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Abstract

Currently, the best theoretical description of fundamental matter and its
gravitational interaction is given by the Standard Model (SM) of particle
physics and Einstein's theory of General Relativity (GR). These theories con-
tain a number of seemingly unrelated scales. While Newton's gravitational
constant and the mass of the Higgs boson are parameters in the classical
action, the masses of other elementary particles are due to the electroweak
symmetry breaking. Yet other scales, like ΛQCD associated to the strong
interaction, only appear after the quantization of the theory.

We reevaluate the idea that the fundamental theory of nature may con-
tain no �xed scales and that all observed scales could have a common origin
in the spontaneous break-down of exact scale invariance. To this end, we
consider a few minimal scale-invariant extensions of GR and the SM, focusing
especially on their cosmological phenomenology.

In the simplest considered model, scale invariance is achieved through
the introduction of a dilaton �eld. We �nd that for a large class of poten-
tials, scale invariance is spontaneously broken, leading to induced scales at
the classical level. The dilaton is exactly massless and practically decouples
from all SM �elds. The dynamical break-down of scale invariance automati-
cally provides a mechanism for in�ation. Despite exact scale invariance, the
theory generally contains a cosmological constant, or, put in other words,
�at spacetime need not be a solution.

We next replace standard gravity by Unimodular Gravity (UG). This
results in the appearance of an arbitrary integration constant in the equations
of motion, inducing a run-away potential for the dilaton. As a consequence,
the dilaton can play the role of a dynamical dark-energy component. The
cosmological phenomenology of the model combining scale invariance and
unimodular gravity is studied in detail. We �nd that the equation of state
of the dilaton condensate has to be very close to the one of a cosmological
constant.

If the spacetime symmetry group of the gravitational action is reduced
from the group of all di�eomorphisms (Di�) to the subgroup of transverse
di�eomorphisms (TDi�), the metric in general contains a propagating scalar
degree of freedom. We show that the replacement of Di� by TDi� makes it
possible to construct a scale-invariant theory of gravity and particle physics
in which the dilaton appears as a part of the metric. We �nd the conditions
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under which such a theory is a viable description of particle physics and
in particular reproduces the SM phenomenology. The minimal theory with
scale invariance and UG is found to be a particular case of a theory with scale
and TDi� invariance. Moreover, cosmological solutions in models based on
scale and TDi� invariance turn out to generically be similar to the solutions
of the model with UG.

In usual quantum �eld theories, scale invariance is anomalous. This
might suggest that results based on classical scale invariance are necessar-
ily spoiled by quantum corrections. We show that this conclusion is not
true. Namely, we propose a new renormalization scheme which allows to
construct a class of quantum �eld theories that are scale-invariant to all or-
ders of perturbation theory and where the scale symmetry is spontaneously
broken. In this type of theory, all scales, including those related to dimen-
sional transmutation, like ΛQCD, appear as a consequence of the spontaneous
break-down of the scale symmetry. The proposed theories are not renormal-
izable. Nonetheless, they are valid e�ective theories below a �eld-dependent
cut-o� scale. If the scale-invariant renormalization scheme is applied to the
presented minimal scale-invariant extensions of GR and the SM, the goal of
having a common origin of all scales, spontaneous breaking of scale invari-
ance, is achieved.

Keywords: Scale Invariance, Unimodular Gravity, TDi� Invariance, Re-
stricted Coordinate Invariance, Quantum Scale Invariance,
Dilatational Anomaly.



Zusammenfassung

Die momentan beste theoretische Beschreibung der elementaren Materie
und der Gravitationswechselwirkung ist gegeben durch das Standard Mo-
dell (SM) der Teilchenphysik und Einsteins Allgemeine Relativitätstheorie
(ART). Diese beiden Theorien enthalten mehrere scheinbar komplett unab-
hängige dimensionsvolle Grössen. Während Newtons Gravitationskonstante,
sowie die Masse des Higgs-Bosons explizit in der klassischen Wirkung ent-
halten sind, erscheinen die Massen der übrigen Elementarteilchen erst durch
den spontanen Bruch der elektroschwachen Symmetrie. Wieder andere di-
mensionsvollen Grössen, wie zum Beispiel die charakteristische Skala der
Quantenchromodynamik (ΛQCD), erscheinen infolge der Quantisierung der
klassischen Feldtheorie.

Wir wollen uns mit der Idee beschäftigen, dass die fundamentalen Geset-
ze der Natur überhaupt keine dimensionsvollen Grössen enthalten könnten
und dass alle beobachtbaren dimensionsvollen Grössen ihren Ursprung im
spontanen Bruch der Skalensymmetrie der fundamentalen Theorie haben
könnten.

Das einfachste Modell, das wir betrachten werden, ist skaleninvariant
Dank der Präsenz eines zusätzlichen skalaren Feldes, welches wir Dilaton
nennen werden. Wir stellen fest, dass eine breite Klasse von Potenzialfunk-
tionen zum spontanen Bruch der Skalensymmetrie führt, wodurch alle di-
mensionsvollen Grössen der klassischen Theorie generiert werden. In dieser
Theorie ist das Dilaton exakt massenlos und praktisch entkoppelt von al-
len SM-Feldern. Es stellt sich heraus, dass die dynamische Brechung der
Skaleninvarianz einen Mechanismus für die kosmologische In�ation liefert.
Trotz der exakten Skaleninvarianz, enthält die Theorie im Allgemeinen eine
Kosmologische Konstante. In anderen Worten: Die �ache Raumzeit ist nicht
bedingungslos eine Lösung der Feldgleichungen.

In einem nächsten Schritt ersetzen wir Einsteins Gravitationstheorie durch
die sogenannt Unimodulare Gravitationstheorie (UG). Die Konsequenz da-
von ist das Erscheinen einer unbestimmten Integrationskonstante in den
Feldgleichungen. Die Präsenz der neuen Konstante wirkt auf das Dilaton
wie eine �Wegrenn�-Potenzialfunktion. Folglich kann das Dilaton eine dy-
namische Komponente der Dunklen Energie bilden. Wir studieren im Detail
die kosmologische Phänomenologie des auf Skaleninvarianz und Unimodulare
Gravitation basierten Modells. Es stellt sich heraus, dass die Zustandsglei-
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chung des Dilatonkondensates der Zustandsgleichung einer Kosmologischen
Konstante sehr ähnlich ist.

Die der ART zugrunde liegende Wirkung ist invariant bezüglich aller Ko-
ordinatentransformationen (Di�). Wenn nun die Symmetriegruppe der Gra-
vitationswirkung reduziert wird auf die Untergruppe derjeniger Koordina-
tentransformationen, welche das Vier-Volumen unverändert lassen (TDi�),
enthält die Metrik im allgemeinen einen dynamischen skalaren Freiheitsgrad.
Wir zeigen, dass es das Ersetzen der Di�-Symmetriegruppe durch die TDi�-
Symmetriegruppe ermöglicht, eine realistische skaleninvariante Theorie der
Gravitation und der Teilchenphysik zu bilden, ohne dass die Teilchentheorie
um ein zusätzliches Feld erweitert werden muss. In dieser Art von Theorie
erscheint das Dilaton als ein Teil der Metrik. Wir �nden die Bedingungen,
unter welchen die auf Skalen- und TDi�-Invarianz basierten Theorien eine
konsistente und phänomenologisch brauchbare Beschreibung der Teilchen-
physik sein können. Im Speziellen �nden wir die Bedingungen, unter wel-
chen die betrachteten Theorien die Phänomenologie des Standard Modells
reproduzieren. Des weiteren stellt sich die minimale, auf UG und Skalenin-
varianz basierte Theorie als Spezialfall der allgemeineren auf Skalen- und
TDi�-Invarianz basierten Theorien heraus. Es wird gezeigt, dass die kosmo-
logischen Lösungen letzterer Theorien den Lösungen der minimalen Theorie
im Allgemeinen sehr ähnlich sind.

Die Skalensymmetrie erweist sich in allen gängigen Quantenfeldtheorien
als anomal. Man könnte daraus folgern wollen, dass alle auf die Skaleninva-
rianz der klassischen Theorie basierten Resultate durch Quantenkorrekturen
ungültig gemacht werden. Wir zeigen, dass solch eine Folgerung falsch wäre.
Genauer gesagt, präsentieren wir eine neue Renormalisierungsprozedur, die
es ermöglicht, eine Klasse von Quantenfeldtheorien zu konstruieren, welche
in allen Ordungen der Störungstheorie skalenivariant sind, und in welchen
die Skaleninvarianz spontan gebrochen ist. In einer solchen Theorie erschei-
nen alle dimensionsvollen Grössen, inklusive derer die durch dimensionale
Transmutation entstehen, wie zum Beispiel ΛQCD, als Folge der spontanen
Brechung der Skaleninvarianz. Die neuen Theorien sind zwar nicht renorma-
lisierbar, dennoch können sie als e�ektive Theorien, gültig unterhalb einer
gewissen Maximalenergie, dienen. Wenn die skaleninvariante Renormalisie-
rungsprozedur auf die obgenannten minimalen Erweiterungen der ART and
des SM angewandt wird, ist unser Ziel, nämlich die Konstruktion einer Theo-
rie in welcher alle dimensionsvollen Grössen einen gemeinsamen Ursprung
haben, erreicht.

Stichworte: Skaleninvarianz, Unimodulare Gravitation, TDi� Invarianz,
Quantenskaleninvarianz, Dilatationsanomalie.
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1. Introduction

1.1 Introduction to the subject

The foundation pillars of modern Cosmology are Einstein's theory of General
Relativity (GR) [1] and the Standard Model (SM) of particle physics [2�
7]. The SM, based on quantum �eld theory, is supposed to describe the
matter and radiation content of the universe. GR describes the gravitational
interaction to which all forms of energy are subject. Both these theories
are very successful in describing most of the observed phenomena in their
respective domain of application.1 It is understood, however, that neither
GR nor the SM can be complete theories and that both of them need to be
extended or modi�ed (see e.g. [10, 11]). This fact is supported by strong
experimental and theoretical arguments of which we want to name the most
prominent ones.

The SM, containing only massless neutrinos, is incompatible with ob-
served neutrino oscillations, which can only occur if neutrinos have a mass [9].
On the theoretical side, we can mention the Landau-pole problem [12]. In the
SM the U(1) gauge coupling, the Higgs self coupling as well as the Yukawa
couplings grow large at high energies. This means that above a certain en-
ergy one can no longer extract predictions from the theory.

Turning our attention to GR, there is at the moment no compelling
experimental evidence suggesting that classical GR is incomplete. There
is, however, a fundamental theoretical issue. GR is a classical �eld theory.
We know that in order to describe systems in which neither quantum nor
gravitational e�ects are negligible, a quantum theory of gravity is needed. If
one attempts to quantize GR in the framework of usual quantum �eld theory,
one notices that perturbative GR is non-renormalizable. It can thus only be
considered as an e�ective low-energy theory. The quest for reconciliation
of GR with quantum physics is one of the major challenges in theoretical
physics.

Additional reasons that call for an extension of GR and the SM appear in
the context of cosmology. Over the past decades the so-called Hot Big Bang
model (see e.g. [13]) established itself as the standard model of cosmology.
This is mainly due to its accord with the observation of an expanding uni-

1 For a review of experimental tests of general relativity see for example [8]. For an
overview of the experimental status of particle physics see [9].
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verse, the discovery of the cosmic microwave background and the observed
abundances of light elements. Nevertheless, in the scope of this model, a
number of questions remains open. Let us present the most important ones.

• Dark Matter (DM)

Several independent astrophysical and cosmological observations re-
lated to the gravitational interaction on di�erent scales cannot be de-
scribed on the basis of GR and the SM (for a recent review see [14]).
A well-known example is provided by the observed �at rotation curves
of spiral galaxies. In these galaxies, most of the visible mass is concen-
trated in a thin disc rotating around the center. Based on this fact,
one would expect the rotation velocities of objects circulating around
the galactic center to decrease like 1/

√
r with increasing radial dis-

tance r. This prediction is in sharp con�ict with observations, which
show that the rotation velocities remain approximately constant over a
large range of distances. The observed rotation curves can be explained
if the galaxy is embedded into a large halo of a new type of invisible
(dark) matter. Alternatively, one can try to remove the discrepancy
by modifying the gravitational force law at galactic distances.

Cosmology provides another reason for the need of a new type of mat-
ter. In fact, for primordial nucleosynthesis to successfully describe the
measured abundances of light elements in the universe, the present
abundance of baryons should be about ΩB ' 0.02. Comparison of this
value with the total abundance of non-relativistic matter ΩM ' 0.3
gained from measurements of the Hubble constant, suggests that the
universe should contain a large amount of non-baryonic matter. These
numbers also rely on the assumption that gravity is well-described by
GR. It can not be excluded that the discrepancies could be accounted
for in a modi�ed theory of gravity. In either case, there is a piece
missing in the puzzle.

• Baryon asymmetry

The observed matter content of the universe is mostly composed of
baryons and electrons. However, we know from particle physics, that
for each charged particle there exists an antiparticle with opposite
charge. In spite of the almost exact charge conjugation symmetry be-
tween particle and antiparticle properties, antimatter is hardly present
in our universe. This unexplained fact is commonly referred to as the
baryon asymmetry problem.

From the particle physics point of view, one is tempted to consider
interactions, which can produce matter and antimatter at di�erent
rates. Such processes might generate today's observed baryon asym-
metry during the evolution of the universe, even if it started o� with
only a tiny asymmetry. This mechanism is called baryogenesis (for a
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review see e.g. [15]). In 1967, Andrei Sakharov [16] proposed a set
of three necessary conditions for the generation of baryon asymmetry:
(a) Baryon number violation, (b) C and CP violation, (c) The corre-
sponding processes should be out of thermal equilibrium. Although
the Standard Model in principle ful�lls these requirements [17], it is
unlikely to produce the observed baryon asymmetry, because CP vio-
lation in the Cabibbo-Kobayashi-Maskawa mixing matrix of quarks is
too small. Also, for a mass of the Higgs boson in the experimentally
allowed range, the electroweak phase transition is not of the �rst or-
der [18], which would be needed to satisfy condition c). A solution to
the baryon asymmetry issue might come from a particle physics theory
beyond the Standard Model.

• In�ation

There are strong reasons to believe that the very early universe went
through a phase of almost exponential expansion, called in�ation (for a
good review see [19]). This would explain the nearly perfect homogene-
ity and spatial �atness of today's universe. In fact, without in�ation,
di�erent parts of the observable universe would never have been in
causal contact. However, observations of the Cosmic Microwave Back-
ground (CMB) show that all these supposedly causally disconnected
regions have the same temperature to about one part in 105. Without
in�ation, this fact could only be explained by a very �ne tuning of
initial conditions. The situation is similar for the observed spatial �at-
ness of the universe, which, in the absence of an in�ationary phase in
the early universe, could only be due to very special initial conditions.
After the idea of in�ation had been introduced, people realized that it
can, on top of solving the mentioned problems, give an explanation for
the primordial density �uctuations that are at the origin of structure
formation in the universe [20�23]. Due to all these nice features, the
in�ationary paradigm has almost become part of standard cosmology.
Still, even though many models and mechanisms for in�ation have been
proposed, we lack a precise understanding of its fundamental origin.

• Dark Energy (DE)

There exists compelling experimental evidence [24�26], suggesting that
the universe is currently undergoing a phase of accelerated expansion.
If one sticks to the hypothesis of a homogeneous universe described
by Friedmann's equations (GR), accelerated expansion can only be
explained by the presence of an energy component (Dark Energy, DE)
with almost constant energy density and negative pressure.2 Moreover,
within the standard cosmological framework, it is found that this exotic
energy component should constitute about 70% of today's total energy

2 This is completely analogous to the in�ationary phase in the very early universe.
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density of the universe, ΩDE ' 0.7 [27]. The fundamental nature of
dark energy is up to now unclear. A nearly obvious possibility is that
dark energy is due to a cosmological constant Λ in Einstein's equations
(see (1.2) below). Such a term has exactly the properties of a �uid of
constant energy density ρΛ = cst. and negative pressure pΛ = −ρΛ.
And indeed, including this term in the equations, makes it possible to
�t all current observations. However, the identi�cation of dark energy
with the cosmological constant brings about a serious theoretical issue
(cf. next paragraph).

If dark energy is not related to the cosmological constant, this would
call for the introduction of a completely new energy component, of-
ten called Quintessence [28�31]. To this day, observations cannot tell
with certainty, whether dark energy behaves exactly like a cosmolog-
ical constant, or whether its properties (e.g. equation of state) might
be changing in time, as is the case for quintessence [32].

Let us mention that the situation is di�erent if one abandons the hy-
pothesis of a nearly homogeneous universe at very large scales. It has
been shown in several works, that the reason for the observed acceler-
ation could be that we live in a huge underdense region (void) of the
universe (see e.g. [33]). This scenario, of course, would also need a
fundamental explanation.

• The Cosmological Constant Problem

In accord with the symmetry principles of general relativity, Einstein's
equations can contain a cosmological constant Λ.3 As mentioned in the
previous paragraph, this constant can act as dark energy. If the cosmo-
logical constant Λ is the sole constituent of dark energy, the observed
abundance ΩΛ = ΩDE ' 0.7 corresponds to a value Λ ' 10−47 GeV4.
Up to here, there is no problem. However, if one uses the frame-
work of e�ective �eld theory to combine GR with particle physics, the
cosmological constant is expected to receive many di�erent contribu-
tions corresponding to the vacuum energies of the various SM �elds.
The e�ective cosmological constant should then be the sum of a bare
value Λ0 and these contributions, which are proportional to the dif-
ferent particle physics scales of the theory. Technically, this result
is obtained by computing the constant term in the quantum e�ec-
tive potential of the particle theory. The problem appears because all
particle physics scales are much larger than the scale of dark energy.
Suppose, for instance, that the electroweak scale MW ' 250 GeV is
the largest scale of the particle physics theory. One would then have
Λ ∼ Λ0 +M4

W ∼ Λ0 +109 GeV4 ∼ 10−47 GeV4. For this to be satis�ed,
the bare value Λ0 has to cancel the vacuum energy contribution to 56

3 For detailed reviews of the cosmological constant problems see [31, 34, 35].
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decimal places. This seems to be a very unnatural �ne-tuning. If the
particle theory contains bigger scales associated to physics beyond the
standard model, the situation gets even worse.

There is a second problem related to the cosmological constant, com-
monly referred to as the �Cosmic Coincidence Problem�. If dark energy
is fully attributed to the cosmological constant, its present abundance
ΩΛ ' 0.7 is of the same order of magnitude as the abundance of non-
relativistic matter Ωm ' 0.3. While the energy density of matter
decreases as ρm ∝ a−3 with the expansion of the universe, ρΛ remains
constant.4 Hence, the ratio of abundances scales like Ωm/ΩΛ ∝ a−3.
The fact that this ratio is close to one just in the present universe,
is considered to be an unnatural coincidence that might need further
explanation.

Let us note that both these problems are �naturalness� problems and
do not express an inconsistency of the underlying theory. If these were
the only existing problems, the theory might not need to be modi�ed.
However, since modi�cations of the theory are asked for by many other
issues, it seems reasonable to look for those modi�cations which also
alleviate the naturalness problems.

The presented �cosmological� problems are most probably rooted in the
underlying theories of gravity (GR) and particle physics (SM).5 And of
course, the di�erent problems might be related.

Proposals for extending the particle physics theory are nearly uncount-
able. One commonly refers to �Physics Beyond the Standard Model� (BSM).
It would go beyond the scope of this work to give a detailed account of BSM
physics. For recent reviews and an entry point to the literature see e.g.
[11, 36]. Some of the new theories involve fundamental new ideas. In su-
persymmetric theories, for instance, one introduces a whole range of new
particles corresponding to supersymmetric partners of the standard model
particles. These theories can improve the situation for several of the above
problems. For example, they can contain a new particle that has the right
properties to be responsible for dark matter and at the same time provide
mechanisms for in�ation and baryogenesis. A very minimal extension of
the SM, not involving supersymmetry, is given by the νMSM [37�39]. This
model corresponds to the SM supplemented by three singlet neutrinos. In-
terestingly, already such a minimal approach permits to address and possibly
solve several of the above-stated problems. Many of the BSM theories pos-

4 a = a(t) stands for the scale factor of the homogeneous Friedmann-LeMaitre-
Robertson-Walker universe.

5 This need not be the case if some of the assumptions made in cosmology are wrong.
For instance, as already mentioned, it can not be excluded that the observed acceleration
of the nearby universe is due to the fact that we live in an underdense region of the
universe. This, of course, would not solve the cosmological constant problem.
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sess signatures that can be tested with the experiments currently going on at
the Large Hadron Collider (LHC). We therefore have the exciting perspec-
tive of getting to know much more about particle physics in the very near
future.

Given the success of classical general relativity, proposals that solely
modify the classical theory of gravitation are fewer. Nevertheless, one should
bear in mind that some of the cosmological problems could be due to our
misunderstanding of classical gravity. It is interesting, for example, that a
modi�cation of Newton's law on galaxy scales can �explain� the �at rota-
tion curves of spiral galaxies. However, it turns out to be di�cult to obtain
the modi�ed Newton's law as the non-relativistic limit of a fully relativis-
tic theory. Another idea is to modify the equations of gravity such that
vacuum energy does not act as dark energy, which would solve part of the
cosmological constant problem. A possible way to achieve this is to look for
theories in which gravity has a �nite range (massive gravity) (e.g. [40, 41]).
An alternative possibility is to replace GR by Unimodular Gravity (UG).
This idea will be discussed in detail in the present work. Often, attempts to
change the theory of classical GR are connected with the hope that the new
theory would allow to be quantized in the standard framework of quantum
�eld theory. An interesting recent proposal along these lines is the so-called
Ho°ava Gravity [42, 43].

It could well be that the merger of gravitation with the laws of quantum
physics cannot be realized in the scope of quantum �eld theory. Great e�orts
are being undertaken, giving the example of superstring theory, to incorpo-
rate GR and the SM in a new type of theory that would be applicable at all
energy scales (UV complete), but which is no longer a traditional quantum
�eld theory (see e.g. [44, 45]). There is a chance, or hope, that this enter-
prise, beyond solving a crucial theoretical issue, will also solve the mentioned
problems of cosmology. At present, unfortunately, the complexity of string
theories makes it hard to extract predictions from them.

Some of the cosmological problems can be approached at a more phe-
nomenological level. In particular, related to in�ation, dark energy and the
cosmological constant, people try to �nd simple mechanisms which can de-
scribe the observed phenomena. Models of in�ation typically introduce one
or several new scalar �elds, together with a particular potential. These scalar
�elds need not be fundamental but can be e�ective descriptions of some un-
known new fundamental physics. They model the existence of a new energy
component in the early universe that can give rise to a phase of accelerated
(almost exponential) expansion. The strategy is to �nd those models whose
predictions agree with observations (e.g. CMB). In a next step, one would
try to identify the fundamental theories compatible with the successful phe-
nomenological models. Given the precision of current observations, there
are still many di�erent models of in�ation that can be �tted to the data
[19]. As a consequence, it is rather di�cult to apply this strategy to gain
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some knowledge about the underlying fundamental theory. In a very similar
manner, one can introduce new scalar �elds to model a possible dynamical
dark energy component (e.g. [28, 31]). Related to this are the so-called
adjustment mechanisms that try to address the cosmological constant prob-
lem [34, 35]. Roughly speaking, the idea is to introduce a scalar �eld that
compensates for the expected large value of the cosmological constant. Up
to now, activities in this direction have not proven very successful.

1.2 Introduction to the present work

In the present work we consider a few modest modi�cations of the standard
theories of gravitation and particle physics, based on the ideas of Scale In-
variance (SI), Unimodular Gravity (UG) and TDi� Gravity. One part of
the task is to �nd theoretically consistent ways to implement these ideas.
Secondly, it has to be assured that the modi�ed theories do not violate well-
established experimental bounds. Thirdly, as our main objective, we try
to see how the new theories can address the aforementioned cosmological
problems. The separate ingredients (SI,UG and TDi� Gravity) are not new.
What is new, however, is the way we implement them and combine several
of these ideas in a same theory. Let us start with a brief presentation of the
key ingredients.

• Scale Invariance (SI)

In classical and quantum �eld theory scale invariance is a symmetry of
theories that do not contain any �xed scales, i.e. dimensional param-
eters.6 An action (respectively quantum e�ective action) describing
such a theory is invariant under transformations of the type7

Φ(x) 7→ σdΦΦ(σx) , (1.1)

where Φ(x) stands for the di�erent �elds, dΦ is their associated scaling
dimension and σ is an arbitrary real parameter. These transformations
are called scale transformations or dilatations. A famous example of
a scale-invariant theory is given by Maxwell's equations for classical
electrodynamics in the absence of charges and currents.

There are several motivations to study scale invariance in the context
of particle physics. An old idea is that at high energies masses of
particles and other dimensional parameters could become negligible
and the theory would be almost scale-invariant. The associated hope

6 By dimensional parameters we mean parameters that have non-zero dimensionality
when expressed in natural units, where c = ~ = 1. Such parameters can be expressed in
units of mass or energy to some power.

7 There are other ways to parametrize the symmetry associated to the absence of di-
mensional constants. We will also make use of them in the following sections.
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is that the study of exactly scale-invariant theories could also teach
us something about theories which are approximately scale-invariant,
much like in the case of chiral perturbation theory for QCD [46] (for a
review of scale invariance in this spirit see [47]).

One can try to go one step further. Inspecting the standard model
Lagrangian, one notices that at the classical level scale invariance is
broken by one single term � the mass term of the Higgs �eld. Knowing
that the standard model needs to be extended, this observation can mo-
tivate the search for extensions that make the Lagrangian completely
scale-invariant. Even more so, as up to now the Higgs sector remains
experimentally unexplored. A recent study of this idea is presented in
[48, 49].

Now, the fact that we do observe massive particles in nature is enough
to know that scale invariance must be broken. As usual, there are
two ways in which this symmetry can be broken. Allowing for some
non-zero mass terms (or other dimensional parameters) in the action
breaks the symmetry explicitly. This option does not represent a real
progress, as it leads back to the starting point. The other possibility is
that scale invariance is broken spontaneously. In this case the action is
exactly scale-invariant, but not the solution of the �eld equations (in
the classical case) or the ground state (in the quantum case). In a scale-
invariant quantum �eld theory, a symmetry-breaking ground state can
be responsible for particle masses.8 This interesting scenario has one
big drawback. Scale symmetry appears to be anomalous (e.g. [47]). In
other words, a quantum �eld theory constructed from a scale-invariant
classical Lagrangian is in general no longer scale-invariant.9 This sug-
gests that the idea of an exactly scale-invariant theory where masses
are induced by spontaneous symmetry breaking is not realizable. Tech-
nically, the scale anomaly appears because all common regularization
procedures (dimensional, cut-o�, Pauli-Villars, ...) introduce a new
scale into the theory. In the present work, we propose a new renormal-
ization scheme [50] (see also [51]), which allows to construct a class of
theories that are scale-invariant at the quantum level to all orders in
perturbation theory. Hence, we will take the point of view that scale
invariance can be a �good� symmetry even at the quantum level.

8 This is analogous to the Higgs mechanism, where the vacuum expectation value of the
Higgs �eld induces the masses of all other particles.

9 In more technical words, if Jµ(x) is the current associated to scale transformations,
this current is conserved at the classical level ∂µJ

µ(x) = 0. However, at the quantum
level, the conservation law no longer holds. In fact, the expectation value of the operator
∂µJ

µ(x) is proportional to the beta function of the theory, which in general is not zero.
Only if there exists a point in parameter space where the beta function is zero, the theory
at this point is scale-invariant at the quantum level, however with anomalous scaling
dimensions.
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Including gravity provides additional motivation for the study of scale-
invariant theories. Classical GR contains one characteristic scale, New-
ton's gravitational constant G, respectively the Planck mass MP =
G−1/2.10 It is a natural question to ask whether Newton's �constant�
might actually change in time. The idea that this and other constants
of nature could vary with time goes back to Dirac [52]. Dirac was
intrigued (and we are still intrigued) by the fact that nature presents
several enormously di�erent scales (Planck scale, proton mass, ...).
The hope was, that after promoting the constants to time-dependent
quantities, one could �nd a dynamical mechanism to explain their big
di�erences. In modern words, this corresponds to constructing a scale-
invariant theory with spontaneous symmetry breaking.

Also Brans and Dicke, led by Machs' principles [53], promoted G to a
dynamical �eld. The Brans-Dicke theory of gravity [54] is still a viable
alternative to GR, although experiments have put severe bounds on it.

The idea that the observed scales could be due to the spontaneous
break-down of scale invariance in the underlying theory also motivated
the proposals [55�59]. In these works, the combined action for gravity
and particle physics is made scale-invariant by the introduction of new
scalar �elds. It is argued that the symmetry can be broken if the scalar
�elds take non-trivial background values. While in [55�57] the origin
of the non-trivial background is not speci�ed, it is argued in [58, 59]
that it can be provided by a cosmological solution. Similar ideas will
be discussed in the present work. However, there will be some possibly
crucial di�erences. In particular, in our models the symmetry-breaking
backgrounds correspond to constant solutions minimizing the potential
energy.

It is rather obvious that scale invariance could play a role in the con-
text of the cosmological constant problem and dark energy. In fact, if
one manages to construct a scale-invariant theory for particle physics,
its e�ective potential contains no constant term. Equivalently, one can
say that the vacuum expectation value of the energy-momentum tensor
vanishes, 〈Tµµ 〉 = 0. If this theory is minimally coupled to gravity, there
is no cosmological constant problem. In the absence of a cosmological
constant, dark energy would need another explanation. This �solu-
tion� to the cosmological constant problem is of course also plagued
by the dilatational anomaly. Several authors have proposed to start
from a classically scale-invariant theory and let the appearing anoma-
lous terms be responsible for the observed dark energy [30, 60].11 As
mentioned before, we will take the point of view that an exactly scale-
invariant quantum theory can exist. Now, if scale invariance is taken

10 Apart from a possible cosmological constant to which we will come back shortly.
11 For another interesting related proposal see [61].
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seriously, the full action including gravity and particle �elds should
respect this symmetry. In general, such an action involves so-called
non-minimal couplings to gravity. Also in this case, scale symmetry
forbids the appearance of a constant term in the action. However, as
we will discuss in detail, in the presence of non-minimal couplings the
cosmological constant problem reappears in a particular way.

• Unimodular Gravity (UG)

A very modest modi�cation of GR is given by Unimodular Gravity
(UG) [34, 62�70]. The key idea is to remove the determinant of
the metric from the dynamical variables by imposing the constraint
| det gµν | = 1. This is an additional constraint on the components of
the metric, on top of the usual symmetry requirement gµν = gνµ. Uni-
modular Gravity mainly appeared in the context of the cosmological
constant problem. The reason for this can be understood easily. The
Einstein-Hilbert action describing GR in the presence of a cosmological
constant is given by12

SGR = −
∫
dx4√−g

(
(8πG)−1R+ Λ

)
, (1.2)

where g ≡ det gµν . Einstein's equations are obtained by requiring
SGR to be stationary with respect to variations δgµν of the full metric.
The cosmological constant appears in the equations of motion due to
its coupling to the metric determinant g. Imposing the unimodular
constraint |g| = 1, the above action reduces to

SUG = −
∫
dx4

(
(8πG)−1R̂+ Λ

)
, (1.3)

Here and from now on a �hat� on a quantity means that it is computed
from the unimodular metric ĝµν , i.e. satisfying |det ĝµν | = 1. The cos-
mological constant no longer couples to the metric. As a consequence,
whatever the value of Λ is, it will not appear in the equations of mo-
tion. One could expect that this would solve the cosmological constant
problem. People immediately realized that things are not quite as sim-
ple, and that in fact a new type of cosmological constant appears in the
equations of motion. Let us see how this happens. The �eld equations
for UG are derived by varying SUG with respect to ĝµν , keeping its
determinant �xed. One �nds

R̂µν −
1
4
R̂ ĝµν = 0 , (1.4)

12 We use throughout this work the following conventions: ηµν = diag(−1, 1, 1, 1),
Rαβγδ = ∂δΓ

α
βγ + ΓλβγΓαλδ − (γ ↔ δ) .
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which are the traceless part of Einstein's equations.13 Applying the
contracted Bianchi identity ∇̂µ(R̂µν − 1

2R̂ĝµν) = 0 one �nds R̂ =
4(8πG)Λ0, where Λ0 is an arbitrary integration constant. Reinsert-
ing this into the traceless equations, they can be rewritten as

R̂µν −
1
2
R̂ ĝµν + (8πG)Λ0 ĝµν = 0 . (1.5)

This shows that, at least at the classical level, UG is equivalent to
GR with a cosmological constant.14 Nevertheless, there is an impor-
tant conceptual di�erence. The cosmological constant in UG is not a
parameter of the action but an arbitrary integration constant, which
can be thought of as an initial condition. In particular, unlike Λ, the
constant Λ0 has nothing to do with vacuum energy. There is therefore
no reason to expect Λ0 to take a very big value. On the other hand,
there is no reason either to expect it to be very small, i.e. to corre-
spond to the observed value. Summing up, one can say that UG puts
the cosmological constant problem into a new perspective but does not
really solve it. In the present work we will study UG in combination
with scale-invariant theories. The appearance of an arbitrary integra-
tion constant will spontaneously break the scale symmetry. Moreover,
in scale-invariant theories, the integration constant will not play the
role of a cosmological constant but rather give rise to a dynamical dark
energy component.

