
Verifiable Network-Performance Measurements

Katerina Argyraki
EPFL, Switzerland

Petros Maniatis
Intel Labs Berkeley, USA

Ankit Singla∗

UIUC, USA

1. SETUP

Informally, we want to design a measurement system such

that (1) a monitor can accurately estimate the loss and delay

performance of each network domain that participates in the

system, (2) a network domain cannot bias the measurement

process to its advantage without being detected, and (3) it

needs a reasonable, tunable amount of resources to partic-

ipate. We propose such a system, called Network Confes-

sional.

1.1 Terminology

A domain is a contiguous network that falls under one

administrative entity; in the current Internet, a domain would

refer to an edge network or a single Autonomous System

(AS).

A path is a sequence of nodes, where each node corre-

sponds to a border router of a domain, and the first and last

node belong to edge domains (Fig. 1).

With respect to a specific path, a node can be either an

input node (the even-numbered nodes in Fig. 1) or an out-

put node (the odd-numbered nodes in Fig. 1). Two consec-

utive nodes are peering, if they belong to adjacent domains

(e.g., nodes 1 and 2, or 3 and 4 in Fig. 1). The link between

two peering nodes i and j is faulty, if it introduces packet

loss, or reordering, or delay beyond a value ∆ij that is pre-

negotiated between the two nodes (e.g., is characteristic of

the link technology between them).

Each packet is associated with a specific path k, i.e., it is

forwarded along path k until it reaches the last node on k or

it is dropped. Given an input node i and an output node j

that comes after i on path k, we denote by λk
ij the amount

of packet loss experienced by path-k traffic between nodes

i and j; we denote by δkij(q) the q-th quantile of the delay

experienced by path-k traffic between i and j—for instance,

if δkij(95) = 10 msec, this means that 95% of the packets

from path k that traverse i and j, experience delay below 10
msec between i and j.

1.2 Problem Statement

Each path k is associated with an entity called a moni-

tor. Time is divided in fixed intervals, and at the end of each

interval the path-k monitor and all the path-k nodes partici-

pate in a measurement protocol. After running the protocol,

∗Ankit contributed to this work when he was a research assistant at
EPFL.

for each input node i and output node j that comes after i

on path k, the path-k monitor computes an estimate of λk
ij ,

denoted by λ̃k
ij , and an estimate of δkij(q), denoted by δ̃kij(q).

We say that node i is correct with respect to (w.r.t.) path k,

if it participates in the measurement protocol with the path-

k monitor as specified. We say that node i is detectably

faulty w.r.t. path k, if it breaks the measurement protocol

in a way that affects a correct path-k node; the term “de-

tectably faulty” was introduced and formally defined in the

context of a distributed system in [11,12]. When a sequence

of nodes are detectably faulty w.r.t. path k, we call them ac-

complices w.r.t. path k. We say that node i is exposed to its

peering node j w.r.t. path k, if: node j is correct, node i is

detectably faulty and breaks the measurement protocol in a

way that affects j, and node j detects i’s behavior.

We want to design the measurement protocol, such that all

of the following conditions hold:

1. If nodes i and j are correct w.r.t. path k, then

|λ̃k
ij − λk

ij | < lkij , |δ̃
k
ij − δkij | < dkij w .p. πk

ij

The error margins, lkij and dkij , and the probability with

which they are honored, πk
ij , depend on (and can be

computed from) the rate of path-k traffic and node i’s

and node j’s configuration—in particular the amount

of memory and computing cycles used by the two nodes

to run the protocol.

2. If node i is detectably faulty w.r.t. path k, then some

accomplice of i is exposed w.r.t. path k to its peering

node.

3. If node i is correct w.r.t. all paths it participates in, it

does not need to maintain per-packet, per-flow, or per-

path state to run the protocol.

Figure 1: Circles represent administrative domains. The

numbered boxes represent border routers.

1

All symbols mentioned above are summarized in Table 1.

For brevity, when it is obvious from the context that we are

referring to a particular path, we drop the superscript k from

λk
ij and δkij .

Discussion. The first condition ensures that a monitor can

estimate the performance of correct domains with proba-

bilistic guarantees. The second condition ensures that, if

a domain deviates from the protocol in a way that affects

another domain (e.g., makes its performance appear worse

than it is), then the misbehaving domain is exposed to the

affected domain. For instance, suppose that node 5 in Fig. 1

tries to hide the fact that X is dropping packets by making

it appear as if it delivers these packets to node 6; as long as

node 6 is correct, according to the third condition, domain N

will detect X’s misbehavior. The third condition—no per-

packet, per-flow or per-path state—is important, because a

node may observe hundreds of thousands, perhaps even mil-

lions of concurrent flows and paths.

1.3 Assumptions

We make the following assumptions:

(1) There exists a way for each node to reliably exchange

messages with a monitor, such that the authenticity and in-

tegrity of each received message is guaranteed. One way of

realizing this assumption would be for each domain to estab-

lish an HTTPS connection with the monitor. It is possible to

design more efficient dissemination mechanisms, but that is

outside the scope of this paper.

(2) There exists a way for each of two peering nodes to

debug the inter-domain link between them and determine

whether it is faulty.

(3) Nodes (whether correct or faulty) do not apply any

transformation to the observed traffic other than packet loss,

delay, or reordering. In particular, they do not inject new

packets or modify observed packets.

(4) Each node (border router or middlebox attached to a

border router) can perform at wire speed simple per-packet

operations. These include packet timestamp generation, arith-

metic calculations or digest computations on a small, fixed

portion of a packet, and modification of local state in a buffer.

2. WHY A NEW PROTOCOL

Instead of describing our protocol from scratch, we first

build, in this section, “obvious” solutions by extending ex-

isting techniques, and explain why these do not meet the

conditions of our problem statement. We close with a brief

overview of Network Confessional.

Packet Obituaries+. As a first-cut solution, we consider

the following modest extension to the Packet Obituaries pro-

tocol [3]. Each node computes a receipt for every observed

packet, which consists of a digest for the corresponding packet

and the timestamp for when the packet was observed. The

path-k monitor collects all the receipts computed by all the

path-k nodes; to estimate λk
ij , it counts how many path-k

packets were observed at node i versus node j; to estimate

δkij , it compares the timestamps recorded for the same packet

at node i versus node j. Moreover, the monitor determines

that peering nodes i and j are inconsistent w.r.t. a certain

packet, if: (1) node i computed a receipt for the packet,

and node j did not; (2) the difference in the two timestamps

recorded for this packet at nodes i and j exceeds a value ∆ij

pre-negotiated between the two nodes. When the monitor

detects such an inconsistency, it notifies both involved nodes

(hence, if the inconsistency is the result of one node being

detectably faulty, that node is exposed to its peering node).

This protocol fails to meet our third condition: it requires

storing, processing, and disseminating per-packet receipts,

leaving no room to a participating domain to choose (and

tune, according to network conditions) the amount of re-

sources it devotes to reporting its performance.

Coordinated Trajectory Sampling. Since the fundamen-

tal problem with Packet Obituaries+ is maintaining per-packet

state, the first solution that comes to mind is to sample, i.e.,

produce receipts not on all packets, but on a representative

subset, and use them to infer statistics for the rest. Hence,

we first consider the following simple combination of Packet

Obituaries and Trajectory Sampling [7] (POTS, for brevity).

Each node applies a uniform hash function to a small,

fixed portion of each observed packet; if the outcome is

equal to a pre-configured value, then the packet is sampled

and a receipt is computed for it (note that, since all nodes use

the same sampling function, they all sample the same pack-

ets). The path-k monitor collects all receipts computed by

all path-k nodes; it estimates the loss and delay experienced

by all packets, based on the loss and delay experienced by a

representative subset of sampled packets [17]; it determines

and reports inconsistencies on sampled packets as in Packet

Obituaries+.

This protocol fails to meet our first condition: it is possi-

ble that all nodes are correct, yet a monitor’s estimates are

arbitrarily inaccurate. In particular, each input node can en-

gage in the following behavior: for each observed packet,

determine whether the packet should be sampled and, if yes,

treat the packet preferentially, e.g., assign it to a high-priority

queue. I.e., the nodes bias the sampling process, such that

they tell the truth about what happens to the sampled pack-

ets, but that is not representative of what happens to the rest

of the traffic.

