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EC0OS2010, |. Introduction
14-17 June,

Lausanne Context

* Development of geothermal energy usage

* Deliver simultaneous energy services

e Electricity, district heating, cooling
 Conceptual process system design
 Efficient and economic use

e Site conditions

o Specificities of geothermal resources

= Need for a systematic methodology to design geothermal
energy conversion systems
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ECOS2010, 2. Methodology
14-17 June,

Lusame  Process design environment

Single Period Sequence

Physical models System Performance
resolution calculation
Superstructure of
conversion
technologies
Economic
performance
Superstructure of Energy
exploitable resources integration
Thermodynamic
performance

Energy services
demand profiles
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ECOS2010 2. Methodology
14-17 June,

Lausanne Resource models characteristics

* Models based on geological data to calculate Q&T

Shallow Q_I_ =m Cp - (Tz T Tout)

aquifers

Deep aquifers D O

Enhanced
Geothermal
Systems
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2. Methodology

Resource models characteristics

* Models based on geological data to calculate Q&T

Shallow
aquifers

Deep aquifers

Enhanced
Geothermal
Systems

Tin = 12C
m = 15kg/s
z = 300m
Tin, = 65C
m = 20kg/s
z = 2000m
T;n = 180C
m = 45kg/s
z = 5000m
p = 115bar

=4

Qt =m-c,- (T,

Tin

m, cp

Q'+

Nawells

Tmit

—Q

= Similar models, different characteristics!
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ECOS2010, 2. Methodology
14-17 June,

Lausanne Conversion technologies models

* Use of flowsheeting software (Belsim-Vali) to simulate
operating conditions

| -Flash

Flash systems

2-Flash

Organic Rankine Cycles < Simple ORC
| Different working fluids: Bleeding ORC
isobutane, butane, cyclobutane,
isopentane, pentane, benzene,
toluene

Mechanical heat
pump

Heat pumps

= Calculation of heat loads and produced/consumed power, no design of HEX network
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* Use of flowsheeting software (Belsim-Vali) to simulate
operating conditions

Vap. Frac: 0.0

toluene

506 kWth 2069 kWth 1514 kKWth
| -Flash
/ Mass flow: 10 kg/s
P: 20 bar . T:375.25K T:433.15K
T:375.25 K
Flash systems T 358,66 K T oTe s P 20 bar P 20 bar
\ Vap. Frac.: 0.0 Vap. Frac: 0.0 Vap. Frac: 1. O Vap. Frac: 1.0
fluid: 1-C4
2-F|3$h Prohontor 2 Stperheater
eheate 135 kWe
Turbine 1
154 kW
969 kWth 619 kWth
- : 358. 6 kWe
. o . M flow: 4 kg/ :
Organic Rankine Cycles /| Simple ORC P: 2q bar T 358.15 K Mass flow: 4 ks 4 Mass flow: 6 kg/s
ap. [Frac: 0. P:14.4 bar 358.15 I"" [ T:433.15K
Vap. Frac: 0.0 P: 14.4 bar T:422.61 K P: 14.4 bar
Vap. Frac: 1.0 P: 14.4 bar Re-superheater Vap. Frac: 1.0
Different working fluids: dine ORC Vap. Frac: 10
Blee ﬁz Pump 2 MP desuperheqtszr
. b b I b mp 1949 kWth 41 kWth 397 kWe
Isobutane, butane, cyclobutane, Proheater 1 Turbine 2
. . T 298.15 K T:298.15 K :
T:299.25 K T:394.30 K
isopentane, pentane, benzene, Mo P:3.48 bar P: .43 bar P:3.48 bar
Vap. Frac: 0.0 Vap. Frac: 1.0 Vap. Frac: 1.0
<

LP desuperheater

LP condenser

Mechanical heat
pump

Heat pumps

= Calculation of heat loads and produced/consumed power, no design of HEX network
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Lausanne Conversion technologies models

* Use of flowsheeting software (Belsim-Vali) to simulate
operating conditions

| -Flash Boiler
Flash systems
2-Flash Refrigeration
cycle

Organic Rankine Cycles | Simple ORC

\ Back-up technologies
| Different working fluids: Bleeding ORC
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Lausanne Demand profiles