UG has also been studied in view of a possible quantization of grav-
ity. One hope is that the simpler form of the UG action might also
facilitate the quantization of gravity as a perturbative �eld theory (in
this context see [71�73]). According to a recent work [74], however,
UG becomes non-renormalizable at two-loops, just like GR. Another
possible advantage of UG compared to GR appears in the canonical
quantization formalism [66, 67]. In fact, unlike in GR, the Hamiltonian
in UG does not vanish. This could possibly clarify the interpretation
of the theory. A recent study of the di�erences between UG and GR
at the quantum level can be found in [70].

13 The same equations can be obtained from the action SGR by doing variations that
respect δg = 0.
14 Under very general conditions, a metric solving Einstein's equations can be written

in coordinates such that its determinant is equal to one [62].
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• TDi� Gravity

The symmetry group of Einstein's theory of General Relativity is the
group of all di�eomorphisms (coordinate changes)

xµ 7→ x̃µ(x) , (1.6)

whose in�nitesimal form is

xµ 7→ xµ + ξµ(x) . (1.7)

We will refer to the group of all di�eomorphisms with the abbreviation
Di�. If gravity is described by a symmetric metric gµν , Di� invariance,
together with the requirement that the �eld equations should contain
no higher than second derivatives, uniquely �xes the form of the gravi-
tational action. Namely, it has to be the Einstein-Hilbert action (1.2).
Di� invariance also dictates how matter �elds are coupled to gravity.

GR satis�es both the Weak Equivalence Principle (WEP) and the
Strong Equivalence Principle (SEP).15 In simple words, theWEP states
that all e�ects of gravity can be eliminated locally by an appropriate
change of coordinates (i.e. placing the observer into a freely falling
frame). The SEP, on top of this, states that the outcome of a local
gravitational experiment does not depend on when and where in the
universe the experiment is performed.

Looking for theoretical alternatives to GR, one can ask whether the
group of all di�eomorphisms is the minimal symmetry group that gives
rise to a satisfactory theory of gravitation. This is one of the motiva-
tions for exploring TDi� gravity [65, 72, 74�78]. The starting point in
TDi� gravity is to require invariance not under all coordinate changes
but only under those that preserve the volume element, i.e.

xµ 7→ x̃µ(x), with J ≡
∣∣∣∣∂x̃µ∂xν

∣∣∣∣ = 1 , (1.8)

generated by the subalgebra of transverse vectors,

xµ 7→ xµ + ξµ(x), with ∂µξ
µ = 0 . (1.9)

We will refer to this symmetry group as the group of transverse di�eo-
morphisms (TDi�). A theory which is invariant under TDi� will be
called �TDi� theory�. If the theory only contains the metric �eld, we
will refer to a theory of �TDi� Gravity�.

Unlike Di� invariance, TDi� invariance does not uniquely �x the form
of the gravitational action. In particular, the action can contain arbi-
trary functions of the metric determinant g, since it is a scalar under

15 For precise de�nitions see e.g. [8].
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TDi�. The most general TDi� invariant action for gravity containing
no higher than second derivatives is

STD =
∫
dx4√−g

(
−1

2
M2f(−g)R− 1

2
M2l(−g)gµν∂µg∂νg −M4v(−g)

)
,

(1.10)

where f(−g), l(−g) and v(−g) are arbitrary functions and M is an a
priori arbitrary mass scale. The couplings between gravity and mat-
ter based on TDi� symmetry are much less restricted than in the case
of Di� invariance. Namely, just like the gravitational part of the ac-
tion, they can contain arbitrary functions of g. We will refer to the
arbitrary functions of g as �Theory De�ning Functions� (TDF). Ulti-
mately, all TDF will be restricted by theoretical and phenomenological
considerations.

The action STD describes in general three propagating degrees of free-
dom, the graviton plus a new scalar. There are two particular choices
for the arbitrary functions that enhance the TDi� symmetry by an ad-
ditional local symmetry such that the scalar degree of freedom is ab-
sent [76]. The �rst one obviously corresponds to GR (f = const., v =
const., l = 0). The second one corresponds to choosing the functions
such that the action is invariant under local (Weyl) rescalings of the
metric gµν → e2σ(x)gµν , where σ(x) is an arbitrary function. In this
second case (sometimes called WTDi�) the action depends on the met-
ric only through the combination gµν(−g)−1/4, in other words on the
unimodular metric ĝµν = gµν(−g)−1/4. Therefore, this case exactly
corresponds to UG.

For all other choices of the TDF the metric contains a new scalar
degree of freedom. The presence of this degree of freedom necessarily
violates the SEP and potentially also violates the WEP. Therefore,
when constructing a theory based on TDi� invariance, one has to make
sure that the theory is not in con�ict with experimental bounds on the
violation of the SEP and the WEP [8].

Let us note that as soon as one allows for an additional degree of free-
dom in the metric, the distinction between gravity and matter becomes
ambiguous. In fact, we will see in the present work that such a the-
ory can always be reformulated as a theory of GR plus a new type of
�matter�. This new type of matter can then induce a new interaction
between the known types of matter. If the theory is formulated in this
way, the observational constraints come from the search of a ��fth�
force.

Proposals based on TDi� that allow for the presence of the scalar
degree of freedom and give it a physical interpretation include [79, 80].
It is argued, for instance, that the new scalar �eld could be a candidate
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for dark matter. In the present work we will propose a model in which
the scalar degree of freedom in the metric essentially plays the role
of the standard model Higgs �eld. In that case, the new degree of
freedom is a part of �standard� matter. Hence, it does not introduce
a new interaction, and experimental bounds come from electroweak
precision tests.

Some more theoretical motivation for the study of TDi� gravity comes
from the �eld theoretical approach to gravity [81]. In the language of
Lorentz invariant �eld theory, the gravitational force is mediated by a
massless spin-two �eld. This can be described by a second rank sym-
metric Lorentz tensor hµν . It is well-known that the Lorentz-invariant
action consistently describing a self-interacting symmetric tensor hµν
needs to be invariant under the transformations

hµν 7→ hµν + ∂µξν + ∂νξµ , (1.11)

where the generating vector ξµ is transverse, i.e. ∂µξ
µ = 0 [62, 76]. In

fact, this invariance guarantees the absence of ghosts (i.e. degrees of
freedom with negative sign in front of the kinetic term) and classical
instabilities. The most general Lagrangian satisfying this symmetry
describes 3 local degrees of freedom, of which two are associated to a
massless spin-two mode and one to a potentially massive scalar mode.
The scalar degree of freedom disappears if the symmetry group is ex-
tended to transformations with ∂µξ

µ 6= 0. Let us now make the link
between this perturbative �eld theory approach and the geometrical
approach described above. One can split the metric gµν into a Lorentz-
invariant background part and a perturbation as gµν = ḡµν+hµν , where
the background ḡµν solves the equations of motion. Next, one can ex-
pand the actions SGR and STD in powers of the perturbation hµν .
From the Einstein-Hilbert action one obtains the perturbative theory
of a self-interacting tensor hµν invariant under (1.11) with ∂µξ

µ 6= 0.
Starting from the TDi� action, one obtains a theory invariant under
(1.11) with ∂µξ

µ = 0. In this sense, TDi� can be understood as the
minimal symmetry group at the non-linear level giving rise to a con-
sistent perturbative theory.

The present work is organized as follows. We start in chapter 2 with the
construction of a minimal scale-invariant extension of GR and the SM. In a
next step we replace GR by UG and carry out a detailed cosmological study
of the constructed model. The content of chapter 2 is based on [82, 83]. In
chapter 3 we discuss theories based on scale- and TDi� invariance. The main
goal is to �nd the conditions under which the constructed theories describe a
viable particle physics phenomenology. The content of this chapter is based
on [84]. While the �rst two chapters mainly deal with the classical theory,
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we present in chapter 4 a scale-invariant renormalization scheme that allows
to maintain exact scale invariance also at the quantum level. This part of
the work is based on [50]. In chapter 5 we give our conclusions together with
an outlook on possible ways to extend the presented study.
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2. Scale Invariance and Unimodular

Gravity � Higgs Dilaton Cosmology

At the classical level, the Lagrangian describing the SM minimally coupled
to GR contains only three dimensional parameters. These are Newton's
constant G, the vacuum expectation value (vev) of the Higgs �eld and a
possible cosmological constant Λ. The masses of the elementary particles
other than the Higgs particle are induced by the value of the Higgs �eld after
electroweak symmetry breaking. At the quantum level, additional scales
appear due to dimensional transmutation. They include ΛQCD and all other
scales related to the running of coupling constants. There are therefore three
di�erent ways in which the observed scales enter the theory: as parameters
in the classical action, induced by the expectation value of the Higgs �eld or
as a consequence of the quantization procedure. This observation lead us,
like many authors before, to look for models in which some or all of these
seemingly unrelated scales have a common origin.

In this chapter we propose a minimal extension of the SM and GR that
contains no dimensional parameters in the action and is therefore classically
scale-invariant (section 2.1). This is achieved by the introduction of a new
scalar degree of freedom � the dilaton. We show that for a large class of
potentials, all scales at the classical level are induced by the spontaneous
break-down of scale invariance (SI). As a consequence of the spontaneously
broken symmetry, the physical dilaton is exactly massless. We brie�y discuss
the in�uence of the dilaton on particle physics phenomenology, while a more
rigorous analysis will be carried out in chapter 3. After a discussion of
possible naturalness issues, we give some arguments in favor of the parameter
choice for which the cosmological constant is absent.

Replacing GR by Unimodular Gravity (UG) (section 2.2) results in the
appearence of an arbitrary integration constant in the equations of motion,
representing an additional breaking of the scale symmetry. It is shown that
in theories with scalar �elds non-minimally coupled to gravity, this constant
gives rise to a non-trivial potential for the scalar �elds. In the case of the
discussed scale-invariant model, the new potential involves the dilaton, which
otherwise would not have a potential.

The model combining SI and UG describes an interesting cosmological
phenomenology (section 2.3). The dynamical break-down of the scale sym-
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metry can provide a mechanism for in�ation in the early universe. On the
other hand, the light dilaton, practically decoupled from all SM �elds, can
act as dynamical dark energy. Under some assumptions it is possible to re-
late the observables associated to in�ation to those associated to dark energy.
In particular, we establish a functional relation between the predicted value
for the tilt ns of the primordial scalar power spectrum and the predicted
equation of state parameter ωDE for dark energy (DE).

The motivation of the model relies on the assumption that the struc-
ture of the theory is not changed at the quantum level. In other words, the
full quantum e�ective action should still be scale-invariant, and the e�ec-
tive scalar potential should preserve the features of the classical potential.
A possible method for constructing a quantum �eld theory that is scale-
invariant to all orders in perturbation theory, and where the symmetry is
spontaneously broken, will be presented in chapter 4. In such a scenario,
also the scales related to the running of coupling constants are induced by
the spontaneous break-down of the scale symmetry.

Summing up, we propose a model in which all scales, classical and quan-
tum, are consequences of the spontaneous breaking of scale invariance, and
which entails an interesting cosmological phenomenology.

2.1 Minimal scale-invariant extension of GR plus

SM

2.1.1 Construction of the Model

Let us start by writing down the Lagrangian density that combines GR and
the SM

L√
−g

= −1
2
M2R+ LSM[λ→0] − λ

(
ϕ†ϕ− ν2

)2
− Λ , (2.1)

where the �rst term is the usual Einstein-Hilbert action for GR with M =
(8πG)−1/2, the second term is the SM Lagrangian without the Higgs poten-
tial, the third term is the Higgs potential, ν being the vacuum expectation
value (vev) of the Higgs �eld and Λ is a cosmological constant. In this
standard theory, to which we will refer as �GR plus SM�, scale invariance
is violated by the presence of the dimensional constants M,ν and Λ. Our
goal is to let these scales be dynamical, i.e. replace them by a �eld. The
most obvious solution, without introducing new degrees of freedom, would
be to let the Higgs �eld be responsible for all scales. This corresponds to
considering the Lagrangian

L√
−g

= −ξϕ†ϕR+ LSM[λ→0] − λ
(
ϕ†ϕ

)2
, (2.2)
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ξ being a new real parameter (�non-minimal coupling�). The associated
action is now scale-invariant, i.e. invariant under the global transformations

gµν(x) 7→ gµν(σx) ,
Φ(x) 7→ σdΦΦ(σx) , (2.3)

where Φ(x) stands for the di�erent particle physics �elds, dΦ is their associ-
ated scaling dimension and σ is an arbitrary real parameter. In the case of a
theory invariant under all di�eomorphisms (Di�), the symmetry associated
to the absence of dimensional parameters can equivalently be written as an
internal transformation.

gµν(x) 7→ σ−2gµν(x) ,
Φ(x) 7→ σdΦΦ(x) . (2.4)

Note that in the case of a theory that is invariant only under transverse
di�eomorphisms (TDi�), such as UG, the absence of dimensional parameters
will still guarantee invariance under (2.3) but not under (2.4).

Can the Lagrangian (2.2) give a satisfactory phenomenology? Since we
are looking for a Lagrangian that eventually should be quantized in the
framework of quantum �eld theory, we want to introduce the requirement
that the theory has to possess a �Classical Ground State�. The term �Classi-
cal Ground State� will be used throughout this work to refer to a solution of
the classical equations of motion, which corresponds to constant �elds in the
particle physics sector of the theory and a maximally symmetric geometry,
i.e. Minkowski (�at), de Sitter (dS) or Anti de Sitter (AdS) spacetime. The
existence of such a ground state might be essential for a consistent quan-
tization of the theory. At the quantum level, the theory should possess a
ground state that breaks scale invariance and in this way induces masses and
dimensional couplings for the excitations (particles). The strategy applied
here is to require that this spontaneous symmetry breaking already appears
in the classical theory due to the existence of a symmetry-breaking classical
ground state. It is then assumed that the quantization procedure does not
change the essential features of the classical theory, i.e. scale invariance and
a symmetry-breaking potential. Let us note that this is exactly the strategy
applied in the standard Higgs mechanism.1

Let us now look for symmetry-breaking classical ground states in the
theory (2.2). If gravity is neglected, i.e. the �rst term in the Lagrangian is
dropped, the classical ground states correspond to the minima of the scalar

potential λ
(
ϕ†ϕ

)2
. The only possibility for them to break the scale symme-

try, ϕ = ϕ0 6= 0, is to set λ = 0. In this case the theory possesses an in�nite

1 The authors of [58, 59] propose that scale symmetry could be broken by the pure
presence of a time-dependent cosmological background. The validity of that approach
still needs to be con�rmed.
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family of classical ground states satisfying 2ϕ†ϕ = h2
0 where h0 is an arbi-

trary real constant. If one includes gravity, the set of possible classical ground
states becomes richer. Namely, even if λ 6= 0 the theory possesses a continu-
ous family of classical ground states satisfying 2ϕ†ϕ = h2

0 and R = −4λh2
0/ξ,

where h0 is an arbitrary real constant. The states with h0 6= 0 break scale
invariance spontaneously and induce all scales at the classical level. Hence,
the goal of having a classical theory in which all scales have the same ori-
gin, spontaneous breakdown of SI, is achieved. However, the above theory
is in con�ict with experimental constraints. In fact, although the non-zero
background value of ϕ gives masses to all other SM particles, the excita-
tions of the Higgs �eld itself are massless and, moreover, decoupled from
the SM �elds. This fact is seen most easily if the Lagrangian is written in
the Einstein-frame by de�ning the new metric g̃µν = M−2ξϕ†ϕgµν and the
new canonical Higgs �eld ϕ̃ = M

√
1/ξ + 6 ln(ϕ/M). (This type of variable

change will be discussed in detail in the upcoming sections.) In the new
variables, the SI of the original formulation corresponds to a shift symmetry
for the Higgs �eld ϕ̃, which is the massless Goldstone boson associated to
the spontaneous break-down of scale invariance. A Higgs �eld with these
properties is excluded by Electroweak precision tests [9]. Therefore, in or-
der to construct a viable SI theory, it seems unavoidable to introduce new
degrees of freedom.

The next simplest possibility is to add a new singlet scalar �eld χ to the
theory. We will refer to it as the dilaton. The scale-invariant extension for
the SM plus GR including the dilaton reads

LSI√
−g

=− 1
2

(
ξχχ

2 + 2ξhϕ†ϕ
)
R+ LSM[λ→0] −

1
2

(∂µχ)2 − V (ϕ, χ) , (2.5)

where the scalar potential is given by

V (ϕ, χ) = λ
(
ϕ†ϕ− α

2λ
χ2
)2

+ βχ4 . (2.6)

We will only consider positive values for ξχ and ξh. As a consequence, the
coe�cient in front of the scalar curvature is positive, whatever values the
scalar �elds take. The chosen parametrization of the scalar potential assumes
that λ 6= 0. This only excludes the phenomenologically unacceptable case
where a quartic term (ϕ†ϕ)2 is absent. By construction, the action associated
to (2.5) is invariant under (2.3), respectively (2.4). The theory should possess
a symmetry-breaking classical ground state with ϕ = ϕ0 6= 0 and χ = χ0 6= 0.
The case ϕ0 = 0 would correspond to a theory with no electroweak symmetry
breaking while the case χ0 = 0 would result in a theory with a massless Higgs
�eld. Both these cases are phenomenologically unacceptable.

Let us again start by neglecting the gravitational part of the action. In
that case the ground states correspond to the minima of the potential (2.6).
It is easy to see that the only possibility to get a ground state satisfying
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ϕ0 6= 0 and χ0 6= 0 is to have a potential with a �at direction, i.e. α > 0
and β = 0, such as λ > 0 for stability. The corresponding family of classical
ground states is given by 2ϕ†ϕ = h2

0 and χ2 = χ2
0 with h2

0 = α
λχ

2
0, where χ0

is an arbitrary real constant.
Like before, the inclusion of gravity results in the appearance of addi-

tional possible classical ground states for β 6= 0, given by

h2
0 =

α

λ
χ2

0 +
4βξhχ2

0

λξχ + αξh
,

R = − 4βλχ2
0

λξχ + αξh
. (2.7)

The solutions with χ0 6= 0 spontaneously break scale invariance. All scales
are induced and proportional to χ0. For instance, one can directly identify
the Planck scale as

M2 = ξχχ
2
0 + ξhh

2
0 = (ξχ + ξh

α

λ
+

4βξ2
h

λξχ + αξh
)χ2

0 . (2.8)

Depending on the value of β, the background corresponds to �at spacetime
(β = 0), de Sitter (dS) or Anti de Sitter (AdS) spacetime of constant scalar
curvature R corresponding to a cosmological constant

Λ = −1
4
M2R =

βM4

(ξχ + α
λ ξh)2 + 4βλξ

2
h

. (2.9)

The spectrum of perturbations around a symmetry-breaking solution con-
tains the usual massless spin-2 perturbation in the gravitational sector. The
scalar sector contains an excitation with mass

m2 = 2αM2 (1 + 6ξχ) + α
λ (1 + 6ξh)

ξχ(1 + 6ξχ) + ξh
α
λ (1 + 6ξh)

+O(β) , (2.10)

which will play the role of the physical SM Higgs �eld, plus a massless Gold-
stone boson (both perturbations are combinations of the �elds χ and h). We
use h to denote the �eld ϕ in the unitary gauge. Like in the standard Higgs
mechanism, the perturbations of the standard model �elds get masses pro-
portional to h0. If one extends the SM by introducing right-handed neutrinos
[37, 38], these neutrinos get induced masses proportional to χ0.

In the described model, physics is completely independent of the value
of χ0, as long as it is non-vanishing. This is because observable quantities
correspond to ratios between scales. Therefore, parameters of the model
have to be chosen such that these ratios correspond to the measured ones.
For instance, one should reproduce the hierarchies between the cosmological
scale and the electroweak scale, i.e. Λ/m4 ∼ O(10−56) such as the ratio
between the electroweak and the gravitational scale m2/M2 ∼ O(10−32).



22 2. Scale Invariance and Unimodular Gravity

We choose the parameter β to be responsible for the �rst ratio and α for
the second ratio. Therefore, these parameters have to take values satisfying
β≪ α≪ 1 and β, α≪ ξχ, ξh. One then gets approximately Λ/m4 ' β/ξ2

χ

and m2/M2 ' 2α/ξχ. Note that the order of magnitude relation
√

Λ/m2 ∼
m2/M2 respectively

√
β ∼ α is the big number coincidence pointed out by

Dirac [52]. However, the present model does not address the question about
the origin of the big di�erences between theses scales, i.e. the smallness of
α and β, nor does it explain their approximate relation. The non-minimal
couplings ξχ and ξh will be constrained by cosmological considerations, and
λ . O(1) as it corresponds to the self coupling of the Higgs �eld. Therefore,
one can �x the values of β and α that give the correct ratios. In the same
fashion one has to choose values for the Yukawa couplings of the standard
model that produce the observed mass ratios.

As the theory contains a new massless degree of freedom, one has to
make sure that it does not contradict any experimental bounds. In section
3.2 we present a detailed analysis of the interactions between this massless
�eld and the SM �elds. Let us give the conclusions already now. It turns out
that as a consequence of scale invariance, the massless scalar �eld completely
decouples from all SM �elds except the Higgs �eld. Since the massless �eld
is the Goldstone boson associated to the broken scale symmetry, there exists
a set of �eld variables in terms of which it couples to the physical Higgs �eld
only derivatively. In addition, for an appropriate choice of �eld variables,
these interactions appear as non-renormalizable operators, suppressed by
the scale M/ξh.

Other deviations from the SM appear as a consequence of the non-
minimal couplings to gravity. In fact, the physical Higgs �eld, i.e. the
�eld that couples to the SM degrees of freedom, is not h, but a combination
of h and χ. It will be shown that the resulting deviations from the SM are
suppressed by the ratio m2/M2 between the physical Higgs mass and the
Planck mass, respectively by the small parameter α. While the new mass-
less �eld hardly a�ects SM phenomenology, we will see that it might play
an important role in cosmology. Another cosmological implication will be
related to the shape of the potential. We will see in section 2.3 that the
dynamical breaking of scale invariance with the background �elds evolving
towards the symmetry breaking ground state can provide a mechanism for
in�ation.

At the classical level, the above theory successfully implements the idea
that all scales are consequences of the spontaneous breaking of SI. All con-
clusions remain true if SI and the features of the potential can be maintained
at the quantum level (cf. chapter 4). In that case, the presented theory is a
viable extension of the SM and GR.



2.1. Minimal scale-invariant extension of GR plus SM 23

2.1.2 Naturalness Issues

The presented theory contains two important �ne-tunings related to the
very big di�erences between the Planck scale M , the electroweak scale m
and the cosmological scale Λ. At the quantum level, this can lead to two
much-discussed naturalness issues. One of them is part of the Cosmological
Constant Problem explained in section 1. In standard GR plus SM the
e�ective cosmological constant is the sum of a bare constant and radiative
corrections proportional to the particle physics mass scales of the theory,
e.g. the electroweak scale. Matching the e�ective cosmological constant
with its observed value, tiny compared to, for instance, the electroweak scale,
requires a tremendous �ne-tuning of the bare cosmological constant. In the
case of the scale-invariant theory discussed here, the situation is somewhat
di�erent. Exact scale invariance forbids a term

√
−gΛ in the action. Also, if

the quantization procedure respects scale invariance (cf. chapter 4), such a
term is not generated radiatively. However, as we saw above, due to the non-
minimal couplings of the scalar �elds to gravity, the cosmological constant
is in fact associated to the term βχ4. Now, this term is not forbidden by
scale invariance. Therefore, even if scale invariance can be maintained at the
quantum level, the quantum e�ective potential will contain a term βe�χ

4,
where βeff is a combination of the bare value of β and other non-dimensional
couplings of the theory. These other couplings are generally much bigger than
the value of βeff that corresponds to the observed cosmological constant. So,
again a strong �ne-tuning is needed in order to keep βeff su�ciently small.
This tells us that the cosmological constant problem also exists in an exactly
scale-invariant theory of the type proposed here.

The second naturalness issue is related to the mass of the Higgs boson
and is commonly called �Gauge Hierarchy Problem�. The problem is twofold.
The e�ective �eld theory combining the SM with GR contains two extremely
di�erent mass scales, namely, the electroweak scale v = 246 GeV (v being the
vev of the Higgs �eld) and the Planck scaleM = (8πG)−1/2 = 2.44·1018 GeV.
It is considered unnatural to have such a huge di�erence between two scales
of the same theory. This is the �rst part of the gauge hierarchy problem.
In the considered type of scale-invariant theories, the big di�erence between
the electroweak and the Planck scale remains unexplained.

The other part of the gauge hierarchy problem is related to the stability of
the Higgs mass against radiative corrections (for a recent discussion see e.g.
[10]). Much like the cosmological constant, the mass of the Higgs �eld gets
radiative corrections proportional to the other particle physics mass scales of
the theory. The logic is the same as in the case of the cosmological constant.
If there exists a particle physics scale much bigger than the electroweak
scale, the measured value of the electroweak scale can only be explained by
an important �ne-tuning of parameters. In other words, if there exists a new
particle physics scale between the electroweak scale m and the Planck scale



24 2. Scale Invariance and Unimodular Gravity

M , the �smallness� of the Higgs mass constitutes a serious theoretical issue.
This issue still appears in an exactly scale-invariant theory with spontaneous
breaking of the scale symmetry.

If the theory possesses no intermediate particle physics scale between m
and M , the situation is di�erent. In that case, whether or not the Higgs
mass should be expected to contain big radiative corrections of the order
M depends on the ultraviolet (UV) completion of the theory. At the level
of the low-energy e�ective �eld theory, the UV properties can be encoded
in the choice of the renormalization scheme. We will present in chapter 4
a renormalization scheme based on the assumption that the UV completion
should be scale-invariant. If this scheme is applied to the considered minimal
scale-invariant extension of GR plus SM, the Higgs mass does not obtain
corrections proportional to M (induced by the vacuum expectation value of
the dilaton) and there is no problem of stability of the Higgs mass against
radiative corrections. Hence, scale invariance makes for the absence of this
part of the gauge hierarchy problem.

2.1.3 The Speciality of the Case β = 0

In this paragraph we want to give some arguments in favor of the case β = 0.
This case corresponds to the existence of a �at direction in the Jordan-frame
potential (2.6) and hence to the absence of a cosmological constant.

The reasoning of the precedent paragraph tells us that choosing β = 0
corresponds to a �ne-tuning of the parameters, especially at the quantum
level, just like putting Λ = 0 in standard GR plus SM. From this point of
view, such a parameter choice should clearly be disfavored. Nevertheless, we
think that the case β = 0 is specially interesting. One reason is that only if
β = 0, SI can be spontaneously broken in the absence of gravity. Put in other
words, β = 0 allows �at spacetime together with (ϕ, χ) = (ϕ0, χ0) 6= (0, 0)
to be a classical solution. This argument will be further discussed in section
4.1.

Another argument is related to the stability of the ground state. As dis-
cussed above, a scale-invariant theory with spontaneous symmetry breaking
always contains a massless scalar degree of freedom, Goldstone boson, in-
dependently of the value of β. Now, if β 6= 0, the background spacetime
of the theory corresponds to de Sitter (or Anti de Sitter) spacetime. It is
known, however, that a massless scalar �eld is unstable in de Sitter space-
time. Therefore, it is conceivable that a consistent quantization of the theory
might rely on the requirement β = 0 and hence the existence of �at space-
time as a solution (cf. [85�89]). Based on these arguments, we will single
out the case β = 0 and study the associated phenomenology in more detail.

A third aspect appears in the context of cosmology. The theory with β =
0, not containing a cosmological constant, does not seem to withstand the
confrontation with cosmological observations. Just like the case β < 0 (AdS)



2.2. Scale-invariant Unimodular Gravity 25

it can not explain the observed accelerated expansion of the universe without
introduction of a new dark energy component. From this point of view, the
only viable option seems to be β > 0 (dS). This conclusion is correct if gravity
is described by GR. However, as we will see in the upcoming section, the
situation is very di�erent if GR in (2.5) is replaced by Unimodular Gravity.
In that case, the appearance of an arbitrary integration constant will give
rise to a potential for the Goldstone boson of broken scale invariance. As
a consequence, for appropriate parameter values and initial conditions, the
now pseudo-Goldstone boson can act as a dynamical dark energy component.
In this new situation, the case β = 0 will again be peculiar, because it is
the only case where dark energy is purely dynamical and has no constant
contribution.

2.2 Scale-invariant Unimodular Gravity

In this section we want add to the idea of scale invariance the idea of Unimod-
ular Gravity (UG) [34, 62�68]. In UG one reduces the dynamical components
of the metric gµν by one, imposing that the metric determinant g ≡ det(gµν)
takes some �xed constant value. Conventionally one takes |g| = 1, hence the
name. Fixing the metric determinant to one is not a strong restriction, in
the sense that the family of metrics satisfying this requirement can still de-
scribe all possible geometries. For pure gravity, things are rather simple and
well known. The analog of the Einstein-Hilbert Lagrangian for unimodular
gravity is

LUG = −1
2
M2R̂ . (2.11)

Writing quantities with a hat, like R̂, we mean that they depend on the
metric satisfying the unimodular constraint g = −1. These quantities trans-
form like tensors under the group of transverse di�eomorphisms TDi�, i.e.
coordinate transformations xµ 7→ xµ + ξµ(x) with the condition ∂µξ

µ = 0.
At this point it is important to distinguish UG from theories constructed on
the sole requirement of invariance under TDi� [65, 75, 76] (cf. chapter 3). In
the latter theories, the metric determinant is unconstrained and represents
in general a third dynamical degree of freedom in the metric. Note, however,
that UG can be understood as a particular case of a TDi� theory in which
the third metric degree of freedom is absent. Doing variations of the ac-
tion (2.11) keeping the metric determinant �xed, since it is not a dynamical
variable, yields the equations of motion (cf. section 1)

R̂µν −
1
2
R̂ ĝµν = −M−2Λ0 ĝµν , (2.12)

where Λ0 is an integration constant related to initial conditions. Now, these
are also the equations for standard Einstein gravity with an added cosmolog-
ical constant, for a choice of coordinates such that the metric determinant
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is equal to one, which is always possible [62]. Therefore, the two theories
are classically equivalent, except that in the standard theory the cosmolog-
ical constant appears in the action, whereas in unimodular gravity it is an
integration constant. It has been shown [34, 62, 66, 69] that if one adds a
matter sector that couples minimally to gravity, and therefore has a covari-
antly conserved energy-momentum tensor ∇µTµν = 0, the application of UG
also results in the appearance of an integration constant that plays the role
of a cosmological constant. We now want to give an analogous statement
for the more general case of UG in combination with arbitrary matter �elds
that have arbitrary couplings to gravity. The result will then be applied to
scale-invariant theories.

A similar proof for the corresponding statement in the context of TDi�
gravity was given by the authors of [65]. Since UG can be understood as
a particular case of TDi� (in which the scalar metric degree of freedom is
absent), the statement we are going to make here is in principle contained in
[65]. Still, in the present context of UG without the additional metric degree
of freedom, the following proof might be somewhat more transparent.