Note that, even if we modify POTS, such that domains

sample non-overlapping subsets of packets, domains can col-

lude, such that all of them treat all subsets of sampled pack-

ets preferentially. In this way, all nodes are correct, yet a

monitor’s estimates can still be arbitrarily inaccurate.

Verifiable Aggregation. An alternative to sampling is ag-

gregation: instead of computing receipts for sampled pack-

ets, compute receipts for packet aggregates. Hence, we next

consider a combination of Packet Obituaries and the Lossy

Difference Aggregator (LDA) [13]. Note that we could have

equally used the “Secure Sketch” technique from [10]—the

2

Symbol Meaning

λk
ij Packet loss experienced by path-k traffic between

nodes i and j.

δkij(q) q-th quantile of delay experienced by path-k traffic

between nodes i and j.

lij Maximum estimation error incurred by path-k monitor

when estimating λk
ij .

dij Maximum estimation error incurred by path-k monitor

when estimating δkij(q).

πij Probability with which lij and dij are honored.

Table 1: Defined symbols.

conclusion would have been the same.

Each node divides the observed path-k traffic into “seg-

ments” (finite-length sequences of consecutively observed

packets), then divides packets from each segment into ag-

gregates based on their content (e.g., by applying a uniform

hash function to a small portion of each packet). It produces

a receipt for each aggregate in each segment, which consists

of an aggregate identifier, a packet count, and an average

timestamp. For simplicity, assume that all nodes produce

receipts on non-overlapping aggregates.

The path-k monitor collects all the receipts computed by

all path-k nodes; to estimate λk
ij , it counts the number of

packets observed at node i versus node j; to estimate δkij ,

it relies on the LDA technique (LDA does not estimate de-

lay quantiles, only average delay; however, one can imag-

ine an LDA extension, which would approximate the delay

distribution between the two nodes by combining average-

delay information from multiple aggregates). Moreover, the

monitor determines that peering nodes i and j are inconsis-

tent with respect to a segment, if: node i reported observing

more packets from that segment than node j, or the differ-

ence in the two average timestamps recorded for this seg-

ment at nodes i and j exceeds a value ∆ij pre-negotiated

between the two nodes. When the monitor detects such an

inconsistency, it notifies both involved nodes.

This protocol fails to meet our third condition: it requires

maintaining per-aggregate state (and recall that there exist

multiple aggregates per path). This is a fundamental lim-

itation of aggregation-based solutions—to produce receipts

on aggregates, nodes have to collect per-aggregate statistics,

which requires maintaining at least one record per active ag-

gregate, on fast memory that can be updated at line speed.

Our Solution. We employ sampling, but in a way that is

not susceptible to bias. Our solution shares elements with

Trajectory Sampling (nodes produce receipts for a subset of

observed packets and choose which packets to sample using

hash functions), but prevents sampling bias in the following

way: the sampling function is keyed on future traffic, mak-

ing the samples unpredictable. Specifically, a domain does

not know whether it will have to report measurements on a

particular packet until after it has forwarded that packet to its

downstream neighbor. As a result, an unscrupulous domain

has no way to decide whether to “sugarcoat” its performance

by preferentially treating particular packets. The challenge

is implementing this idea in a practical manner, i.e., without

requiring the source to explicitly signal to all the other nodes

which packets to sample, in accordance to the memory and

computing requirements dictated by our third condition, and

with per-domain tunability.

3. BASIC OPERATION

We now describe the basic elements of Network Confes-

sional. For simplicity, we assume, in this section, that all

nodes have synchronized clocks and that there is no ambigu-

ity regarding the path followed by a packet (i.e., when a node

observes a packet, it knows which path this packet is associ-

ated with). We relax these assumptions in the next section.

3.1 Node Operation

Each node samples a subset of the packets it observes

and generates a receipt for each sampled packet. A receipt

has form R = 〈ReporterID , ReporterConfig , PacketID ,

Time, NeighborID , ∆〉. ReporterID is the identity of the

reporting node and ReporterConfig a specification of its

sampling function (more on this later). PacketID is a digest

of the packet’s headers and a small portion of its content.

Time specifies when the packet was observed. NeighborID

is the identity of the node that is peering with the reporter

on the path where the packet belongs. ∆ is a value agreed

upon between the reporter and the neighbor; it is meant to

lower-bound the difference in timestamps one should expect

between the two nodes.

Instead of sampling packets in real time, each node col-

lects state on all observed packets, but only for a fixed, short

period of time (milliseconds or so). The node is periodi-

cally told which of the stored per-packet state to keep and

which to discard. Since a domain learns whether a packet’s

fate will affect estimates of its performance only after it has

forwarded that packet, it cannot treat sampled packets pref-

erentially.

A key question is who tells each node which packets to

sample. One approach would be to use explicit signaling;

for example, in Fig. 1, domain S could explicitly tell all

nodes which packets to sample from the packet stream sent

from S to D, as in the PAAI-1 packet-dropping adversary

identification protocol [18]. In our context, however, that ap-

proach would be naı̈ve, because it would require each source

domain to actively probe all Internet paths through which

it sends traffic; it would also require each node to imple-

ment fine-granularity per-packet timers. Instead, each node

decides whether to sample a packet based on the contents

of another packet observed later. In this sense, domain S

implicitly dictates which of its packets should be sampled,

through the traffic it sends out subsequently.

More specifically, each node maintains a circular buffer,

where it stores a tuple (path ID, packet ID, and timestamp)

for the β most recently observed packets. Alg. 1 shows what

happens when a node observes a new packet p. First, the

node computes a tuple Tp for the new packet (line 1). Then,

3

Algorithm 1 ProcessPacket(packet p)

PathID(packet) packet’s path

PacketID(packet) hash function

MarkerID(packet) hash function

Hash(packet1, packet2) hash function

µ marking threshold

σ sampling threshold

Buffer circular buffer

Initially Buffer ← ∅

1: Tp ← 〈PathID(p),PacketID(p),Time〉
2: if MarkerID(p) < µ then

3: for all T in Buffer do

4: if T.PathID = Tp.PathID then

5: if Hash(T.PacketID , Tp.PacketID) < σ then

6: Copy T for dissemination

7: Remove T from Buffer

8: Copy Tp for dissemination

9: else

10: Add Tp to Buffer

if the packet satisfies a certain condition, it is chosen as a

“marker” packet (line 2). In that case, its contents determine

which of the β most recently observed packets to sample

(lines 3–5); only packets from the same path with the marker

packet can be sampled (line 4). The tuples of the chosen

packets are copied for later dissemination (line 6). All tu-

ples that correspond to packets from the same path with the

marker are removed from the buffer (line 7). The marker

packet itself is also sampled (line 8). If the new packet is not

chosen as a marker, its tuple is added to the circular buffer

(lines 9, 10).

The parameters of the algorithm are: the size of the cir-

cular buffer β, the marking threshold µ, which determines

which packets are markers (line 2), and the sampling thresh-

old σ, which determines which of the tuples in the circular

buffer to sample (line 5). Moreover, MarkerID(p) is a func-

tion that provides uniform hashing between 0 and some max-

imum valueM, while Hash (PacketID(p1), PacketID(p2))
provides uniform hashing between 0 and some maximum

value S .

Lemma 3.1. Consider a path that forms a fraction πp of

the total traffic observed by a node. If the node uses Alg. 1,

it samples each packet from that path with probability

πs =

(

1−
(

1− πp

µ

M

)β
)

·
σ

S
(1)

PROOF. An observed packet p is sampled when: (1) p’s

tuple is still in the circular buffer when the next marker m

from the same path arrives and (2) Hash (PacketID(p),
PacketID(m)) < σ. We first compute the probability of

event (1). Consider an observed packet p that is not chosen

as a marker. Each of the packets observed after p is from the

same path with p and is chosen as a marker with probability

πp
µ
M

. Hence, the number of packets observed between p

and m (we call it the “distance” between p and m) is a ran-

dom variable with geometric distribution and success rate

πp
µ
M

. It follows that the probability that Distance(p,m) <
β is equal to the cumulative distribution function (CDF) of

the geometric distribution, i.e., 1 −
(

1− πp
µ
M

)β
. Next, we

compute the probability of event (2) given event (1). Given

that p’ tuple is still in the circular buffer when m arrives, p

is sampled with probability σ
S

. Hence, packet p is sampled

with probability
(

1−
(

1− πp
µ
M

)β
)

· σ
S

.