* (GIS-based data for seasonal demand in urban areas (1)
e Allows to calculate Q&T

e District heating & Cooling

T Examples profiles

2 = 4 demand periods (full year)
T = Constraints on DH & DC
.
o T,

1.5Q [MVV]E

(1): Girardin et al.,A geographical information based system for the evaluation of integrated energy conversion systems in urban areas, ECOS 2008
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Lausanne System resolution

e Optimal integration of energy conversion system, resources and
demand

e Selection of resources and technologies
e Sizing of technologies

* Total heat exchanger network area

= Process integration techniques (pinch analysis) to solve MILP
problem

= Single objective: operating cost/investment cost/mechanical power

= Use of energy flows calculated at previous step

e System design for each period
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Lausanne Performance indicators

* Thermodynamic performance indicators
E _I_ Znserv —

1,p

* energy efficiency R Z”geo Qip + 22k Qi

* exergy efficiency

B+ Y Ba,
E+ T Z?gelo Ex Tip + ankp E.fC'i,p

p =
* Single period indicators

e Combined period indicators
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* Economic performance indicators

e |nvestment costs
 Operating costs

e TJotal annualized costs

= net profit
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Lausanne Performance indicators

* Economic performance indicators

Ngeo

nse’l'"U

® InVeStment COStS Cltot — Z Cd’l“ill,z' + Z Cequip,z’ + Z Cdistrib,i +DC + IC

Nserwv

 Operating costs COyp = Comaint, + Crman, + Cruet, + Crpr — (Y Rip)

1=1
e TJotal annualized costs COp, <0 = Revenue
'F Nperiods
= net profit ,
’ Cannual = C[annual(za yT') + Z COp Top.p T+ F
p=1

Connual < 0 = Profitable system
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@ « Extreme winter (88 h)
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Conversion
Technologies
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Resources Heat pump

» - Shallow aquifer | —» 1, = SC, Mmar = 2()]49/57 ~ = 300m
V Deep aquifer | —> T}, = 70C, 1mae = 100kg/s, z = 2000m
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' System Mmaz = 45kg/s, z = 5000m

@ 17th of June 2010 1



ECOS2010, 3. Case Study

14-17 June,
Lausanne Example case study
® « Extreme winter (88 h)
& ﬁ e Summer (525 h)
% ] R e Interseason (3942 h)
onversion I Simple ORC Goals:
echnologies
|. Satisfy demand with
— | Bleeding ORC geothermal resources

2. Maximize geothermal
Resources Hoat pusmp power production

Shallow resources —> — aquwer — Tzn — 807 mma,x — 20k9/87 Z = 300m
‘/ Deep aquifer | = Tm — 7007 Monar = 100kg/s, » = 2000m

= Enhanced T}, = 1800, Tin; = 100C
-Howr fock Geothermal | —
' System Mmaxr = 45k‘g/8, z = 5000m
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3. Case

Winter
:\ EGS (heat): 13335 kW
gssof POWer ORC' 2380
%360 2(763 kW §36
- - : Zﬂ‘ 50 kW " s20-
o River (C""’ source) SA (cold source): 585 kW
Summer — |
EGS (heat): 13335 kW
H Power ORC: _ £
§34o— 2‘809 I(W . 5340
|- ‘ 320
320 —Te D C: 0 k W N
a00,- — 1050 kW
- | Rlver (cold source) SA (cooling): 585 kW =

Study

Energy integration results
Extreme winter

42\
400

EGS (heat): 13335 kW

-4000

Power ORC:
2590 kW
Rlver (cold source) SA (cold source) 585 kW
nterseason
\ EGS (heat): 13335 kW
Power ORC: ,
2,8 14 kW 0 kW
— B
River (cold source) SA (coolmg) 585 kW
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Lausanne Energy integration results
Winter Extreme winter

EGS (heat): 13335 kW

440}~
420}~
400}~

EGS (heat): 13335 kW \

=" Power ORC: o

w2763 kW s Power ORC:

2%340 | S ' :%3 o 2590 kW
° > 27700 kW ==

River (cold source) SA (cold source) 585 kW Rrver (COld SOUFCG) SA (cold source) 585 kW

260

Summer Interseason
\ EGS (heat): 13335 kW - \ EGS (heat): 13335 kW
js Power ORC: | | DH: Z gogv Ie; g\i/c : :
o 2809 kW \5 0w f. 0 kW
ke DC: =z
300 — 1050 kW y sg0L — —
280 | R Id SA li 585 kW
—4000 -2000 2000 Heat I:toocé| W] 6000 8000 10000 Heat Load [kW] 12
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Lausamne  System performance