The action for unimodular gravity and any other �elds, which couple to
gravity in an arbitrary way, has the following functional dependence:

Σ =
∫
d4xL(ĝµν , ∂ĝµν ,Φ, ∂Φ), (2.13)

where Φ stands for all non-gravitational �elds. If we want to derive the
equations of motion for this theory, we have to vary the action keeping the
constraint on the determinant. This is done using the Lagrange multiplier
method. We add an additional variable, whose equation of motion will be
the constraint. So, the following action is equivalent to the former one:

Σ̃ =
∫
d4x
√
−g
(
L(gµν , ∂gµν ,Φ, ∂Φ) + λ(x)

)
︸ ︷︷ ︸

A

−
∫
d4xλ(x)︸ ︷︷ ︸
B

. (2.14)

Here, apart from the usual symmetry requirement gµν = gνµ, the metric is
unconstrained (the initial Lagrangian was multiplied by a factor

√
−g, which

does not change the theory because of the unimodular constraint).
The equations of motion are

δA

δgµν
= 0 , (2.15)

δA

δΦ
= 0 , (2.16)

δ(A+B)
δλ

= 0 = (
√
−g − 1) . (2.17)

A de�nition of the functional derivative is given in appendix A. We observe
that

∫
d4xA(x) is invariant under the full group of di�eomorphisms (Di�).
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The in�nitesimal transformations are

gµν 7→ gµν + δξgµν ,

Φ 7→ Φ + δξΦ ,

λ 7→ λ+ δξλ , (2.18)

where δξ depends on the nature of the �elds, i.e. scalar, vector, etc. If, for
instance, we take Φ to be a scalar �eld, the δξ's are given by

δξgµν = ∇µξν +∇νξµ ,
δξΦ = ∂µΦξµ ,
δξλ = ∂µλξ

µ . (2.19)

Due to this symmetry, the following relation holds.∫
d4x
( δA

δgµν
δξgµν +

δA

δΦ
δξΦ +

δA

δλ
δξλ
)

= 0 . (2.20)

The coe�cients of the �rst two terms are zero because of the equations of
motion and the last coe�cient yields δA

δλ =
√
−g. The equation reduces to∫

d4x
√
−g(∂µλ)ξµ = 0 . (2.21)

Since this holds for all possible functions ξµ(x), we can conclude that

∂µλ(x) = 0 , (2.22)

and hence that λ(x) is a constant of motion, λ(x) = Λ0. Its value should
be interpreted as an additional initial condition. This can be understood,
for example, by expressing the theory in the Hamiltonian formalism (cf.
[66, 67, 90]). Equations (2.15) can now be written as

δA

δgµν
=
δ{
∫
d4x
√
−g
(
L(gµν , ∂gµν ,Φ, ∂Φ) + Λ0

)
}

δgµν
= 0 .

These equations along with the constraint
√
−g = 1 are the �eld equations

for unimodular gravity plus arbitrary other �elds. Now the solutions to these
equations are the same as the solutions obtained from the Di� invariant
action

Σe =
∫
d4xLe =

∫
d4x
√
−g
(
L(gµν , ∂gµν ,Φ, ∂Φ) + Λ0

)
, (2.23)

written in coordinates for which
√
−g = 1, which is always possible [62]. The

subscript �e� stands for �equivalent Di� invariant theory� and will be used
this way throughout the present work. We conclude that the theory given
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by (2.13) is classically equivalent to a fully di�eomorphism invariant theory
described by the action (2.23) apart from the di�erent ways in which the scale
Λ0 appears. In the theory with explicit Planck mass (minimal coupling) the
quantity Λ0 plays the role of a cosmological constant. However, as we will see
shortly, things are di�erent in a theory where Newton's constant is induced
dynamically (non-minimal coupling).

Let us now apply this result to the case of the scale-invariant theory
discussed in the previous section. We consider the theory given by (2.5) and
let gravity be unimodular.

LSI−UG =− 1
2

(
ξχχ

2 + 2ξhϕ†ϕ
)
R̂+ L̂SM[λ→0] −

1
2
ĝµν∂µχ∂νχ− V (ϕ, χ) ,

(2.24)

where V (ϕ, χ) is given by (2.6) and whose associated action is invariant
under (2.3). The result derived above tells us that the classical solutions
obtained from this Lagrangian are equivalent to the solutions derived from
the equivalent Di� invariant Lagrangian

LSI−UGe√
−g

=− 1
2

(
ξχχ

2 + 2ξhϕ†ϕ
)
R+ LSM[λ→0] −

1
2

(∂µχ)2 − V (ϕ, χ)− Λ0 .

(2.25)

Λ0 is an arbitrary integration constant related to initial conditions. There-
fore, the presence of Λ0 should be understood as a speci�c kind of spontaneous
breaking of scale invariance, even though at the level of the equivalent Di�
invariant theory Λ0 appears explicitly in the action.

Next, we turn our attention to the physical implications of the term
proportional to Λ0. In the �rst instance, let us consider the gravitational
and the scalar sector of the theory, i.e.

L√
−g

= −1
2
(
ξχχ

2 + ξhh
2
)
R− 1

2
(∂µχ)2 − 1

2
(∂µh)2 − V (h, χ)− Λ0 , (2.26)

where h is the Higgs �eld in the unitary gauge. In order to simplify the
physical interpretation we de�ne the Einstein-frame (E-frame) metric2

g̃µν = M−2
(
ξχχ

2 + ξhh
2
)
gµν (2.27)

in terms of which the Lagrangian reads

L√
−g̃

= −M2 R̃

2
− 1

2
K − Ṽ (h, χ) , (2.28)

2 The Lagrangian in terms of the original variables is said to be written in the Jordan-
frame (J-frame).
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where K is a non-canonical but positive de�nite kinetic term (given below
in (2.46)) and Ṽ (h, χ) is the E-frame potential given by

Ṽ (h, χ) =
λ

4

(
h2 − α2χ2

)2 + βχ4

(ξχχ2 + ξhh2)2 M4 +
Λ0

(ξχχ2 + ξhh2)2M
4 . (2.29)

Note that the E-frame potential gets singular at χ = h = 0. The reason is
that at this point the transformation (2.27) is singular and the change to the
E-frame is not allowed. Since for χ = h = 0 scale invariance is not broken,
we will not be interested in the theory around this point. Let us discuss the
shape of the E-frame potential and the classical ground states of the theory
for α, λ, ξχ, ξh > 0 (cf. �gure 2.1). If Λ0 = 0, the potential is minimal along
the two valleys

h2
0 =

α

λ
χ2

0 +
4βξhχ2

0

λξχ + αξh
, (2.30)

They correspond to the in�nitely degenerate family of classical ground states
found in (2.7). If β = 0, the potential vanishes at its minimum, while a non-
zero β gives rise to a cosmological constant

Λ = −1
4
M2R̃ = Ṽ (h0, χ0) =

βM4

(ξχ + α
λ ξh)2 + 4βλξ

2
h

. (2.31)

In other words, spacetime in the classical ground state is Minkowskian, dS
or AdS. These are the results we have already discussed section 2.1. As soon
as Λ0 6= 0 the valleys get a tilt which lifts the degeneracy of the classical
ground states. For Λ0 < 0 the valleys are tilted towards the origin. The
true classical ground state for this case is the trivial one, χ = h = 0. Hence,
we discard this possibility. For Λ0 > 0 the potential is tilted away from the
origin, it is of the run-away type. In this case the theory has an asymptotic
classical ground state, given by (2.30) with χ0 → ∞. Again, depending on
the value of β this asymptotic solution corresponds to Minkowski, dS or AdS
spacetime with curvature given by (2.31).

We see that as a consequence of the non-minimal coupling between the
scalar �elds and gravity, the arbitrary integration constant Λ0 does not play
the role of a cosmological constant but rather gives rise to a peculiar po-
tential. For Λ0 > 0 the potential is of the run-away type. In the following
sections we will see that such a potential can have an interesting cosmologi-
cal interpretation. In fact, the evolution of the scalar �elds along the valley
can give rise to dynamical dark energy (quintessence). We will focus on the
case β = 0 where dark energy does not contain a constant contribution and
is purely due to the term proportional to Λ0 (cf. arguments in section 2.1.3).
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2.3 Cosmological Phenomenology - Higgs Dilaton

Cosmology

In this section we turn our attention to the cosmological phenomenology
issued by the model presented in the preceding section. We consider the
theory described by the Lagrangian (2.24), i.e. the scale-invariant extension
of the SM and GR (2.5) where GR is replaced by Unimodular Gravity. In
the equivalent Di� invariant formulation, the gravitational and the scalar
sector of the theory are given by

L√
−g

= −1
2
(
ξχχ

2 + ξhh
2
)
R− 1

2
(∂µχ)2 − 1

2
(∂µh)2 − λ

4

(
h2 − α

λ
χ2
)2
− Λ0 .

(2.32)
Here we only consider the case β = 0, i.e. where the potential has a �at
direction in the original variables (Jordan frame). Some arguments in favor
of this choice were given in section 2.1.3. Allowing for β 6= 0 would barely
a�ect the discussion of in�ation (section 2.3.1). It would, however, a�ect
the dark energy phenomenology (section 2.3.3). The main e�ect would be
that one part of dark energy would be due to a cosmological constant and
the other part due to the scalar �elds rolling down the potential valley. It
would not be possible to know how the observed abundance of dark energy
is distributed between these two contributions. As a consequence, unlike in
the case β = 0, one could not directly relate the observables from in�ation
to the equation of state parameter of dark energy.

In order to get the standard physical interpretation, we de�ne the E-
frame metric

g̃µν = M−2
(
ξχχ

2 + ξhh
2
)
gµν (2.33)

in terms of which the Lagrangian reads

L√
−g̃

= −M2 R̃

2
− 1

2
K − Ṽ (h, χ) , (2.34)

where K is a non-canonical but positive de�nite kinetic term (given below
in (2.46)) and Ṽ (h, χ) is the E-frame potential given by

Ṽ (h, χ) =
M4

(ξχχ2 + ξhh2)2

(
λ

4

(
h2 − α

λ
χ2
)2

+ Λ0

)
. (2.35)

The scalar �elds χ and h are now considered to be homogeneous back-
ground �elds evolving in spatially �at Friedmann-LeMaitre-Robertson-Walker
(FLRW) spacetime. Their evolution roughly corresponds to the rolling of a
ball in the potential Ṽ (h, χ) with �Hubble�-friction. The motion is a�ected
by the non-canonical nature of the kinetic term. However, as the kinetic
term is positive de�nite, a ball starting at rest will still move downwards in
the potential. Hence, to get a qualitative picture, it is enough to look at
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the features of the potential (cf. �gure 2.1). In the absence of Λ0, Ṽ has its
minima along the two valleys h2 = α

λχ
2. The scalar �elds tend to roll into

one of these valleys and, due to the Hubble friction, asymptotically come to
rest in the valley. The main e�ect of Λ0 6= 0 is to give a tilt to the valleys.
As discussed in the previous section, Λ0 < 0 is phenomenologically unviable.
We will only consider the case Λ0 > 0, in which the valleys are tilted away
from the origin. For an appropriate choice of parameters, the crude picture
of the role of the cosmological scalar �elds is the following. If the �elds start
o� far from the valley, they will in a �rst phase slowly roll towards it. This
roll-down can be responsible for in�ation. In a next stage, the �elds oscil-
late around the valley and thereby transfer most of their energy to standard
model particles (reheating). After the oscillations are su�ciently damped,
the �elds start rolling down the valley away from the origin. During this
phase the scalar �elds play the role of a dark energy component that even-
tually comes to dominate the universe (quintessence [28, 30]). In this late
stage, the �elds satisfy h(t)2 ' α

λχ(t)2. On particle physics time-scales the
time-variation of the �elds can be neglected. Perturbations around this al-
most constant symmetry-breaking background can be interpreted as the SM
particles plus an additional almost massless and almost decoupled particle.
Note that as long as the background is constant, it is equivalent to quantize
perturbations in the original (Jordan-) frame or in the Einstein-frame (cf.
[91]).

In the following sections we examine these three stages in the evolution
of the universe one by one and �nd the ranges of parameters and initial
conditions that successfully produce the described picture. Moreover, under
some assumptions, we will be able to �nd a relation between the scalar
spectral index n∗s and the equation of state parameter of dark energy ωDE ,
which yields a prediction for ωDE .

2.3.1 Two-�eld in�ation

As usual, it is assumed that during in�ation all the energy of the system
is contained in the in�aton �elds and in the gravitational �eld. Therefore,
during this stage, the SM �elds can be neglected. Let us rewrite the scalar-
tensor part of (2.25) as

L√
−g

= −f(φ)
2

R− 1
2
gµνδab∂µφ

a∂νφ
b − V (φ) , (2.36)

with a non-minimal coupling

f(φ) ≡
∑
a

ξaφ
a2 , (2.37)

and the potential

V (φ) = V (h, χ) =
λ

4

(
h2 − α

λ
χ2
)2

+ Λ0 , (2.38)



32 2. Scale Invariance and Unimodular Gravity

h

Χ

Λ0 = 0

h

Χ

Λ0 > 0

h

Χ

Λ0 < 0

Fig. 2.1: In the above �gures we show the shape of the E-frame potential
Ṽ (h, χ) (equation (2.35)) for Λ0 = 0, Λ0 > 0 and Λ0 < 0 respec-
tively.
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including the SI breaking term Λ0. As discussed in section 2.1, the param-
eter α is set to be very tiny α ∼ O(10−30), in order to obtain the cor-
rect hierarchy between the electroweak and the Planck scale. Greek indices
µ, ν, ... = 0, 1, 2, 3 denote spacetime coordinates while Latin indices are used
to label the two real scalar �elds present in the model: the dilaton �eld
φ1 = χ and the Higgs �eld in the unitary gauge φ2 = h. The abstract nota-
tion in terms of φi will in the following allow us to interpret the scalar �elds
as the coordinates of a two-dimensional sigma-model manifold. We will be
able to write expressions and equations that are covariant under variable
changes φ 7→ φ′(φ).

Scale transformations and their associated current

By construction, all terms in the Lagrangian (2.36), except the one propor-
tional to Λ0, are invariant under the scale transformations (2.4). We can
write the in�nitesimal form of these transformations as

gµν 7→ gµν + σ∆gµν , (2.39)

φi 7→ φi + σ∆φi , (2.40)

where σ is an in�nitesimal real parameter. The explicit expressions for ∆gµν
and ∆φi depend on the variables chosen. For the original variables, we
have ∆gµν = −2gµν , ∆χ = χ and ∆h = h. The current associated to this
transformation is

Jµ =
∂L

∂ [∂µgαβ]
∆gαβ +

∂L
∂ [∂µφi]

∆φi (2.41)

and satis�es
∂µJ

µ = 4
√
−gΛ0 . (2.42)

Whenever Λ0 vanishes or can be neglected, the scale symmetry becomes
exact and the current Jµ is conserved.

Lagrangian and equations of motion in the Einstein frame

Whenever the non-minimal coupling is non-zero3 f(φ) 6= 0, one can de�ne
the new metric

g̃µν = Ω2gµν , (2.43)

with Ω2 = M−2f(φ) to reformulate the Lagrangian in the E-frame. Taking
into account that the metric determinant and the Ricci scalar transform as

√
−g = Ω−4

√
−g̃ , (2.44)

R = Ω2
(
R̃− 6�̃ ln Ω + 6g̃µν∂µ ln Ω ∂ν ln Ω

)
, (2.45)

3 For our choice of parameters, where ξχ, ξh > 0 this is the case whenever the scalar
�elds are away from the origin (χ, h) 6= (0, 0).
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where the action of the covariant d'Alembertian �̃ on a scalar �eld s(x) is
given by �̃s = 1√

−g̃∂µ
(√
−g̃g̃µν∂νs

)
, one obtains

L√
−g̃

= −M
2

2
R̃− 1

2
labg̃

µν∂µφ
a∂νφ

b − Ṽ (φ) , (2.46)

where lab is the non-diagonal and non-canonical �eld space metric given by

lab =
1

Ω2

(
δab +

3
2
M2

Ω2
,aΩ

2
,b

Ω2

)
. (2.47)

Unlike in the single-�eld case, the non-canonical kinetic term can not in
general be recast in canonical form by rede�ning the scalar �eld variables.
In fact, the �eld-space metric can be brought to canonical form by a vari-
able change if and only if its Riemann tensor identically vanishes. In the
present case of a two-dimensional manifold, the Riemann tensor has only
one independent component, and it is enough to compute the Ricci scalar
Rl associated to the �eld space metric lab,

Rl = (ξχ − ξh)
2
M

ξ2
χ(1 + 6ξχ)χ4 − ξ2

h(1 + 6ξh)h4

(ξh(1 + 6ξh)h2 + ξχ(1 + 6ξχ)χ2)2 . (2.48)

For Rl to vanish globally, one would need to have ξχ = ξh. As we will see,
this case is not allowed by phenomenology.

The E-frame potential is de�ned as

Ṽ (φ) =
V (φ)
Ω4

. (2.49)

In the E-frame, the scale transformation does not act on the metric, ∆g̃µν = 0,
and is simply given by

φi 7→ φi + σ∆φi . (2.50)

The expression for the current simpli�es to

Jµ =
∂L

∂ [∂µφi]
∆φi , (2.51)

while the conservation law becomes

∂µJ
µ = 4Ω−4

√
−g̃Λ0 . (2.52)

Borrowing the notations of [92] we write down the equations of motion
derived from the Lagrangian (2.46). Einstein's equations are

G̃µν = −lab
(
∂µφ

a∂νφ
b − 1

2
g̃µν g̃

ρσ∂ρφ
a∂σφ

b

)
+ Ṽ g̃µν , (2.53)
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where G̃µν is the Einstein tensor computed from the metric g̃µν . The equa-
tions for the scalar �elds are

�̃φc + g̃µνΥc
ab∂µφ

a∂νφ
b = Ṽ c , (2.54)

where Υc
ab is the Christo�el symbol computed from the �eld space metric

lab,

Υc
ab =

1
2
lcd (lda,b + ldb,a − lab,d) (2.55)

and where we use the notation

Ṽ c = lcdṼd = lcdṼ,d . (2.56)

Notice that equations (2.53) and (2.54) are covariant under rede�nitions of
the scalar �eld variables φ 7→ φ′(φ).

We choose to do our analysis of the in�ationary stage in the Einstein-,
rather than in the Jordan frame. The reason for this choice is that in the
literature predictions for measurable quantities are usually computed in the
frame in which gravity has the standard GR form. At the classical level
there is, apart from such practical arguments, nothing that would privilege
one or the other frame. After all, the choice of the frame simply corresponds
to a choice of variables.

Evolution of the homogeneous background

Consider now the homogeneous scalar �elds φi = φi(t) in �at FLRW space-
time characterized by the line element

ds̃2 = g̃µνdx
µdxν = −dt2 + a(t)2d~x2 . (2.57)

For this case, the equations (2.53) and (2.54) reduce to the Friedmann and
the Klein-Gordon-like equations

H2 =
1

3M2

(
1
2
labφ̇

aφ̇b + Ṽ

)
, (2.58)

φ̈c + Γcabφ̇
aφ̇b + 3Hφ̇c = −Ṽ c , (2.59)

where a dot stands for a derivative with respect to t and H ≡ ȧ/a. To this
we can add the equation for the current (2.52), which for homogeneous �elds
reduces to

d

dt

(
a3labφ̇

a∆φb
)

= 4Ω−4a(t)3Λ0 . (2.60)

This relation is of course not independent of the equations of motion. How-
ever, it will prove useful in the following. Let us now inspect equations (2.58)
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and (2.59) in order to see in which region of �eld space the e�ect of a non-
zero Λ0 will be important. Λ0 enters the equations through Ṽ and Ṽ a, which
in terms of the original variables and for α = 0 are given by

Ṽ = M4Ω−4λ

4
h4 (1 + υ1) , (2.61)

Ṽ χ = −u (χ, h)h (1 + 6ξh + υ1) , (2.62)

Ṽ h = u (χ, h) (1 + 6ξχ)χ (1− υ2) , (2.63)

where u (χ, h) = λξχM2χh3

Ω2(M2Ω2+6ξ2
χχ

2+6ξ2
hh

2) and we have de�ned the scale invari-

ance breaking parameters υ1 and υ2 as

υ1 ≡
4Λ0

λh4
, (2.64)

υ2 ≡
4ξhΛ0

λξχ (1 + 6ξχ)χ2h2
. (2.65)

These parameters characterize the importance of Λ0. In the region of �eld
space where υ1 � 1 and υ2 � 1 the e�ect of Λ0 is negligible and the
equations become practically scale-invariant. As a consequence, the scale
current is almost conserved in this region and one obtains the almost constant
quantity

a3labφ̇
a∆φb ' cst. (2.66)

For exact scale-invariance, i.e. Λ0 = 0, the equality is exact. If we rewrite
the relation as

labφ̇
a∆φb ' cst.

a3
, (2.67)

we see the interesting result that if the scale factor grows big, the right-hand
side vanishes and one gets

labφ̇
a∆φb ' 0 . (2.68)

We will refer to the region where Λ0 can be neglected as to the �scale-
invariant� region. It corresponds to the shaded area in �gure 2.2. It will
turn out that for phenomenologically viable values of the parameters, all the
observable in�ation takes place in this region.

Slow-roll approximation and trajectories

In the present model in�ation can occur due to a phase of slow-roll of the
scalar �elds down the potential. The standard slow-roll parameters can be
generalized to the two-�eld case as (see e.g. [93])

ε =
M2labṼ,aṼ,b

2Ṽ 2
(2.69)
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and

η1 , η2 , (2.70)

which stand for the eigenvalues of the matrix Na
b de�ned by

Na
b e

b
i = ηie

a
i , and Na

b =
M2lacṼ;cb

Ṽ
, (2.71)

where Ṽ;cb = Ṽ,cb−Υa
bc(φ)Ṽ,a. Notice that the slow-roll parameters are scalars

under rede�nition of the �eld variables. The system describes an in�ating
universe as long as the slow-roll parameters satisfy

ε� 1 and ηi � 1 . (2.72)

These are su�cient but in general not necessary conditions for in�ation, the
necessary and su�cient condition being ä(t) > 0 , or equivalently−Ḣ/H2 < 1.
For instance, in�ation can also occur if one of the eigenvalues ηi is much big-
ger than 1. In that case, phenomenology is very close to that of single-�eld
in�ation along the more unstable direction in the potential (cf. e.g. [93]).
If the conditions (2.72) are satis�ed, the equations (2.58) and (2.59) are
well-approximated by the slow-roll equations

H̃2 ' Ṽ

3M2
, (2.73)

3H̃φ̇c ' −Ṽ c . (2.74)

Let us now discuss the regions in the (χ, h)-plane for which the slow-roll
conditions hold (cf. �gure 2.2). The slow-roll region extends to in�nity along
the potential valleys if ξ1 <

1
2 . As will be shown in section 2.3.3, only if this

condition holds, the scalar �elds can constitute a dark energy component in
the late stage. During in�ation it is safe to neglect the term in the potential
proportional to α. In fact, for α = 0 the potential possesses only one valley
which goes along the χ-axis. For α 6= 0 this valley splits into two valleys
that lie at the angles θ = ± arctan(α) with respect to the χ-axis. For α≪ 1
these angles are very small. We will see that in�ation in our model occurs
far from these valleys where the e�ect of a non-zero α is irrelevant. Hence,
we will put α = 0 for the rest of this section. The plot of the slow-roll region
for ξ1 <

1
2 and α = 0 is presented in �gure 2.2.

Next, we want to analyze the di�erent trajectories the �elds can take if
the initial conditions are chosen in the slow-roll region. We will only consider
trajectories starting in the �rst quadrant χ, h > 0. Trajectories starting in
other quadrants have exactly the same behaviour. The nature of the po-
tential (2.49) makes that all trajectories tend to approach one of the two
potential valleys. There are trajectories (type a) that on their way to the
valley never leave the slow-roll region. Numerical computations show that
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Fig. 2.2: The blue region is the slow-roll region for ξ1 � 1 and ξ2 � 1
limited by ε = 1. The general features of the region are the same
whenever ξ1 <

1
2 and ξ2 >

1
2 . For ξ1 <

1
2 and ξ2 <

1
2 the central

fast-rolling region vanishes. For ξ1 >
1
2 the slow-roll region does

not extend to in�nity along the χ-axis in which case the scalar
�elds can not act as dark energy in the late stage of evolution.
In the shaded region the potential ful�lls υ1, υ2 < 1, i.e. the
in�uence of Λ0 6= 0 is small. The presence of the slow roll-region
along the χ-axis such as the central fast-roll region are e�ects of
Λ0 > 0. For Λ0 = 0 the slow-roll region is simply given by the
triangles delimited by the two diagonal lines. Note that in this
case the units of the axis have to be chosen di�erently. The red
line represents a trajectory of type a, never leaving the slow-roll
region. The blue line is a trajectory of the type b, which leaves
the slow-roll region and oscillates strongly before rolling down the
valley. These trajectories were found by numerically solving the
exact equations (2.59).
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such trajectories undergo only very few slow oscillations before asymptot-
ically approaching the valley. One can not expect a successful reheating
period from this type of behaviour (cf. section 2.3.2). The good trajectories
(type a) are those that at some point leave the slow-roll region. After the exit
of the slow-roll region, which at the same time marks the end of in�ation,
these trajectories undergo a fast-roll towards the valley and consequently
oscillate strongly around its minimum. Typical examples for both types of
trajectories are given in �gure 2.2.

In terms of the variables χ and h and using (2.62) and (2.63) the slow-roll
equations (2.74) are (for α = 0)

χ̇ =
u (χ, h)

3H
h (1 + 6ξh + υ1) , (2.75)

ḣ = −u (χ, h)
3H

(1 + 6ξχ)χ (1− υ2) . (2.76)

Combining the two equations, one can �nd the equation for the slow-roll
trajectories

dχ

dh
=
χ̇

ḣ
= −h

χ

1 + 6ξh + υ1

(1 + 6ξχ)χ (1− υ2)
. (2.77)

Looking at �gure 2.2 we observe that all good trajectories (type b) go through
the scale-invariant region before leaving the slow-roll region. This can be
proven mathematically. It is enough to show that for ξχ < 1

2 there is no
intersection between the line limiting the slow-roll region and the line v2 = 1
limiting the scale-invariant region. Therefore, for trajectories of the type b,
the passage from the slow-roll to the fast-roll region will always take place
within the scale-invariant region. We will see that if the scalar �elds are to act
as a dark-energy component in the late phase, the whole period of observable
in�ation (i.e. the �nal ∼ 60 e-folds) takes place in the scale-invariant region.
In this region, the equation for the trajectories (2.77) simpli�es to

dχ

dh
= − (1 + 6ξh)h

(1 + 6ξχ)χ
(2.78)

and can be solved exactly. The solutions satisfy the equation of an ellipse

(1 + 6ξχ)χ2 + (1 + 6ξh)h2 = cst . (2.79)

One can get the same relation by integrating (2.68). Hence, these trajectories
are a good approximation, even beyond the slow-roll approximation, as long
as Λ0 is negligible. The existence of this constant of the motion leads us to
the de�nition of the new variables

ρ =
M

2
ln
(

(1 + 6ξχ)χ2 + (1 + 6ξh)h2

M2

)
, (2.80)

θ = arctan

(√
1 + 6ξh
1 + 6ξχ

h

χ

)
, (2.81)
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where ρ ∈ ]−∞,∞[ and θ ∈ ]− π/2, π/2[. In the scale-invariant part of the
slow-roll region one has ρ = ρ0 = cst., and the angle θ obeys the equation

dθ

dn
= − 4ξχ

1 + 6ξχ
cot θ

(
1 +

6ξχξh
ξχ cos2 θ + ξh sin2 θ

)
, (2.82)

where we have used the e-fold time variable de�ned as n ≡ ln a(t). Note
that this equation is independent of ρ0, which is a consequence of scale
invariance.4 The equation can be integrated in order to get the number of
e-folds N before the end of in�ation as a function of the angle θ,

N =
1

4ξχ

[
ln
(

cos θend
cos θ

)
+ 3ξχ ln

(
ξχ cos2 θend + ξh sin2 θend + 6ξχξh
ξχ cos2 θ + ξh sin2 θ + 6ξχξh

)]
,

(2.83)
where θend is the value of θ at the end of in�ation. In our model, the
condition marking the end of in�ation is ε = 1. In the scale-invariant region
this condition reads

8ξ2
χ(1 + 6ξh)
1 + 6ξχ

cot2 θend

ξχ cos2 θend + ξh sin2 θend
= 1 . (2.84)

After inserting values for ξχ, ξh and requiring a minimal number of in�ation-
ary e-folds N = Nmin, equation (2.83) can be solved to obtain a lower bound
θinitial > θmin on the initial conditions for in�ation. In the next section we
derive bounds on the parameters ξχ and ξh, which are related to the spectra
of primordial perturbations.

Linear perturbations

The theory of cosmological perturbations as stemming from quantum �uc-
tuations during in�ation was developed in [20�23, 94] (see also [95] and
references therein). Including scalar and tensor perturbations and �xing the
longitudinal transverse traceless gauge, the line element can be written as

ds̃2 = a(η)2
(
(1 + Φ) dη2 − (1−Ψ)

(
δij + hTTij

)
dxidxj

)
, (2.85)

where Φ and Ψ are the Bardeen potentials [96]. The comoving curvature
perturbation is de�ned as [97]

ζ ≡ Ψ− H
H′ −H2

(
Ψ′ +HΦ

)
, (2.86)

where H is the comoving Hubble parameter H = aH and prime stands for
derivative with respect to comoving time η. Following reference [92] we �nd
the evolution equation for ζ at linear order in perturbations to be

ζ ′ =
2H
σ′2

∆Ψ− 2H
σ′2
⊥cd a2Ṽ,cδφ

d . (2.87)

4 In fact, when Λ0 is neglected, ρ is the massless Goldstone boson related to the scale
symmetry. Hence, it only appears derivatively in the equations of motion.
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Here, δφd are the perturbations to the background �eld trajectory, σ is de-
�ned through the relation σ′ =

√
labφa′φb′ and ⊥ab is the projector orthog-

onal to the �eld trajectory, given by

⊥ab= lab − pab , (2.88)

where pab is the projector on the �eld trajectory,

pab = uaub , (2.89)

with ua ≡ φa′

σ′ = φ̇a

σ̇ . In the long wavelength limit, (2.87) reduces to

ζ ′ = −2H
σ′2
⊥cd a2Ṽ,cδφ

d . (2.90)

This is a well-known result, saying that for multi-�eld in�ation ζ is not
in general conserved outside the Hubble horizon. There are two situations
in which the source term on the right-hand side of the equation vanishes
nevertheless. One of them is if the perturbation vector δφa is tangent to
the �eld trajectory, i.e. δφa‖ua. This corresponds to the complete absence
of isocurvature perturbations during in�ation and will not be satis�ed in
our scenario.5 The second possibility is to have Ṽ a‖ua. At zeroth order
in slow-roll, when the background equations are approximated by (2.74),
this is always satis�ed. However, it does no longer hold, in general, if one
goes beyond the slow-roll approximation. In our model, due to the scale
symmetry, one might still have approximately Ṽ a‖ua, to a higher precision
than the zeroth order slow-roll approximation. In fact, if Λ0 can be neglected,
one can apply equation (2.67), which in terms of the variables (ρ, θ) reads

ρ̇ ' cst. · lρρ e−3n . (2.91)

Therefore, in the scale-invariant region, ρ̇ = 0 is an attractor. This means
that after a few e-folds, independently of the initial conditions, ρ is very close
to constant and hence uρ ' 0. At the same time, still in the scale-invariant
region, the potential is a function of θ only, i.e. Ṽ,ρ ' 0. As a consequence, in
terms of arbitrary variables, we have approximately Ṽ a‖ua and ζ is almost
constant for large wavelengths.