Eq. 1 says that, as long as β ≫ M

µ
· 1

πp
, then πs ≈

σ
S

,

i.e., a node samples each observed packet p with the same

probability σ
S

, independently from which path p is associ-

ated with, and independently from the size of the circular

buffer β. Intuitively, as long as the circular buffer is large

enough that a packet p’s tuple is always in the buffer when

the next marker from the same path with p is observed, then

the size of the circular buffer β does not affect which packets

are sampled. For the rest of this section, we will assume that

this is the case. In Section 4.1, we will see how to choose

the various parameters of the system to make this hold.

The marking threshold µ is a system-wide constant, com-

mon for all nodes; hence, all nodes on a certain path select

the same packets as marker packets for that path (modulo

loss). In contrast, the sampling threshold σ is a local pa-

rameter, chosen independently at each node. If all nodes on

a certain path choose the same σ, they all sample the same

packets from that path (modulo loss and reordering). We

turn next to what happens when different nodes select differ-

ent σ.

3.2 Tunability

Each node chooses its own sampling threshold σ. At the

same time, given any number of nodes and their sampling

thresholds, we maximize the number of packets that are com-

monly sampled by all nodes on the same path. The key el-

ement that enables this property is the inequality in line 5

of Alg. 1. Consider nodes 1 and 2, with different sampling

thresholds σ1 and σ2 > σ1. Suppose there is no packet loss

or reordering between the two nodes; p is a packet sampled

by node 1, and m is the first marker from the same path with

p, observed after p. Since node 1 samples p, this necessarily

means that Hash(PacketID(p),PacketID(m))< σ1 < σ2,

which means that node 2 also samples p.

So, even though each node chooses its sampling thresh-

old σ independently, if there is no packet loss or reordering

between two nodes on the same path, the node with bigger

σ will sample at least all the packets from that path sampled

by the node with smaller σ.

3.3 Monitor Operation and Statistics

At the end of each time interval, the path-k monitor col-

lects all the receipts produced by path-k nodes. We now

4

consider the monitor associated with the path in Fig. 1 and

describe how it estimates and verifies the performance of do-

main X over a given time interval.

Loss Estimation. For brevity, we define λ = λ45. For

simplicity, we first assume that there is no packet reorder-

ing within domain X , i.e., packets that are not lost between

nodes 4 and 5 are observed at the two nodes in the same

order. We will remove this assumption later.

The monitor considers the receipts R4 and R5 generated

by the two nodes during the given time interval. By looking

at the ReporterConfig values of these receipts, it divides the

time interval into sub-intervals, such that, throughout each

sub-interval, each node used a constant sampling threshold.

For each sub-interval, it counts the number of packets K

that were sampled by node 4 and should have been sam-

pled by both nodes, i.e., all packets p that: (1) were sampled

by node 4 based on a marker m that was also observed at

node 5 and (2) satisfy Hash(PacketID(p), PacketID(m))
< σmin , where σmin is the smaller sampling threshold used

by the two nodes. Of these K packets, it counts the number

of packets k that were not sampled by node 5 and estimates

the loss rate λ between the two nodes as λ̃ = k
K

.

Now assume that there is some packet reordering between

the two nodes. As above, the receipt collector first counts

the number of packets K that were sampled by node 4 and

should have been sampled by both nodes and, of these, the

number of packets k that were not sampled by node 5. Of

these k packets, let’s say that kl were lost between nodes 4

and 5, while kr = k− kl were reordered with their previous

or next marker such that node 5 did observe them but did

not sample them. Hence, to accurately estimate the loss rate

between the two nodes (as kl

K
), the receipt collector would

need to know kl or kr.

Fortunately, there is a simple way around this problem.

Packet reordering caused node 5 not to sample kr packets

that it would have sampled otherwise, but it also caused node

5 to sample k̄r packets that it would not have sampled, had

there been no reordering. Assuming that the probability of

two packets being reordered depends only on the distance

between them [8], then kr and k̄r should be statistically the

same. The receipt collector does not know kr (it is masked

by the kl packets that were lost between the two nodes), but

it does know k̄r; it is the number of packets p that: (1) were

not sampled by node 4, (2) were sampled by node 5 based on

a marker m that was also observed at node 4, and (3) satisfy

Hash(PacketID(p),PacketID(m)) < σmin . Hence, the

receipt collector computes k̄r and estimates the loss rate λ

between the two nodes as λ̃ = k−k̄r

K
, i.e., it approximates kr

with k̄r.

Lemma 3.2. The expected value of the estimate is λ. The

relative standard deviation is
√

1− λ

N πs λ
+

2 πr(1− πr)

N πs λ2
(2)

where all the parameters are specified in Table 2.

Parameter Meaning

λ Actual loss rate (that we are trying to estimate).
N Number of packets observed at node 4 during the

given sub-period before a marker m that was also
observed at node 5.

πs Probability that a packet is sampled, given by Eq. 1.
πr Probability that a packet is reordered with its marker

and observed at node 5 but not sampled by it.

Table 2: Parameters for Lemma 3.2.

PROOF. In the appendix.

Once we know the standard deviation of the estimate, it is

straightforward to compute its maximum distance from the

actual loss with a given probability π [16].

Lemma 3.2 tells us that packet reordering does not prevent

us from estimating λ correctly, however, it does increase the

relative standard deviation of our estimate. The relative stan-

dard deviation depends on the average number of sampled

packets that we use to produce the estimate (N πs in Eq. 2):

the better (lower) the relative standard deviation that we want

to achieve, the more samples (receipts on sampled packets)

we need to collect. To give some concrete numbers, sup-

pose that λ = 5%, and we want to estimate it with a relative

standard deviation of 0.1. According to Eq. 2, if there is no

packet reordering (πr = 0), we can produce a new estimate

every time we have collected receipts on N πs = 1900 new

packets; if there is packet reordering, such that πr = 10%

of the packets that should be sampled by node 5 miss their

marker and are not sampled, then we can produce an esti-

mate every time we have collected receipts on N πs = 9100
new packets. Assuming a traffic rate of 100 Mbps, a sam-

pling rate of πs = 1%, and about 400 bytes/packet, 1900
sampled packets correspond to 7 seconds, while 9100 pack-

ets correspond to 30 seconds. So, packet reordering forces

us to estimate loss rate at longer intervals in order to achieve

a given level of accuracy.

Delay Estimation. The receipt collector considers all the

receipts generated by nodes 4 and 5 during a given time pe-

riod. By looking at the PacketID of these receipts, it de-

termines the set of packets that were commonly sampled by

the two nodes. By comparing the Time reported by the two

nodes for each commonly sampled packet, it computes the

delay incurred by the packet within X . Finally, by combin-

ing the delay incurred by multiple packets, it estimates the

maximum delay incurred by q% of the packets, by using the

algorithm proposed in [17]. That algorithm takes as input (1)

the delays incurred by all sampled packets, (2) the quantile

q we are interested in, and (3) a probability π, and outputs a

lower and upper bound, such that the actual delay value we

are estimating falls between the two bounds with probability

π.

Verification. The monitor considers all the receipts gen-

erated by each pair of peering nodes i and j during the given

time interval. Then it identifies the set of packets that were

sampled by node i and should have been sampled by both

nodes (we explained how this is achieved in the “Loss Es-

5

timation” paragraph above). The monitor determines that

nodes i and j are consistent with respect to a packet p, if:

(1) Either both or none of them provide a receipt on p. (2)

If both nodes provide receipts on p (say, Ri(p) and Rj(p)),
then:

Ri(p).∆ = Rj(p).∆
Ri(p).Time −Rj(p).Time ≤ Rj(p).∆

These rules express the fact that a correct inter-domain link

does not introduce loss or unpredictable delay. If two peer-

ing nodes are not consistent with respect to any packet, the

monitor reports the inconsistency to both of them.

