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• Development of geothermal energy usage

• Deliver simultaneous energy services

• Electricity, district heating, cooling

• Conceptual process system design

• Efficient and economic use

• Site conditions

• Specificities of geothermal resources

➡ Need for a systematic methodology to design geothermal 
energy conversion systems
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ṁ = 15kg/s

z = 300m

Tin = 65C
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• GIS-based data for seasonal demand in urban areas (1)

• Allows to calculate Q&T

• District heating & Cooling

7

Examples profiles
➡ 4 demand periods (full year)
➡ Constraints on DH & DC
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(1): Girardin et al., A geographical information based system for the evaluation of integrated energy conversion systems in urban areas, ECOS 2008
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• Optimal integration of energy conversion system, resources and 
demand

• Selection of resources and technologies

• Sizing of technologies

• Total heat exchanger network area

➡ Process integration techniques (pinch analysis) to solve MILP 
problem

➡ Single objective: operating cost/investment cost/mechanical power 

➡ Use of energy flows calculated at previous step

• System design for each period
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Ė−p +

∑nserv

i=1 Q̇−i,p

Ė+
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−
i,p

Ė+
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Ėx = Q̇ · (1− Ta

Tlm
)

Tlm =
Tin − Tout

ln( Tin
Tout

)

1. Introduction      2. Methodology      3. Case Study      4. Conclusions 

εp =
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ECOS2010,
14-17 June,
Lausanne Conclusions

• Integration of 3 components allows for accurate system 
description

• Accounts for site specificities

• Importance of the multi-period approach

• Seasonal variation in demand

• Influences system design

• Allows to identify potentials for seasonal storage

• Cogeneration to improve efficiency of geothermal resource 
usage
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Lausanne Perspectives

• Optimal process design

• Multi-objective optimization

• Integration of environmental performance indicators using 
LCA

• Integration of seasonal heat storage possibilities

• Geothermal residual heat valorization

• Solar thermal energy storage
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Thank you for your attention!