We will from now on suppose that initial conditions are such that the
attractor ρ ' cst. has been reached before the observable scales cross the
horizon. In that case, ζ is constant outside the Hubble horizon and one can
express the primordial spectrum of ζ to �rst non-trivial order in the slow-roll
parameters as [95, 98, 99]

Pζ(k) ' 1
2M2ε∗

(
H∗

2π

)2(
1− 2(C + 3)ε∗ + 2C η∗eff − (6ε∗ − 2η∗eff ) ln

k

k∗

)
,

(2.92)

5 Isocurvature perturbations correspond to the component of δφa perpendicular to the
�eld trajectory, i.e. for which δφa ⊥ ua (cf. e.g. [92]).
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where k∗ is the pivot scale, C ≡ 2 − ln 2 − γ, γ is the Euler-Mascheroni
constant and we have de�ned

ηeff = pabN
ab =

Ṽ,aṼ,b

lcdṼ,cṼ,d
Nab , (2.93)

corresponding to the projection of the matrix Nab onto the background tra-
jectory. Quantities marked with a star � * � are evaluated at the moment
when the pivot scale k∗ leaves the Hubble horizon. The scalar spectral index
is found to be

ns(k∗)− 1 ≡
d lnPζ
d ln k

∣∣∣∣∣
k=k∗

' −6ε∗ + 2η∗eff , (2.94)

while the amplitude of the scalar spectrum is identi�ed as

∆2
ζ(k
∗) ≡ 1

2M2ε∗

(
H∗

2π

)2

. (2.95)

Now, even if isocurvature perturbations do not a�ect the evolution of ζ,
they are in general present at the end of in�ation. So, they could in princi-
ple give rise to unobserved entropy perturbations. Though, if one assumes
that after reheating the universe reaches a state of local thermal equilibrium,
entropy perturbations are e�ciently erased [100]. Working with this assump-
tion, we will be able to relate the primordial spectra to CMB observations.

The primordial spectrum of the tensor perturbations is given, to �rst
order in the slow-roll approximation, by [95, 98] 6

Ph(k) ' 8
M2

(
H∗

2π

)2(
1− 2(C + 1)ε∗ − 2ε∗ ln

k

k∗

)
, (2.96)

which results in a tensorial spectral index

nh(k∗) ≡ d lnPh
d ln k

∣∣∣∣∣
k=k∗

' −2ε∗ . (2.97)

The ratio of the tensor and the scalar spectra to �rst order in slow-roll is
then given by

r ≡ Ph
Pζ
' 16ε∗ . (2.98)

6 This result is based on the slow-roll approximation and involves no further assump-
tions.
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Constraints on parameters from CMB observations

In this section we make the assumption that the whole period of observable
in�ation takes place in the scale-invariant region. As mentioned before, this
assumption will automatically be valid if the initial conditions of the �elds
are chosen such that they act as dark energy in the late stage. We can
therefore use equations (2.83) and (2.84) for the background.

We also make the assumptions that ζ is conserved for large wavelengths
during in�ation and that after in�ation entropy perturbations die away be-
fore having an observable e�ect. This allows us to directly relate the primor-
dial spectra (2.92) and (2.96) to observations of the CMB.

The observational bounds (WMAP7 + BAO + H0) [27] for the tilt and
the amplitude of the scalar power spectrum and for the tensor-to-scalar ratio
are7

ns(k∗) = 0.968± 0.012 , (2.99)

∆2
ζ(k
∗) = (2.43± 0.091) ∗ 10−9 , (2.100)

r(k∗) < 0.24 , (2.101)

where k∗/a0 = 0.002 Mpc−1. These values are obtained for the standard
ΛCDM model. The errors indicate the 68% con�dence level. We do not
consider the values obtained for a model with varying equation of state pa-
rameter for dark energy, since in the here presented model ωDE is very close
to constant.

Let us denote by N∗ the number of e-fold between the moment where
k∗ exits the horizon and the end of in�ation. In order to determine N∗ we
need to know the post-in�ationary evolution of the universe including the
details of the reheating process. If there are uncertainties related to the
post-in�ationary history, these can be accounted for by varying the value of
N∗. We turn back to this issue at the end of this section and in section 2.3.2.

In a �rst instance we can compute the spectral parameters ns(k∗), ∆2
ζ(k
∗)

and r(k∗) as functions of ξχ, ξh, λ and of N∗. This is done in three steps:
1) Equation (2.84) is solved for θend = θend(ξχ, ξh).
2) θend is inserted into (2.83) from which one determines θ∗ = θ∗(ξχ, ξh, N∗).
3) Expressions (2.94), (2.95) and (2.98) are evaluated at θ∗ to �nd the spec-
tral parameters as functions of of ξχ, ξh, λ and of N∗.

The value of the parameter λ to be used corresponds to the Higgs self-
coupling evaluated at the scale of in�ation [101]. It contains the uncertainty
related to the Higgs mass m2

H . We expect the running of λ to be similar as
in the case of the Higgs in�ation model [101]. As was shown in [101], for
m2
H ' 130 − 180GeV, the coupling λ evaluated at the scale of in�ation lies

in the range λ ' 0.1− 1.
7 These numbers are taken from the updated preprint http://lambda.gsfc.nasa.gov/

product/map/dr4/pub_papers/sevenyear/cosmology/wmap_7yr_cosmology.pdf.

http://lambda.gsfc.nasa.gov/product/map/dr4/pub_papers/sevenyear/cosmology/wmap_7yr_cosmology.pdf
http://lambda.gsfc.nasa.gov/product/map/dr4/pub_papers/sevenyear/cosmology/wmap_7yr_cosmology.pdf
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The second of the steps described above cannot be done analytically.
Numerical evaluation shows that for the spectral parameters to lie in the
allowed region, the parameters have to be such that ξχ � 1 and ξh � 1
(cf. �gure 2.3). With this knowledge, we can derive approximate analytical
results. From (2.84) we obtain

θend = 2 ∗ 3
1
4

√
ξχ

(
1 +O

(
ξχ,

1
ξh

))
. (2.102)

In order to approximately solve (2.83) for θ∗ we neglect the second term on
the right-hand side. The inversion then gives

θ∗ ' arccos
(

cos(θend)e−4ξχN∗
)
. (2.103)

Inserting θend from (2.102) we obtain

θ∗ ' arccos
(
e−4ξχN∗

)(
1 +O

(
ξχ,

1
ξh

))
. (2.104)

Here, the sign for approximate equality �'� refers to the approximation made
when inverting (2.83). This approximation constitutes the main source of er-
ror. In fact, one can get a much more accurate approximation by reinserting
the �rst approximation into the right-hand side of(2.83) in order to compute
the second order approximation of an iterative solution. However, as the
expressions get very complicated, we stick to the �rst order approximation
which will already come very close to the numerical results.

We can now evaluate the spectral parameters at the approximate value
for θ∗. Inserting (2.104) into (2.94), (2.95) and (2.98) we obtain

ns (k∗)− 1 ' −8ξχ coth (4ξχN∗)
(

1 +O
(
ξχ,

1
ξh

))
, (2.105)

∆2
ζ(k
∗) ' λ sinh2 (4ξχN∗)

1152π2ξ2
χξ

2
h

(
1 +O

(
ξχ,

1
ξh

))
, (2.106)

r(k∗) ' 192ξ2
χ sinh−2 (4ξχN∗)

(
1 +O

(
ξχ,

1
ξh

))
. (2.107)

These are the approximate analytical results that we will compare to the
results found numerically. Although the quantity 4ξχN∗ can be of the or-
der one, 4ξχN∗ ∼ O(1), the series expansions of the hyperbolic functions
converge rapidly and we can further approximate

ns (k∗)− 1 ' − 2
N∗

(
1 +

1
3

(4ξχN∗)2 + ...

)
, (2.108)

∆2
ζ(k
∗) ' λN∗2

72π2ξ2
h

(
1 +

1
3

(4ξχN∗)2 + ...

)
, (2.109)

r(k∗) ' 12
N∗2

(
1− 1

3
(4ξχN∗)2 + ...

)
. (2.110)
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We remark that in the limit ξχ → 0 these results reduce to those found for
the Higgs-in�ation model [101]. Hence, one can think of ξχ as the deviation
of our predictions from those of the Higgs in�ation model.

Making a few assumptions about the post-in�ationary evolution of the
universe, one can also relateN∗ to the parameters of the theory. First, during
the reheating phase the scale factor is expected to evolve like in a matter
dominated universe. The reason is that during this stage the present model
behaves much like the Higgs in�ation model of [101�103] (cf. section 2.3.2).
In this sense matter like scaling of the universe during reheating is not really
an assumption but rather a property of the considered model. Next, we make
the usual assumptions that reheating is followed by the standard radiation
and matter dominated stages. Further assuming that the transitions between
the di�erent phases are instantaneous, one can derive the following relation
(cf. [98])

N∗ ' − ln
k∗

a0H0
−ln

(
ρcr0 /Ω

γ
0

Ṽ (θ∗)

)1/4

+ln

(
Ṽ (θ∗)
Ṽ (θend)

)1/4

− 1
3

ln

(
Ṽ (θend)
ρrh

)1/4

.

(2.111)
Here, a0, H0, ρ

cr
0 and Ωγ

0 stand for todays values of the scale factor, the
Hubble parameter, the critical density and the abundance of radiation re-
spectively. ρrh denotes the radiation energy density at the end of reheating,
i.e. at the onset of the hot big bang. After inserting the observational values
ρcr0 h

−2 ' 8.1 ·10−47GeV4 and Ωγ
0h

2 ' 4.3 ·10−5, where h is the dimensionless
Hubble parameter, the above formula can be written as

N∗ ' 59−ln
k∗Mpc
0.002a0

−ln
1016GeV
Ṽ (θ∗)1/4

+ln

(
Ṽ (θ∗)
Ṽ (θend)

)1/4

−1
3

ln

(
Ṽ (θend)
ρrh

)1/4

.

(2.112)
Note that the dependence on h has cancelled out.8 A detailed determi-
nation of ρrh goes beyond the scope of this work. However, we will see
in section 2.3.2 that ρrh has to take a value between ρminrh '

λ
4ξ4
h
M4 and

ρmaxrh = λ
ξ2
h
XM4, where X = 7 − 4

√
3 + O(ξχ, 1/ξh). In these two limits

we can combine (2.112) with (2.83) and (2.84) to �nd N∗ = N∗(ξχ, ξh, λ).
For ξχ � 1 and ξh � 1 and using the approximate expressions (2.104) and
(2.102) for θ∗ and θend, we obtain the approximate expressions

N∗min ' 64.55− 1
12

lnλ− 2
3

ln
ξh√
λ
, (2.113)

N∗max ' 64.55− 1
2

ln
ξh√
λ
, (2.114)

where the subscripts �min� and �max� stand for the cases ρrh = ρmin and
ρrh = ρmax respectively.

8 In the analog formula of [98] this fact remains somewhat hidden.
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Fig. 2.3: This plot shows the parameter regions for which the values of
ns(k∗), ∆2

ζ(k
∗) and r(k∗) lie in the observationally allowed region,

for 0.1 < λ < 1. The red region is obtained for ρrh = ρmaxrh (instant
reheating), while the blue region corresponds to ρrh = ρminrh (long
reheating).

Accurate predictions for the values of ns(k∗), ∆2
ζ(k
∗) and r(k∗) can be

found numerically by combining equations (2.84), (2.83), (2.112) to �nd the
precise value of θ∗ which is then inserted into (2.94), (2.95) and (2.98). The
parameter regions yielding observables in the allowed range is plotted in
�gure 2.3.

The red region is obtained under the assumption of instant reheating
(ρrh = ρmaxrh ). The blue region is gotten for ρrh = ρminrh . As one can un-
derstand from the approximate formula (2.106), the band-shape of the pa-
rameter regions is due to the constraint on the amplitude ∆2

ζ(k
∗). The fact

that the bands are cut on the right comes from the constraint on ns(k∗) as is
clear from (2.105). The constraint on the tensor-to-scalar ratio r is weaker.
We obtain the bounds

0 < ξχ < 0.0041 ,
for ρrh = ρmin

45000 <
ξh√
λ

< 55300 ,
(2.115)

and

0 < ξχ < 0.0043 ,
for ρrh = ρmax .

46300 <
ξh√
λ

< 58100 ,
(2.116)
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The approximate formulas (2.105)-(2.107) such as (2.113) and (2.114) are
helpful to understand the dependence of the observables on the di�erent
parameters. For ρrh = ρmaxrh the observables essentially depend on ξh and λ
only through the ratio ξh/

√
λ. For ρrh = ρminrh , the approximate expressions

for N∗min contains the term − 1
12 lnλ. This means that if one changes the

value of λ, keeping the ratio ξh/
√
λ �xed, N∗min gets a shift. For 0.1 < λ < 1

this shift is ∆N ∼ 0.2 leading to negligible changes in the observables.
It is therefore su�cient to discuss the dependence of the observables on
ξχ and ξh/

√
λ. Varying ξh/

√
λ within the observationally allowed order of

magnitude hardly a�ects the value of N∗. We have

N∗min ' 57.5 , (2.117)

N∗max ' 59 . (2.118)

This means, as can be seen from (2.105), that ns(k∗) mainly depends on
ξχ. The same is true for the tensor-to-scalar ratio r(k∗) (2.107). The scalar
amplitude ∆2

ζ(k
∗) (2.106) depends on both ξχ and the ratio ξh/

√
λ. Given

the insensitivity of the scalar tilt and the tensor-to scalar-ratio on ξh/
√
λ,

we plot them as functions of ξχ (cf. �gures 2.4 and 2.5).
In the relevant parameter range the accuracy of the approximate formula

for ns(k∗) is of the per mill level. The approximations of r(k∗) and ∆2
ζ(k
∗)

are good at the percent level.
We �nd that the scalar spectral index predicted by the present model

has an absolute maximum,

ns(k∗) < 0.97 ' 1− 2
N∗

. (2.119)

The extreme value is obtained in the limit where ξχ → 0, and corresponds to
the value predicted by the Higgs-In�ation model [102]. It will be very inter-
esting to compare this bound with more stringent observational constraints.

The predicted tensor-to-scalar ratio also has an upper bound, i.e.

r(k∗) < 0.0035 ' 12
N∗2

, (2.120)

which is much stronger than the current observational bound (2.101). Also
here, the extreme value is gotten for ξχ → 0 and corresponds to the result
for Higgs-In�ation.

The upper bounds on ns(k∗) and on r(k∗) are two non-trivial predictions
of our model. They correspond to the values predicted by Higgs-In�ation
[102]. We will see in section 2.3.3 that, if the scalar �elds constitute a dark-
energy component at late times, the parameter ξχ is related to its equation
of state. As a consequence, the upper bound on ns(k∗) will induce a bound
on the equation of state parameter ωDE of dark energy. This is a very
non-trivial connection provided by our model.
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Fig. 2.4: The red curve is obtained for ρrh = ρmaxrh (instant reheating), while
the blue curve represents the case ρrh = ρminrh (long reheating).
The dashed curves are obtained from the approximate formula
(2.105) for N∗max and N∗min respectively. The horizontal line and
the shaded region correspond to the observational mean value and
the associated error (2.99).
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Fig. 2.5: The red curve is obtained for ρrh = ρmaxrh (instant reheating), while
the blue curve represents the case ρrh = ρminrh (long reheating).
The dashed curves are obtained from the approximate formula
(2.106) for N∗max and N∗min respectively.

The �ndings of this and the following section allow us to constrain the
region of initial conditions for the scalar �elds which lead to successful in-
�ation. Based on the assumption that the last N∗ e-folds of in�ation take
place in the scale-invariant region, we have found the �eld value θ∗ close to
which the observable scales exit the Hubble horizon during in�ation. The
initial conditions for in�ation have to be such that θin ≥ θ∗. In terms of the
original variables this condition reads

hin
χin
≥

√
1 + 6ξχ
1 + 6ξh

tan θ∗ . (2.121)

θ∗ was found to be θ∗ ' arccos
(
e−4ξχN∗

)
(2.104). For typical parameter

values ξχ = 0.003, ξh = 50000 and N∗ = 60 one obtains θ∗ ∼ 1.2 and
hin
χin

>∼ 0.004. Considerations related to dark energy (section 2.3.3) will yield
an additional constraint on the initial conditions. The region of acceptable
initial conditions satisfying both constraints is shown in �gure 2.7.

Let us at this point make an important remark. The fact that a scale-
invariant theory including the dilaton can give a mechanism for in�ation
does not depend on whether gravity is GR or UG. Moreover, since Λ0 can
be neglected during in�ation, the analysis we did also applies to the case
Λ0 = 0, i.e. SI plus GR. The replacement of GR by UG mainly a�ects the
late universe. Namely, it provides a mechanism for dynamical dark energy.
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2.3.2 Qualitative picture of the reheating process

After the end of in�ation, i.e. after the �eld trajectory leaves the slow-roll
region, the �elds undergo damped oscillations around the potential valley.
During these oscillations, the scalar �elds essentially decay into standard
model particles. In this way the initial conditions are set for the hot big
bang starting with a radiation dominated phase. The details of the reheat-
ing process in the present model will be discussed in an upcoming work.
Nevertheless, we can give some simple arguments as to why reheating is ex-
pected to be very similar to reheating in the Higgs-in�ation model [101�103].

During the oscillations one has θ < θend, where θend is the solution of
(2.84). As we found in the previous section, the parameters giving a suc-

cessful in�ation satisfy ξχ � 1 and ξh � 1 such that θend ' 2 ∗ 3
1
4

√
ξχ � 1.

Therefore, during the oscillations, the relation (2.80) becomes approximately

ρ ' M
2 ln χ2

M2 . During the oscillations the trajectory passes through the re-
gion in which Λ0 is not negligible. In this region ρ, which was constant
during in�ation, will no longer be constant. However, numerical simulations
show that the relative change in ρ from the beginning to the end of the os-
cillations is very small. Therefore, in a �rst approximation, one can consider
ρ and consequently χ as constant during reheating. Now, if χ ' cst, one can
identify the Planck scale M2 = ξχχ

2 and the action (2.32) reduces to the
action for the Higgs-in�ation model, except for the term Λ0. The presence
of Λ0 gives rise to an e�ective cosmological constant. As we will see in the
next section, this constant has to be negligibly small at the beginning of the
radiation dominated phase in order to cope with phenomenology. So, in a
�rst approximation, one gets the same results for reheating as in the case of
Higgs-in�ation. Here, we only want to reproduce the upper and the lower
bounds on the reheating temperature Trh, de�ned as the initial temperature
of the homogeneous radiation dominated universe. The energy transferred
to radiation has to be lower than the energy scale at the end of in�ation, i.e.

ρrh =
π2

30
geff (Trh)T 4

rh < ρmaxrh = Ṽ (θend) =
λ

ξ2
h

XM4 , (2.122)

where ρrh stands for the energy density contained in radiation, geff (Trh) is
the e�ective number of relativistic degrees of freedom present in the thermal
bath at the temperature Trh and X is a numerical factor given by X =
7 − 4

√
3 + O(ξχ, 1/ξh) ' 0.7. Inserting the lower bound on ξh/

√
λ (2.116)

and geff (Trh) = 106.75 this gives the following upper bound on the reheating
temperature

Trh < 2.4× 1015GeV . (2.123)

As explained in [104], a lower bound on Trh is obtained by the following
argument. As soon as the oscillation amplitude of the �eld h falls below M

ξh
,

the non-minimal coupling between h and the Ricci scalar R can be neglected.
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The interactions of h reduce to the standard model interactions of the Higgs
�eld and therefore h decays almost immediately into relativistic standard
model particles. This means, again at lowest order in ξχ and 1

ξh
, that

ρrad(Trh) =
π2

30
geff (Trh)T 4

rh > ρminrh =
λ

4ξ4
h

M4 . (2.124)

Here, we substitute the upper bound on ξh/
√
λ (2.115) to obtain

Trh > 2.1
√

20000
ξh

1013GeV . (2.125)

The more detailed analysis of reheating in the Higgs- in�ation model car-
ried out in [101] (cf. also [103]) results in a reheating temperature Trh '
(3− 15)× 1013GeV .

2.3.3 The scalar �elds during the hot big bang

After the phase of reheating the system enters the radiation dominated stage,
at the beginning of which the total energy density is ρtotal(Trh) ' ρrad(Trh) =
π2

30 geff (Trh)T 4
rh. The scalar �elds have almost settled down in the valley. i.e.

h ' αχ. Let us assume that this equality is exact and the �elds evolve
exactly along the valley (cf. arguments given in [82]).9 We are then left with
only one scalar degree of freedom. After imposing the constraint h = αχ,
the scalar-tensor part of the action (2.32) becomes

L√
−g

= −
(
ξχ + α2ξh

)
χ2R

2
− 1

2
(
1 + α2

)
(∂µχ)2 − Λ0 . (2.126)

We can de�ne the Einstein-frame metric as

g̃µν =

(
ξχ + α2ξh

)
χ2

M2
gµν (2.127)

and the canonical scalar �eld φ through10

χ = M exp
(
γφ

4M

)
, (2.128)

with

γ =
4√

1+α2

ξχ+α2ξh
+ 6

=
4√

1
ξχ

+ 6
+O(α) . (2.129)

As explained in section 1, α is related to the hierarchy between the elec-
troweak and the Planck scale such that α≪ 1 and α≪ ξχ, ξh. Hence,

9 The validity of this approximation can also be checked numerically.
10 This �eld φ is not to be confounded with the two-component notation φi introduced

in section 2.3.1.
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the corrections O(α) in the above expression for γ are negligibly small. A
non-zero value of α will, however, be relevant for the particle physics phe-
nomenology (cf. section 3.6). In the approximation α ≪ 1 the �eld φ is
related to the �eld ρ used to describe the in�ationary phase as

ρ ' φ√
6 + 1

ξχ

+
M

2
ln (1 + 6ξχ) '

√
ξχφ+O (ξχ) . (2.130)

In terms of these new variables the Lagrangian (2.126) reads

L√
−g̃

= −M2R

2
− 1

2
(∂µφ)2 − ṼQE(φ) , (2.131)

where the potential is given by

ṼQE(φ) =
Λ0

ξ2
χ

exp
(
−γ φ

M

)
. (2.132)

The �eld φ does not have direct couplings to the standard model �elds except
for its coupling to the other scalar �eld h. The latter is a derivative coupling
and therefore very weak. As a consequence φ can be considered as a �eld
minimally coupled to gravity but not interacting with matter and radiation.
Let us now look at its in�uence on standard homogeneous cosmology. The
equation of motion for a homogeneous �eld φ = φ(t) in �at FLRW spacetime
(2.57) is given by

φ̈+ 3Hφ̇+
dVQE
dφ

= 0 . (2.133)

De�ning energy density ρφ, pressure pφ and the equation of state parameter
ωφ of the scalar �eld as

ρφ ≡
1
2
φ̇2 + VQE , (2.134)

pφ ≡
1
2
φ̇2 − VQE , (2.135)

ωφ ≡
pφ
ρφ

, (2.136)

the equation of motion can also be written as

ρ̇φ = −3Hρφ (1 + ωφ) . (2.137)

In presence of a �uid of energy density ρm, for instance relativistic or non-
relativistic matter , the Hubble parameter is given by the �rst Friedmann
equation as

H2 =
1

3M2
(ρm + ρφ) . (2.138)
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In terms of the relative abundances Ω = ρ
3M2H2 the Friedmann equation

reads

Ωm + Ωφ = 1 . (2.139)

The cosmological model described by equations (2.133) and (2.138) with a
scalar �eld evolving in an exponential potential has been widely studied in
the literature (for a recent review see [105]). It is interesting to note that
the exponential potential that was proposed for quintessence long time ago
[28�30] appears automatically in the present model. We want to recap the
main results established in the literature and show how they apply to our
model.

For the qualitative analysis of the system we follow [106] and rewrite
equations (2.133) and (2.138) in terms of the observable quantities Ωφ and
δφ ≡ 1 + ωφ as

δ′φ = −3δφ(2− δφ) + γ(2− δφ)
√

3δφΩφ , (2.140)

Ω′φ = 3(δm − δφ)Ωφ(1− Ωφ) , (2.141)

where prime now denotes the derivative with respect to the number of e-
folds n = ln a. Further, δm ≡ 1 + ωm, where ωm is the equation of state
parameter of the barotropic �uid. For radiation one has δm = 4/3 while for
non-relativistic matter δm = 1. In order to keep the discussion as general as
possible, we include the option that in addition to non-relativistic matter,
radiation and φ there exists a dark energy component with constant equation
of state. Such a �uid would have δm < 2/3. In the scale-invariant model
analyzed here, a component of this type is present as soon as β 6= 0, i.e.
if the action (2.32) contains a term βχ4 (cf. section 2.1). Note that the
following discussion is not valid if on top of φ there exists another �uid with
varying equation of state. It was shown in [30, 107] that depending on the
value of the parameter γ the system approaches one of two qualitatively very
di�erent attractor solutions.

For γ >
√

3δm, the variables go towards the stable �xed point Ωφ = 3δm/γ2

and δφ = δm. This means that the scalar �eld inherits the equation of state
parameter of the barotropic �uid. Hence, the energy density of the scalar
�eld scales like the energy density of the �uid. Unless the scalar �eld gives
the dominating contribution to the energy density from the beginning, it
will never become dominating. Therefore, these so-called �scaling solutions�
can not be responsible for the late-time acceleration of the universe. In this
case, the accelerated expansion must be due to another mechanism, e.g. a
barotropic dark energy component with δ < 2/3. Hence, a scaling �eld can
at best provide a small contribution to dark energy.

For γ <
√

3δm, the situation is very di�erent. The stable �xed point is
given by Ωφ = 1 and δφ = γ2/3. So, in this case, the asymptotic solution
describes a scalar �eld dominated universe, which is accelerating whenever
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γ <
√

2, i.e. ξχ . 1
2 . Hence, the scalar �eld with exponential potential and

γ <
√

3δm can potentially describe the late-time acceleration of the universe,
provided that the system has not attained the �xed-point by today.11

In the previous section we have found that our model successfully de-
scribes in�ation if ξχ . 4 × 10−3. This yields the bound γ ' 4

√
ξχ . 0.25.

Therefore, in the absence of another dark energy component with δ < γ/
√

3,
the system evolves towards the second type of �xed point, corresponding to
a scalar-�eld dominated universe in accelerated expansion. If a barotropic
dark energy component with δ < γ/

√
3 is present, the system tends towards

the �rst type of �xed point, describing a universe dominated by this other
type of dark energy. This allows us to draw a non-trivial conclusion. Namely,
if the parameters of the model are �xed by the requirements of in�ation, the
late time behaviour of the system necessarily corresponds to an accelerat-
ing universe, dominated either by φ or a barotropic dark energy component,
which in our model can be due to β 6= 0.

Current observations [27] show that at present the abundance of dark
energy is Ω0

DE ' 0.73. Applied to our model, this constitutes an upper
bound on the contribution of the �eld φ to the present energy density

Ω0
φ . Ω0

DE ' 0.73 . (2.142)

The �rst inequality becomes an equality if Ω0
φ is to be the only component

of dark-energy. The observed bound shows that dark energy is not clearly
dominating todays universe, which means that the system must not have
reached its �xed-point yet.

We now want to qualitatively discuss the scenario in which the �eld φ is
irrelevant during the radiation and matter dominated stages, but has become
important recently and is now responsible for the present acceleration of the
universe.12 During the radiation and matter dominated stages one must have
Ωφ � 1. As long as this is the case, the second term on the right-hand side
of (2.141) is small compared to the �rst one. Hence, δφ is driven towards
a very small value δφ � 1 and ωφ ' −1. This shows that even if initially
ρφ were dominated by kinetic energy, the kinetic part would soon die away
and Ωφ become potential dominated. 13 As a consequence the value of φ
is almost constant during the radiation and matter dominated epochs and
remains practically equal to its value at the end of reheating. However, since
ρφ decreases more slowly than the energy densities of radiation and matter
,Ωφ becomes relevant at some point. At this point φ starts rolling down the

11 As has been shown in [108], this statement holds even if γ >
√

2.
12 A detailed study of exactly this issue can be found in [108].
13 In principle one could imagine a scenario in which after reheating Ωφ is non-negligible,

as long as δφ ' 1. Since the kinetic part of ρφ decreases as a−6 it would soon fall below
ρradiation and radiation would start dominating provided that the potential energy of φ is
small enough. However, we do not expect this to happen in our model, because the �eld
φ is almost constant during reheating.
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potential and δφ starts growing towards its attractor value. The initial value
of Ωφ has to be small enough such that Ωφ remains negligible throughout
radiation domination and only becomes important in the late matter domi-
nated stage. The described scenario in which the quintessence �eld remains
constant for a long time and then starts rolling down the potential goes un-
der the name of �thawing quintessence� [109]. Two recent studies treating
the case of an exponential potential can be found in [106] and [110].

If φ is not the main contribution to dark energy, Ωφ remains small until
today. Hence, in that case δφ remains closer to zero and the �eld φ evolves
even less.

Combining (2.140) and (2.141) and in the approximation where δφ � 1
one can �nd the interesting relation [106]

δφ = 1 + ωφ '
γ2

3
F (Ωφ) , (2.143)

where

F (Ωφ) =

[
1√
Ωφ

− 1
2

(
1

Ωφ
− 1
)

ln
1 +

√
Ωφ

1−
√

Ωφ

]2

. (2.144)

The function F (Ωφ) is monotonously growing. If the scalar �eld φ is the sole
component of dark energy we can equate Ω0

φ = Ω0
DE ' 0.73, for which one

gets F (Ω0
DE = 0.73) = 0.5, while F (Ω0

DE < 0.73) < 0.5. Inserting this into
(2.143) and using (2.129) we can obtain the following bound on the present
equation of state parameter of φ

δ0
φ = 1 + ω0

φ .
8
3

1
1
ξχ

+ 6
. (2.145)

From the analysis of equations (2.140) and (2.141) we can understand that
if dark energy is mainly due to a barotropic component, its value of δ cannot
be bigger than δφ. Therefore, the bound (2.145) is at the same time a bound
on the equation of state parameter of the total dark energy.

δ0
DE = 1 + ω0

DE .
8
3

1
1
ξχ

+ 6
. (2.146)

The last two inequalities become equalities if Ω0
φ = Ω0

DE . Now, remember
that in the analysis of in�ation we have derived an upper bound ξχ < 0.0043
(cf. eq. (2.116)). This bound coming from in�ation implies the following
bound on the equation of state parameter of dark energy (cf. �gure 2.6)

0 ≤ 1 + ω0
DE . 0.01 . (2.147)

In summary, we have found that the parameter bound from in�ation implies
a very strong bound on the equation of state parameter of dark energy. This
is a rather non-trivial result.
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Unfortunately, the current observational constraint −0.24 < 1 + ω0
DE <

0.04 [27] is too weak to compete with this theoretical prediction. From this
point of view, the energy density ρDE is practically indistinguishable from
a cosmological constant. Nevertheless, the observational bound is expected
to improve considerably in the near future. A measurement precision at the
percent level would make it possible to check the prediction of our model.

The theoretical prediction of the model can be further re�ned if φ is
alone responsible for dark energy, i.e. Ω0

φ = Ω0
DE and hence ω0

φ = ω0
DE . This

is what happens in the special case β = 0. The fact that both the scalar
spectral index n∗s and the equation of state parameter ω0

DE depend mainly
on ξχ makes it possible to establish a functional relation between these two
very di�erent observables. Namely, combining (2.146) (where inequality is
replaced by equality) with the approximate relation (2.105) allows us to
express the scalar tilt n∗s as a function of δ0

DE and the number of e-folds N∗

as

n∗s(δ
0
DE) ' 1−

12δ0
DE

4− 9δ0
DE

coth
(

6N∗δ0
DE

4− 9δ0
DE

)
. (2.148)

We plot this relation in �gure 2.6 and compare it to the numerical result.
The plot is equivalent to the plot of �gure 2.4, except that the independent
variable is changed from ξχ to ω0

DE with the help of (2.143). As before,
we see that the result is rather insensitive to variations of N∗ in the range
N∗min < N∗ < N∗max (cf. (2.117) and (2.118)).

The formulas (2.147) and (2.148) are the main results of this section.
Let us stress again that the link between the observable ns (k∗) related to
in�ation and ω0

DE related to dark energy is a non-trivial prediction of the
present model. On the other hand, one should also mention that this result
relies on several important assumptions. In particular, the functional relation
(2.148) is based on the requirement that the J-frame potential has a �at
direction (β = 0).