This means that, as long as peering nodes i and j use the

same sampling threshold (hence, are expected to sample the

same packets), if node i is not correct (i.e., tries to blame its

problems on j), while node j is correct, that will necessar-

ily lead to an inconsistency and expose i to j. However, if

node i uses a larger sampling threshold (hence, is expected

to sample more packets) then node i is free to lie about the

packets that should be sampled by i but not by j. In short,

the monitor can verify X’s performance, only based on the

packets that are expected to be commonly sampled by X and

its neighbors.

4. ANALYSIS

Network Confessional tries to (1) prevent nodes from bi-

asing their sampling and (2) maximize the number of pack-

ets commonly sampled by all nodes. We now look at how it

reacts when node behavior undermines these two goals.

4.1 Delayed Forwarding

Consider an input node on path k, which tries to cheat in

the following way: it briefly stores each path-k packet before

forwarding it, in case the next path-k marker arrives soon

enough for the node to determine whether the packet needs

be sampled and treat it accordingly. In this way, the node

manages to treat a fraction of the sampled path-k packets

preferentially, hence exaggerate its domain’s performance

w.r.t. path k.

To prevent domains from exaggerating their performance

in this way, the path-k monitor can discard any receipt pro-

duced by a node i, if the receipt corresponds to a packet

observed within a time interval τ before the next marker (at

node i). E.g., by choosing τ = 100 msec, the monitor en-

sures that, to learn that a packet needs to be sampled and treat

it preferentially and get away with it, a node would have to

first delay that packet by at least 100 msec.

The question then is, what fraction of the collected path-k

receipts does the monitor get to keep? The answer is equal

to the probability that a path-k packet is not observed within

an interval τ before the next path-k marker:

φ =
(

1−
µ

M

)rate×τ

(3)

where rate is the packet rate of path k. Intuitively, the higher

the frequency of markers, µ
M

, and the higher the packet rate

of path k, the more path-k packets are observed time-wise

close to the next path-k marker, hence the more the receipts

that the path-k monitor has to discard.

We want the fraction φ of valid (non-discarded) receipts to

be non-negligible, but we cannot achieve that for all packet

rates: for a given minimum fraction φ and a given frequency

of markers, µ
M

, there exists a maximum packet rate that path

k must honor in order for the path-k monitor to collect a non-

negligible number of receipts and compute accurate statis-

tics for the path. Differently said, the value of the marking

threshold µ determines the maximum packet rate for which

the monitors can compute accurate statistics. For example,

assuming τ = 100 msec and φ = 10%, if µ
M

= 0.00009,

then our system supports a maximum per-path packet rate

of 250 000 packets/sec (about 1 Gbps, assuming 500-byte

packets).

At the same time, as argued in Section 3.1, path k must

contribute a minimum fraction of the packets observed at

each node i in order for the path-k monitor to compute ac-

curate statistics for the path: from Eq. 1, if the probability of

a packet observed at node i belonging to path k is πp, node

i must use β ≫ M

µ
· 1

πp
in order for our analysis of Sec-

tion 3.3 to hold. Differently said, given a marking threshold

µ, the circular buffer size β used by node i determines the

minimum πp for which the monitors can compute accurate

statistics. For example, given µ
M

= 0.00009, if node i uses

β = 5000 000 tuples, then our system supports a minimum

πp = 0.02 for node i.

To summarize, the value of the marking threshold µ and

the circular buffer sizes used by the path-k nodes determine

the minimum and maximum packet rate that path k must

honor so that the corresponding monitor can compute accu-

rate statistics for the path. The next question then is, what

are reasonable values for today’s networks? Table 3 shows

the range of per-path rates that our system supports for dif-

ferent marker frequencies µ
M

, assuming a circular buffer that

can fit β = 5 million tuples. The minimum πp is computed

such that β ≫ M

µ
· 1

πp
. The minimum rate is computed from

πp, assuming a saturated OC-192 network interface, i.e., a

bit rate of 10 Gbps or a packet rate of 2.5 million packets

per second.1 The maximum rate in packets per second is

computed from Eq. 3, for τ = 100 msec and φ = 10%; it is

converted to Mbps assuming 500-byte packets.

Table 3 shows that we are facing a resource challenge.

We show numbers for β = 5 million tuples, because that

corresponds to a few MB of memory, which can fit within

a single SRAM chip, making our system easier to imple-

ment. Ideally, we would want to use one such small buffer

per node, even for nodes that correspond to OC-192 inter-

faces. However, doing so, would not allow us to cover a

large enough range of per-path packet rates—we could cover

only one of the four ranges stated in the table, which would

1We assume a saturated OC-192 interface in order to be conserva-
tive. If we assume a lower-rate and/or under-utilized interface, we
cover a larger range for the same parameter values.

6

τ = 100 msec, φ = 10%, β = 5 million tuples

µ
M

Min πp
Min rate, OC-192 Max rate

pps (Mbps) pps (Mbps)

0.00009 0.02 50 000 (200) 250 000 (1000)

0.00045 0.004 10 000 (40) 50 000 (200)

0.0022 0.0008 2000 (8) 10 000 (40)

0.01 0.00018 450 (1.8) 2000 (8)

Table 3: Range of supported per-path rates.

not be enough. On the other hand, to cover the four ranges

with a single buffer, we would need β = 500 million tu-

ples (β ≫ 1

0.00009
· 1

0.00018
), i.e., hundreds of memory chips,

which would make our system practically infeasible.

The solution to this resource challenge is to use multiple

buffers, each with different parameters, for each node. In

particular, each node has N circular buffers, each operating

with a different marking threshold; when a new packet is

observed at the node, the node runs Alg. 1 for each different

circular buffer, i.e., each observed packet causes the node

to change the state of all the circular buffers. However, in

the end, each buffer yields accurate statistics for a different

set of paths. For example, to cover all the four ranges of

Table 3, we need to use N = 4 circular buffers per OC-192

interface, each buffer corresponding to one row of the table

and covering the corresponding per-path packet-rate range.

4.2 Other Adversarial Behavior

Deliberate Marker Loss. An under-performing domain

(say X in Fig. 1) may drop all marker packets, causing the

next domain (N , in our example) to not sample any packets,

in order to ensure that X’s performance is never verified ac-

cording to N ’s receipts or simply to make N look bad. Such

behavior is necessarily exposed, because all marker packets

must be sampled. If X drops a marker m, it either has to

admit dropping it, or lie and be inconsistent with N ’s report

that it never received m. So, if X consistently drops marker

packets, it either admits it and is globally exposed as under-

performing and misbehaving, or blames the losses on N and

is exposed to N as a liar.

Packet Crafting. Network Confessional was not designed

to resist attacks where domains deliberately inject or modify

packets (Section 1), however, we do discuss what happens

when it encounters such behavior. Suppose domain X mod-

ifies an observed packet p or, equivalently, drops p and in-

troduces a new packet q in its place. Let’s first assume that q

has a different packet ID from p. There are several cases: (1)

p is sampled, in which case, node 4 produces a receipt on p,

but node 5 does not, hence X appears to have dropped p. (2)

q is sampled, in which case, X appears to have introduced

a new packet. (3) Neither packet is sampled, in which case,

X’s behavior does not impact its receipts. So, it is possible

for X to modify a few packets and get away with it. How-

ever, if it consistently engages in such behavior, given that it

cannot predict which packets will be sampled, it will even-

tually have to report on one of the modified packets, and its

behavior will be exposed. On the other hand, if X can craft q

such that it has the same packet ID with p, then its behavior

does not impact its receipts at all. We believe that we can de-

fend against such attacks by making it hard to craft packets

with a given packet ID, but we defer this to future work.

Now suppose domain X modifies the TTL field of the IP

header of an observed packet p, such that p is dropped within

domain N ; as a result, N appears (based on its receipts) to

be under-performing. Network Confessional cannot detect

such malicious behavior, and it is not meant to; it is meant to

detect where packets are dropped or delayed, and this is pre-

cisely what it does in this case, even if the reason for the drop

is not really N ’s fault. Of course, if X consistently engages

in such behavior, N will eventually detect that it is drop-

ping packets, investigate the problem, and trace it back to

X delivering packets with low TTL. In this sense, Network

Confessional does exactly what it is meant to—detect packet

loss and unpredictable delay and alert the involved domains;

how each domain responds and investigates depends on its

policy.

