
Verifiable Network-Performance Measurements

Katerina Argyraki
EPFL, Switzerland

Petros Maniatis
Intel Labs Berkeley, USA

Ankit Singla∗

UIUC, USA

ABSTRACT

In the current Internet, there is no clean way for affected par-

ties to react to poor forwarding performance: to detect and

assess Service Level Agreement (SLA) violations by a con-

tractual partner, a domain must resort to ad-hoc monitoring

using probes. Instead, we propose Network Confessional,

a new, systematic approach to the problem of forwarding-

performance verification. Our system relies on voluntary re-

porting, allowing each network domain to disclose its loss

and delay performance to its customers and peers and, po-

tentially, a regulator. Most importantly, it enables verifiable

performance measurements, i.e., domains cannot abuse it to

significantly exaggerate their performance. Finally, our sys-

tem is tunable, allowing each participating domain to deter-

mine how many resources to devote to it independently (i.e.,

without any inter-domain coordination), exposing a con-

trollable trade-off between performance-verification

quality and resource consumption. Our system comes at the

cost of deploying modest functionality at the participating

domains’ border routers; we show that it requires reasonable

resources, well within modern network capabilities.

1. INTRODUCTION

The lack of a systematic method for estimating the perfor-

mance of Internet Service Providers (ISPs) is a well known

problem: when an ISP does not perform as expected, there

is no clean way for the affected parties to detect the prob-

lem so they can debug it, ask for compensation if a Service-

Level Agreement (SLA) has been violated, or simply learn

from it (e.g., re-assess a peering agreement with an under-

performing neighbor). This lack of information makes net-

work debugging difficult and slow, even leading ISPs to deny

their failures to their customers and peers, pointing fingers

at one another. One could attribute this situation to the best-

∗Singla contributed to this work when he was a research assistant
at EPFL.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2010, November 30 – December 3 2010, Philadelphia,
USA.
Copyright 2010 ACM 1-4503-0448-1/10/11 ...$5.00.

effort nature of the Internet which, by definition, provides

no a-priori guarantees. Yet that is no reason not to expect

useful, after-the-fact information about ISP performance—

actually, it makes perfect sense to expect such information

in a best-effort environment like the Internet, where commu-

nication quality often relies on quick failure detection and

on choosing the right providers and peers.

Since ISPs offer no explicit interface for their customers

and peers to verify their performance, the latter can only

resort to probing tools like traceroute or other active mea-

surements. Moreover, researchers have recently started to

combine probing from multiple vantage points (e.g., Planet-

Lab nodes) to gain information about ISP performance that

would not be accessible through simple probing [15, 16].

This information is typically extracted from channels with a

different purpose (e.g., ICMP traffic), because probing mech-

anisms are designed under the assumption that ISPs would

never freely provide honest information about their perfor-

mance.

But what if an ISP is required, e.g., by government regu-

lation, to expose information on how it treats different traffic

flows? The UK telecommunications regulator already took

a first step in 2009 by publicly disclosing information on

ISP performance [4], and there is ongoing debate regard-

ing the extent to which ISPs’ traffic handling should be reg-

ulated [5]. Yet experience says that, once ISPs know that

their performance is being measured in a certain way, they

find ways to game the measurement process. Hence, we be-

lieve that this is the right time to discuss the design and im-

plementation of an interface through which an ISP can pro-

vide accurate and verifiable information on its performance,

while consuming a reasonable, tunable amount of resources

for this purpose.

Moreover, given an either-or choice, an ISP may prefer

to expose information on its performance itself, rather than

have its performance evaluated by untrusted entities, through

potentially inaccurate mechanisms. Probing or other edge-

based “black-box” mechanisms typically run on coalitions

of end systems like PlanetLab; the ISP has no reason to

trust these, and they can provide no guarantee for the ac-

curacy of their measurements. If an ISP’s performance is to

be talked about anyway, an accurate, trusted self-reporting

system may be preferable to the ISP, because, at least, it pro-

vides the ISP with control over the quality and quantity of

the information that is revealed about its business.