Let us now show how the obtained results justify the assumption we made
about in�ation taking place in the scale-invariant region. From (2.147) we
deduce that ρφ ' VQE(φ). This allows us to write the upper bound on Ω0

φ

given in (2.142) as a lower bound on todays value of φ

φ0>∼−
1
γ
M ln

(
ξ2
χ

Λeff
Λ0

)
, (2.149)

where we have de�ned an e�ective cosmological constant as

Λeff ≡ 3M2H2
0 Ω0

DE ' 10−120M4 . (2.150)

Numerical simulations show that the �eld φ, respectively the �eld ρ have
been almost constant from the end of in�ation till today. Therefore, the
lower bound on φ0 provides an approximate lower bound on the value of ρ at
the end of in�ation. In the analysis of in�ation we have made the assumption
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Fig. 2.6: This plot shows the approximate functional relationship between
n∗s and ω

0
DE . The plain curves are numerical results. The red plain

curve is obtained for ρrh = ρmaxrh (instant reheating), while the
blue plain curve represents the case ρrh = ρminrh (long reheating).
The dashed curves are obtained from the approximate relation
(2.148). The red one for N∗ = N∗max = 59 (instant reheating)
and the blue one for N∗ = N∗min = 57.5 (long reheating). The
shaded region represents the experimental mean value for n∗s and
the associated errors (2.99).
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that the whole period of observable in�ation, i.e. the last ∼ 60 e-folds, took
place in the scale-invariant region, where υ1, υ2 � 1 and hence ρ = cst.. We
can now check this assumption by computing υ1 and υ2 (de�ned in (2.64)
and (2.65)) at ρ = ρ∗ = ρend '

√
ξχφ0. Using (2.149) and working in the

usual approximation ξχ � 1 and ξh � 1, we obtain

υ1 . 144ξ2
χξ

2
h

Λeff
M4

sin−4 θ , (2.151)

υ2 .
24ξχξ2

h

λ

Λeff
M4

sin−2 θ cos−2 θ . (2.152)

From (2.102) and (2.104) we have θend ' 2∗3
1
4

√
ξχ and θ

∗ ' arccos
(
e−4ξχN∗

)
.

Evaluating the above bounds for values ξχ, ξh and N
∗ of the orders of magni-

tude found in section 2.3.1 we �nd that for the whole interval θend < θ < θ∗,
υ1, υ2 ≪ 1. This justi�es a posteriori the neglecting of Λ0 during in�ation.
Let us note that this conclusion is not altered if one takes into account the
slight change of the scalar �elds between the end of in�ation and today.
Both the change of ρ during the oscillations and the change of φ during the
thawing are at the percent level.

In section (2.3.1) we have seen that for our model to successfully describe
in�ation, the initial conditions for the scalar �elds have to satisfy θin > θ∗,

respectively hin
χin
≥
√

1+6ξχ
1+6ξh

tan θ∗, where θ∗ ' arccos
(
e−4ξχN∗

)
. We recall

that for typical values ξχ = 0.003, ξh = 50000 and N∗ = 60 one obtains
hin
χin

>∼ 0.004. The observational bound on Ω0
DE (2.142) (respectively (2.149))

together with the knowledge that the �eld ρ remains almost constant from
horizon crossing during in�ation until today, allows us to further restrict the
region of allowed initial conditions (cf. �gure 2.7). Namely, as long as the
initial conditions lie in the scale-invariant region (υ1, υ2 � 1), the bound
(2.149) translates to

ρin ' ρ∗ ' ρend '
√
ξχφ0>∼−

1
4
M ln

(
ξ2
χ

Λeff
Λ0

)
. (2.153)

In terms of the original variables χ and h the same bound reads

χ2
in

Λ1/2
0

+ 6ξh
h2
in

Λ1/2
0

>∼
1
ξχ

M2

Λ1/2
eff

∼ 1060 . (2.154)

Together with the bound hin/χin>∼ 10−3 this shows that initial conditions

have to approximately satisfy hin/Λ
1/4
0

>∼ 1030. Hence, the initial value of

h has to be much larger than the arbitrary scale Λ1/4
0 . For φ to exactly

produce the observed abundance of dark energy, the inequalities have to be
replaced by equalities. In that case, the initial values have to be chosen very
precisely on a line in the (ρ, θ)-, respectively the (χ, h)-plane. This tuning of
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initial conditions corresponds to the Cosmic Coincidence Problem described
in section 1. Hence, our model does not alleviate this problem with respect
to other quintessence models. If one allows for an additional dark energy
component, the set of acceptable initial conditions extends to an in�nite
region. In our model the additional component is present if β 6= 0. In that
case the �ne-tuning issue does not concern the initial conditions, but the
parameter β. Hence, in either case some ��ne-tuning� is needed.

At this point it should be recalled that, although the Cosmic Coinci-
dence Problem is an undesirable feature, it is not a consistency problem and
therefore does not invalidate this and other models of dynamical dark energy.

Finally, we can brie�y comment on the case of initial conditions lying
in the region where Λ0 cannot be neglected. Initial conditions lie in this
region (υ2 > 1) whenever θin is su�ciently close to π/2, respectively when
hin/χin is su�ciently big. Note, however, that as a consequence of the
bound (2.153) this only happens for extreme values π/2 − θin . 10−53,
respectively hin/χin>∼ 1053. In this region, ρ is no longer constant. The E-
frame potential (2.35) becomes dominated by the term proportional to Λ0,

i.e. Ṽ (h, χ) ' M4Λ0

(ξχχ2+ξhh2)2 . The e�ect of this potential is to drive the scalar

�elds to larger values of χ and h, respectively larger values of ρ, before they
enter into the scale-invariant region. Qualitatively this means that if initial
conditions are chosen in the non-scale-invariant region, the strong bound
(2.153) (respectively (2.154)) gets relaxed. Still, the discussion related to
the Cosmic Coincidence Problem equally applies to initial conditions in this
region.

2.4 Summary

Let us recapitulate the results of this section.

• We consider a minimal scale-invariant extension of GR plus SM by in-
troducing a dilaton �eld χ. We give the general class of potentials for
which SI is spontaneously broken and all mass scales at the classical
level are induced. The physical dilaton is massless but hardly a�ects
particle physics phenomenology. SI does not guarantee the absence
of a cosmological constant. We give arguments as to why the param-
eter choice that forbids a cosmological constant (β = 0) is specially
interesting.

• Replacing GR by UG gives rise to an arbitrary integration constant in
the equations of motion. This constant does not act like a cosmological
constant but rather like a non-trivial potential giving a small mass to
the dilaton.
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Fig. 2.7: This plot shows the di�erent regions of initial conditions for
the scalar �elds, giving rise to qualitatively di�erent evolutions.
For a successful description of in�ation, initial conditions have
to lie above the green line θ = θ∗. For Λ0 > 0, the scalar
�elds contribute to dark energy in the late stage. Initial con-
ditions have to lie above the arc of an ellipse ρ =

√
ξχφ0, where

φ0 = − 1
γM ln

(
ξ2
χ

Λeff
Λ0

)
, for this contribution not to exceed the

observed value of Ω0
DE . Hence, the green region corresponds to

initial conditions giving rise to successful in�ation and a contri-
bution to dark energy not exceeding Ω0

DE . The red segment of
the ellipse corresponds to initial conditions for which the scalar
�elds yield the total observed dark energy. The blue hyperbola
is given by υ2 = 1. Initial conditions below the hyperbola lie
in the non-scale-invariant region, where Λ0 is important. Tra-
jectories starting here tend to move away from the origin before
entering the scale-invariant region and following a scale-invariant
trajectory. Therefore, such initial conditions (pink region) can
also be acceptable as long as the corresponding trajectories en-
ter the scale-invariant region above the line ρ =

√
ξχφ0. Note

that, while we only describe the quadrant χ/Λ1/4
0 , h/Λ1/4

0 > 0,
the reasoning would be completely analog in the other quadrants.
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• The constructed model of SI plus UG gives a rich cosmological phe-
nomenology. For appropriate parameters and initial conditions, it pro-
vides both a mechanism for in�ation and a mechanism for dark energy
(The mechanism for in�ation also works for Λ0 = 0, i.e. SI plus GR).
The observational bound on the scalar spectral index n∗s translates into
the bound −1 ≤ ω0

DE . −0.99 on the equation of state parameter of
dark energy, which is very close to a cosmological constant. In the
case β = 0, dark energy is purely dynamical and our model predicts a
functional relation between n∗s and ω

0
DE .

• The presented model does neither solve nor alleviate the Cosmic Co-
incidence Problem.

• The �ndings of this section rely on the assumption that SI and the
features of the potential can be maintained at the quantum level. A
method for achieving this is given in section 4. We end up with a theory
where all scales, including those coming from dimensional transmuta-
tion, are due to spontaneous breaking of SI.
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3. Scale Invariance and TDi� Gravity �

The Dilaton as a Part of the Metric

In the previous chapter we discussed the construction of scale-invariant the-
ories for gravity and particle physics. We found that the spectrum of excita-
tions around a symmetry-breaking classical ground state always contains a
massless degree of freedom (Goldstone boson). This role can not be played
by the SM Higgs �eld, as the Higgs boson should be massive. Hence, the
realization of a phenomenologically viable scale-invariant extension of GR
plus SM requires the addition of new degrees of freedom. We considered the
minimal option of just adding one real scalar singlet, the dilaton χ. From
the point of view of the SM and standard GR the addition of the dilaton
χ is somewhat ad hoc. In this chapter we want to study the possibility for
the new scalar degree of freedom to appear in the gravitational sector of the
theory. To this end, we consider the idea that the symmetry group of the
gravitational action might not be the group of all di�eomorphisms (Di�) but
rather its restriction to transverse di�eomorphisms (TDi�) [72, 74�78] given
by

xµ 7→ x̃µ(x), with J ≡
∣∣∣∣∂x̃µ∂xν

∣∣∣∣ = 1, (3.1)

which is generated by the subalgebra of transverse vectors,

xµ 7→ xµ + ξµ(x), with ∂µξ
µ = 0 . (3.2)

As mentioned in the introduction (section 1), from a �eld-theoretical point
of view TDi� can be understood as the minimal symmetry group needed to
construct a consistent theory of a Lorentz invariant symmetric second rank
tensor [62, 76]. Under TDi� the metric determinant g = det gµν transforms
as a scalar. Hence, the action is much less restricted by TDi� than it would
be by requiring Di� invariance. In particular, a TDi� theory1 can in general
contain arbitrary functions of the metric determinant in every term. We will
refer to these functions as �Theory-De�ning Functions� (TDF). For general
choices of the TDF, TDi� gravity contains a new scalar degree of freedom,

1 We will use the terms �Di� theory� and �TDi� theory� to refer to theories invariant
under all di�eomorphisms (Di�), respectively invariant only under transverse di�eomor-
phisms (TDi�). By �TDi� gravity� we mean a TDi� theory containing the metric tensor
as the only �eld.
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on top of the massless graviton (the only exceptions are given by GR and
UG [76]). Moreover, as has been argued in the past, a TDi� invariant theory
is not equivalent to standard scalar-tensor gravity but rather to unimodular
gravity plus a new scalar �eld [71, 76, 82]. This means that the equations
of a TDi� theory also contain an arbitrary constant associated to initial
conditions.

The goal of this chapter is to study the general properties of scale-
invariant TDi� theories and to establish the conditions under which they
can be phenomenologically viable. In particular, we show that replacing Di�
gravity by TDi� gravity makes it possible to construct theories with spon-
taneously broken scale invariance, and that contain a massive scalar �eld,
without the need of introducing new �elds in the particle sector, as long as
this sector contains at least one scalar �eld, e.g. the SM Higgs. The model
discussed in the precedent chapter (SI plus UG, (2.24)) turns out to be a
particular case of this new class of theories.

We start the chapter with a discussion of TDi� gravity theories and
show that they are equivalent to unimodular scalar-tensor theories of gravity
(section 3.1). The TDi� (rather than Di�) invariance leads to the existence
of an extra parameter � Λ0 � which is �xed as an initial condition. We
introduce an equivalent Di� invariant reformulation of TDi� theories, which
simpli�es their analysis. In this formulation, Λ0 represents a new coupling
constant of a peculiar potential for the scalar �eld.

Next, the attention is turned to scale-invariant TDi� theories (SI TDi�),
including scalar matter (section 3.2). It is shown that, assuming the metric
to be dimensionless, the existence of scalar matter (which may be the Higgs
boson of the SM) is necessary for the construction of a scale-invariant TDi�
theory. After passing to the Einstein-frame, we identify the massless �eld
(Dilaton) and the potentially massive �eld (Higgs boson). Loosely speaking,
the metric determinant plays the role of the Higgs �eld, while the scalar
matter �eld takes the part of the dilaton. In the Einstein-frame, the original
scale invariance, existing in the Jordan-frame, is replaced by a shift symmetry
of the dilaton �eld. As long as Λ0 = 0, this symmetry is unbroken and
the dilaton couples only derivatively to the Higgs boson. Hence, it easily
avoids experimental bounds on the existence of a long-ranged 5th force. For
Λ0 6= 0, the shift symmetry is broken by the presence of a new interaction
term between the dilaton and the Higgs �eld. We want to give Λ0 6= 0 a
cosmological interpretation and therefore neglect it in the discussion of the
particle physics phenomenology.

Like in the previous chapter, we look for classical ground states (solutions
that are constant in the particle physics sector), which may act as symme-
try breaking ground states of the theory. In this more general framework,
the situation is exactly as in the minimal model considered in the previous
chapter. Classical ground states only exist for the choice Λ0 = 0. For Λ0 = 0
and depending on the TDF, there are three distinct types of solutions which
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may act as ground states of the theory. They all correspond to constant
�elds in the particle physics sector and have de Sitter, Minkowski or anti
de Sitter geometry. So, even though the initial theory does not contain any
dimensional parameters, and there is no explicit breaking of scale invariance
for Λ0 = 0, the theory generally contains a cosmological constant, associ-
ated with a de�nite dimensionless coupling. For comparison, in the minimal
model of section 2.1 it was the parameter β, coe�cient of a quartic interac-
tion in the J-frame, which was responsible for the presence of a cosmological
constant.

Most interesting for phenomenology is again the case where the TDF are
chosen such that the cosmological constant is absent (analogous to β = 0).2

We study it in detail. In particular, we discuss the choice of TDF, which
leads to renormalizability in the particle physics sector of the theory. This
results in a number of non-trivial constraints.

We then include fermions and gauge �elds in our considerations (sections
3.3 and 3.4) and outline how the new framework can be applied to the
Standard Model (section 3.5). In Section 3.6 we summarize the conditions to
be put on the TDF, which lead to acceptable low energy theories. Moreover,
we give two simple examples for TDF that satisfy all conditions. In one of
the examples, the theory is exactly equivalent to the theory presented in the
previous chapter.

Section 3.7 brie�y discusses the case Λ0 6= 0 and cosmological applica-
tions. For appropriate choices of the TDF, the cosmological phenomenology
is equivalent or very similar to the one of the model of the previous chapter.
Namely, the dynamical break-down of SI due to the almost �at direction in
the scalar potential gives a mechanism for in�ation, while the explicit break-
down of SI due to Λ0 leads to dynamical dark energy. We �nd that also for
Λ0 6= 0 the dilaton practically decouples and thus evades all experimental
constraints.

3.1 TDi� invariant theories

The family of TDi� invariant actions built out of the metric gµν is very rich
(this is to be contrasted with the uniqueness of the Einstein-Hilbert action in
GR). The reason is that the metric determinant g ≡ det gµν transforms like a
scalar quantity under TDi�. As a consequence, the most general Lagrangian
density for pure gravity invariant under TDi� and containing up to two
derivatives can be written as

LTDiff =
√
−g
(
−1

2
M2f(−g)R− 1

2
M2G(−g)gµν∂µg∂νg −M4v(−g)

)
,

(3.3)

2 Some theoretical arguments in favor of this choice were given in section 2.1.3 (cf. also
[82]).
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where f(−g), G(−g) and v(−g) are arbitrary functions which will be con-
strained by theoretical and phenomenological considerations (for GR: f =
const, v = const, G = 0; for UG: f = (−g)−1/4, v = 0, G = − 3

32(−g)−9/4).
We will refer to them as the �Theory-De�ning Functions� � TDF. The con-
stant M appearing in (3.3) can be an arbitrary mass scale. For de�niteness
we choose it to be the reduced Planck mass M = (8πG)−1/2. Since gµν is a
metric, its determinant has to be non-vanishing. Hence, here and from now
on we adopt the condition −g > 0.

Before analyzing in detail the degrees of freedom described by the above
theory, we are now going to show how any TDi� theory can equivalently be
formulated in a Di� invariant way.

3.1.1 Equivalent Di� invariant theories

As we have seen in the particular case of UG (section 2.2), it proves very
convenient to reformulate TDi� invariant theories as Di� invariant theories.
In this section we will make use of the Stückelberg formalism to achieve this
goal. Let us mention that the idea to reformulate a TDi� theory in a Di�
invariant way has been considered before (e.g. in [65]). The Stückelberg
formalism used here, as compared to other formalisms, makes it very easy to
identify and track the new scalar degree of freedom. We start by considering
the action (see also [65, 111, 112] for related considerations)

Se =
∫

d4x
√
−g

(
− 1

2
M2f(−g/a)R− 1

2
M2G(−g/a)gµν∂µ(−g/a)∂ν(−g/a)

−M4v(−g/a)− Λ0√
−g/a

)
,

(3.4)

where Λ0 is an arbitrary constant and a(x) > 0 is a quantity to be explained
shortly. This action is obtained by adding an arbitrary constant Λ0 to the
Lagrangian (3.3), which doesn't change the theory, and then transforming
the associated action to an arbitrary coordinate frame. The quantity a(x) is
then identi�ed as a(x) = J(x)−2, where J(x) is the Jacobian of the coordi-
nate transformation. Hence, the action (3.4) is classically equivalent to (3.3)
and the equations of motion for gµν still hold. Let us now promote a(x) to a
�eld (commonly called Stückelberg, Goldstone or Compensator �eld) and let
it transform under Di� like the determinant of the metric, i.e. like a scalar
density of weight 2. As a consequence, we have the identity∫

d4y

(
δSe
δa(y)

δξa(y) +
δSe

δgµν(y)
δξgµν(y)

)
= 0, (3.5)

where
δξa = ξµ∂µa+ 2a∂µξµ, δξgµν = ∇µξν +∇νξµ. (3.6)
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Using the equations of motion for the metric, the previous identity is reduced
to ∫

d4y
√
a ξµ∂µ

(√
a
δSe
δa

)
= 0. (3.7)

This identity is valid for arbitrary ξµ and hence

δSe
δa

=
C0√
a
, (3.8)

where C0 is an arbitrary integration constant. The left-hand side of these
equations contains a term proportional to Λ0, which has exactly the same
form as the term on the right-hand side. Hence, the term of the right-hand
side can always be absorbed by a rede�nition of the arbitrary constant Λ0,
resulting in

δSe
δa

= 0 . (3.9)

This is enough to prove that the equations of motion derived from (3.4),
considering gµν and a as independent �elds, are equivalent to those derived
from (3.3). By construction, the new equations of motion have an additional
local (gauge) symmetry. In the gauge a = 1 the solutions of the new equa-
tions are exactly the same as those gotten from (3.3). Solutions derived in a
gauge a 6= 1 also correspond to the solutions of (3.3), however now written
in di�erent coordinates. We will refer to the action (3.4) as the �equivalent
Di� invariant theory�.

Let us now de�ne the �eld

σ ≡ −g/a > 0,

which is a scalar under all di�eomorphisms, and rewrite the Lagrangian as

Le =
√
−g
(
−1

2
M2f(σ)R− 1

2
M2G(σ)gµν∂µσ∂νσ −M4vΛ0(σ)

)
, (3.10)

where

vΛ0(σ) = M4v(σ) +
Λ0√
σ
.

The theory formulated this way reduces to (3.3) after imposing the gauge
condition −g = σ (corresponding to a = 1). For any other gauge conditions
with −g 6= σ (which may be more convenient for other reasons), it still
corresponds to the original TDi� theory but written in new coordinates
related to the original ones by a transformation with Jacobian J 6= 1. Let
us note at this point that, by construction, the �eld σ can only take positive
values.

The appearence of a new parameter Λ0 is a general feature of TDi� the-
ories. For f(−g) = (−g)−1/4 ∗ cst. (like in pure UG) it plays the role of a
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cosmological constant. In all other cases, Λ0 leads to a new speci�c potential
term for the scalar �eld σ. We would like to stress once more that Λ0 is a
parameter characterizing the solution of the equations of motion and is not
a fundamental coupling constant in the action (3.3). Note that the value
of Λ0 is not determined by specifying initial conditions for the propagating
local degrees of freedom. Instead, it should be understood as an additional
initial condition. The one-to-one correspondence between the two formula-
tions (3.10) and (3.3) is given by the fact that the single Lagrangian (3.3)
corresponds to a whole family of Lagrangians (3.10) with di�erent values
of Λ0. It is the appearance of the arbitrary constant Λ0 that distinguishes
TDi� gravity from a standard scalar-tensor gravity. Let us note that the dif-
ference between TDi� gravity and standard scalar-tensor gravity is similar
to the di�erence between UG and GR. This di�erence, unimportant for local
physics (sections 3.2-3.6), can be crucial for cosmology, as will be discussed
in section 3.7.

In the following, when analyzing di�erent aspects of TDi� theories, we
will often make use of the equivalent Di� invariant formulation.

3.1.2 Classical ground states and local degrees of freedom

The Lagrangian (3.10) has the form of a scalar-tensor theory with a non-
minimal coupling between the scalar �eld and the tensorial degrees of free-
dom. In order to uncover the nature of the local degrees of freedom, it is
convenient to write the theory in the Einstein-frame, i.e. to rede�ne the
metric such that the scalar �eld becomes minimally coupled. Whenever
f(σ) 6= 0, we can de�ne the E-frame metric

g̃µν = Ω2gµν ,

g̃µν = Ω−2gµν ,

Ω2 = f(σ) , (3.11)

in terms of which the Lagrangian (3.10) reads

Le =
√
−g̃
(
−1

2
M2R̃− 1

2
K(σ)M2g̃µν∂µσ∂νσ − VΛ0(σ)

)
, (3.12)

where

K(σ) =
G(σ)
f(σ)

+
3
2

(
f ′(σ)
f(σ)

)2

, VΛ0(σ) =
vΛ0(σ)
f(σ)2

. (3.13)

Let us explain the meaning of the hypothesis f(σ) 6= 0. In the theories given
by (3.3), the gravitational coupling is induced by f(−g), respectively f(σ) .
We will be interested in excitations hµν around a background solution ḡµν ,
de�ned through gµν = ḡµν + hµν . Next, we will require the existence of
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background solutions ḡµν for which f(ḡ) 6= 0, yielding a non-zero induced
gravitational coupling. In order to analyze the theory in the vicinity of such
a background, one can always perform a well-de�ned transformation to the
Einstein-frame.

As a �rst step in the analysis, we want to look for the classical ground
states of the theory. The term �classical ground state� was introduced in
section 2.1 and refers to a solution of the classical �eld equations, constant
in the particle physics sector and with maximally symmetric spacetime, i.e.
Minkowski (�at), de Sitter (dS) or Anti de Sitter (AdS) spacetime. As
argued in section 2.1, the existence of such solutions might be crucial for
a successful quantization of the theory. By doing the analysis in the E-
frame, we implicitly make the assumption that all classical ground states
ful�ll the condition

f(σ0) 6= 0 .

Only if this condition holds, the induced gravitational coupling is non-zero.
The classical ground states of (3.12) correspond to the extrema of the po-
tential VΛ0(σ). We �rst consider the particular case where f(σ) is such that
there exists a value σ0, for which f(σ0) + 4σ0f

′(σ0) = 0. (Note that if
f(σ) = σ−1/4 ∗ cst., like in pure UG, this is true for all values of σ.) In
this case, a classical ground state exists, provided that v(σ) satis�es the re-
lation v(σ0) + 2σ0v

′(σ0) = 0. The classical ground state is given by σ = σ0

and R̃ = −4VΛ0M
−2. Depending on the value of Λ0, the corresponding

maximally symmetric spacetime is �at, dS or AdS.
All values of σ0 for which f(σ0) + 4σ0f

′(σ0) 6= 0 correspond to classical
ground states, given by

σ = σ0, R̃ = −4M2 v(σ0) + 2σ0v
′(σ0)

f(σ0)(f(σ0) + 4σ0f ′(σ0))
,

Λ0 = 2M4σ
3/2
0

f(σ0)v′(σ0)− 2f ′(σ0)v(σ0)
f(σ0) + 4σ0f ′(σ0)

. (3.14)

Depending on the TDF, these solutions allow for �at, dS or AdS spacetime.
To summarize, we have found that whenever there exists a value σ0 for

which
f(σ0) 6= 0 (3.15)

and
v(σ0) + 2σ0v

′(σ0) = 0 , (3.16)

the theory possesses a classical ground state which induces a non-zero grav-
itational constant and which corresponds to �at spacetime. If in addition to
this one has f(σ0) + 4σ0f

′(σ0) = 0, the ground state can also be dS or AdS.
If condition (3.15) does not hold, there exists no classical ground state with
induced gravitational constant. If condition (3.16) does not hold, spacetime
in the classical ground state is dS or AdS, except if f(σ) = σ−1/4 ∗ cst. in
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which case there exists no classical ground state with induced gravitational
constant.

Let us now �nd the propagating degrees of freedom. To this end, we
focus on the case where both conditions (3.15) and (3.16) hold, and hence
the theory possesses the solution

g̃µν = ηµν , σ = σ0, Λ0 = −M4v(σ0)
√
σ0 . (3.17)

We introduce the perturbations around this background as

g̃µν = ηµν +
h̃µν
M

, σ = σ0 +
ς

M
, (3.18)

and �nd the quadratic part of the Lagrangian (3.12) to be

LQe =
1
2
L̃QGR −

1
2
K(0)ηµν∂µς∂νς −

1
2
V

(2)
Λ0
M2ς2 . (3.19)

Here, and in the rest of this work, we use the notation

F (n) ≡ dnF (σ)
dσn

∣∣∣
σ=σ0

for the derivatives of functions evaluated at the background �eld value . The
�rst term in (3.19) is the standard quadratic Einstein-Hilbert Lagrangian

L̃QGR = −1
4
∂ρh̃µν∂

ρh̃µν +
1
2
∂ν h̃µν∂

ρh̃µρ −
1
2
∂µh̃∂ν h̃

µν +
1
4
∂µh̃∂

µh̃ , (3.20)

where indices are raised and lowered with the Minkowski metric ηµν and
h̃ ≡ h̃µµ. This term describes two massless tensor degrees of freedom. From
(3.19) one can see that, whenever K(0) ≡ K(σ0) 6= 0, the theory contains a
propagating scalar degree of freedom.3 In that case, the scalar part of the
Lagrangian can be brought to canonical form by de�ning the canonical �eld

ςc =
√∣∣K(0)

∣∣ς . (3.21)

We get

LQe =
1
2
L̃QEH − ες

1
2
∂µςc∂

µςc −
m2
ς

2
ς2
c , (3.22)

where

ες ≡ sign
(
K(0)

)
, m2

ς ≡ ες
V

(2)
Λ0

K(0)
M2 . (3.23)

3 For Einstein's theory of gravity, f(−g) = 1 and G(−g) = v(−g) = 0. Hence, K(0) =

V
(2)
Λ0

= 0 and the theory only contains the two massless tensor degrees of freedom.
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The perturbations around the background (3.17) are well-behaved, pro-
vided that:

• The scalar �eld ςc has a positive de�nite kinetic term (absence of
ghosts): K(0) > 0.

• The �eld ςc has positive or zero mass (absence of tachyons): V
(2)

Λ0
≥ 0.

On top of the terms quadratic in the perturbations, there is obviously a series
of interaction terms. We will get interested in those terms in the upcoming
sections, where we will consider di�erent types of �elds coupled to TDi�
gravity.

3.2 Scale-invariant TDi� theories

In this section, we focus on scale-invariant TDi� theories including scalar
matter �elds only. Other SM �elds will be introduced in the subsequent
sections.

Clearly, the Lagrangian (3.3) cannot be used to construct a scale-invariant
theory � putting the mass scale M to zero makes it vanish.4 A minimal way
to overcome this di�culty is to introduce a real scalar �eld φ coupled to
TDi� gravity. Eventually, φ might be replaced by the SM Higgs �eld. The
generalization of Lagrangian (3.3) to this case is given by

L√
−g

= −1
2
φ2f(−g)R− 1

2
φ2Ggg(−g)(∂g)2 − 1

2
Gφφ(−g)(∂φ)2

+ Ggφ(−g)φ∂g · ∂φ− φ4v(−g) .
(3.24)

Here, and in many of the upcoming expressions, in order to shorten notations,
we no longer write Lorentz indices explicitly. The implicit contractions of
Lorentz indices are done with the metric gµν , when the Lagrangian is written
in the J-frame, and with g̃µν , when it is written in the E-frame. The action
(3.24) is invariant, by construction, under scale transformations of the form

φ(x) 7→ λφ(λx), gµν(x) 7→ gµν(λx) . (3.25)

Using the Stückelberg formalism illustrated in section 3.1.1, we can di-
rectly write down the equivalent Di� invariant theory of (3.24) as

Le√
−g

= −1
2
φ2f(σ)R− 1

2
φ2Ggg(σ)(∂σ)2 − 1

2
Gφφ(σ)(∂φ)2

− Ggφ(σ)φ ∂σ · ∂φ− φ4v(σ)− Λ0√
σ
.

(3.26)

4 We make the assumption that the metric is dimensionless, i.e. has zero scaling-
dimension. (See also discussion in [84].)
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A non-zero Λ0 breaks the invariance of Le under (3.25). This type of sym-
metry breaking is a consequence of replacing Di� gravity by TDi� gravity.
The situation is completely analog to the case of scale-invariant models with
UG (instead of GR) considered in chapter 2.

As long as φ2f(σ) > 0, the Lagrangian (3.26) can be transformed to the
E-frame with the help of the conformal transformation

g̃µν = Ω2gµν , g̃µν = Ω−2gµν , Ω2 =
φ2f(σ)
M2

. (3.27)

It takes the form

Le√
−g̃

= −1
2
M2R̃− 1

2
M2Kσσ(σ)(∂σ)2 − 1

2
M2Kφφ(σ)(∂ ln(φ/M))2

−M2Kσφ(σ) ∂σ · ∂ ln(φ/M)−M4V (σ)− M4Λ0

φ4f(σ)2
√
σ
,

(3.28)

where

Kσσ(σ) =
Ggg(σ)
f(σ)

+
3
2

(
f ′(σ)
f(σ)

)2

, Kφφ(σ) =
Gφφ(σ)
f(σ)

+ 6 ,

Kσφ(σ) =
Ggφ(σ)
f(σ)

+ 3
f ′(σ)
f(σ)

, V (σ) =
v(σ)
f(σ)2

.

(3.29)

The kinetic term for the scalar �elds can be diagonalized by rede�ning the
�elds as5

σ̃ =
∫ σ

σ0

dσ′

√∣∣∣∣Kσσ(σ′)Kφφ(σ′)−Kσφ(σ′)2

Kφφ(σ′)

∣∣∣∣ ,
φ̃ = M

(
ln

φ

M
+
∫ σ

σ0

dσ′
Kσφ(σ′)
Kφφ(σ′)

)
. (3.30)

Note that we chose the integration constant such that σ̃(σ0) = 0 and kept
σ0 arbitrary for the moment. After this �eld rede�nition, which is always
solvable in perturbation theory, the Lagrangian simpli�es to

Le√
−g̃

= −1
2
M2R̃− 1

2
εσM

2(∂σ̃)2 − 1
2
K̃φφ(σ̃)(∂φ̃)2

−M4Ṽ (σ̃)− Λ0 K̃Λ0(σ̃) exp

(
−4φ̃
M

)
,

(3.31)

5 In view of the conditions (3.42), we assume that both Kφφ(σ) and
Kσσ(σ)Kφφ(σ)−Kσφ(σ)2

Kφφ(σ)
are non-zero.



3.2. Scale-invariant TDi� theories 73

where εσ = sign
(
Kσσ(σ)Kφφ(σ)−Kσφ(σ)2

Kφφ(σ)

)
, and the di�erent functions are ob-

tained by expressing σ as a function of σ̃,

Ṽ (σ̃) = V (σ), K̃φφ(σ̃) = Kφφ(σ), K̃Λ0(σ̃) =
exp

(
4
∫ σ
σ0
dσ′
Kσφ(σ′)
Kφφ(σ′)

)
f(σ)2

√
σ

.