5. PRACTICAL CONSIDERATIONS

We now relax the assumptions made in Section 3—that

all nodes must have perfectly synchronized clocks and that

there is no ambiguity regarding the path followed by each

observed packet.

Clock Synchronization. Network Confessional does not

dictate any particular clock-synchronization policy. How-

ever, it is to each participating domain’s best interest to keep

its reporting nodes (its border routers) reasonably synchro-

nized, since the domain’s delay performance will be esti-

mated based on the timestamps reported by these nodes. More-

over, it is to two neighboring domains’ best interest to keep

peering nodes reasonably synchronized, otherwise their times-

tamp difference will exceed the reported ∆, and the two

neighbors will generate inconsistent reports (hence appear

to have a problematic inter-domain link or be involved in a

lie). We should clarify that domains are free to report arbi-

trarily large ∆ values: nothing prevents nodes 3 and 4 from

reporting a ∆ of seconds between them, hence not needing

to synchronize their clocks beyond that granularity. How-

ever, that does make it look like they are connected through

an awfully slow inter-domain link—not a good feature to ad-

vertise to their customers and peers.

So, what is a reasonable granularity at which a domain

should keep its border routers synchronized? Since typical

intra-domain latency is on the order of tens of milliseconds,

a granularity of a few milliseconds is sufficient. This is re-

portedly achievable with NTP [5]. But if NTP is not deemed

sufficiently reliable, a domain can equip its border routers

with radio or GPS receivers [1], currently costing $200 a

piece—a negligible cost compared to that of a border router.

Mapping Packets to Paths. In reality, a node cannot

know the path followed by each observed packet, so it clas-

7

Figure 2: Domain S load-balances traffic with the same

source and destination prefix across two inter-domain

paths.

sifies packets per {source prefix, destination prefix} pair,

where “prefix” is the origin prefix of the corresponding IP

address as obtained through BGP, such that all domains that

observe a packet p derive the same prefix pair for the packet.

This has no implication for us when all packets with the

same source and destination prefix follow the same path;

otherwise, it requires a straightforward extension that we

describe next. We should clarify that this extension is not

needed by domains that apply the common types of load-

balancing. For instance, domains can load-balance traffic

per destination prefix or source/destination prefix across mul-

tiple inter-domain paths without the extension. It is only

needed by domains that load-balance traffic with the same

source and destination prefix across different inter-domain

paths; we are not aware of ISPs engaging in such load-balancing,

but there is no way to verify that they do not.

First, we explain why load-balancing traffic with the same

PathID across multiple inter-domain paths is problematic

for Network Confessional. Consider the scenario depicted

in Figure 2. Suppose node 1 observes packet sequence 〈p1,
p2, p3, p4,m1, p5, p6, p7, p8, m2〉 and samples packets p1, p4
based on marker m1 and packets p5, p8 based on marker

m2. Now suppose that node 1 load-balances the observed se-

quence across nodes 2a and 2b, such that 2a observes packet

sequence 〈p1, p3,m1, p6, p8〉 and samples packet p1 based

on marker m1, while 2b observes packet sequence 〈p2, p4,
p5, p7,m2〉 and samples packets p2, p5 based on marker m2.

So, load-balancing has a similar effect to packet reordering:

First, some packets are sampled at L’s entry point and suc-

cessfully delivered to the next domain(s), yet not sampled

by any of its exit points (packets p4 and p8); we say that

these packets were downgraded. Second, some packets are

not sampled at L’s entry point, yet are sampled at one of

its exit points (packet p2); we way that these packets were

upgraded. As a result, a receipt collector cannot just count

how many packets were sampled at L’s entry point but not at

its exit points as lost, because that would over-estimate L’s

loss.

We now describe how a receipt collector estimates L’s

loss during a certain time period. In a nutshell, it performs

the same trick that we used to deal with packet reorder-

ing (Section 3.3), i.e., leverages the fact that the number of

downgraded and upgraded packets should be statistically the

same in order to estimate the number of downgraded pack-

ets and subtract it from the loss estimate. More specifically:

Without loss of generality, we assume that during the given

time period, nodes 1, 2a, and 2b use the same buffer size

β and the same sampling threshold σ. The receipt collector

performs the following operations: (1) It counts the num-

ber of packets K that were sampled at L’s entry and should

have been sampled at L’s exit (all packets p that were sam-

pled by node 1 based on a marker m that was also observed

at either node 2a or node 2b). (2) Of these K packets, it

counts the number of packets k that were not sampled at L’s

exit. These are the packets that were either lost in L or were

“downgraded” due to load-balancing. (3) It counts the num-

ber of packets k̄ that were sampled at L’s exit but not at L’s

entry. These are the packets that were “upgraded” due to

load-balancing. (4) It estimates the loss rate λ as λ∗ = k−k̄
K

.

A similar approach is used to estimate N ’s loss rate.

The accuracy of this estimate is exactly the one given by

Lemma 3.2, with the difference that πr is now the proba-

bility that a packet misses its marker due to either packet

reordering or load-balancing.

Privacy. We will now argue informally that external ob-

servers can see no more internal information about a domain

with Network Confessional than they can see today without

it. We acknowledge that privacy deserves a fuller, formal

analysis, but defer that to future work.

First, we consider the “privacy perimeter” lying around

a single participating domain, i.e., consider whether Net-

work Confessional exposes to the outside world any infor-

mation that was previously exclusively known to the domain.

Our privacy argument is based on the content of traffic re-

ceipts. The two receipt fields directly dependent on traffic

are PacketID and Time, both of which can be filled in by

the domain’s neighbor transmitting packets to or receiving

packets from the domain. ReporterID , NeighborID , and

∆ are already known to the corresponding neighbors, hence

leak no information that was previously exclusively known

to the domain.

Next, we consider the privacy perimeter lying around a

pair of neighboring domains. As described in Section 3.1,

traffic receipts do reveal some information that would oth-

erwise remain private between the two neighbors: the num-

ber of peering points (as exposed via distinct ReporterID’s

and NeighborID’s), as well as the expected delay imposed

by the inter-domain links (as exposed via ∆). However, in

practice, two neighbors can easily conceal both types of in-

formation from outsiders. First, they can conceal the number

of peering points by using a single pair of ReporterID and

NeighborID in traffic receipts. They can also conceal the

actual delay of links in a similar fashion, as follows. They

can agree to “absorb” the latency of the inter-domain link

into their own intra-domain latencies. For instance, consider

nodes 5 and 6 from Fig. 1 and assume the latency of the link

between them is 1 msec. Instead of reporting ∆ = 1 msec,

the two nodes report ∆ ≈ 0. When node 5 observes packet

p at time t1, it reports observing it at time t1 + 0.5 msec;

similarly, when node 6 observes packet p at time t2, it re-

8

ports observing it at time t2 − 0.5 msec. In this way, the

latency of the inter-domain link is hidden from the outside

world and “charged” equally to the two domains. Note that

this does not affect in any way the capability of Network

Confessional to detect and expose lies.

Partial Deployment. Partial deployment is still beneficial

to the participating domains. Even if X is the only domain

on a certain path that has deployed Network Confessional,

its performance reports may not be verified by its neigh-

bors, but they are still verifiable. So, during a congestion

incident, X can still position itself as the “good” ISP that

provides troubleshooting information to its customers—it is

not its fault that the other ISPs on the path are not up to

the task. X can even use this as an incentive to encour-

age multi-network customers to connect all their networks

through X—since that way they avoid domains that do not

provide troubleshooting information.

Incentives. If domain X has not deployed Network Con-

fessional, but its neighbors have, then X’s neighbors are

free to blame their performance problems on X (since X

does not produce any receipts to refute their claims). Conse-

quently, the fault localization properties of Network Confes-

sional are provided only at the granularity of deployment—

informally, the sub-graph of the domain topology whose ver-

tices are participating domains and whose edges link par-

ticipating domains only over domain paths that include no

participating domain in the topology. On the other hand,

the loss of fault-localization resolution due to partial deploy-

ment can be viewed as an incentive for adoption: a domain

has to report on its performance in order to prevent its neigh-

bors from blaming their problems on it undetected.

