANS=0, CETA=0.24, SGMA=0, ASPCT=3.92531276E+00,

NFUNRHO=0,

RELAX=0.5, NDIAGOP=1, NBSEXPQ=0000,

NPROPT=2,

NIDEAL=6, NPLOT=1, NTCASE=0, NSMOOTH=1,

NS=72, NT=72, NPSI=256, NCHI=512, NISO=256, NTNOVA=72,

NPPFUN=4, NPP=1, NFUNC=4,

NSTTP=3, NPROPT=3,

CPRESS=1, QSPEC=0.95, CSSPEC=0.0,

NRSCAL=0, NCSCAL=4, NTMF0=0,

CFNRESS=1.00, NBAL=1, NBLOPT=0,

CFBAL=10.00, NOPT=-2, R0EXP=8.79999995E-01,

ETAEI=1.0, RPEOP=0.60, RZION=3.0,

NDIFPS=1, NDIFT=1,

NMESHA=2, NPOIDQ=10, SOLPDA=.30,

QPLACE=0.95, 0.95, 1.00, 1.00, 2.00, 2.00, 3.00, 3.00, 4.00, 4.00,

QWIDTH=0.10, 0.06, 0.02, 0.08, 0.05, 0.02, 0.05, 0.02, 0.04, 0.01,

NMESHA=2, NPOIDQ=10, SOLPDA=.30,
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A. Code settings

QPLACE=0.95, 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00,

QWIDTH=0.06, 0.06, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,

NMESHA=1, NPOIDA=10, SOLPDA=.40,

APLACE=0.95, 0.96, 0.96, 0.97, 0.97, 0.98, 0.98, 0.99, 0.99, 1.00,

AWIDTH=0.10, 0.06, 0.02, 0.06, 0.02, 0.06, 0.02, 0.06, 0.02, 0.01,

NMESHB=1, NPOIDB=10, SOLPDB=.40,

BPLACE=0.95, 0.96, 0.96, 0.97, 0.97, 0.98, 0.98, 0.99, 0.99, 1.00,

BWIDTH=0.10, 0.06, 0.02, 0.06, 0.02, 0.06, 0.02, 0.06, 0.02, 0.01,

NMESHC=1, NPOIDC=10, SOLPDC=.30,

CPLACE=0.95, 0.96, 0.96, 0.97, 0.97, 0.98, 0.98, 0.99, 0.99, 1.00,

CWIDTH=0.10, 0.10, 0.02, 0.10, 0.02, 0.10, 0.02, 0.10, 0.02, 0.01,

NMESHD=1, NPOIDD=4, SOLPDD=.50,

DPLACE=-1.80, -1.80, 1.80, 1.80,

DWIDTH=.18, .08, .18, .08,

NMESHE=1, NPOIDE=2, SOLPDE=.50,

EPLACE=-1.80, -1.80, 1.80, 1.80,

EWIDTH=.18, .08, .18, .08,

EPSLON=1.0E-10, GAMMA=1.6666666667,

NTURN=20, NBLC0=32, NPPR=24,

MSMAX=1, NINMAP=60, NINSCA=60,

NSYM=0, NEGP=-1, NER=1, NV=60, NVEXP=1, REXT=10.0, R0W=1., RZ0W=0.,

NEQDSK=0, NEQDXTPO=1,

PSISCL= 1.0, NRBOX=257, NZBOX=257, NBPSOUT=320,

A.2. CAXE settings

Input parameter file for CAXE:

e14463.eq

dummy

1 IREQ !0 no read-standard init. guess, 1 read eq.

320 NA11 !number of magnetic surfaces

320 NT1 !number of poloidal points
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A. Code settings

0 NA2 !dummy

0.00,0.0, 0.000, 1.0,.0,-.00 !RM(default if 0),ZM, dummy, EK1,DK1,SK1

0.000,0.0, 0.33333, 1.0,.0,-.00 !RK(read if 0),ZK, AK, EK2,DK2,SK2

0 IPA1 !flux mesh: 0 - s, 1 - psi

5 NPA1 !number of mesh packing points

0.0,0.0 SPA1 DPA1 !cluster point in s, localization delta

0.97, 0.05 SPA1 DPA1 !cluster point in s, localization delta

0.98, 0.05 SPA1 DPA1 !cluster point in s, localization delta

0.99, 0.05 SPA1 DPA1 !cluster point in s, localization delta

1.0, 0.001 SPA1 DPA1 !cluster point in s, localization delta

3 NPT1 !number of cluster points

0.25, 0.00 SPT1 DPT1 !cluster point in arclength, localization delta

0.75, 0.00 SPT1 DPT1 !cluster point in arclength, localization delta

1.00, 0.00 SPT1 DPT1 !cluster point in arclength, localization delta

0 IPA2 !dummy

0 NPA2 !dummy

0 NPT2 !dummy

2.000 ROM !CG solver : preconditioner choice =2.0(ILU), =other(D)

100 ITMAX!CG solver : max number of iterations, ITMAX=ITMAX*5 if IREQ=0

1.E-6 EPS !CG solver : accuracy in norm(residual)/norm(r.h.s.)

-3,-3 IFC,ICU !IFC=0,1,2 - given ff’,i*,jb IFC=0&ICU=1,2 - computed i*,jb

0.,2.0,1. CF1, PFE11, PFE12 !params for ff’ or i* or jb

0.,2.,1. CP1, PPE11, PPE12 !params for p’! read profiles if CF1+CF2+CP1+CP2=0

0.,0.,1. CF2, PFE21, PFE22 !PFE21=1. for eq. profiles, 0. - from ’dcx1ib.pro’

0.,1.,0. CP2, PPE21, PPE22 !if PFE21=1. then PPE21 scales p’

3 IQAE !0 - for qaxis, 1 - for qbound

0.970725274350149 QAE !q value

2 KPA !diff. scheme parameters

2 KPB

1 KPG

400 IGLOB !max number of iterations

10 IGLOUT !output frequency

1.E-5 EPSLEV !accuracy in level lines

1.E-5 EPSRO !accuracy in geometry change
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A. Code settings

2 ISKIP ! make calculations of ffp from current at every ISKIP iter.

0.5,0.5 ruw,raxwm!weights for Picard iterations

A.3. KINX settings

Input parameter file for KINX:

./e14463.eq

dummy

320 NA11 !NUMBER OF FLUX INTERVALS

320 NT11 !NUMBER OF POLOIDAL INTERVALS

-0.9 SNSCR !NUMBER OF SCRAPED SURFACES FROM EQ. (neg.-> EDGE, pos.-> CORE)

2 IPA1 !FLUX MESH SWITCH: -2 READ, 0 S=SQRT(PSI), 1 PSI, 2 MATCHED

5 NPA1 !number of mesh packing points

0.0,0.0 SPA1 DPA1 !cluster point in s, localization delta (ignored)