(3.32)

The Lagrangian (3.31) is the main result of this section. It is invariant
under global shifts of the dilaton �eld φ̃ 7→ φ̃+λ (except for the term propor-
tional to Λ0) which is the Einstein-frame manifestation of scale invariance in
the Jordan-frame. For Λ0 6= 0, scale invariance is broken by a new potential
term, which is of the �run-away� type in the dilaton direction. Note that
the dependence of the potential on the dilaton φ̃ is uniquely determined by
the way scale invariance is broken in TDi� theories. If Λ0 = 0, the shift
symmetry is exact. Hence, in this case, the dilaton is exactly massless and
interacts with the matter �eld only through derivatives.

3.2.1 Classical ground states and local degrees of freedom

In this subsection, we repeat the analysis of Section 3.1.2, but now for the
SI TDi� theories given by (3.24). In order to determine the classical ground
states, it is most convenient to consider the Lagrangian in the form (3.28).
Here, similar to the case of pure TDi� gravity (section 3.1.2), by looking for
classical ground states in the E-frame, we implicitly impose the condition
that they all satisfy

φ2
0f(σ0) 6= 0 . (3.33)

In scale-invariant TDi� theories, this is the condition for a non-zero induced
gravitational coupling. The non-zero value of φ0 will at the same time induce
all other scales of the theory. This fact is easier to see in the Jordan-frame.
There, expanding around a constant background, one �nds that all dimen-
sional couplings are proportional to φ0. In the Einstein-frame, the same fact
is implicit, since the transformation to the Einstein-frame is only allowed
when φ0 6= 0.

Constant solutions for the scalar �elds have to be extrema of the poten-
tial. One can see immediately that such solutions necessarily correspond to
Λ0 = 0. This is the only case in which the derivative of the potential with
respect to φ vanishes. The second condition for the existence of a constant
solution is that there exists a value σ0, for which

V ′(σ0) = 0 ,

or, in terms of the original TDF,

f(σ0)v′(σ0)− 2v(σ0)f ′(σ0) = 0 . (3.34)
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Hence, whenever the conditions (3.33) and (3.34) hold, the theory possesses
an in�nite family of classical ground states satisfying

σ = σ0, φ = φ0, Λ0 = 0, R̃ = −4M2 v(σ0)
f(σ0)2

, (3.35)

where φ0 is an arbitrary non-zero constant, inducing all scales of the theory
and therefore breaking scale invariance spontaneously. The degeneracy of the
classical ground states is a consequence of scale invariance. For v(σ0) 6= 0,
the classical ground states correspond to dS or AdS spacetime, while for
v(σ0) = 0, they correspond to �at spacetime. If v(σ0) = 0, the condition
(3.34) reduces to v′(σ0) = 0. In the present case, requiring the existence of
a constant solution with �at spacetime imposes two conditions (instead of
one for pure TDi� gravity) on the function v(σ), namely, that there exists a
value σ0, for which

v(σ0) = v′(σ0) = 0 . (3.36)

For the rest of the discussion in this chapter, except for section 3.7, we will
impose the three conditions (3.33) and (3.36) on the TDF. These conditions
guarantee that the theory possesses an in�nite family of symmetry-breaking
classical ground states, which induce all scales through φ0 6= 0, and which
correspond to �at spacetime. Let us stress that for the existence of non-�at
symmetry-breaking ground states, the two conditions (3.33) and (3.34) would
be enough. The additional condition v(σ0) = 0 corresponds to requiring
the absence of a cosmological constant. Imposing this condition is exactly
analog to requiring β = 0 in the minimal scale-invariant model of section
2.1. Some arguments in favor of the case v(σ0) = 0 (β = 0) compared to
the cases where v(σ0) 6= 0 (β 6= 0) were given in section 2.1.3 (see also
[82]). Still, one should keep in mind that, at the moment, these arguments
are rather speculative and that v(σ0) 6= 0 might be perfectly acceptable
from a theoretical point of view. In either case, for the model to display
a viable cosmological phenomenology, the term proportional to v(σ0) has
to be extremely small compared to the particle physics scales. Therefore,
allowing for v(σ0) 6= 0 would not change the discussion of particle physics
phenomenology in the upcoming sections.

For (3.33) and (3.36) ful�lled, the theory taken in the form (3.28) pos-
sesses the family of constant solutions

g̃µν = ηµν , σ̃ = 0, φ̃ = φ̃0, Λ0 = 0 . (3.37)

Let us look at the nature of perturbations around such a symmetry-breaking
background.
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We de�ne the perturbations as

g̃µν = ηµν +
h̃µν
M

,

σ̃ =
ς

M
,

φ̃ = φ̃0 +
ϕ√∣∣∣K̃(0)
φφ

∣∣∣ . (3.38)

In the rest of section 3.2, Lorentz indices are raised, lowered and contracted
with the Minkowski metric ηµν . The Lagrangian can be split into a term
quadratic in the perturbations and an interaction term as

Le = LQe + L(int)
e . (3.39)

For the quadratic term we get

LQe = L̃QGR − ες
1
2

(∂ς)2 − εϕ
1
2

(∂ϕ)2 − 1
2
m2
ς ς

2 , (3.40)

where we have de�ned

ες ≡ sign

K(0)
σσK(0)

φφ −
(
K(0)
σφ

)2

K(0)
φφ

 , εϕ ≡ sign
(
K(0)
φφ

)
,

m2
ς ≡ ες Ṽ (2)M2 = ες

K(0)
σσK(0)

φφ −
(
K(0)
σφ

)2

K(0)
φφ


−1

V (2)M2 . (3.41)

In this case, on top of the two tensorial massless degrees of freedom, the
theory contains two scalar degrees of freedom, among which at least one is
massless. We have the following criteria for the perturbations to be well-
behaved:

• For positive de�nite kinetic terms (absence of ghosts):

K(0)
σσK

(0)
φφ −

(
K(0)
σφ

)2
> 0 and K(0)

φφ > 0 . (3.42)

• For positive or zero mass of ςc (absence of tachyons):

V (2) ≥ 0 . (3.43)

These conditions could equivalently be formulated in a variable-independent
way. The �rst two conditions correspond to a positive de�nite �eld space
metric to lowest order in the expansion around the constant background.
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Requiring that the matrix of second derivatives of the potential evaluated
at the constant background solution should be positive semide�nite is the
analog of the third condition.

In the following section, we will see that the massless �eld ϕ is only
derivatively coupled to σ and, moreover, that these couplings only appear
in higher dimensional operators. Hence, the e�ects of ϕ at low energies are
naturally suppressed.

3.2.2 Interactions and separation of scales

We now want to include the interactions contained in the Lagrangian (3.31).
In general, it contains an in�nite series of interaction terms arising from
the expansion of the functions K̃φφ(σ̃) and Ṽ (σ̃) and of the metric tensor
around the constant background. The interaction terms obtained from the
expansion of the Ricci scalar in (3.31) are suppressed by the Planck mass.
We neglect them, as we are only interested in sub-Planckian processes. Let
us �rst consider the terms of dimension up to four,

Lint≤4
e = − 1

3!
κςς

3− λς
4!
ς4− 1

4
m2
ς

M
ς2h̃− 1

16
m2
ς

M2
ς2
(
h̃2 − 2h̃µν h̃µν

)
− 1

12
κς
M
ς3h̃ ,

(3.44)
where

κς ≡ Ṽ (3)M, λς ≡ Ṽ (4) . (3.45)

These are the relevant operators for a scalar �eld minimally coupled to Ein-
stein gravity. Having in mind the identi�cation of the �eld ς with a low-
energy degree of freedom (such as the Higgs boson of the SM), the TDF
must obey several constraints. In particular, one has to require that the
scales mς and κς are much smaller than the gravitational scale M , i.e.

∣∣∣mς

M

∣∣∣ =
√∣∣∣Ṽ (2)

∣∣∣� 1,
∣∣∣κς
M

∣∣∣ =
∣∣∣Ṽ (3)

∣∣∣� 1 . (3.46)

The conditions (3.46) are similar to the ��ne-tuning� conditions of the SM,
�xing the hierarchy between the Fermi scale and the Planck scale.

In order to have a weakly coupled theory, we also need to have κς
mς
, λς . 1,

which means
|Ṽ (3)|q
|Ṽ (2)|

, Ṽ (4) . 1 . (3.47)

In general, for a viable e�ective �eld theory at energies smaller than the
Planck scale, the corrections to Lagrangian (3.44) originating from power
expansions of the TDF must be suppressed (see however section 3.2.3). The
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higher-dimensional operators can be written schematically as

Lint>4
e =

∞∑
nh>0

1
Mnh

(
LQe + Lint≤4

e

)
h̃nh

+
∞∑

nh≥0
nς>0

(
1

Mφφ(nh, nς)

)nh+nς

(∂ϕ)2h̃nhςnς

+
∞∑

nh≥0
nς>4

(
1

MV (nh, nς)

)nh+nς−4

h̃nhςnς ,

(3.48)

where we neglect numerical factors of order one, neglect tensor indices and
de�ne

Mφφ(nh, nς) ∼M

∣∣∣∣∣∣K̃
(nς)
φφ

K̃(0)
φφ

∣∣∣∣∣∣
−1

nh+nς

, (3.49)

MV (nh, nς) ∼M
∣∣∣Ṽ (nς)

∣∣∣ −1
nh+nς−4

. (3.50)

The �rst line of (3.48) represents the standard higher-dimensional operators
for Einstein gravity and a minimally coupled scalar �eld. If the conditions
(3.46) hold, all these operators are suppressed at energies below the scale
M . The remaining terms are new higher-dimensional operators, that appear
if the kinetic term is non-canonical and/or if the expansion of the potential
does not stop at the fourth order. The suppression scales of these operators
are given by Mφφ(nh, nς) and MV (nh, nς), which are at least of the order of
the Planck scale M , provided that∣∣∣∣∣∣K̃

(nς)
φφ

K̃(0)
φφ

∣∣∣∣∣∣
1

nh+nς

. 1 and
∣∣∣Ṽ (nς)

∣∣∣ 1
nh+nς−4

. 1 . (3.51)

Let us summarize the �ndings of this section up to now. We have con-
sidered a scale-invariant theory of a scalar �eld coupled to TDi� gravity
described by the Lagrangian (3.24). If there exists a value of σ0 for which
f(σ0) 6= 0 (3.33) and v(σ0) = v′(σ0) = 0 (3.36), there exists a family of so-
lutions of the equations of motion corresponding to constant scalar �elds
and �at spacetime. Those solutions for which φ0 6= 0 spontaneously break
the dilatational symmetry of the theory. Besides, scale invariance can be
independently broken by an integration constant Λ0, which introduces a run-
away potential for the dilaton �eld. The quadratic analysis of perturbations
around the constant solution with Λ0 = 0 has shown that, if the conditions

L(0)
σσL(0)

φφ −
(
L(0)
σφ

)2
> 0 and L̃(0)

φφ > 0 are satis�ed, the theory describes two
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massless tensor degrees of freedom, a massless scalar and a scalar of mass
m2
ς = Ṽ (2). The scale M for gravity and the scales mς and κς associated to

the scalar �eld are induced by the non-zero value of φ0. If the theory-de�ning
functions are such that the conditions (3.46), (3.47) and (3.51) are ful�lled,
the scalar and the tensor sectors decouple, and all non-renormalizable inter-
actions are suppressed below the scaleM . In this case, at energies well-below
M , the scalar �eld phenomenology issued by (3.24) is indistinguishable from
the phenomenology of the corresponding renormalizable scalar-�eld theory.

3.2.3 Dependence on the choice of variables

Under very general conditions, the Lagrangian (3.24) can be brought to the
form (3.31), for all choices of �eld variables. However, the explicit expressions
of the functions K̃φφ(σ̃), Ṽ (σ̃), etc. depend on the chosen variables. For
example, for some functions K̃φφ(σ̃), one can make a change of variables
(σ̃, φ̃) 7→ (σ̃′, φ̃′), which brings the kinetic term to the canonical form. Note
that under such variable changes, the function K̃φφ(σ̃) does not transform
as a scalar, but rather like a metric component. Also the functions Ṽ (σ̃) and
L̃Λ0(σ̃) appearing in the potential take di�erent forms for di�erent choices of
variables. For instance, there might exist a set of variables in terms of which
the potential is polynomial, whereas expressed in another set of variables it
contains exponential functions.

In the previous sections, we expanded the Lagrangian around the con-
stant background (3.37). The idea is that perturbations around this back-
ground can be quantized and interpreted as particles. Their tree-level masses
and coupling constants are given by the coe�cients of the Taylor expansion

around the point σ̃ = 0, i.e. L̃(n)
φφ and Ṽ (n). Since the functions depend on

the variable choice, also these coe�cients do. This means that for di�er-
ent sets of variables, tree-masses and coupling constants will take di�erent
values. The equivalence theorems of [91] show that the so constructed quan-
tum theories are equivalent for all choices of variables, as long as the variable
transformations are well-de�ned perturbatively. A consequence of these the-
orems is that whenever one takes into account the whole (possibly in�nite)
series of terms in the Lagrangian to compute S-matrix elements, the result
will not depend on the choice of variables. The situations is di�erent, how-
ever, if one uses e�ective �eld theory arguments to truncate the Lagrangian,
because, as already mentioned, the individual terms of the series expansions
do depend on the choice of variables. This means that conditions like (3.46),
(3.47) and (3.51) depend on the choice of variables. Therefore, applied to
arbitrary variables, such conditions should be considered as su�cient but not
necessary. It can happen, for instance, that for a certain choice of variables
some of the suppression conditions (3.51) do not hold, but that the corre-
sponding terms are nevertheless irrelevant. Technically, this would be due
to cancellations between terms of the di�erent series contained in (3.48). In
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order to have a variable-independent statement, the ensemble of conditions
(3.46), (3.47) and (3.51) should be read in the following way:
�If there exists a set of variables in terms of which the conditions (3.46),
(3.47) and (3.51) hold, then, at energies well below M , the scalar-�eld theory

contained in (3.24) is indistinguishable from the corresponding renormaliz-

able theory.�

Read this way, the conditions are necessary and su�cient.

3.2.4 Conditions for exact renormalizability

One may wonder, whether there exists a set of �eld variables in terms of
which the kinetic part of the Lagrangian (3.31) takes exactly the canoni-
cal form. The condition for such variables to exist is the vanishing of the
Riemann tensor computed from the �eld space metric [113]{

K̃ij(σ̃, φ̃)
}

=
(
εσM

2 0
0 K̃φφ(σ̃)

)
. (3.52)

This condition corresponds to6

K̃′φφ(σ̃)2 − 2K̃φφ(σ̃)K̃′′φφ(σ̃) = 0 . (3.53)

Functions K̃φφ(σ̃) which satisfy this equation have the form

K̃φφ(σ̃) = c1 (σ̃ + c2)2 , (3.54)

where c1 and c2 are arbitrary constants. One can also formulate the con-
ditions which guarantee that, for the same variables that give a canonical
kinetic term, the scalar �eld potential (for Λ0 = 0) becomes a polynomial of
a maximum order p. They read

Ṽ (σ̃);i1;i2;i3;...;ip+1 = 0 , (3.55)

where the semicolon stands for the covariant derivative constructed from
the metric (3.52). If these conditions hold for p = 4 and at the same time
condition (3.53) is ful�lled, the scalar part of the Lagrangian describes a tree-
unitary and renormalizable quantum �eld theory [113]. For all conditions to
hold, the function Ṽ (σ̃) must be of the form

Ṽ (σ̃) = c3 σ̃ (σ̃ + 2c2)
(
σ̃2 + 2c2 σ̃ + c4

)
+ c5 , (3.56)

where c3, c4 and c5 are arbitrary constants. If we also impose the conditions
(3.36), which correspond to Ṽ (0) = Ṽ ′(0) = 0, we can further restrict the
form of the function Ṽ (σ̃) to

Ṽ (σ̃) = c3σ̃
2 (σ̃ + 2c2)2 . (3.57)

6 In terms of the functions without tilde, this same condition reads

K′φφ(σ)
`
Kφφ(σ)K′σσ(σ) +K′φφ(σ)Kσσ(σ)− 2Kσφ(σ)K′σφ(σ)

´
+ 2

`
Kσφ(σ)2 −Kφφ(σ)Kσσ(σ)

´
K′′φφ(σ) = 0 .
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3.3 Including gauge bosons

Having discussed pure scalar theories, we now add extra ingredients, namely,
gauge �elds and fermions.

In the Higgs mechanism, gauge �elds get their masses from a non-zero
expectation value of a scalar �eld. We are going to show how a similar
phenomenon can occur due to spontaneous breaking of scale invariance in a
scale-invariant TDi� theory, where the massive �eld will play a role similar
to the role of the Higgs �eld in the SM. For simplicity, we will consider the
case of an Abelian gauge group.

If the scalar �eld φ in (3.24) is promoted to a complex �eld, the action
is trivially invariant under a global U(1) symmetry. This symmetry can
be turned into a gauge symmetry by introducing an Abelian gauge �eld
(remember that gauge �elds have scale dimension 1). The generalization of
(3.24) to this case reads

L√
−g

=− 1
2
|φ|2f(−g)R− 1

2
|φ|2Ggg(−g)(∂g)2 − 1

2
Gφφ(−g)Dφ · (Dφ)∗

+
1
2
G∗gφ(−g)φ∗ ∂g ·Dφ+

1
2
Ggφ(−g)φ ∂g · (Dφ)∗ − 1

2
Gna(−g)(∂|φ|)2

− 1
4
GAA(−g)F 2 − 1

4
Gε(−g)F ∧ F − v(−g)|φφ∗|2 ,

(3.58)

where the covariant derivative is de�ned as Dµ ≡ ∂µ− ieAµ and the function
Ggφ(−g) is complex-valued. To be most general, we have included the non-
analytical term ∂|φ|. The wedge product is de�ned as F ∧ F = εµνρσFµνFρσ,
where εµνρσ ≡

√
−g εµνρσ, with εµνρσ being the standard Levi-Civita tensor.

For simplicity, let us directly choose the unitary gauge φ∗ = φ, in which the
Lagrangian reads

L√
−g

=− 1
2
φ2f(−g)R− 1

2
φ2Ggg(−g)(∂g)2 − 1

2
(Gφφ(−g) + Gna(−g)) (∂φ)2

+ Re [Ggφ(−g)]φ ∂g · ∂φ+ e Im [Ggφ(−g)]φ2 ∂g ·A

− 1
2
e2 Gφφ(−g)A2φ2 − 1

4
GAA(−g)F 2 − 1

4
Gε(−g)F ∧ F − v(−g)φ4 ,

(3.59)

where Re and Im stand for the real and imaginary parts, respectively. Fol-
lowing the formalism developed in Sec. 3.1.1, one can directly write down
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the equivalent Di� invariant theory in the E-frame as

Le√
−g̃

=− 1
2
M2R̃− 1

2
M2Kσσ(σ)(∂σ)2 − 1

2
M2Kφφ(σ)(∂ ln(φ/M))2

−M2Kσφ(σ) ∂σ · ∂ ln(φ/M)− eM2KσA(σ) ∂σ ·A− 1
2
e2M2Kint(σ)A2

− 1
4
KAA(σ)F 2 − 1

4
Kε(σ)F ∧ F −M4V (σ)− M4Λ0

φ4f(σ)2
√
σ
,

(3.60)

where

Kσσ(σ) =
Ggg(σ)
f(σ)

+
3
2

(
f ′(σ)
f(σ)

)2

, Kφφ(σ) =
Gφφ(σ) + Gna(σ)

f(σ)
+ 6 ,

Kσφ(σ) =
Re [Ggφ(σ)]

f(σ)
+ 3

f ′(σ)
f(σ)

, KσA(σ) =
Im [Ggφ(σ)]

f(σ)
,

Kint(σ) =
Gφφ(σ)
f(σ)

, KAA(σ) = GAA(σ) ,

Kε(σ) = Gε(σ) , V (σ) =
v(σ)
f(σ)2

.

At this point, as in the case without gauge �elds, we can make a �eld redef-
inition in order to eliminate the derivative couplings between the di�erent
�elds. This will simplify the interpretation of the theory as a description of
interacting particles. The extension of (3.30) is7

σ̃ =
∫ σ

σ0

dσ′

√√√√∣∣∣∣∣KσσKφφ −K2
σφ

Kφφ
−
K2
σA

Kint

∣∣∣∣∣ , φ̃ = M

(
ln

φ

M
+
∫ σ

σ0

dσ′
Kσφ
Kφφ

)
,

Ãµ = Aµ +
1
e

KσA
Kint

∂µσ , (3.61)

in terms of which the above Lagrangian reads

Le√
−g̃

=− 1
2
M2R̃− 1

2
εσM

2(∂σ̃)2 − 1
2
K̃φφ(σ̃)(∂φ̃)2

− 1
2
e2K̃int(σ̃)M2Ã2 − 1

4
K̃AA(σ̃)F̃ 2 − 1

4
K̃ε(σ̃)F̃ ∧ F̃

− Ṽ (σ̃)M4 − Λ0 K̃Λ0 exp

(
−4φ̃
M

)
,

(3.62)

7 In view of the conditions (3.68), we assume that Kφφ, Kint and
KσσKφφ−K2

σφ

Kφφ
− K

2
σA
Kint

are non-vanishing.
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where εσ = sign

(
KσσKφφ−K2

σφ

Kφφ − K
2
σA
Kint

)
and K̃Λ0(σ̃) is de�ned in (3.32). Like

in the previous case, the role of the �eld providing the mass scales is played
by σ̃. Note that φ̃ is completely decoupled from the vector �eld Ãµ.

3.3.1 Local degrees of freedom

Like in the case without gauge �elds, the existence of a symmetry-breaking
classical ground state with �at spacetime

g̃µν = ηµν , σ̃ = 0 , φ̃ = φ̃0 , Ãµ = 0 , Λ0 = 0 , (3.63)

is assured by the conditions

f(σ0) 6= 0 and v(σ0) = v′(σ0) = 0 . (3.64)

We again want to examine the nature of the perturbations around this type
of solution, which we de�ne as

g̃µν = ηµν +
h̃µν
M

, σ̃ =
ς

M
,

φ̃ = φ̃0 +
ϕ√∣∣∣K̃(0)
φφ

∣∣∣ , Ãµ =
Ãcµ√∣∣∣K̃(0)
AA

∣∣∣ .
(3.65)

In the rest of section 3.3, Lorentz indices are raised, lowered and contracted
with the Minkowski metric ηµν . To quadratic order, the Lagrangian (3.62)
reduces to

LQe =L̃QGR − ες
1
2

(∂ς)2 − εϕ
1
2

(∂ϕ)2 − 1
2
m2
ς ς

2 − εA
1
4
F̃ 2 − 1

2
m2
AÃ

2 , (3.66)

where

ες ≡ sign

K(0)
σσK(0)

φφ −
(
K(0)
σφ

)2

K(0)
φφ

−

(
K(0)
σA

)2

K(0)
int

 , εϕ ≡ sign
(
K(0)
φφ

)
,

εA ≡ sign
(
K(0)
AA

)
,

m2
ς ≡ ες Ṽ (2)M2 = ες

K(0)
σσK(0)

φφ −
(
K(0)
σφ

)2

K(0)
φφ

−

(
K(0)
σA

)2

K(0)
int


−1

V (2)M2 ,

m2
A ≡ εAe2 K

(0)
int

K(0)
AA

M2 . (3.67)

At the level of the quadratic Lagrangian, the following conditions must be
satis�ed:
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• For positive de�nite kinetic terms (absence of ghosts):

ες , εϕ, εA = 1 . (3.68)

• For positive or zero masses (absence of tachyons):

m2
ς , m

2
A ≥ 0 . (3.69)

3.3.2 Interactions and separation of scales

The terms of dimension up to four are

Lint≤4
e =− 1

3!
κςς

3 − λς
4!
ς4 − 1

2
κAη

µνÃcµÃ
c
νς −

1
4
λAη

µνÃcµÃ
c
νς

2

− 1
4
m2
ς

M
ς2h̃− 1

16
m2
ς

M2
ς2
(
h̃2 − 2h̃µν h̃µν

)
− 1

12
κς
M
ς3h̃

− 1
4
m2
A

M
ÃcµÃ

c
ν

(
ηµν h̃− 2h̃µν

)
− 1

4
κA
M
ςÃcµÃ

c
ν

(
ηµν h̃− 2h̃µν

)
− 1

16
m2
A

M2
ÃcµÃ

c
ν

(
ηµν h̃2 − 4h̃µν h̃− 2ηµν h̃ρσh̃ρσ + 8h̃µρ h̃

ρν
)
,

(3.70)

where we have de�ned the parameters

κς ≡ Ṽ (3)M , λς ≡ Ṽ (4) , κA ≡ e2 K̃
(1)
int

K̃(0)
AA

M , λA ≡ e2 K̃
(2)
int

K̃(0)
AA

. (3.71)

If the scales mς , κς , mA and κA, associated with the scalar and vector �eld
sector are much smaller than the scale M , the relevant interactions between
these �elds and the tensor sector are suppressed, as usual in �eld theories
minimally coupled to gravity. This happens, if the following conditions are
met: ∣∣mς

M

∣∣ =
√∣∣∣Ṽ (2)

∣∣∣� 1 ,
∣∣κς
M

∣∣ =
∣∣∣Ṽ (3)

∣∣∣� 1 ,∣∣mA
M

∣∣ =
√∣∣∣ẽ2K(0)

int

∣∣∣� 1 ,
∣∣κA
M

∣∣ =
∣∣∣ẽ2K̃(1)

int

∣∣∣� 1 ,
(3.72)

with the de�nition ẽ2 ≡ e2

K(0)
AA

. In addition, we have the following conditions

that prevent the theory from being strongly coupled:{
κς

mmin
,
κA
mmin

, λς , λA,

}
. 1 , (3.73)

where mmin ≡ min (mς ,mA).
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The higher-dimensional terms can be written schematically as

Lint>4
e =

∞∑
nh>0

1
Mnh

(
LQe + Lint≤4

e

)
h̃nh

+
∞∑

nh≥0
nς>0

(
1

Mφφ(nh, nς)

)nh+nς

(∂ϕ)2h̃nhςnς

+
∞∑

nh≥0
nς>4

(
1

MV (nh, nς)

)nh+nς−4

h̃nhςnς

+
∞∑

nh≥0
nς>2

(
1

Mint(nh, hς)

)nh+nς−2

Ãc
2
h̃nhςnς

+

 ∞∑
nh≥0
nς>0

(
1

MAA(nh, nς)

)nh+nς

+
∞∑

nh≥0
nς>0

(
1

Mε(nh, nς)

)nh+nς

 ∂2Ãc
2
h̃nhςnς ,

(3.74)

where, as before, we neglect numerical factors of order one, neglect tensor
indices and de�ne the suppression scales

Mφφ(nh, nς) ∼M

∣∣∣∣∣∣K̃
(nς)
φφ

K̃(0)
φφ

∣∣∣∣∣∣
−1

nh+nς

, MV (nh, nς) ∼M
∣∣∣Ṽ (nς)

∣∣∣ −1
nh+nς−4

,

Mint(nh, nς) ∼M
∣∣∣ẽ2 K̃(nς)

int

∣∣∣ −1
nh+nς , MAA(nh, nς) ∼M

∣∣∣∣∣K̃
(nς)
AA

K̃(0)
AA

∣∣∣∣∣
−1

nh+nς

,

Mε(nh, nς) ∼M

∣∣∣∣∣K̃(nς)
ε

K̃(0)
AA

∣∣∣∣∣
−1

nh+nς

.

(3.75)
The �rst term in (3.74) represents the standard higher-dimensional opera-
tors of a theory minimally coupled to gravity, which are suppressed at ener-
gies below M , as soon as the conditions (3.72) hold. The additional opera-
tors come with the suppression scalesMφφ(nh, nς),MV (nh, nς),Mint(nh, nς),
MAA(nh, nς) and Mε(nh, nς). These are comparable to or bigger than the
scale M , whenever

∣∣∣∣∣∣K̃
(nς)
φφ

K̃(0)
φφ

∣∣∣∣∣∣
1

nh+nς

. 1 ,
∣∣∣Ṽ (nς)

∣∣∣ 1
nh+nς−4

. 1 ,
∣∣∣ẽ2K̃(nς)

int

∣∣∣ 1
nh+nς . 1 ,

∣∣∣∣∣K̃
(nς)
AA

K̃(0)
AA

∣∣∣∣∣
1

nh+nς

. 1 ,

∣∣∣∣∣K̃(nς)
ε

K̃(0)
AA

∣∣∣∣∣
1

nh+nς

. 1 ,
(3.76)
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for all values nς and nh can take in the sums in (3.74). If the conditions
(3.68), (3.69), (3.72), (3.73) and (3.76) are met, the e�ective Lagrangian
describing the scalar and vector sectors at energies far below M is

Le�e =− 1
2

(∂ς)2 − 1
2

(∂ϕ)2 − 1
2
m2
ς ς

2 − 1
3!
κςς

3 − λς
4!
ς4

− 1
4

(F̃ c)2 − 1
2
m2
A(Ãc)2 − 1

2
κA(Ãc)2ς − 1

4
λA(Ãc)2ς2 .

(3.77)

We would like this Lagrangian to give rise to a consistent quantum �eld
theory at energies small compared to M . It has been shown [113] that the
only tree-unitary theories containing scalar �elds and massive vector particles
are those that correspond to a spontaneously broken gauge theory.8 Thus,
for our model to be tree-unitary at energies below M , the above e�ective
Lagrangian should correspond to the Abelian Higgs model in the unitary
gauge. This means that the six couplings mς , κς , λς , mA, κA and λA should
satisfy the three relations

λς
λA

=
κς
κA

,
λς
λA

=
3
2
m2
ς

m2
A

, m2
ς =

1
3
κ2
ς

λς
. (3.78)

In the present model, these relations can be translated to the following con-
ditions on the TDF:

K̃(0)
int

K̃(1)
int

' 1
2
K̃(1)
int

K̃(2)
int

,
Ṽ (2)

Ṽ (3)
' 2

3
K̃(0)
int

K̃(1)
int

,
Ṽ (2)

Ṽ (3)
' 1

3
Ṽ (3)

Ṽ (4)
, (3.79)

where by the approximate equalities we mean that the relations should hold
up to suppressed terms, i.e. for two quantities a and b one has a ' b,
whenever a = b

(
1 +O

(mς
M , κςM ,

mA
M , κAM

))
.

We can now draw the following conclusion. If there exists a set of vari-
ables in terms of which the conditions (3.64), (3.68), (3.69), (3.72), (3.73),
(3.76) and (3.79) hold, then, at energies well below M , the theory given
by (3.58) is indistinguishable from the renormalizable Abelian Higgs model.
Some of the conditions can be satis�ed very naturally, for instance by poly-
nomial TDF. The conditions related to the smallness of particle masses with
respect to the Planck scale M , however, require important �ne-tunings (see
Sec. 3.6). Hence, SI TDi� theories do not provide an explanation for the
the big di�erence between M and the scales in the particle physics sector.
However, as we will see in chapter 4, if scale invariance can be maintained at
the quantum level, there is no problem of stability of the Higgs mass against
radiative corrections. Therefore, in the proposed theories, the smallness of
the particle physics scales is not a naturalness problem from the e�ective
�eld theory point of view (cf. section 2.1.2).

8 An exception is given by theories in which the massive vector �elds only interact with
conserved currents [113] .
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3.4 Coupling to fermionic matter

Let us �nally study the inclusion of fermions into SI TDi� theories. For the
sake of illustration, we only consider Dirac spinors. Though, the conclusions
are generic, for they only depend on the dimensionality of the �elds. (In this
context see [77, 114] for the �rst order formalism of unimodular gravity.)
The most general scale-invariant spinor Lagrangian compatible with TDi�
can be written as9

Lψ = −bGψ(b2) ψ̄ bµiγi

(
∂µ +

1
8

[γj , γk]ω jk
µ

)
ψ − b φ vψ(b2)ψ̄ ψ, (3.80)

where bµa represents the inverse vierbein related to the metric through gµν =
ηij b

i
µ b

j
ν , ω jk

µ is its spin connection (see e.g. [115]) and b = det[b i
µ ] =

√
−g.