6. IMPLEMENTATION

Hardware Implementation. We now outline one possi-

ble implementation of Network Confessional that requires

an SRAM buffer and a small TCAM (ternary content ad-

dressable memory) chip per linecard. TCAM is already widely

used in routers for storing forwarding and filtering tables, in

general, any state that needs to be accessed at line rate. It

is appropriate for such applications, because it can access

in parallel all the entries of a stored table and return any

matches within a few nanoseconds, independently of the ta-

ble’s size.

Each node uses two circular buffers per linecard: one for

marker packets, stored in TCAM, and one for non-marker

packets, stored in SRAM. Upon receiving a packet p, the

node determines whether p is a marker packet, creates for it

a 〈PathID , PacketID , Time〉 tuple, and adds it to the head

of the marker or non-marker buffer, accordingly. In paral-

lel, a separate process reads tuples from the tail of the non-

marker buffer and determines whether each tuple Tp should

be kept or discarded, as follows. First, it reads Tp.PathID

and Tp.Time , and identifies the corresponding marker tuple:

it uses the TCAM search capabilities to identify all tuples T ′

in the marker buffer with T ′.PathID = Tp.PathID , deletes

any tuple with T ′.Time < Tp.Time from the marker buffer,

and chooses the marker tuple T with the smallest times-

tamp that also satisfies T.Time > Tp.Time . Then, if Hash

(T.PacketID , Tp.PacketID) < σ, it copies Tp elsewhere

for later dissemination, otherwise, it discards Tp.

The feasibility and cost of this implementation are de-

termined by the sizes of the two buffers. The non-marker

buffer must have size β chosen based on the analysis of

Section 4.1. The marker buffer must have size significantly

larger than µ
M

β, so that the probability of an overflow (i.e.,

that a marker tuple is deleted before it is used) is negligible.

For instance, for µ
M

= 0.01, we need a non-marker buffer

that can store around 1 million tuples and a marker buffer

that can store around 0.1 million tuples.

Receipt Overhead. Each router that supports Network

Confessional must periodically extract the sampled state from

its data-path and export it in the form of receipts, akin to

how a NetFlow-enabled router periodically extracts NetFlow

records from its data-path and exports them to a management

server for processing. The amount of memory, processing,

and bandwidth required for this operation is directly propor-

tional to the rate at which the router produces receipts, i.e.,

its sampling rate. This can be locally tuned to match the

router’s resources by changing the sampling threshold σ.

We have said that each domain makes each receipt avail-

able to every other domain that observed the corresponding

traffic. Whether this happens pro-actively (through a con-

stant receipt stream) or on-demand (e.g., through a secure

web interface), receipt dissemination introduces, in each path,

bandwidth overhead that depends on (1) the number of bor-

der routers on that path and (2) the rate at which each of

these routers produces receipts. This may seem, at first,

to be cause for concern—one could argue that introducing

bandwidth overhead that grows with the total number of bor-

der routers per path is not a scalable approach. In practice,

this is not a problem: Paths consist on average of 3–4 do-

mains (hence 4–6 border routers), while most paths consist

of fewer than 6 domains (10 border routers) [2]. Consider a

6-domain path, where each border router samples 1% of the

path’s packets. Assuming 20 bytes per receipt, this path will

incur an overhead of 2 bytes per packet; assuming 400 bytes

per packet, this leads to a 0.5% bandwidth overhead.

Software Implementation. As a proof of concept, we

implemented Alg. 1 in Click, configured an eight-core Intel

Nehalem server as a standard IPv4 router, and fed to it a real

trace. Then we measured the router’s performance with and

without running Alg. 1 and saw no difference (in both cases,

the server routed 25Gbps). This is not surprising, given that,

when fed realistic traffic, a Nehalem server is bottlenecked

at the I/O [6], whereas our algorithm burdens the CPU.

In our implementation, we computed the PathID of each

packet as the concatenation of its source and destination ori-

gin prefixes. We implemented the MarkerID and PacketID

functions using the “Bob” hash function with different seeds,

because it has been shown to work well with Internet traf-

9

fic [15]. Given that the CAIDA traces do not include the full

payload of the captured packets, we applied the two func-

tions only to the IP header (modulo the TTL field) and the

small portion of the payload that is included—typically 20
bytes of TCP headers. Our results show that this is suffi-

cient, i.e., our implementation indeed collects a random sam-

ple from each path, with the sampling rate given by Eq. 1.

7. RELATED WORK

The idea of delayed disclosure of a secret—the sampling

seed—has appeared before in networked systems. In the

closest related work (which was developed in parallel with

our own) Zhang et al. [18] describe a taxonomy of schemes

that enable a trusted source/destination pair to identify on-

path network adversaries that are maliciously dropping pack-

ets. In one of these schemes (PAAI-1), delayed disclosure

comes in the form of an explicit request from the source to

all the nodes on the path identifying a packet that should

be acknowledged. First, that work targets a stronger adver-

sarial model (adversaries who may modify or inject pack-

ets) but relies on stronger assumptions as well: symmetric

traffic paths and application-layer processing of all receipts

by all nodes on a path (onion cryptography). In contrast,

Network Confessional makes no claim about the path tra-

versed by receipts to collectors and requires processing only

by the issuer of a receipt. Second, PAAI-1 requires that

the source generates explicit signaling in addition to nor-

mal traffic and that all nodes implement fine-granularity, per-

packet timers. In contrast, Network Confessional requires no

explicit signaling—using instead later traffic to derive late-

disclosed secrets—and a common circular buffer per node

without any associated timers. At a higher level, the work

by Zhang et al. concerns a usage model that requires end

points (e.g., the source and the destination) to be intimately

involved implementing functionality such as end-to-end re-

ceipts, whereas our approach could be implemented locally,

only within a short sub-path of an end-to-end path; and all

domains must participate equally to the monitoring scheme,

whereas local tunability is an explicit, fundamental require-

ment of Network Confessional.

The Packet Obituaries protocol [3] and the fault-localization

protocols from [9] inform traffic sources where individual

packets get lost or corrupted. AudIt provides source do-

mains with similar per-TCP-flow information [4]. Network

Confessional is similar to these protocols in that it relies on

in-path elements collecting and exporting traffic statistics;

it also borrows the concept of report consistency from Au-

dIt. However, unlike these protocols, Network Confessional

avoids the overheads necessary for collecting and propagat-

ing per-packet or per-flow state, while maintaining the veri-

fiability property.

In Trajectory Sampling, routers within an ISP sample pack-

ets using a hash function and record their digests, with the

purpose of inferring the internal paths (sequences of routers)

followed by packets [7]. The Lossy Difference Aggregator

enables two monitoring points to measure the loss and aver-

age delay between them by maintaining packet counts and

average timestamps for packet aggregates [13]. The “Secure

Sketch” technique from [10] enables Alice and Bob to detect

when the packets they exchange are lost, delayed, or modi-

fied beyond a certain level. All three protocols are relevant

to our work, in the sense that they measure network perfor-

mance, but, as explained in Section 2, none of them could

provide the properties necessary in our context.

Finally, Network Confessional can be viewed as a “per-

formance accountability mechanism,” which holds domains

accountable for their performance. An economic analysis

has showed that such a performance accountability mecha-

nism would foster ISP competition and innovation [14].

8. CONCLUSIONS

We have presented Network Confessional, a system by

which a network monitor can estimate the loss and delay

performance of network domains. Each participating do-

main produces receipts for a small sample of the packets

it observes. A domain cannot treat sampled packets pref-

erentially, because the sampling function is keyed on future

traffic, which means that a node learns whether it will have

to sample a packet, after it has forwarded the packet. More-

over, a domain cannot lie about what it did to each sampled

packet, because domains that are on the same path are ex-

pected to sample the same packets; as a result, to lie about

its performance with respect to a packet, a domain would

have to implicate one of its neighbors and be exposed to

that neighbor as a cheater. Running Network Confessional

does not require any form of coordination between different

network domains. Deployment comes at the cost of (mod-

est) new functionality at domain boundaries—the capability

to produce receipts, which requires computing simple hash

functions per observed packet. Producing these receipts re-

quires up to 4 SRAM chips per OC-192 network interface—

a reasonable requirement given that such interfaces already

come with hundreds of MB of expensive memory.