0.97, 0.05 SPA1 DPA1 !cluster point in s, localization delta

0.98, 0.05 SPA1 DPA1 !cluster point in s, localization delta

0.99, 0.05 SPA1 DPA1 !cluster point in s, localization delta

1.0, 0.001 SPA1 DPA1 !cluster point in s, localization delta

2 IPT1 !ARCLENGTH MESH SWITCH:-1 READ, 0 ARCLENGTH, 2 MATCHED

3 NPT1 !number of cluster points

0.25, 0.00 SPT1 DPT1 !cluster point in arclength, localization delta

0.75, 0.00 SPT1 DPT1 !cluster point in arclength, localization delta

1.00, 0.00 SPT1 DPT1 !cluster point in arclength, localization delta

0 IRES !RESONANCES FIX SWITCH: 1 FIX, 0 NO FIX

3 IQAE !q 0 axis 1 boundary switch

0.970725488907885 QAE !Q AXIS OR BOUNDARY

0 IBAL !compute ballooning

20 WN !toroidal wave number

1.67 GA !adiabata

0. EQSC !=1.(eq. normalization)

2 IOR !=2

0 IZD !=0
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A. Code settings

-1 IDW !DELTA DW SWITCH 0 FULL NORM, 1 DW NORM, -1 DW WITH RO=PSI

12.5 CRW !STABILIZING CORRECTION WEIGHT, DEFAULT=1, PUT CRW»1 FOR EDGE PEDESTAL

0 ISN !SPECTRAL SHIFT SWITCH: 1 ON, 0 OFF (OFF WHEN CRW>0)

-2 NAV !NUMBER OF VACUUM INTERVALS

1.2 WAC !WALL DISTANCE, WAC<=1. NO VACUUM

0,1.0,0.,.928,3.00,.45,-0.0 IWAC,RWP,ZWP,AWP,EWP,DWP,SWP !wall type,wall par,

TCV wall IWAC=3, conformal wall IWAC=0

-5e-1 AL0 !EIGENVALUE INITIAL GUESS

200 NITMAX!MAX ITERATIONS IN PAMERA

1.E-3 EPSPAM!EPS IN PAMERA

2 IG !GRAPHICS SWITCH

-3,-1,-4,0 ! j0bf switch, x-point at bottom, left, top
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B. KINX convergence studies

B.1. Vertical stability

In the ideal MHD-code KINX, the convergence of ω(N)2/ω2
A is expected to be quadratic

with 1/N2, where N is the number of radial and poloidal grid points. For the analysis,

the perfectly conducting wall (Rwall, Zwall) was selected to be conformal to the plasma

boundary. To avoid intersection with the toroidal axis, a minimum radial offset was

chosen to be 0.01Rgeom. The wall was parameterized by:

Rwall,j = max[Rgeom + rw (Rbound,j −Rgeom) , 0.1Rgeom], (B.1.1)

Zwall,j = Zgeom + rw(Zbound,j − Zgeom), (B.1.2)

where (Rgeom, Zgeom) is the geometric axis, rw the ratio of the conformal wall radius to the

minor radius a, and (Rbound, Zbound) the plasma boundary [113]. The results, figure B.1,

show that ω2/ω2
A exhibits 1/N2 convergence for grid sizes with N ≥ 160.

B.2. Higher toroidal mode numbers

The KINX convergence study was carried out for two different normalized radii rw =

{1.2, 10} of the conformal wall and for the TCV wall and is presented in figure B.2. The

results shows that it is necessary to use a grid size of N ≥ 192. For equilibria with higher

shape complexity, uncertainties in the computation of the mode spectrum decrease when

increasing the resolution of the computational grid. Thus, a grid size of N ≥ 256 with

mesh packing close to the separatrix is recommended.

KINX provides an option for a stabilizing correction factor (CRW) [114] when applying

the reduced energy norm (δW -norm). This reduces the so-called numerical destabilization,

produced by convergence from below to the continuous spectrum boundary ω2 = 0, in
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Figure B.1.: Convergence of the normalized growth rate ω2/ω2
A of the vertical stability as

function of the inverse quadratic grid size 1/N2. KINX settings: conformal wall

radius rw = 10, full W -norm, stabilization correction factor CRW = 1.

the case of stable equilibria when there is a resonant surface in the plasma. Numerical

destabilization means distortion of the positive lower boundary of the spectrum ω2. The

violation of the necessary stability condition DM ≤ 1/4 (Mercier/Newcomb) results in the

solutions of the Lagrangian W (ξ, xi) − w2K(ξ, ξ) oscillating in arbitrarily close vicinity

to the position of the resonant surface. In general, increasing the value of CRW results

in a smoother convergence, figure B.3.
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Figure B.2.: Convergence of the normalized growth rate ω2/ω2
A for different toroidal mode

numbers n as function of the inverse quadratic grid size 1/N2. KINX settings:

δW -norm, stabilization correction factor CRW = 10, various flux surface scrap-

ing SNSCR

(a) n = 1, SN (top) and SF (bottom), SNSCR = 0.0,

(b) n = 10, SN (top) and SF (bottom), SNSCR = 0.0,

(c) n = 40, SN (top) and SF (bottom), SNSCR = −0.9
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Figure B.3.: Convergence of the normalized growth rate ω2/ω2
A for different toroidal mode

numbers n as function of the inverse quadratic grid size 1/N2. KINX settings:

δW -norm, stabilization correction factor CRW = 10:

(a) n = 1, SN (top) and SF (bottom), SNSCR = 0.0,

(b) n = 10, SN (top) and SF (bottom), SNSCR = 0.0,

(c) n = 40, SN (top) and SF (bottom), SNSCR = −0.9
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C. Ideal MHD stability diagrams for

snowflake diverted H-mode

The MHD-stability of the synthetic H-mode equilibria snowflake (SF), snowflake plus

(SF+), snowflake minus (SF-) and snowflake-like single-null configuration and of the

SF with different shaping parameters are presented in the following. For the analysis,

a conformal and perfectly conducting wall with rw = 1.2 was chosen to ensure good

comparability. The mode stability was computed on a grid with size Nχ × Nψ = 320 ×
320; the growth rate γ was extrapolated for infinite grid size assuming inverse quadratic

convergence in γ as function of the grid size [36].

The ballooning unstable region is depicted by red crosses, its boundary by a thick solid red

line. The external kink modes modes are represented by solid bluish lines with toroidal

mode number n, respectively. The bullet represents the operation point of the reference

type-III ELMing H-mode. The error bar is determined by the uncertainty of the total

pressure (gradient). It covers a range of pe/ptot = 0.9− 0.5, where pe is the electron and

ptot the total pressure. The diagonal dotted-dashed line shows the collisionless bootstrap

current, whereas the horizontal dashed line represents the local reversal of the magnetic

shear s.
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C. Ideal MHD stability diagrams for snowflake diverted H-mode

C.1. Snowflake and snowflake-like configurations

0 1 2 3 4
0

0.5

1

1.5

J ///<
J>

α

1
3

5

1015

20 30 40

bootstrap

reversed shear

SN, j
edge

/j
0
=0.31, p’

edge
/p’

0
=0.32,

 ρ
0
=0.984, ∆ρ=0.015, Ip=320kA 

(a) SN

0 1 2 3 4
0

0.5

1

1.5

J ///<
J>

α

1
3 5

10
15

20 30

40

bootstrap

reversed shear

SF, j
edge

/j
0
=0.32, p’

edge
/p’

0
=0.32,

ρ
0
=0.984, ∆

0
=0.015, Ip=320kA     

(b) SF

0 1 2 3 4
0

0.5

1

1.5

J ///<
J>

α

1
3 5

10

15203040

bootstrap

reversed shear

SF+, j
edge

/j
0
=0.31, p’

edge
/p’

0
=0.32,    

 ρ
0
=0.984, ∆

0
=0.015, Ip=320kA         

(c) SF+

0 1 2 3 4
0

0.5

1

1.5

J ///<
J>

α

1
3

5

10

152030
40

bootstrap

reversed shear

SF−, j
edge

/j
0
=0.31, p’

edge
/p’

0
=0.32,        

ρ
0
=0.984, ∆

0
=0.015, Ip=320kA              

(d) SF-

Figure C.1.: Ideal MHD-stability of the edge pedestal for synthetic snowflake-diverted H-mode

equilibria: Stability maps for (a) snowflake-like single null (SN), (b) snowflake

(SF), (c) snowflake plus (SF+) and (d) snowflake minus (SF-).
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C. Ideal MHD stability diagrams for snowflake diverted H-mode

C.2. Snowflake and snowflake-like configurations for

different radial positions
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(e) SN, ρ0 = 0.992
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Figure C.2.: Ideal MHD-stability of the edge pedestal for different radial positions ρ0 of the

edge pedestal
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C. Ideal MHD stability diagrams for snowflake diverted H-mode