Introducing the Stückelberg �eld as described in section 3.1.1, the Lagrangian
can be written as

Lψ = −bGψ(σ) ψ̄ bµiγi

(
∂µ +

1
8

[γj , γk]ω jk
µ

)
ψ − b φ vψ(σ)ψ̄ ψ. (3.81)

The change of variables (3.27) corresponds to the transformation b̃ i
µ ≡ Ωb i

µ .
Together with the �eld rede�nition

ψ̃ ≡ Ω−3/2 ψ,

it yields the Lagrangian in the E-frame (see e.g. [115])

Lψ = −b̃Gψ(σ) ¯̃
ψ b̃µiγi

(
∂µ +

1
8

[γj , γk] ω̃ jk
µ

)
ψ̃ − b̃

Mvψ(σ)√
f(σ)

¯̃
ψ ψ̃. (3.82)

We see that the scale invariance of the spinor Lagrangian in the J-frame also
leads to the decoupling of fermions from the dilaton �eld φ in the E-frame.

3.5 Application to the Standard Model

The basics established in the preceding sections can be used to construct
a scale-invariant version of the Standard Model of particle physics coupled
to gravity. Let us describe how this should be done. The scalar-tensor
sector of the theory is given by the Lagrangian (3.24), where φ is replaced
by the complex Higgs-doublet Φ. All fermions and bosons of the SM are
then added and coupled to gravity in the way described in sections (3.3) and
(3.4), again with Φ replacing φ. The generalization to the group structure of
the SM is straightforward. All theory-de�ning functions have to be chosen
such that they ful�ll a series of conditions of the type of (3.36), (3.68),

9 In this section we use the conventions of [115].
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(3.69), (3.72), (3.73), (3.76) and (3.79). In this way, one obtains a model,
whose particle phenomenology at energies well below the Planck mass M
is indistinguishable from that of the SM. In particular, the massless dilaton
decouples from all SM �elds except for the Higgs �eld, to which it couples
only through suppressed operators.

3.6 Particular choices of the theory-de�ning

functions

In the previous sections we have derived a number of conditions to be satis�ed
by the theory-de�ning functions (TDF). These conditions are summarized in
Table 3.1. Similar conditions should be imposed in the fermionic sector. For
simplicity, we will restrict our considerations to the scalar and gauge �eld
sectors described by the Lagrangian (3.58).

Physical Meaning Formal Conditions

1 Existence of a constant �at solution v(σ0) = v′(σ0) = 0

2 Induced gravitational coupling f(σ0) 6= 0

3
Positive de�nite kinetic terms

(absence of ghosts)
ες , εϕ, εA = 1

4
No negative masses

(absence of tachyons)
m2
ς , m

2
A ≥ 0

5 Decoupling of gravitational interactions mς , mA �M

6 No strong coupling
κς , κA . min(mς ,mA)

λς , λA . 1

7 Suppression of higher-dimensional operators Mφφ, MV , Mint, MAA, Mε &M

8 Equivalence with Abelian Higgs model
κA
λA
' κς
λς
' 3

m2
ς

κς
' 2

m2
A

κA

Tab. 3.1: Conditions to be imposed on the theory-de�ning functions (TDF)

The parameters in terms of which the conditions are formulated are de�ned
through the TDF. These de�nitions are summarized in Table 3.2 (remember

that ẽ2 ≡ e2/K(0)
AA).

It is clear that as long as one does not have a rationale for choosing the
arbitrary functions, like e.g. an additional symmetry principle, they can al-
ways be chosen such that all conditions are ful�lled. A nearby possibility
would be to require invariance of the theory under global Weyl transforma-
tions gµν(x) 7→ λ gµν(x). This would completely �x the functional form of
all TDF. In this case, however, condition 1 can only be satis�ed if v(−g) = 0
(for all values of −g). The corresponding theory would contain 2 massless
scalars. Hence, if one of the scalar �elds is supposed to play the role of
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i. Signs of kinetic terms

ες = sign

(
K(0)
σσ −

“
K(0)
σφ

”2

K(0)
φφ

−
“
K(0)
σA

”2

K(0)
int

)
εϕ ≡ sign

(
K(0)
φφ

)
εA ≡ sign

(
K(0)
AA

)

ii.
Masses and

relevant couplings

m2
ς ≡ ες Ṽ (2)M2, κς ≡ Ṽ (3)M , λς ≡ Ṽ (4),

m2
A ≡ εAẽ2K(0)

intM
2, κA ≡ ẽ2K̃(1)

intM , λA ≡ ẽ2K̃(2)
int,

iii. Suppression scales

Mφφ(nh, nς) ∼M
∣∣∣∣ K̃(nς )

φφ

K̃(0)
φφ

∣∣∣∣ −1
nh+nς

, nh ≥ 0, nς > 0

MV (nh, nς) ∼M
∣∣∣Ṽ (nς)

∣∣∣ −1
nh+nς−4

, nh ≥ 0, nς > 4

Mint(nh, nς) ∼M
∣∣∣ẽ2 K̃(nς)

int

∣∣∣ −1
nh+nς , nh ≥ 0, nς > 2

MAA(nh, nς) ∼M
∣∣∣∣ K̃(nς )

AA

K̃(0)
AA

∣∣∣∣ −1
nh+nς

, nh ≥ 0, nς > 0

Mε(nh, nς) ∼M
∣∣∣∣ K̃(nς )

ε

K̃(0)
AA

∣∣∣∣ −1
nh+nς

, nh ≥ 0, nς > 0

Tab. 3.2: De�nitions of the parameters appearing in table 3.1.

the Higgs �eld, this choice is not viable. Up to the present stage, we have
not found a plausible and satisfactory rationale for the choice of the TDF.
Nevertheless, we will give in this section two explicit ad hoc examples for the
TDF which satisfy all requirements.
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3.6.1 Polynomials

The �rst example is motivated by its simplicity. All theory-de�ning functions
can be taken to be polynomials of the metric determinant. In analogy with
the Higgs potential, we choose one of the TDF as

v(−g) =
λ

4
(
(−g0)2 − (−g)2

)2
, (3.83)

which satis�es condition 1. The simplest possibility we �nd for the choice of
the remaining functions is given by

f(−g) = Ggg(−g) = GAA(−g) = 1 ,

Ggφ(−g) = Gna(−g) = Gε(−g) = 0 ,

Gφφ(−g) = (−g)2 . (3.84)

For this choice of functions, the parameters of the theory are summarized in
table 3.3 (σ0 = −g0).

i. Signs of kinetic terms ες = εφ = εA = 1 .

ii. Masses and relevant couplings
m2
ς = 2λσ2

0M
2 κς = 6λσ0M λς = 6λ

m2
A = e2σ2

0M
2 κA = 2e2σ0M λA = 2e2

iii. Suppression scales
Mφφ(nh, 1) ∼M

(
6+σ2

0
2σ0

) 1
1+nh ,

Mφφ(nh, 2) ∼M
(

6+σ2
0

2

) 1
2+nh .

Tab. 3.3: Parameters in the case of the polynomial TDF ((3.83) and (3.84)).

Conditions 1-3 and 8 in Table 3.1 are immediately satis�ed by this choice
of TDF, independently of any parameter values. Conditions 4-7 are satis�ed
provided that 0 < σ0 � 1, 0 < e2 . 1/2 and 0 < λ . 1/6. The small value
of σ0 is responsible for the hierarchy between the Planck scale M and the
scales related to the scalar and vector sectors. We observe that the higher-
dimensional operators are suppressed below the Planck scale, independently
of the value of σ0.

We conclude that the theory given by the Lagrangian (3.58) with TDF
(3.83) and (3.84) is indistinguishable from the renormalizable Abelian Higgs
model at energies well below the Planck scale M . The non-renormalizable
interactions with the dilaton certainly produce di�erences between both the-
ories, however, these e�ects are suppressed both by the Planck scale and by
the fact that the dilaton couplings always contain spacetime derivatives.
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Let us note that, changing variables, one can easily �nd other sets of
polynomial functions, which describe a theory equivalent to the one given
by (3.83) and (3.84) and which also satisfy all conditions 1-8. For example,
one can rede�ne the metric and the scalar �eld φ through

gµν 7→ (−g)2a gµν , (3.85)

φ 7→ (−g)b φ , (3.86)

where a and b are arbitrary constants. In terms of the new variables, the
Lagrangian (3.58) keeps its structure. The TDF equivalent to (3.83) and
(3.84) are given by

v(−g) = λ
4

(
(−g0)2+16a − (−g)2+16a

)2
(−g)4(a+b) ,

f(−g) = (−g)2(a+b) ,

Ggg(−g) =
(
(1 + 8a)2 + b2

)
(−g)18a+2b − (6a2 + 12ab)(−g)2(a+b)−2 ,

Gφφ(−g) = (−g)18a+2b+2 ,

Ggφ(−g) = 6a(−g)2(a+b)−1 + b(−g)18a+2b+1 ,

Gna(−g) = 0 .

GAA(−g) = 1 ,

Gε(−g) = 0 .
(3.87)

It is straightforward to check explicitly that for 0 < (−g0)1+8a � 1, 0 <
e2 . 1/2 and 0 < λ . 1/6 this set of polynomials also satis�es conditions
1-8. The two-parameter family of sets of functions (3.87) describes one and
the same theory for di�erent variable choices. For a = b = 0 the functions
take the simple forms (3.83) and (3.84).

3.6.2 Functions that reproduce scale-invariant unimodular

gravity

In the previous chapter, we have presented a model (2.24) that combines
scale invariance with unimodular gravity. There, a new singlet scalar �eld χ
was introduced in order to make both the gravitational and the matter part
of the action scale-invariant. That scalar �eld was introduced ad hoc and was
not related to the restriction of the spacetime symmetries from Di� to TDi�.
Scale invariance was spontaneously broken due to the shape of the potential.
In the same model standard GR was replaced by UG which resulted in the
appearance of an arbitrary integration constant in the equations of motion.
As already mentioned in section 3.1, UG can be understood as a particular
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case of a TDi� theory in which the metric does not contain a propagating
scalar degree of freedom. It is therefore no surprise that the model of chapter
2 can be found as a particular case of the scale-invariant TDi� theories
discussed here. In other words, one can construct a SI TDi� theory and
choose the TDF such as to obtain exactly the model (2.24). In order to �t
the model of chapter 2 into the framework of the present chapter, we replace
the full SM in (2.24) by the Abelian Higgs model. Let us choose the TDF
as follows: 10

v(−g) = λ
4

(
2− α

λ (−g)−2
)2

,

f(−g) = ξχ(−g)−2 + 2ξh ,

Ggg(−g) = 49−90ξχ
64 (−g)−4 + 1+6ξh

32 (−g)−2 ,

Gφφ(−g) = 2 ,

Ggφ(−g) = −7−6ξχ
8 (−g)−3 + 1+6ξh

4 (−g)−1 ,

Gna(−g) = (−g)−2 ,

GAA(−g) = 1 ,

Gε(−g) = 0 ,

(3.88)

For this choice, the Lagrangian (3.58) can be brought to the form

L =− 1
2

(ξχχ2 + 2ξhΦΦ∗)R̂− 1
2
ĝµν∂µχ∂νχ− ĝµνDµΦ(DνΦ)∗

− 1
4
ĝµν ĝρσFµρFνσ − λ(ΦΦ∗ − α

2λ
χ2)2 ,

(3.89)

where we have de�ned the unimodular metric ĝµν = (−g)−1/4gµν and the
scalar �elds Φ = φ(−g)1/8 and χ = |φ|(−g)−7/8. R̂ is the Ricci scalar asso-
ciated to the unimodular metric ĝµν . Now, this is exactly the Lagrangian
(2.24) except that the particle physics sector is reduced, for simplicity, to
the Abelian Higgs model. Of course, the choice of functions (3.88) is rather
peculiar. In particular, the presence of the non-analytic term Gna 6= 0, see
eq. (3.58), was essential. Nevertheless, it is an interesting fact that the pre-
viously suggested model appears as a particular case in the new framework.
Also note that with the variable change χ = |φ|(−g)−7/8, χ is only allowed to
take positive values. However, the theory being symmetric under χ 7→ −χ,
one can equally allow for negative values of χ. In that part of phase space,
the matching of variables is given by χ = −|φ|(−g)−7/8.

10 Note that just like in the above example, this set of functions is only one representative
of an in�nite family of sets of functions that correspond to the same theory.
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i. Signs of kinetic terms ες = εφ = εA = 1 .

ii. Masses and relevant couplings

m2
ς = 2λ α

λξχ
M2(1 +O(α)),

κς = 6λ
√

α
λξχ

M(1 +O(α)),

λς = 6λ(1 +O(α)),

m2
A = e2 α

λξχ
M2(1 +O(α)),

κA = 2e2
√

α
λξχ

M(1 +O(α)),

λA = 2e2(1 +O(α)).

iii. Suppression scales Mφφ,MV ,Mint,MAA ∼ M
ξh
< M .

Tab. 3.4: Parameters for scale-invariant unimodular gravity (TDF (3.88)).

We have seen that the Lagrangian (3.89) (if one adds all SM matter and
gauge �elds) can describe a rich cosmological phenomenology if the param-
eters are positive and such that α ≪ 1, ξχ ∼ O(10−3), ξh ∼ O(105) and
λ . 1. The formalism of the present chapter makes it easy to check whether
the same model yields a viable (SM like) particle physics phenomenology. For
the case Λ0 = 0, it is enough to check whether the model satis�es conditions
1-8 of table 3.1. To this end, we consider the expansion of the di�erent func-

tions around a constant solution −g0 = σ0 =
√

2λ
α . The di�erent parameters

are summarized in Table 3.4. If ξχ and ξh are in the phenomenologically
interesting range and α is small enough such that it can be responsible for
the hierarchy between M and the particle physics scales, conditions 1-6 and
8 are ful�lled with very high accuracy. Note that this time the equations in
condition 8 are not exact, but contain small corrections of the order O(α).

All terms of (3.62), except the one proportional to K̃ε(σ̃) = 0 and the one
proportional to Λ0 = 0, give rise to an in�nite number of higher-dimensional
operators. Depending on the values of the parameters, their suppression
scales can be smaller than the Planck scale M . For the phenomenologi-
cally interesting parameters ξχ ∼ O(10−3) and ξh ∼ O(105), the lowest
suppression scales are of the order M/ξh. Although signi�cantly smaller
than the Planck scale, this scale is much higher then the scales relevant to
particle physics. Hence, even though condition 7 is not satis�ed, the higher-
dimensional operators are still negligible at particle physics energies.

We conclude that at energies well below M/ξh, the theory given by the
Lagrangian (3.58) with the TDF (3.88) (or equivalently the theory (3.89)) is
also indistinguishable from the renormalizable Abelian Higgs model.
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3.7 The case Λ0 6= 0, cosmology and dilaton

interactions

So far, we have discussed the phenomenology of SI TDi� theories in the
vicinity of constant backgrounds, i.e. around classical solutions with con-
stant scalar �elds and �at spacetime. The existence of such backgrounds
was guaranteed by imposing the conditions v(σ0) = v′(σ0) = 0 (3.36) on the
theory de�ning functions. We will for the moment stick to these conditions
and comment on the case v(σ0) 6= 0 at the end of this section. In a the-
ory where conditions (3.36) hold, considering a �at background entails the
choice Λ0 = 0, to be thought of as an initial condition. Choosing Λ0 6= 0,
one no longer obtains �at spacetime as a solution. Nevertheless, one can
get interesting cosmological solutions. We now want to qualitatively discuss
these cosmological solutions and see how the presence of such non-�at back-
grounds a�ects particle physics. This is done most easily by considering the
SI TDi� theory (3.24) in its equivalent Di� invariant formulation (3.31),

Le√
−g̃

=− 1
2
M2R̃− 1

2
εσM

2(∂σ̃)2 − 1
2
K̃φφ(σ̃)(∂φ̃)2

−M4Ṽ (σ̃)− Λ0K̃Λ0(σ̃) exp

(
−4φ̃
M

)
+ Lm ,

(3.90)

where we have included a matter part Lm. The term Lm contains all bosonic
and fermionic degrees of freedom of the SM coupled to the scalar �elds
and gravity in the way described in Sections 3.3 and 3.4. Notice that the
dependence of the potential on φ̃ is uniquely determined by the way scale
invariance is broken in TDi� theories. Consider now the homogeneous �elds
σ̃ = σ̃(t) and φ̃ = φ̃(t) living in spatially �at FLRW spacetime with metric

ds̃2 = −dt2 + a(t)2d~x2 , (3.91)

where a(t) is the scale factor. The dynamics of the homogeneous scalar �elds
is mainly determined by the potential

ṼΛ0(σ̃, φ̃) = M4Ṽ (σ̃) + Λ0K̃Λ0(σ̃) exp

(
−4φ̃
M

)
. (3.92)

As long as the kinetic term of the scalar �elds is positive de�nite, the scalar
�elds tend to roll down the potential, with some friction caused by the ex-
pansion of spacetime. In the σ̃-direction, the potential has a minimum at
σ̃ = 0 due to the conditions (3.36).11 In the φ̃-direction, the potential is
governed by the exponential factor. If Λ0K̃Λ0(σ̃) > 0, the potential is of the
11 Note that even if v(σ0) 6= 0, the condition (3.34) would guarantee the existence of

such a minimum.
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run-away type, i.e. it gets minimal for φ̃ → ∞. In the opposite � patho-
logical � case, the potential is not bounded from below. A typical evolution
of the scalar condensates σ̃ and φ̃ will be the following: The �rst term of
the potential ṼΛ0 drives the trajectories towards the �valley� σ̃ = 0. Due
to Hubble friction, the �elds undergo damped oscillations around the valley
before asymptotically approaching σ̃ = 0. The second term in ṼΛ0 drives
the trajectory towards φ̃ → ∞. After σ̃ has settled down around σ̃ = 0,
this leads to a roll-down along the valley. We assume here that the function
K̃Λ0(σ̃) de�ned in (3.32) does not play a signi�cant role in the cosmological
evolution.

For appropriate choices of the theory-de�ning functions and initial con-
ditions, the roll-down towards the valley σ̃ = 0 can give a mechanism for
in�ation. During the subsequent roll-down along the valley, the scalar �elds
play the role of a dynamical dark-energy component (quintessence). A con-
crete realization of this scenario is given by the model of chapter 2. What
we have found in the present chapter is that a potential with a minimum
in one direction and run-away shape in the other direction is generic for SI
TDi� theories in which scale invariance is broken spontaneously.

Let us now brie�y discuss to what extent particle physics phenomenology
is di�erent around a typical time-evolving cosmological background (Λ0 > 0),
as compared to a static �at (Minkowski) background (Λ0 = 0). Since the
evolution drives σ̃ → 0, it seems reasonable to assume that in the present uni-
verse one has σ̃ ' 0 (see also comments in [82]). If this is ful�lled, all masses
and couplings of the SM particles are like in the case Λ0 = 0, described in the
above sections. The only e�ects of the cosmological background on particle
physics would then come through φ̃(t). However, one can put simple and
still very strong bounds on the in�uence of φ̃(t) by requiring that its energy
density must not give a too big contribution to the total energy density of
the universe. In other words, both the kinetic and the potential energy of
the condensate φ̃(t) have to be smaller than today's critical energy density
ρ0
cr = 3M2H2

0 ' 10−120M4, i.e.

1
2
K̃φφ (σ̃0 = 0) (∂0φ̃)2 < ρ0

cr , (3.93)

Λ0Ṽ (σ̃0 = 0) exp

(
−4φ̃
M

)
< ρ0

cr . (3.94)

These constraints, together with the conditions on the derivatives of K̃φφ(σ̃)
and Ṽ (σ̃) (3.76) plus similar conditions on the derivatives of K̃Λ0(σ̃) guaran-
tee, that all interactions induced by ∂0φ̃ 6= 0 are highly suppressed and can
be neglected in the description of local particle interactions.

Up to here, we have assumed the theory to be such that both conditions
v(σ0) = v′(σ0) = 0 (3.36), respectively v(σ0) = 0 together with condition
(3.34), hold. The condition v(σ0) = 0 is the analog of the condition β = 0 in
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the model of chapter 2. It makes for the absence of a cosmological constant
and consequently for the fact that dark energy can be purely due to the
scalar-�eld dynamics.

The discussion of the β-term of chapter 2 equally applies to the term
v(σ0). In particular, �xing it to zero can be considered as very �unnatural�
from a �eld-theoretical point of view (section (2.1.2)). We were only able
to give some speculative arguments that might make such a choice favorable
in the context of scale-invariant theories (section 2.1.3). If v(σ0) 6= 0 (just
like β 6= 0) the theory contains a cosmological constant. In order not to
violate observational bounds, this constant has to be extremely small and
hence does not a�ect particle physics phenomenology. Also the dynamical
break-down of scale invariance and the associated mechanism for in�ation
remain practically unchanged. What changes, as already mentioned for the
case β 6= 0, is the late time behaviour of cosmological solutions. Namely,
dark energy gets a constant contribution on top of the constribution due to
the scalar �elds. Asymptotically, it is this constant contribution that comes
to dominate the energy density of the universe.

With our present knowledge, both, the case where v(σ0) (respectively
β) is zero and the case where it is very small such as not to violate the
observational bound correspond to strong �ne-tunings of the theory. The
cosmological constant problem is therefore present in all SI TDi� theories.
Still, in view of the arguments of section 2.1.3, scale-invariant theories can
provide another perspective towards its solution.

3.8 Summary

Let us summarize the �ndings of this section.

• Reducing the spacetime symmetry group from Di� to TDi� makes it
possible to construct scale-invariant theories of gravity and particle
physics without introducing a dilaton by hand. The dilaton appears
naturally as an additional scalar degree of freedom in the metric.

The minimal model proposed in chapter 2 can be found as a particular
case of the SI TDi� theories discussed here.

• SI TDi� theories where SI is spontaneously broken can be a viable
alternative to standard GR plus SM. Being the Goldstone boson of
spontaneously broken scale invariance, the dilaton practically decou-
ples from all matter �elds and hence hardly a�ects predictions for both
gravitational and particle physics phenomena. If the theory-de�ning
functions satisfy a number of conditions, the e�ective low-energy the-
ory becomes indistinguishable from a renormalizable theory and can
in particular reproduce SM phenomenology. While SI theories do not
have the naturalness problem related to the stability of the Higgs mass
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against radiative corrections, the big di�erence between the gravita-
tional scaleM and the particle physics scales remains unexplained and
needs a �ne-tuning of the parameters.

• In SI TDi� theories, scale invariance can be broken in two ways. The
�rst one is due to the shape of the potential, which allows the scalar
�elds to take constant non-zero background values. Such symmetry
breaking backgrounds lead to induced particle physics scales and an
induced gravitational constant. Secondly, SI can be broken due to the
appearance of an arbitrary constant Λ0 in the equations of motion,
respectively in the equivalent Di� invariant action. The e�ect of this
constant is to give a �run-away� potential to the dilaton.

• SI TDi� theories generically have cosmological solutions similar to
those of the minimal model discussed in chapter 2. Namely, a mech-
anism for in�ation is provided by the dynamical evolution of the ho-
mogeneous scalar �elds towards a symmetry-breaking minimum of the
potential. For Λ0 6= 0, the dilaton moving down the induced run-away
potential plays the role of a dynamical dark energy component.

• For generic choices of the theory de�ning functions, SI TDi� theories
contain a cosmological constant (analog to the β-term in the previ-
ous chapter). Imposing a particular condition on the TDF makes for
the absence of the cosmological constant, in which case dark energy
is purely due to the dilaton. However, from the e�ective �eld theory
point of view, imposing this condition is an unnatural �ne-tuning (see,
however, section 2.1.2). If the cosmological constant is not tuned to
zero, it still has to be extremely small, in order not to violate the obser-
vational bound on the abundance of dark energy. As a consequence, in
the scope of SI TDi� theories, including the particular case of chapter
2, the cosmological constant problem remains an open issue.



4. Quantum Scale Invariance

In the previous two chapters, we have considered scale invariance (SI) as a
building principle to extend the standard theory of gravitation (GR) and the
Standard Model of particle physics (SM). The discussion mostly remained
on the level of classical �eld theory. We have found and discussed several
interesting features of scale-invariant theories. First of all, the spontaneous
break-down of SI gives a common origin to all scales (at least at the classical
level). In other words, all dimensional parameters are induced by the non-
zero background value of a scalar �eld. Then, in the context of cosmology,
we found that theories with spontaneously-broken SI automatically provide
a mechanism for primordial in�ation. Namely, in�ation can be due to the
dynamical evolution of the background scalar �elds towards a symmetry-
breaking minimum of the potential. Despite their exact scale invariance,
the constructed theories in general contain a cosmological constant. This
constant is absent if the Jordan-frame potential is chosen to have a �at
direction (β = 0). As long as gravity is described by GR, a scale-invariant
theory necessarily contains a massless dilaton (Goldstone boson of broken
SI) which has practically no in�uence on neither gravitational nor particle
physics phenomenology. If GR is substituted by UG or TDi�, the dilaton
can get an induced potential and play the role of a dynamical dark energy
component.

We know that classical �eld theory is not the appropriate description of
particle physics (and most probably gravity) and that the proposed classical
theories should be quantized in the framework of quantum �eld theory. The
�ndings of the preceding sections remain valid only if scale invariance is a
symmetry of the full quantum e�ective action. However, it is well-known
that scale invariance is anomalous for all realistic renormalizable quantum
�eld theories (for a review see [47]). In other words, a quantum �eld theory
built from a scale-invariant classical Lagrangian is in general no longer scale-
invariant. Technically speaking, the anomaly appears because all common
regularization procedures (cut-o�, Pauli-Villars, dimensional regularization)
introduce a new scale to the theory.

This suggests that we should expect all reasonings we made in the classi-
cal theory, and which were based on scale invariance, to be ruined by quan-
tum corrections. The goal of this section is to show that this conclusion is
not true and that scale invariance can still be a viable symmetry at the quan-
tum level. We are going to introduce a modi�ed version of the dimensional
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regularization of 't Hooft and Veltman [116], which allows us to construct a
new class of e�ective �eld theories that have the following properties:

• Scale invariance is preserved on the quantum level to all orders of
perturbation theory.

• Scale invariance is broken spontaneously, leading to a massless dilaton.

• The e�ective running of coupling constants is automatically reproduced
at low energies.

In other words, the bene�ts of classical SI theories can all be present on
the quantum level. At the same time, the standard results of quantum �eld
theory, such as the running of coupling constants, remain in place.

In section 4.1, we present our idea and apply it to the case of a simple
model of two scalar �elds. Then, in section 4.2, we describe the generalization
to the case of an arbitrary matter sector. In section 4.3, we discuss the
inclusion of gravity. Conclusions together with a number of open questions
are given in section 4.4.

4.1 Scalar �eld example

We want to explain our idea using the example of a simple system of two
scalar �elds in �at spacetime described in the classical theory by the La-
grangian

L = −1
2

(∂µχ)2 − 1
2

(∂µh)2 − λ

4
(
h2 − ζ2χ2

)2
. (4.1)

Note that this Lagrangian corresponds to the scalar part of the theory (2.5)
considered in chapter 2, if gravity is absent, β = 0 and ζ2 ≡ α/λ. Hence,
we will think of h as the Higgs boson (in the unitary gauge) and of χ as
the dilaton. Containing no dimensional parameters, the Lagrangian (4.1) is
scale-invariant at the classical level. In fact, the requirement of dilatational
symmetry does not forbid the presence of an additional term βχ4 in (4.1).
We can brie�y repeat the discussion of classical ground states of chapter 2.
Namely, if β < 0, the theory does not have a stable ground state, while for
β > 0, the ground state is unique and corresponds to h = χ = 0. At the
classical level, one would conclude that the theory describes two massless
scalar excitations around the ground state respecting scale invariance. In
the case β = 0, the potential contains two �at directions h = ±ζχ and
the ground state is in�nitely degenerate. A ground state with χ = χ0 6= 0
spontaneously breaks the dilatational invariance. The theory around such a
background contains a massive Higgs boson, m2

H(χ0) = 2λζ2(1 + ζ2)χ2
0, and

a massless dilaton. So, the only choice for β, interesting for phenomenology,
is β = 0. In the other cases, either a ground state does not exist or the
theory does not contain any massive particles. Remember from chapter 2
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that as soon as gravity is included (in a scale-invariant way), this conclusion
is no longer true. In particular, the theory possesses solutions with constant
scalar �elds even if β 6= 0. Nevertheless, in the �at-space theory discussed
here, β = 0 is the only choice yielding spontaneous symmetry breaking, and
we will stick to it from now on.1 The fact that in the absence of gravity
β = 0 is the only viable case was actually presented in section 2.1.3 as an
argument in favor of this special choice, even for the theory including gravity.

In what follows, we will also assume that ζ≪ 1. In the model of chapter
2, this is motivated by phenomenological reasons, since ζ is responsible for
the hierarchy between the Planck scale M = (8πG)−1/2 = 2.44 · 1018 GeV
and the electroweak scale v = 246 GeV, hence ζ ∼ v/M ∼ 10−16. Note, how-
ever, that the smallness of ζ is not essential for the theoretical construction
presented here.

It is well known what happens if the theory (4.1) is quantized with the
use of the standard dimensional regularization procedure (cf. e.g. [117]).
In d-dimensional spacetime (we use the convention d = 4− 2ε) the mass
dimension of the scalar �elds is 1− ε and the one of the coupling constant λ
is 2ε. Introducing a (�nite) dimensionless coupling λR, one can write

λ = µ2ε

[
λR +

∞∑
n=0

an
εn

]
, (4.2)

where µ is an arbitrary parameter with the dimension of a mass, and the
Laurent series in ε corresponds to counter-terms. The parameters an are to
be �xed by the requirement that renormalized Green's functions are �nite
in every order of perturbation theory. Similar replacements have to be done
with other parameters of the theory, and the factors Zχ and Zh, related to
the renormalization of the �elds, must be introduced (they do not appear
at the one-loop level in our scalar theory). Then, in the MS subtraction
scheme (cf. e.g. [117]), the one-loop contribution to the e�ective potential
along the �at direction has the form

V 1l
eff(χ) =

m4
H(χ)

64π2

[
log

m2
H(χ)
µ2

− 3
2

]
, (4.3)

spoiling the degeneracy of the ground state and thus leading to an explicit
breaking of the dilatational symmetry. The vacuum expectation value of the
�eld χ can be �xed by renormalization conditions [118]. The dilaton acquires
a non-zero mass. It is the mismatch between the mass dimensions of bare
(λ) and renormalized couplings (λR) that leads to the dilatational anomaly
and thus to the explicit breaking of scale invariance (see [49] for a recent
discussion). Put in other words, standard dimensional regularization does

1 Some more comments on the case β > 0 in the present �at space theory will be given
at the end of this section.
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not preserve the scale symmetry, because the action analytically continued
to d dimensions is no longer scale-invariant.

Let us now introduce another prescription, which we will call the �SI
prescription�.2 It consists in replacing µ2ε in (4.2) and in all other similar
relations by (in general di�erent) combinations of the �elds χ and h, which
have the correct mass dimension:

µ2ε → χ
2ε

1−εFε(x) , (4.4)

where x = h/χ and Fε(x) is a function depending on the parameter ε with
the property F0(x) = 1. In principle, one can use di�erent functions Fε(x) for
the various couplings. The resulting �eld theory is, by construction, scale-
invariant in any number of spacetime dimensions d. This means that if, for
instance, the MS subtraction scheme is used for calculations, the renormal-
ized theory is also scale-invariant in any order of perturbation theory.

The sole requirement of scale invariance does not �x the details of the
prescription, i.e. the functions Fε(x). We can get some guidance by looking
at the theory (2.5), which includes gravity. The form of the couplings of the
scalar �elds χ and h to gravity indicates that the combination

ξχχ
2 + ξhh

2 ≡ ω2 (4.5)

plays a special role, being the e�ective Planck constant. This observation
leads us to the simple �GR-SI prescription�, in which

µ2ε →
[
ω2
] ε

1−ε , (4.6)

corresponding to the choice of the function Fε(x) = (ξχ + ξhx
2)

ε
1−ε . Below,

we will apply the GR-SI prescription to the one-loop analysis of our scalar
theory. For comparison, a result based on a di�erent SI prescription is given
in appendix B.