Acknowledgments. We would like to thank John Byers,

Marco Canini, Olivier Crameri, Mihai Dobrescu, Denisa Ghita,

Gianluca Iannaccone, Ming Iu, Jean-Philippe Martin-Flatin,

Sylvia Ratnasamy, Vyas Sekar, Nina Taft, and Willy Zwaenepoel

for their invaluable help.

9. REFERENCES
[1] USNO GPS Time Transfer.

http://tycho.usno.navy.mil/gpstt.html.
[2] BGP Table Data. http://bgp.potaroo.net/as6447,

October 2009.
[3] K. Argyraki, P. Maniatis, D. R. Cheriton, and S. Shenker. Providing

Packet Obituaries. In Proceedings of the ACM Workshop on Hot

Topics in Networking (HotNets), November 2004.
[4] K. Argyraki, P. Maniatis, O. Irzak, S. Ashish, and S. Shenker. Loss

and Delay Accountability for the Internet. In Proceedings of the

IEEE International Conference on Network Protocols (ICNP),
October 2007.

10

[5] J. Burbank, W. Kasch, J. Martin, and D. Mills. Network Time
Protocol Version 4 Protocol and Algorithms Specification.
http://tools.ietf.org/html/

draft-ietf-ntp-ntpv4-proto-06, May 2007.
[6] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,

G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: Exploiting Parallelism to Scale Software Routers. In
Proceedings of the ACM Symposium on Operating Systems

Principles (SOSP), October 2009.
[7] N. Duffield and M. Grossglauser. Trajectory Sampling for Direct

Traffic Observation. IEEE/ACM Transactions on Networking,
9(3):280–292, June 2001.

[8] L. Gharai, C. Perkins, and T. Lehman. Packet reordering, high speed
networks and transport protocol performance. In Proceedings of the

International Conference on Computer Communications and

Networks (ICCCN), October 2004.
[9] S. Goldberg, D. Xiao, B. Barak, and J. Rexford. A Cryptographic

Study of Secure Internet Measurement. Technical Report TR-783-07,
Princeton University, May 2007.

[10] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford.
Path-Quality Monitoring in the Presence of Adversaries. In
Proceedings of the ACM SIGMETRICS Conference, June 2008.

[11] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: Practical
Accountability for Distributed Systems. In Proceedings of ACM

SOSP, October 2007.
[12] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: Practical

Accountability for Distributed Systems. Technical report, October
2007. Available at http://www.cis.upenn.edu/˜ahae/
papers/peerreview-tr2.pdf.

[13] R. R. Kompella, K. Levchenko, A. C. Snoeren, and G. Varghese.
Every Microsecond Counts: Tracking Fine-Grain Latencies with a
Lossy Difference Aggregator. In Proceedings of the ACM

SIGCOMM Conference, August 2009.
[14] P. Laskowski and J. Chuang. Network Monitors and Contracting

Systems. In Proceedings of the ACM SIGCOMM Conference,
September 2006.

[15] M. Molina, S. Niccolini, and N. G. Duffield. A Comparative
Experimental Study of Hash Functions Applied to Packet Sampling.
In Proceedings of International Teletraffic Congress (ITC),
September 2005.

[16] P. Phaal and S. Panchen. Sampling Basics. http://www.sflow.
org/packetSamplingBasics/index.htm.

[17] J. Sommers, P. Barford, N. Duffied, and A. Ron. Accurate and
Efficient SLA Compliance Monitoring. In Proceedings of the ACM

SIGCOMM Conference, August 2007.
[18] X. Zhang, A. Jain, and A. Perrig. Packet-dropping Adversary

Identification for Data Plane Security. In Proceedings of the ACM

CoNext Conference, December 2008.

APPENDIX

A. PROOF OF LEMMA 4.2

We consider a period of time during which each of nodes

4 and 5 from Fig. 1 uses a constant buffer size and sampling

threshold; β is the smallest of the two buffer sizes used by

the two nodes, and σ is the smallest of the two sampling

thresholds.

A.1 Assumptions

We assume that packet loss and reordering are indepen-

dent and identically distributed Bernoulli processes, and that

reordering can only happen between packets that are ob-

served relatively close to one another.

More specifically, we assume that: (1) Each packet ob-

served at node 4 is lost between nodes 4 and 5 with proba-

bility λ, independently from any other packet. (2) A packet p

that is observed at node 4 between markers m1 and m2, and

is not lost between nodes 4 and 5, is reordered with either

m1 or m2 with probability ρ, independently from any other

packet. (3) Moreover, p can only be reordered with m1 or

m2, not with any other previous or future markers.

These is a simple model, and there is no guarantee that

it accurately describes Internet conditions. However, we are

not aware of any more sophisticated models that have been

shown to be more accurate, either. Note that we use this

model only to derive an estimate of the accuracy of our loss

estimation—it does not affect Network Confessional in any

other way.

A.2 Definitions

We define the following symbols:

Number of potentially sampled packets N . A packet p

counts toward N when: (i) p was observed at node 4 before

a marker m, which was also observed at node 5. (ii) The two

markers observed at node 4 right before and right after m

were also observed at node 5 in the same order. I.e., if node

4 observed packet sequence 〈mp, ...p, ...m, ...mn〉, node 5

observed packet sequence 〈mp, ...m, ...mn〉, where mp, m,

and mn are all markers. The reason for defining N in this

way will become apparent below.

Number of commonly sampled packets K. The number

of potentially sampled packets that are sampled by node 4,

and, unless they are lost or reordered with a marker, are also

sampled by node 5. A potentially sampled packet that is not

lost or reordered with a marker is sampled by both nodes

with probability πs, given by Eq. 1. Hence, K is a ran-

dom variable of binomial distribution, with expected value

E(K) = N πs.

Number of lost sampled packets kl. The number of com-

monly sampled packets that are lost between the two nodes

and, as a result, not sampled by node 5. More specifically, a

potentially sampled packet p belongs to this group of packets

when:

1. p is commonly sampled. The probability of this event

is πs.

2. p is lost between nodes 4 and 5. The probability of this

event is λ.

Given Assumption (1), kl is a random variable of binomial

distribution, with expected value E(kl) = N πs λ.

Number of downgraded packets kr. The number of com-

monly sampled packets that are reordered with a marker and,

as a result, not sampled by node 5. More specifically, a po-

tentially sampled packet p belongs to this group of packets

when:

1. p is observed at node 4 between markers m1 and m2

and is commonly sampled.

2. p is not lost between nodes 4 and 5.

11

3. p is reordered with either m1 or m2 between nodes 4

and 5. The probability of this event is ρ.

4. p is not sampled by node 5.

Given Assumptions (1) and (2), kr is a random variable of

binomial distribution, with expected value E(kr) = N πs πr,

where πr = (1− λ) ρ (1− πs).

Number of upgraded packets k̄r. The number of poten-

tially sampled packets that are not sampled by node 4, but,

due to packet reordering, are sampled by node 5. More

specifically, a potentially sampled packet p belongs to this

group of packets when:

1. p is observed at node 4 between markers m1 and m2

and is not commonly sampled.

2. p is not lost between nodes 4 and 5.

3. p is reordered with either m1 or m2 between nodes 4

and 5.

4. p is sampled by node 5.

Given Assumptions (1) and (2), k̄r is a random variable of

binomial distribution, with expected value E(k̄r) = N (1−
πs) π̄r, where π̄r = (1− λ) ρ πs.

Number of missed sampled packets k. These are the com-

monly sampled packets that are not sampled by node 5, ei-

ther because they are lost or because they are downgraded.

I.e., k = kl − kr.