Finally, ISPs often need to exchange performance infor-

mation anyway with their customers and peers, in order to

handle customer complaints. When a customer calls her ISP

to complain that she cannot reach a certain destination, the

ISP needs to know whether the problem lies in its own local

network, the customer’s network, the network of the peer

that is handling traffic to that destination, or the destina-

tion’s network—because each of these cases warrants a dif-

ferent response. Today, this information is acquired by ISP

operators in a reactive, ad-hoc manner, which means that it

takes time to resolve each complaint, potentially leaving cus-

tomers dissatisfied. It makes sense that an ISP would prefer

to collaborate with its customers and peers and willingly ex-

change troubleshooting reports with them, provided that it

can trust these reports to be accurate and honest.

In the rest of the paper, we describe Network Confessional,

a protocol that enables verifiable network-performance mea-

surements. Each ISP that runs this protocol produces traffic

receipts on sampled packets at its entry and exit points (i.e.,

border routers), exchanges these with the other networks that

observe its traffic, and, potentially, makes them available to

a verifier such as a regulator. These receipts are specially

crafted, so that: (1) they enable accurate estimation of ISP

performance, without revealing any information about the

internal structure or routing policies of ISPs beyond what

is already publicly available through BGP routing tables; (2)

ISPs cannot produce fake receipts to significantly exaggerate

their performance; and (3) each ISP can choose how many

resources to devote to receipt generation independently from

others, yet in a way that does not compromise the verifiabil-

ity of the derived measurements. These features come at the

cost of deploying new functionality at the participating do-

mains’ border routers, but we show that that requires reason-

able resources and readily available hardware (we describe

one implementation that requires 10 MB of SRAM and a

TCAM chip of 1 MB per router linecard).

We start, in Section 2, with our problem statement, threat

model, and assumptions. Then we explain, in Section 3, why

straightforward extensions of existing techniques fail to pro-

vide an adequate solution. We describe Network Confes-

sional in two parts: first, under certain simplifying assump-

tions in Section 4, then without these assumptions in Sec-

tion 5. We describe an implementation in Section 6 and ex-

perimentally evaluate the quality of information it provides

in Section 7. We discuss related work in Section 8 and con-

clude in Section 9.

2. SETUP

Informally, we want to design a measurement protocol

such that (1) domains can accurately estimate the perfor-

mance of their neighbors, (2) domains cannot bias the mea-

surement process to their advantage without being detected,

and (3) they need a reasonable, tunable amount of resources

to collect and exchange the measurements.

Figure 1: Circles represent administrative domains. The

numbered boxes represent border routers.

2.1 Terminology

A domain is a contiguous network that falls under one ad-

ministrative entity; in the current Internet, a domain would

refer to an edge network or a single Autonomous System

(AS). A path is a sequence of nodes, where each node corre-

sponds to a border router of a domain, and the first and last

node belong to edge domains (Fig. 1).

With respect to a specific path, a node can be either an

input node (the even-numbered nodes in Fig. 1) or an out-

put node (the odd-numbered nodes in Fig. 1). Two consec-

utive nodes are peering, if they belong to adjacent domains

(e.g., nodes 1 and 2, or 3 and 4 in Fig. 1). The link between

two peering nodes i and j is faulty, if it introduces packet

loss, or reordering, or delay beyond a value ∆ij that is pre-

negotiated between the two nodes (e.g., is characteristic of

the link technology between them).

A packet stream observed at node i is a time series, where

each element corresponds to a packet and the time at which

the packet was observed at node i.

2.2 Problem Statement

We consider a set of paths. Each packet is associated with

a specific path k, i.e., it is forwarded along path k until it

reaches the last node on k or it is dropped.