% Thermodynamic performance . 5
0.4 Exergy efficiency, average: 27.0%
0.3 Energy efficiency, average: 29.3%
0.2
0.1
0 — 5 == 1 === 1 =————— 5 ==
Summer Interseason Winter Extreme winter
B Exergy efficiency I Energy efficiency
USD/h Economic performance Usb
700.00 3'000'000.00
525.00 2'250'000.00
350.00 1'500'000.00
175.00 750'000.00
: . ‘
O e Itercemson Wit Extrerms e o |Net profit, accounting for all costs: 395438 $/yr

I Specific revenue B Total revenue

‘é/‘ 17th of June 2010 13



ECOS2010, 3. Case Study
14-17 June,

Lausamne  System performance

% Thermodynamic performance .
0.4 Exergy efficiency, average: 27.0%
0.3 Energy efficiency, average: 29.3%
" e Parasitic power (530 kW for EGS!)
0.1 . . . o
* More potential for district heating
° Summer Interseason Winter Extreme winter
B Exergy efficiency I Energy efficiency
USD/h Economic performance UsSD
700.00 3'000'000.00
525.00 2'250'000.00
350.00 1'500'000.00
175.00 750'000.00
° Summer Interseason Winter Extreme winter ° Net PrOﬁt’ accounting for a’" COStS: 395‘438 $/yr

I Specific revenue B Total revenue

‘é/‘ 17th of June 2010 13



ECOS2010, 3. Case Study
14-17 June,

Lausamne  System performance

% Thermodynamic performance

0.4 Exergy efficiency, average: 27.0%
03 / Energy efficiency, average: 29.3%

II II II II e Parasitic power (530 kW for EGS!)

* More potential for district heating

0.

N

0.

—

Summer Interseason Winter Extreme winter
B Exergy efficiency I Energy efficiency
USD/h Economic performance Usb
700.00 / 3'000'000.00
525.00 2'250'000.00
350.00 1'500'000.00
175.00 750'000.00
0 0 i . ¢
S torcemson Witer  Extrorme e Net profit, accounting for all costs: 395°438 $/yr

I Specific revenue B Total revenue

‘é/‘ 17th of June 2010 13



ECOS2010, 3. Case Study
14-17 June,

Lausamne  System performance

% Thermodynamic performance
0.4

Exergy efficiency, average: 27.0%

. / Energy efficiency, average: 29.3%
e Parasitic power (530 kW for EGS!)
0. * More potential for district heating

—

Summer Interseason Winter Extreme winter
B Exergy efficiency I Energy efficiency . . .
-y
S e USD [mportance of district heating to
700.00 / 3'000'000.00 INCredse efﬁClency and PrOﬁtablIlty!

525.00 2'250'000.00

350.00 1'500'000.00

175.00 750'000.00

0

. . ¢
Summer Interseason Winter Extreme winter ° Net PrOﬁt’ accountlng for a’" COStS' 395 438 $/yr

I Specific revenue B Total revenue

‘é/‘ 17th of June 2010 13



ECOS2010, 3. Case Study
14-17 June,

Lausamne  System performance
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0.4

Exergy efficiency, average: 27.0%
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e Parasitic power (530 kW for EGS!)
0. * More potential for district heating

—

summor " marsesson " Witer Extreme wine
o " By fnym p:Egy T e = |mportance of district heating to
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% Thermodynamic performance
0.4

Exergy efficiency, average: 27.0%

. / Energy efficiency, average: 29.3%
e Parasitic power (530 kW for EGS!)
0. * More potential for district heating

—

Summer Interseason Winter Extreme winter
B Exergy efficiency I Energy efficiency . . .
-y
S e USD [mportance of district heating to
700.00 / 3'000'000.00 INCredse efﬁClency and PrOﬁtablIlty!

525.00 2'250'000.00

= mportance of site conditions (demand
and climate)

350.00 1'500'000.00

175.00 750'000.00

0

. . ¢
Summer Interseason Winter Extreme winter ° Net PrOﬁt’ accountlng for a’" COStS' 395 438 $/yr

I Specific revenue B Total revenue
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Lausanne Conclusions

* Integration of 3 components allows for accurate system
description

* Accounts for site specificities
* Importance of the multi-period approach

e Seasonal variation in demand

* Influences system design

* Allows to identify potentials for seasonal storage

* Cogeneration to improve efficiency of geothermal resource
usage
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e Perspectives

e Optimal process design
* Multi-objective optimization

* Integration of environmental performance indicators using
LCA

* Integration of seasonal heat storage possibilities
* Geothermal residual heat valorization

e Solar thermal energy storage
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