Loss estimate λ∗. Of the above symbols, the receipt collec-

tor can compute K, k, and k̄r. It estimates λ as

λ∗ =
k − kl

K

At this point, we can explain why N was defined as it was:

because that definition, in combination with Assumption (3),

enabled us to define kr and k̄r such that (i) they have the

same probability mass function, and (ii) the receipt collector

can compute k̄r. We clarify point (ii): Consider an upgraded

packet p that is sampled by node 5 based on a marker m; the

previous and next markers observed at node 5 are mp and

mn. To determine that p is an upgraded packet, the receipt

collector must first determine whether p is a potentially sam-

pled packet, i.e., whether p was observed at node 4 before a

marker m′ that was also observed at node 5. Since p was not

sampled by node 4, the receipt collector does not know be-

fore which marker p was observed at node 4. However, given

Assumption (3), it knows that p was observed either before

mp or before mn at node 4; both of these packets were also

observed at node 5, hence, p is a potentially sampled packet.

A.3 Expected Value

The expected value of the estimate λ∗ is equal to:

E(λ∗) = E

(

k − k̄r

K

)

= E

(

kl + kr − k̄r

K

)

= E

(

kl

K

)

+ E

(

kr

K

)

− E

(

k̄r

K

)

. (4)

We first compute E
(

kl

K

)

:

E

(

kl

K

)

=

N
∑

K=0

K
∑

kl=0

kl

K
pmf(kl,K)

=

N
∑

K=0

K
∑

kl=0

kl

K
pmf(kl|K) · pmf(K)

=
N
∑

K=0

1

K
pmf(K)

K
∑

kl=0

kl pmf(kl|K)

=

N
∑

K=0

1

K
pmf(K) · E(kl|K)

=

N
∑

K=0

1

K
pmf(K) ·K λ

=

N
∑

K=0

pmf(K) · λ

= λ

N
∑

K=0

pmf(K)

= λ. (5)

In a similar way, we can show that:

E

(

kr

K

)

= E

(

k̄r

K

)

= πr. (6)

Combining Eqs. 4, 5 and 6, we get:

E(λ∗) = λ. (7)

A.4 Relative Standard Deviation

12

The variance of λ∗ is equal to:

V ar(λ∗) =

E((λ∗)2)− (E(λ∗))2 =

E

(

(

k − k̄r

K

)2
)

− λ2 =

E

(

(

kl + kr − k̄r

K

)2
)

− λ2 =

E

(

k2l + k2r + k̄r
2
+ 2kl − 2kl − 2kr
K2

)

− λ2 =

E

(

k2l
K2

)

+ E

(

k2r
K2

)

+ E

(

k̄r
2

K2

)

+ 2 E

(

kl kr

K2

)

− 2 E

(

kl k̄r

K2

)

− 2 E

(

kr k̄r

K2

)

− λ2. (8)

We first compute E
(

k2

l

K2

)

:

E

(

k2l
K2

)

=

N
∑

K=0

K
∑

kl=0

k2l
K2

pmf(K, kl)

=

N
∑

K=0

K
∑

kl=0

k2l
K2

pmf(kl|K) · pmf(K)

=
N
∑

K=0

1

K2
pmf(K)

K
∑

kl=0

k2l pmf(kl|K)

=

N
∑

K=0

1

K2
pmf(K) E[kl

2|K]

=

N
∑

K=0

1

K2
pmf(K)

(

Var [kl|K] + (E[kl|K])2
)

=

N
∑

K=0

1

K2
pmf(K)

(

Var [kl|K] +

(

K · E

[

kl

K
|K

])2
)

=
N
∑

K=0

1

K2
pmf(K)

(

Var [kl|K] +K2λ2
)

=

N
∑

K=0

1

K2
pmf(K)

(

Kλ(1− λ) +K2λ2
)

= λ2

(

N
∑

K=0

pmf(K)

)

+

λ(1− λ)

(

N
∑

K=0

1

K
pmf(K)

)

= λ2 + λ(1− λ)

(

N
∑

K=0

1

K
pmf(K)

)

= λ2 + λ(1− λ)E

[

1

K

]

= λ2 +
λ(1− λ)

E[K]

= λ2 +
λ(1− λ)

Nπs

. (9)

In a similar way, we can show that:

E

(

k2r
K2

)

= E

(

k̄r
2

K2

)

= π2

r +
πr(1− πr)

Nπs

. (10)

13

Next, we compute E
(

kr k̄r

K2

)

:

E

(

kr k̄r

K2

)

=

N
∑

K=0

K
∑

kr=0

N−K
∑

k̄r=0

kr k̄r

K2
pmf(K, kr, k̄r)

=

N
∑

K=0

K
∑

kr=0

N−K
∑

k̄r=0

kr k̄r

K2
pmf(k̄r|kr,K) · pmf(kr|K) · pmf(K)

=

N
∑

K=0

1

K2
pmf(K)

K
∑

kr=0

kr pmf(kr|K)

N−K
∑

k̄r=0

k̄r pmf(k̄r|kr,K)

=
N
∑

K=0

1

K2
pmf(K) · E[kr|K]

N−K
∑

k̄r=0

k̄r pmf(k̄r|kr,K)

=

N
∑

K=0

1

K2
pmf(K) · E[kr|K] · E[k̄r|kr,K]

=
N
∑

K=0

1

K2
pmf(K) · E[kr|K] · E[k̄r|K] (because the underlying processes generating k̄r and kr are indep.)

=

N
∑

K=0

1

K2
pmf(K) · (K πr) · ((N −K) π̄r)

=

N
∑

K=0

1

K
pmf(K) · πr · ((N −K) π̄r)

= πr π̄r

N
∑

K=0

N −K

K
pmf(K)

= πr π̄r

(

N
∑

K=0

N

K
pmf(K)−

N
∑

K=0

pmf(K)

)

= πr π̄r

(

N ·
N
∑

K=0

1

K
pmf(K) − 1

)

= πr π̄r

(

N · E

[

1

K

]

− 1

)

= πr π̄r

(

N

E[K]
− 1

)

= πr π̄r

(

N

Nπs

− 1

)

= πr · π̄r ·
1− πs

πs

= πr · (1− λ)ρπs ·
1− πs

πs

= πr · (1− λ)ρ(1− πs)

= π2

r . (11)

14

In a similar way, we can show that:

E

(

kl kr

K2

)

= E

(

kl k̄r

K2

)

. (12)

To compute the relative standard deviation, we first have

Var(λ∗) = E

(

k2l
K2

)

+ E

(

k2r
K2

)

+ E

(

k̄r
2

K2

)

+ 2 E

(

kl kr

K2

)

− 2 E

(

kl k̄r

K2

)

− 2 E

(

kr k̄r

K2

)

− λ2 (as per Eq. 8)

= E

(

k2l
K2

)

+ E

(

k2r
K2

)

+ E

(

k̄r
2

K2

)

− 2 E

(

kr k̄r

K2

)

− λ2 (as per Eq. 12)

= λ2 +
λ(1− λ)

Nπs

+ E

(

k2r
K2

)

+ E

(

k̄r
2

K2

)

− 2 E

(

kr k̄r

K2

)

− λ2 (as per Eq. 9)

=
λ(1− λ)

Nπs

+ E

(

k2r
K2

)

+ E

(

k̄r
2

K2

)

− 2 E

(

kr k̄r

K2

)

=
λ(1− λ)

Nπs

+ 2 ·

(

π2

r +
πr(1− πr)

Nπs

)

− 2 E

(

kr k̄r

K2

)

(as per Eq. 10)

=
λ(1− λ)

Nπs

+ 2 ·

(

π2

r +
πr(1− πr)

Nπs

)

− 2π2

r (as per Eq. 11)

=
λ(1− λ)

Nπs

+ 2 ·

(

π2

r +
πr(1− πr)

Nπs

)

− 2π2

r

=
λ(1− λ)

Nπs

+ 2 ·
πr(1− πr)

Nπs

(13)

The relative standard deviation is therefore

σ(λ∗)

λ
=

√

Var(λ∗)

λ
=

√

Var(λ∗)

λ2
=

√

1− λ

N πs λ
+

2 πr(1− πr)

N πs λ2
. (14)

Eqs. 7 and 14 prove Lemma 3.2.

15