Each node i on path k observes a packet stream P k
i . Each

node j that comes after i on path k, observes a packet stream

P k
j = T k

ij (P
k
i), where T k

ij denotes transformation and may

be any combination of packet loss, delay and reordering (but

may not involve packet injection or modification). I.e., the

packets in P k
j are always a subset of the packets in P k

i , and

two packets may appear with a different order in the two

packet streams. Given an input node i and an output node j

that comes after i on path k, we denote by λk
ij the amount

of packet loss experienced by path-k traffic between nodes

i and j; we denote by δkij(q) the q-th quantile of the delay

experienced by path-k traffic between i and j—for instance,

if δkij(95) = 10 msec, this means that 95% of the packets

from path k that traverse nodes i and j, experience delay

below 10 msec between i and j.

All the nodes on each path k participate in a measure-

ment protocol, according to which, each node i that observes

packet stream P k
i , computes a set of receipts, Rk

i = Fr(P
k
i).

All receipts generated by all nodes on path k are correctly

delivered to a set of receipt collectors, which compute a set

of functions on them. The receipt collectors may include any

of the domains that observe traffic from path k and/or a reg-

ulator. Each receipt collector can compute three functions:

1. For each pair of an input node i and output node j that

comes after i on path k, a loss function Fλ(R
k
i , R

k
j),

which returns an estimate of the packet loss λk
ij , and a

delay-quantile function Fδ(R
k
i , R

k
j , q), which returns

an estimate of the delay quantile δkij(q).

2. For each pair of peering nodes i and j on path k, a

verification functionFv(R
k
i , R

k
j), which returns “true”

or “false.” “True” indicates that the peering nodes are

functioning (including running the protocol) correctly.

Our threat model is as follows. Node i is honest with

respect to path k, if it computes Rk
i using the specified Fr.

Node i is lying with respect to path k, if it computes at least

one receipt in Rk
i using an arbitrary F̂r. Lying nodes can

collude and choose their F̂r in coordination. A domain is

honest with respect to path k, if both of its nodes are honest

with respect to k, otherwise it is lying.

We want to design a measurement protocol (i.e., specify

functions Fr Fλ, Fδ and Fv), such that the following con-

ditions are met:

1. If input node i and output node j on path k are honest

with respect to k, then |λk
ij − Fλ(R

k
i , R

k
j)| < lkij and

|δkij(q) − Fδ(R
k
i , R

k
j , q)| < dkij with probability πk

ij .

The error margins, lkij and dkij , and the probability with

which they are honored, πk
ij , depend on (and can be

computed from) node i’s and node j’s configuration—

in particular the amount of memory and computing cy-

cles used by the two nodes to run the protocol.

2. If peering nodes i and j on path k are honest with re-

spect to k, and the inter-domain link between them is

not faulty, Fv(R
k
i , R

k
j) is “true,” otherwise it is “false.”

3. Computing Rk
i for all paths k in which node i partici-

pates does not require that i maintain per-packet, per-

flow, or per-path state.

Given that packet streams may be infinite or arbitrarily

long, the receipt collectors should be able to compute their

functions, and the above properties should hold over fixed

time intervals. All symbols mentioned above are summa-

rized in Table 1. For brevity, when it is obvious from the

context that we are referring to a particular path, we drop the

superscript k from P k
i , Rk

i , λk
ij , and δkij .

Discussion. The first condition ensures that a receipt col-

lector can estimate the performance of honest domains with

probabilistic guarantees. It also ensures that collusion comes

at a cost: two adjacent domains are free to collude such that

a receipt collector cannot accurately estimate their perfor-

mance; but, if they do that, one of them will appear to have

better performance at the expense of the other. For instance,

consider the path depicted in Fig. 1. Suppose that domain

X introduces loss λ45, while domain N introduces loss λ67.

Suppose that node 5 is lying, such that Fλ(R4, R5) = λ45−
Λ, where Λ ≫ 0 (i.e., from X’s receipts, it looks like its

packet loss is significantly lower than it actually is). Finally,

suppose that node 6 is also lying, such that Fv(R5, R6) =
“true” (i.e., domain N covers X’s lie). According to the first

condition, as long as nodes 4 and 7 are honest,Fλ(R4, R7) ≈
λ47; given that packet loss is additive, this necessarily means

that Fλ(R6, R7) ≈ λ67 +Λ, i.e., from N ’s receipts, it looks

like its packet loss is significantly higher than it actually is.