The SI construction is entirely perturbative and can be used only if scale
invariance is spontaneously broken. In other words, in order to use the GR-SI
prescription, the ground state has to be such that (h0, χ0) 6= (0, 0), because
otherwise it is impossible to perform a perturbative expansion of (4.6). Let
us develop the condition, which guarantees the existence of a symmetry-
breaking ground state at the quantum level. To this end, consider the exact
e�ective potential Veff (h, χ) of our theory, constructed using the prescription
(4.4) or (4.6), in the limit ε→ 0. Because of exact SI, it can be written as

Veff(h, χ) = χ4Vχ(x) = h4Vh(x) . (4.7)

For the ground state to exist, we need to have Vχ(x) ≥ 0 (or, what is
the same, Vh(x) ≥ 0) for all values of x. For the minimum of Veff (h, χ)

2 A similar procedure was suggested in [51] in connection with the conformal (trace)
anomaly.
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to lie in the region where χ 6= 0 (or h 6= 0), we must have Vχ(x0) = 0
(Vh(x0) = 0), where x0 is a solution of V ′χ(x0) = 0 (V ′h(x0) = 0) and prime
denotes the derivative with respect to x. If these conditions are satis�ed,
the e�ective potential has a �at direction corresponding to an in�nite set
of ground states that spontaneously break scale invariance. The dilaton is
massless in all orders of perturbation theory. In this case, one can develop
the perturbation theory around the vacuum state corresponding to χ0 6= 0,
h0 = x0χ0 with arbitrary χ0 (or h0 6= 0, χ0 = h/x0 with arbitrary h0).

To summarize, the SI prescriptions (4.4) or (4.6) have to be supplemented
by the requirement that the quantum e�ective potential has a �at direction,
i.e. that there exists a value x0, for which

Vχ(x0) = V ′χ(x0) = 0 (4.8)

or

Vh(x0) = V ′h(x0) = 0 . (4.9)

This leads to a new class of theories exhibiting spontaneously broken scale
invariance, which is exact on quantum level.

The theories we construct are somewhat di�erent from ordinary renor-
malizable theories. Their physics is determined not only by the values of
�classical� coupling constants (λ and ζ in our case), but also by �hidden�
parameters contained in the functions Fε(x). Still, as we will see shortly, for
the SI-GR prescription, in the limit ζ≪ 1 and for small energies E � χ0,
only �classical� parameters matter. Moreover, they automatically acquire
the necessary renormalization group running.

Let us now carry out a one-loop analysis of the theory (4.1) with the GR-
SI prescription. We write the d-dimensional generalization of the classical
potential as3

V =
λR
4
[
ω2
] ε

1−ε
[
h2 − ζ2

Rχ
2
]2

(4.10)

and introduce the counter-terms

Vc.t. =
[
ω2
] ε

1−ε

[
Ah2χ2

(
1
ε̄

+ a

)
+Bχ4

(
1
ε̄

+ b

)
+ Ch4

(
1
ε̄

+ c

)]
,

where 1
ε̄ = 1

ε−γ+log(4π), γ is the Euler-Mascheroni constant and a, b, c, A,
B, and C are for the moment arbitrary constants. We do not introduce any
modi�cation of the kinetic terms, since no wave function renormalization is
expected at the one loop level.

The one-loop e�ective potential for this theory can be computed in the
usual way (cf. e.g. [117]). The counter-terms removing the divergences turn

3 If we de�ne the parameters α ≡
√
λ and β ≡

√
λζ2, the classical potential takes the

form V = 1
4

`
αh2 − βχ2

´2
. In this notation, the GR-SI prescription corresponds to the

substitutions α→
ˆ
ω2

˜ ε
2(1−ε) αR and β →

ˆ
ω2

˜ ε
2(1−ε) βR.
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out to coincide with those of the standard prescription and are given by

A → −λ2
Rζ

2
R

3ζ4
R − 4ζ2

R + 3
32π2

,

B → λ2
Rζ

4
R

9ζ4
R + 1

64π2
, (4.11)

C → λ2
R

ζ4
R + 9
64π2

.

The one-loop contribution to the e�ective potential has the generic form
V 1l

eff = χ4V 1l
χ (x) and is given by a rather lengthy expression (presented in

appendix C), which also depends on the �hidden� parameters. For a generic
choice of a, b, and c, the classical �at direction x0 = ζR is lifted by quantum
e�ects. However, the requirement V 1l

χ (ζR) = V 1l
χ
′(ζR) = 0 (4.8) allows to

�x two of these parameters in a way such that the one-loop potential has
exactly the same �at direction. For ζR≪ 1, this requirement leads to4

b = 3a+ 2 log
(

2λRζ2
R

ξχ

)
+O

(
ζ2
R

)
,

c =
1
3

[
a+ 2− 2 log

(
2λRζ2

R

ξχ

)]
+O

(
ζ2
R

)
. (4.12)

The function V 1l
χ (x) is positive near the �at direction, provided that

a+ 2 + 2 log
(

2λRζ2
R

ξχ

)
> 0 .

It is interesting to look at the one-loop e�ective potential as a function of h,
for χ = χ0, h ∼ ζRχ0 ≡ v and ζ≪ 1, i.e. h0 ≪ χ0. It reads

V 1l
eff (h, χ0) =

m4(h)
64π2

[
log

m2(h)
v2

+O
(
ζ2
R

)]
+

λ2
R

64π2

[
C0v

4 + C2v
2h2 + C4h

4
]

+O
(
h6

χ2

)
, (4.13)

where m2(h) = λR(3h2 − v2) and

C0 =
3
2

[
2a− 1 + 2 log

(
ζ2
R

ξχ

)
+

4
3

log 2λR +O(ζ2
R)
]
,

C2 = −3
[
2a− 3 + 2 log

(
ζ2
R

ξχ

)
+O(ζ2

R)
]
, (4.14)

C4 =
3
2

[
2a− 5 + 2 log

(
ζ2
R

ξχ

)
− 4 log 2λR +O(ζ2

R)
]
.

4 The truncation only serves to shorten the expressions. The exact expressions are given
in appendix C.
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The �rst term in (4.13) is exactly the standard one-loop e�ective potential
for the theory (4.1) with the dynamical �eld χ replaced by a constant χ0.
The rest is a quartic polynomial of h, coming from our GR-SI prescription,
which leads to rede�nitions of coupling constants, mass and vacuum energy.
By construction, the coe�cients are exactly such that the potential has its
minimum at h = h0 = ζRχ0 and V 1l

eff(h0, χ0) = 0.
One can see from (4.13) that the quantum corrections to the Higgs mass

are proportional to v2 ∝ ζ2
Rχ

2
0. This means that they are small compared

to the classical value. Also in higher orders of perturbation theory, poten-
tially dangerous corrections to the Higgs mass of the type λnχ2

0 (remember
that χ0 ∼ M) cannot appear. This can be understood from the following
argument. For ζ = 0, the Higgs �eld decouples from the dilaton at the clas-
sical level, and the dilaton �eld is described by a free theory. Therefore, if
ζ = 0, the (large) value of the �eld χ can appear in the e�ective potential
only through logarithms coming from the expansion of [ω2]ε/1−ε in eq. 4.10,
while for ζ 6= 0, it appears at most as ζ2

Rχ
2. Hence, in this theory there is

no problem of instability of the Higgs mass against quantum corrections (cf.
section 2.1.2).

At this point, an important comment is in order. As we will see in the
upcoming formula (4.15), in the present theory the quantity

√
ξχχ0 plays

the role of an e�ective cut-o� scale. We have found that if one uses the
proposed scale-invariant renormalization scheme, the Higgs mass does not
obtain corrections proportional to this scale. Now, it is well-known that
also in standard dimensional regularization the Higgs mass does not get this
type of corrections. On the other hand, the use of cut-o� regularization, for
instance, yields corrections proportional to the cut-o�. The point is that,
unlike in a scale-invariant theory, in a non-scale-invariant theory and in the
absence of a concrete hypothesis about the high-energy completion, it is
not clear which type of regularization should be used and whether the large
corrections to the Higgs mass should be expected (for a discussion of this
point see e.g. [10]).

Consider now the high energy (
√
s� v but

√
s� χ0 ∼M) behavior of

scattering amplitudes using the example of Higgs-Higgs scattering (assuming,
as usual, that ζR≪ 1). In the one-loop approximation, the 4-point function
is found to be

Γ4 = λR +
9λ2

R

64π2

[
log
(

s

ξχχ2
0

)
+ const

]
+O

(
ζ2
R

)
. (4.15)

This implies that at energies
√
s such that v �

√
s� χ0 the e�ective Higgs

self-coupling runs in the way prescribed by the ordinary renormalization
group. Consequently, not only the tree Higgs mass is determined by the
vev of the dilaton, but also all ΛQCD-like parameters. We expect that these
results remain valid in higher orders of perturbation theory.
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The theories constructed with the SI prescription could be called renor-
malizable, if the introduction of a �nite number of counter-terms were suf-
�cient to remove all divergences and guarantee the existence of a �at di-
rection in the potential. We have seen that at the one-loop level, the only
counter-terms needed have the form of the terms already contained in the
classical action. However, after the scale-invariant renormalization scheme
was proposed, the authors of [119] have shown that starting from the two-
loop level new divergences appear, which require the introduction of new
types of counter-terms. Hence, unless one can �nd a way to resum the new
terms such that they take the form of the terms contained in the classi-
cal action, the new theories are not renormalizable. Nevertheless, they are
scale-invariant to all orders of perturbation theory and can be considered as
e�ective theories below the scale

√
ξχχ0 ∼M .

Let us now add a comment on the case where the �at direction does not
exist at the quantum level (classically this corresponds to β > 0). In this
case, the ground state of the theory is scale-invariant. Theories of this type
do not in general contain asymptotic particle states (for a review see [120]).
If they do (this would correspond to anomalous dimensions for the �elds
equal to zero), the propagators will coincide with the free ones, leading to
a theory with a trivial S-matrix [121, 122]. In other words, the requirement
that a scale-invariant quantum �eld theory can be used for the description
of interacting particles, existing as asymptotic states, singles out the class of
theories with spontaneous breaking of scale invariance.

4.2 Scale-invariant quantum �eld theory: General

formulation

It is straightforward to generalize the construction presented above to the
case of theories containing fermions and gauge �elds, such as the Standard
Model. The mass dimension of a fermionic �eld is 3

2 − ε, leading to the
dimension of bare Yukawa couplings FB equal to ε. The mass dimension
of gauge �elds can be �xed to 1 for any number of space-time dimensions
d, leading to the dimensionality of the bare gauge coupling gB equal to
ε. Hence, in the standard procedure, one would choose FB ∝ µεFR and
gB ∝ µεgR, where the index R refers to renormalized couplings. For the SI
or GR-SI prescription, one replaces µε by a combination of scalar �elds of
appropriate mass dimension, as in (4.4) or in (4.6). For the perturbation
theory to make sense, counter-terms have to be chosen such that the full
e�ective potential has a �at direction, allowing for spontaneously-broken
dilatational invariance.
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4.3 Inclusion of gravity

The inclusion of scale-invariant gravity is carried out precisely along the same
lines. The metric tensor gµν is dimensionless for any number of spacetime
dimensions, while the mass dimension of the scalar curvature R is always
equal to 2. Therefore, the non-minimal couplings ξχ, ξh (see eq. (2.5)) are
dimensionless and thus can only be multiplied by functions Fε(x) of the type
de�ned in (4.4). In addition to (2.5), the gravitational action may contain

the operators R2, RµνR
µν , �R and RµνρσR

µνρσ, multiplied by χ
−2ε
1−εFε(x)

(here Rµν and Rµνρσ are the Ricci and Riemann curvature tensors). These
operators are actually needed for the renormalization of �eld theories in
curved spacetime (for a review see [123]).

As we have seen in the previous chapters, if gravity is included, the
dilaton decouples from all non-scalar particles of the SM (see also [29, 30,
124, 125]), and thus satis�es all laboratory and astrophysical constraints.
From this point of view, the inclusion of gravity might be crucial.

If the scalar potential in the Jordan frame has a �at direction (β = 0),
the cosmological constant is absent. However, in the presence of gravity the
condition β = 0 might no longer be needed. Namely, as we have seen in
chapters 2 and 3, if gravity is included in a scale-invariant way, then (at
least at the classical level) scale invariance can be broken even if the J-frame
potential does not have a �at direction, i.e. for β 6= 0. In fact, in that case
a �at direction appears after changing to the E-frame, independently of the
value of β.

We have seen in the previous chapters that if one considers a scale-
invariant theory including gravity and transforms it to the E-frame, the
original invariance under scale transformations is translated to invariance
under global shifts of the dilaton �eld. This suggests that, taken in the E-
frame formulation, the theory could actually be regularized with the usual
regularization methods, as they do not violate the shift symmetry. For the-
ories with gravity, this would present an alternative to the scale-invariant
procedure discussed here. The main di�culty for the quantization of the
E-frame action would be that in general the E-frame kinetic term is non-
canonical and the potential non-polynomial.

4.4 Summary and open questions

We now want to summarize the results of this section.

• The proposed SI regularization procedure makes it possible to con-
struct a class of e�ective quantum �eld theories, which are exactly
scale-invariant to all orders in perturbation theory. In this type of
theories, all mass scales, including those related to the running of cou-
pling constants, are induced by the spontaneous break-down of scale
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invariance. The proposed theories are not renormalizable. However,
they are valid e�ective �eld theories below a cut-o� scale related to the
background value of the dilaton (in this context see [30]).

• We considered a simple model with two scalar �elds (Higgs, Dilaton),
corresponding to the scalar part of the minimal SI extension of GR
plus SM (2.5) presented in chapter 2. Using the GR-SI prescription,
we found that quantum corrections to the Higgs mass depend only log-
arithmically on the e�ective cut-o� scale, and hence the theory has no
problem of instability of the Higgs mass against radiative corrections.

• It was described how the new procedure should be applied to a theory
with arbitrary �elds including gravity. In particular, it can be applied
to the scale-invariant models considered in the previous sections. As
a consequence, our �ndings based on scale invariance can remain true
also at the quantum level. More generally, the existence of an SI quan-
tization procedure legitimizes the use of SI as a building principle for
new theories.

Several questions remain open. Let us give a partial list of them.

• The consistency of the procedure still needs to be studied more thor-
oughly. For instance, one should do explicit computations in order
to see how the SI prescription makes for the conservation of the scale
current.

• We made use of a scale-invariant version of dimensional regulariza-
tion. However, also other common regularization methods can be
made scale-invariant. In cut-o� regularization, scale invariance can
be achieved by using a �eld-dependent value for the cut-o� scale (see
[30]). Similarly, in Pauli-Villars regularization, scale invariance can
be maintained if the Pauli-Villars masses are chosen to depend on the
�elds. In the case of lattice regularization, one can use a dynamical lat-
tice spacing (see [126]). One should try to reproduce the results found
in the present work by using these other regularization procedures.

• As the proposed construction is purely perturbative, it would also be
interesting to look for a non-perturbative approach. A proposal in this
direction, based on lattice regularization, has been discussed in [126].
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The Standard Model of particle physics (SM) as a description of matter at
the fundamental level and the theory of General Relativity (GR) describing
the gravitational interaction have both met great experimental con�rmation.
Based on the SM and GR is the hot big-bang model of cosmology, whose
predictions are also in good agreement with the observable features of the
present universe. Nevertheless, there exists a number of open issues, both
at the level of the underlying theories, SM and GR, as well as at the level of
cosmology, that calls for an extension of the standard theoretical framework.

In the present work, we considered minimal extensions of GR and the
SM based on the ideas of Scale Invariance (SI), Unimodular Gravity (UG)
and TDi� gravity. The task was twofold. On one hand, we had to implement
these ideas in a theoretically consistent way, and such that the modi�ed the-
ories do not violate well-established theoretical bounds. On the other hand,
we were interested in the cosmological phenomenology of the constructed
theories, especially in their relevance in the context of in�ation, dark energy
and the cosmological constant problem.

We started in chapter 2 by considering a minimal scale-invariant exten-
sion of the classical actions of GR and the SM, where scale invariance was
achieved through the introduction of a scalar dilaton �eld. In this model
(SI plus GR) all scales at the classical level have a common origin, namely,
they appear due to the spontaneous break-down of scale invariance. The
exactly massless dilaton �eld does not violate experimental bounds, because
it decouples from all SM �elds except for the Higgs �eld, to which it only
couples derivatively. It turned out that in this type of model, the dynamical
break-down of scale invariance automatically provides a mechanism for in�a-
tion. We found that in the presence of non-minimally coupled scalar �elds,
SI does not forbid the presence of a cosmological constant. The cosmological
constant is absent, as soon as the Jordan-frame potential has a �at direction
(β = 0). From the e�ective �eld theory point of view, this corresponds to an
unnatural �ne-tuning. Hence, SI does not solve the cosmological constant
problem. Still, we gave some theoretical arguments suggesting that the case
in which the potential has a �at direction might play a special role. In par-
ticular, it is the only case in which scale symmetry can be spontaneously
broken also in the absence of gravity.

In a next step we considered the same model with GR replaced by UG.
This resulted in the appearance of an arbitrary constant Λ0 (related to initial
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conditions) in the equations of motion, representing an additional sponta-
neous breaking of scale invariance. We found that in this model, unlike in
pure UG, Λ0 does not play the role of a cosmological constant, but rather
gives rise to a run-away potential for the dilaton. It corresponds exactly
to the type of potential introduced for quintessence long time ago [28, 30].
So, the combination of scale invariance and unimodular gravity lead us to a
model that automatically provides a mechanism for in�ation and moreover
contains a dynamical dark energy component in the form of the dilaton.
We found the parameters and initial conditions which give rise to successful
in�ation and late-time acceleration. In the considered minimal model, the
parameter bounds coming from in�ation were translated to a bound on the
equation of state parameter of dark energy. In the case where the cosmolog-
ical constant is absent (β = 0), the dilaton is the only component of dark
energy. For that case, we found a functional relation between the scalar spec-
tral index and the equation of state parameter of dark energy. Like in other
models of quintessence, the observed abundance of dark energy can only be
achieved by a precise tuning of initial conditions. Hence, in our model, the
cosmic coincidence problem remains unsolved.

The introduction of the dilaton was essential for the construction of the
minimal scale-invariant models involving GR or UG. However, simply adding
a new scalar �eld to the theory might seem to be an ad hoc solution. In chap-
ter 3, we considered the possibility to reduce the spacetime symmetries of
the gravitational action from the group of all di�eomorphisms (Di�) to the
group of transverse di�eomorphisms (TDi�). In theories invariant under
TDi�, the metric generally contains an additional scalar degree of freedom,
except for the particular cases given by GR and UG. Another generic feature
of TDi� invariant theories is the appearance of an arbitrary constant Λ0 in
the equations of motion. We found that replacing Di� by TDi� allows for
the construction of scale-invariant theories of gravity and matter, as soon as
the matter sector contains a scalar �eld (which can be the SM Higgs �eld).
In other words, in SI TDi� theories, the dilaton appears as a part of the
metric. We found the conditions under which the constructed theories pro-
vide a viable description of particle physics and in particular reproduce the
SM phenomenology. The minimal model based on scale invariance and UG
turned out to be a particular case of a SI TDi� theory. The cosmological phe-
nomenology of SI TDi� theories is generally similar to the phenomenology
found in this particular case. To specify, these theories generically provide a
mechanism for in�ation as well as a dynamical dark energy component asso-
ciated to the dilaton. Like in the minimal model, the smallness or absence
of a cosmological constant requires a �ne-tuning of parameters.

In usual quantum �eld theories, scale invariance is anomalous. Hence,
one might expect the results of chapters 2 and 3, based on classical scale in-
variance, to be invalidated by quantum corrections. We presented in section
4 a new renormalization scheme that permits to construct quantum �eld the-
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ories, which are scale-invariant to all orders in perturbation theory and where
SI is spontaneously broken. In these theories, all scales, also the ones related
to the running of coupling constants, are consequences of the spontaneous
breaking of SI. Although the so-constructed theories are not renormalizable,
they are valid e�ective theories below an e�ective cut-o� scale.

In summary, we found that it is possible to construct viable scale-invariant
extensions of GR and the SM in which the gravitational scale as well as all
particle physics scales, including those related to running couplings, are in-
duced by the spontaneous break-down of SI. In these theories, the mass of
the Higgs �eld is protected from large radiative corrections due to exact SI.
Theories with spontaneously broken SI automatically provide a mechanism
for in�ation. If GR is replaced by UG or more generally by TDi� gravity,
they contain an additional mechanism of spontaneous symmetry breaking,
which allows the dilaton to be a dynamical dark energy component. In the
considered theories, the naturalness issue related to the cosmological con-
stant remains unsolved. Also, they cannot provide an explanation for the
big di�erences between the Planck scale, the electroweak scale and the cos-
mological scale.

Related to the present work, there exists a number of questions that
should be studied in more detail. Let us give a partial account of them.

• In the cosmological analysis of the model combining SI with UG, we
assumed the dynamics of the dilaton �eld to be negligible during re-
heating. This assumption should be checked by a quantitative study
of the reheating process including the dilaton. Also the assumption
that in the same model no entropy perturbations are generated needs
further con�rmation. We have seen that current observational bounds
on the equation of state parameter of dark energy do not allow to
distinguish a dilaton condensate from a cosmological constant. One
might ask, whether the presence of a dilaton �eld has other observable
signatures.

• The proposed theories based on TDi� invariance contain a big degree
of arbitrariness, due to the freedom in the choice of the theory-de�ning
functions. One should try to �nd criteria (e.g. an additional symmetry)
that allow to constrain the functional form of the TDF. One should
also further investigate the di�erence betwen GR and TDi� gravity.
For instance, one could try to understand how this di�erence manifests
itself in the canonical quantization procedure based on the Hamiltonian
formalism.

• One should try to get a deeper understanding of the constructed scale-
invariant quantum �eld theories. As already mentioned, it would be
important to explicitly compute the expectation value of the scale cur-
rent, in order to see how its conservation arises as a consequence of
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the SI prescription. Another interesting point concerns the relation
between the SI prescription and conformal invariance. In particular,
one could check whether, when applied to a theory that is invariant
under the full conformal group, the SI prescription allows to maintain
the full invariance (or only dilatation invariance) at the quantum level.
Yet another question to ask is, whether one can �nd a way to construct
renormalizable scale-invariant theories.

To summarize, many interesting question are awaiting us.
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Appendix





A. De�nition of the functional derivative

Consider the functional I, given by

I =
∫
d4xF (y(x), ∂µy(x), ∂µ∂νy(x), ...) , (A.1)

where F (x) = F (y(x), ∂µy(x), ∂µ∂νy(x), ...) can be called a functional den-
sity. The functional derivative of I with respect to a function y(x) is de�ned
as (cf. e.g. [127])

δI

δy(x)
≡
∫
d4x′

δF (x)
δy(x′)

, (A.2)

where the functional derivative of the functional density F (x) is de�ned
through

δF (x)
δy(x′)

= δ(x−x′)∂F
∂y

(x)+δ, µ(x−x′) ∂F

∂[∂µy]
(x)+δ, µν(x−x′) ∂F

∂[∂µ∂νy]
(x)+...

(A.3)
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B. One-loop analysis with an alternative SI

prescription

For the GR-SI prescription considered in the Letter, physics well below the
Planck scale associated with the dilaton vev χ0 was the same as for the
ordinary renormalizable scalar theory containing the Higgs �eld h only. This
is not necessarily the case if the SI prescription given by Eq. (4.4) is used.
Indeed, consider now a distinct way of continuing the scalar potential to
d-dimensional space-time:1

V =
λR
4

[
h

2−ε
1−εxa1ε − ζ2

Rχ
2−ε
1−εxb1ε

]2
, (B.1)

and introduce counter-terms for all terms appearing in the potential:

Vc.t.=
[

A

(
1
ε̄

+ a

)
h

2−ε
1−εχ

2−ε
1−εx(a1+b1)ε + (B.2)

B

(
1
ε̄

+ b

)
χ

4−2ε
1−ε x2b1ε + C

(
1
ε̄

+ c

)
h

4−2ε
1−ε x2a1ε

]
.

As before, we do not introduce any modi�cation of the kinetic terms. Now
we have more freedom in comparison with the GR-SI prescription due to the
existence of new arbitrary parameters a1 and b1.

The coe�cients A, B, and C are �xed as in Eq. (4.11). The parameters
a1 and b1 can be chosen in such a way that the one-loop e�ective potential
does not contain terms χ6/h2 and h6/χ2, which are singular at (0, 0). These
conditions lead to a1 = 0, b1 = 0. Then the requirement that the classical
�at direction x0 = ζ is not lifted by quantum e�ects gives (for ζ≪ 1):

b = 3a− 7 + 2 log(2λR) +O
(
ζ2
R

)
c =

1
3

[a+ 7− 2 log(2λR)] +O
(
ζ2
R

)
. (B.3)

With all these conditions satis�ed the one-loop e�ective potential as a
function of h for χ = χ0 �xed, h ∼ ζχ0 = v and ζ ≪ 1 is di�erent from
that in Eq. (4.13):

V 1l
eff (h, χ0) =

m4(h)
64π2

[
log

m2(h)
v2

+O
(
ζ2
R

)]
+ P1 log

h2

v2
+ P2 , (B.4)

1 In the notation with α ≡
√
λ and β ≡

√
λζ2, the prescription used here corresponds

to the substitutions α→ h
ε

1−ε xa1εαR and β → χ
ε

1−ε xb1εβR.
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where m2(h) = λR(3h2−v2) and P1, P2 are quadratic polynomials of h2 and
v2. Though the �rst term is exactly the standard e�ective potential for the
theory (4.1) with the dynamical �eld χ replaced by a constant χ0, the rest is
not simply a rede�nition of the coupling constants of the theory due to the
presence of log h2

v2 . In other words, even the low-energy physics is modi�ed
in comparison with ordinary renormalizable theories.



C. Exact expressions for the one-loop

analysis with the GR-SI prescription

The exact expressions for the coe�cients b and c of equation (4.12) are given
by

b = 1

(1+9ζ4
R)(ξχ+ζ2

Rξh)

(
a
(
3− 4ζ2

R + 3ζ4
R

) (
ξχ + ζ2

Rξh
)
− 6ζ6

Rξh(−1 + Log[2])

+2ζ2
R(ξh(−5 + Log[2])− ξχ(−8 + Log[4]))

+ξχLog[4]− 2ζ4
R(ξh(2 + Log[4]) + ξχ(−8 + Log[8]))

−2
(
1 + ζ2

R

) (
−1 + 3ζ2

R

) (
ξχ + ζ2

Rξh
)
Log

[
ζ2
R(1+ζ2

R)λR
ξχ+ζ2

Rξh

])
.

c = 1

(9+ζ4
R)(ξχ+ζ2

Rξh)

(
ζ2
Rξh

(
16 + a

(
3− 4ζ2

R + 3ζ4
R

)
− 4ζ2

R(−4 + Log[2])

−6Log[2] + ζ4
RLog[4]

)
+ ξχ

(
a
(
3− 4ζ2

R + 3ζ4
R

)
+2
(
1 + ζ2

R

) (
3 + ζ2

R(−5 + Log[2])− Log[8]
) )

+2
(
−3 + ζ2

R

) (
1 + ζ2

R

) (
ξχ + ζ2

Rξh
)
Log

[
ζ2
R(1+ζ2

R)λR
ξχ+ζ2

Rξh

])
.

The exact expression of the one-loop contribution to the e�ective potential
with a �at direction, obtained with the SI-GR prescription, is given by

V 1l
eff =

λ2
R

256π2
χ4f(x) , (C.1)

where f(x) is given by
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f(x) = 2
(
ζ4
R + 9ζ8

R + x4
(
9 + ζ4

R

)
+ x2

(
−6ζ2

R + 8ζ4
R − 6ζ6

R

))
(−3− 2Log [4π])

+ 4
ξχ+ζ2

Rξh

(
− 2ax2ζ2

R

(
3− 4ζ2

R + 3ζ4
R

) (
ξχ + ζ2

Rξh
)

+ aζ4
R

(
3− 4ζ2

R + 3ζ4
R

) (
ξχ + ζ2

Rξh
)

+2ζ6
R

(
1 + ζ2

R

) (
8ξχ +

(
−5 + 3ζ2

R

)
ξh
)

+ x4
( (

3(2 + a)− 4(1 + a)ζ2
R + (−10 + 3a)ζ4

R

)
ξχ

+ζ2
R

(
16 + 3a+ 4(4− a)ζ2

R + 3aζ4
R

)
ξh

))
+4
(
ζ4
R + 9ζ8

R + x4
(
9 + ζ4

R

)
+ x2

(
−6ζ2

R + 8ζ4
R − 6ζ6

R

))
Log

[
4π
(
ξχ + x2ξh

)]
+8
(
1 + ζ2

R

) (
ζ4
R − 3ζ6

R + x4
(
−3 + ζ2

R

))
Log

[
2ζ2
R(1+ζ2

R)λR
ξχ+ζ2

Rξh

]

−p(x)2
(
− Log[p(x)λR/2] + 1

p(x)r(x)(ξχ+x2ξh)2

(
(
x2 − ζ2

R

) (
ζ2
Rξχ

(
−7
(
r(x) + ζ2

R + 3ζ4
R

)
ξχ +

(
−r(x) + ζ2

R + 3ζ4
R

)
ξh
)
− x6

(
3 + ζ2

R

)
(ξχ − 7ξh)ξh

+x4
((

3 + ζ2
R

)
ξ2
χ +

(
r(x) + 3

(
9 + 7ζ2

R + 4ζ4
R

))
ξχξh +

(
7r(x)− 4ζ2

R + 12ζ4
R

)
ξ2
h

)
−x2

((
r(x)− 4ζ2

R

(
ζ2
R − 3

))
ξ2
χ − 3

(
3r(x)− (4 + 3r(x))ζ2

R − 7ζ4
R − 9ζ6

R

)
ξχξh − ζ2

R

(
r(x)− ζ2

R − 3ζ4
R

)
ξ2
h

) )
+2
(
ξχ + x2ξh

)2
Log

[
ξχ + x2ξh

] (
− r(x)ζ2

R + ζ4
R + 3r(x)ζ4

R + 6ζ6
R + 9ζ8

R + x4
(
3 + ζ2

R

)2
−x2

(
−3r(x) + (6 + r(x))ζ2

R + 4ζ4
R + 6ζ6

R

) )))

−q(x)2
(
− Log[−q(x)λR/2]− 1

q(x)r(x)(ξχ+x2ξh)2

(
(
x2 − ζ2

R

) (
ζ2
Rξχ

(
ζ2
R

(
1 + 3ζ2

R

)
(7ξχ − ξh)− r(x)(7ξχ + ξh)

)
+ x6

(
3 + ζ2

R

)
(ξχ − 7ξh)ξh

+x4
(
−
(
3 + ζ2

R

)
ξ2
χ +

(
r(x)− 3

(
9 + 7ζ2

R + 4ζ4
R

))
ξχξh +

(
7r(x) + 4ζ2

R − 12ζ4
R

)
ξ2
h

)
−x2

((
r(x) + 4ζ2

R

(
ζ2
R − 3

))
ξ2
χ − 3

(
3r(x) + (4− 3r(x)) ζ2

R + 7ζ4
R + 9ζ6

R

)
ξχξh − ζ2

R

(
r(x) + ζ2

R + 3ζ4
R

)
ξ2
h

) )
−2
(
ξχ + x2ξh

)2
Log

[
ξχ + x2ξh

] (
ζ2
R

(
r(x)− 3r(x)ζ2

R +
(
ζR + 3ζ3

R

)2)+ x4
(
3 + ζ2

R

)2
+x2

(
−3r(x) + (−6 + r(x))ζ2

R − 4ζ4
R − 6ζ6

R

) )))
,

(C.2)
with x = h

χ and the de�nitions

r(x) =
√
ζ4
R(1 + 3ζ2

R)2 − 2x2ζ2
R(3 + 2ζ2

R + 3ζ4
R) + x4(3 + ζ2

R)2 ,

p(x) = r(x)−
(
ζ2
R − 3ζ4

R − x2(3− ζ2
R)
)
,

q(x) = r(x) +
(
ζ2
R − 3ζ4

R − x2(3− ζ2
R)
)
.
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