C.3. Snowflake configuration with different upper

triangularity

0 1 2 3 4
0

0.5

1

1.5

J ///<
J>

α

1
3

5

1015

20
30

40

bootstrap

reversed shear

SF, δ=−0.25, j
edge

/j
0
=0.32, p’

edge
/p’

0
=0.32, 

ρ
0
=0.984, ∆ρ=0.015, Ip=320kA                 

(a) δtop = −0.25

0 1 2 3 4
0

0.5

1

1.5

J ///<
J>

α

1

3

5

1015

20 30 40

bootstrap

reversed shear

SF, δ=0, j
edge

/j
0
=0.32, p’

edge
/p’

0
=0.32,

ρ
0
=0.984, ∆ρ=0.015, Ip=320kA            

(b) δtop = 0

0 1 2 3 4
0

0.5

1

1.5

J ///<
J>

α

1
3 5

10
15

20 30

40

bootstrap

reversed shear

SF, δ=0.25, j
edge

/j
0
=0.32, p’

edge
/p’

0
=0.32,

ρ
0
=0.984, ∆ρ=0.015, Ip=320kA               

(c) δtop = 0.25

0 1 2 3 4
0

0.5

1

1.5

J ///<
J>

α

1

3
5

10

15

20 30

40

bootstrap

reversed shear

SF, δ=0.40, j
edge

/j
0
=0.31, p’

edge
/p’

0
=0.32,

ρ
0
=0.984, ∆ρ=0.015, Ip=320kA               

(d) δtop = 0.40

Figure C.3.: Ideal MHD-stability diagrams of the SF configuration for different triangularities

δtop
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C. Ideal MHD stability diagrams for snowflake diverted H-mode

C.4. Snowflake configuration with different upper

squareness
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(a) λtop = −0.15
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Figure C.4.: Ideal MHD-stability diagrams of the SF configuration for different squareness

λtop
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C. Ideal MHD stability diagrams for snowflake diverted H-mode

C.5. Snowflake configuration with different elongation
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Figure C.5.: Ideal MHD-stability diagrams of the SF configuration for different elongation κ

201



D. H-mode electron pedestal profiles

during an ELM cycle

In this chapter, the electron temperature, density and pressure profiles during an ELM

cycle, measured by Thomson scattering, are shown. The following color coding is kept

throughout the whole chapter: electron temperature Te [keV] in red, electron density

ne [1019m−3] in blue and electron pressure pe [kPa] in magenta. The profiles were mapped

on radial coordinates on the plasma midplane. They are plotted as function of the relative

radius R−RLCFS [m], where RLCFS is the radius of the separatrix. The time ∆t indicates

the time of the profile with respect to the ELM time tELM , i.e. ∆t = t − tELM . The

profiles were fitted by a modified-tanh function, equation (3.6.1), in least-square sense.

The profile fit is shown as black solid line; its normalized χ2 is given for each fit.
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D. H-mode electron pedestal profiles during an ELM cycle

D.1. Type-I ELMs
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Figure D.1.: Electron temperature edge profiles from H-mode plasmas with type-I ELMs
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Figure D.2.: Electron density edge profiles from H-mode plasmas with type-I ELMs
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Figure D.3.: Electron pressure edge profiles from H-mode plasmas with type-I ELMs
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D. H-mode electron pedestal profiles during an ELM cycle

D.2. Large ELMs
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Figure D.4.: Electron temperature edge profiles from H-mode plasmas with large ELMs
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Figure D.5.: Electron density edge profiles from H-mode plasmas with large ELMs
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Figure D.6.: Electron pressure edge profiles from H-mode plasmas with large ELMs
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D.2.1. Type-III ELMs
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Figure D.7.: Electron temperature edge profiles from H-mode plasmas with type-III ELMs
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Figure D.8.: Electron density edge profiles from H-mode plasmas with type-III ELMs
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Figure D.9.: Electron pressure edge profiles from H-mode plasmas with type-III ELMs
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