The second condition ensures that, if a domain deviates

from the protocol, it necessarily implicates one of its neigh-

bors and is exposed to that neighbor as a liar. For instance,

suppose that node 5 in Fig. 1 is lying (e.g., to hide the fact

that X is dropping packets). If node 6 is honest, that will

cause Fv(R5, R6) to return “false,” alerting the receipt col-

lector that either 5 or 6 is lying, or the link between them

is faulty. In general, a receipt collector cannot know which

of these is true, but domain N can: it can debug the inter-

domain link, determine that it is functioning correctly, and

conclude that X is lying and is implicating N in its lie.

The third condition—no per-packet, per-flow or per-path

state—is important, because a node may observe hundreds

of thousands, perhaps even millions of concurrent flows and

paths.

2.3 Assumptions

We make the following assumptions:

(1) There exists a way for a domain to disseminate re-

ceipts to any other domain, such that the authenticity and

integrity of each received receipt is guaranteed. One way of

realizing this assumption would be for each domain to make

its receipts available at an administrative web-site and ac-

cessible over HTTPS. It is possible to design more efficient

dissemination mechanisms, but that is outside the scope of

this paper.

(2) Each domain has some network equipment (routers or

other middleboxes) that can perform at wire speed simple

per-packet operations. Those include packet timestamp gen-

eration, arithmetic calculations or digest computations on a

small, fixed portion of a packet, and modification of local

state in a buffer. This assumption is in line with current

trends in production routers, as well as the increasing fo-

cus of academia and industry on programmable routers and

switches [10, 19].

(3) Nodes (whether honest or lying) do not apply any trans-

formation to the observed packet stream other than packet

loss, delay, or reordering. In particular, they do not inject

new packets or modify observed packets. To the best of

our knowledge, packet injection and modification is further

from current ISP practices (than introducing loss or unpre-

dictable delay and denying performance problems), and we

defer dealing with this behavior to future work.

3. WHY A NEW PROTOCOL

There already exist many good techniques for measuring

network performance [11,14,17,22]. So, instead of describ-

ing our protocol from scratch, we first build, in this section,

“obvious” solutions by extending existing techniques, and

explain why these do not meet the conditions of our prob-

lem statement. We close with a brief overview of Network

Confessional.

Packet Obituaries+. As a first-cut solution, we consider

the following modest extension to the Packet Obituaries pro-

tocol [6]. Fr produces a receipt for every observed packet,

which consists of a digest for the corresponding packet and

the timestamp for when the packet was observed. Fλ(R
k
i , R

k
j)

and Fδ(R
k
i , R

k
j , q) are straightforward—the former counts

how many packets from path k were observed at node i ver-

sus node j, while the latter relies on comparing the times-

tamps recorded for the same packet at node i versus node j.

Fv(R
k
i , R

k
j) returns “false” if there exists at least one packet

from path k such that: i produced a receipt for it but j did

not, or the difference in the two timestamps recorded for this

packet at nodes i and j exceeds a value ∆ij pre-negotiated

between the two nodes.

This protocol fails to meet our third condition: it requires

storing, processing, and disseminating per-packet receipts,

leaving no room to a participating domain to choose (and

tune, according to network conditions) the amount of re-

sources it devotes to reporting its performance.

Coordinated Trajectory Sampling. Since the fundamen-

tal problem with Packet Obituaries+ is maintaining per-packet

state, the first solution that comes to mind is to sample, i.e.,

produce receipts not on all packets, but on a representative

subset, and use them to infer statistics for the rest. Hence, we

first consider a simple combination of Packet Obituaries and

Trajectory Sampling [11] (POTS, for brevity): Fr applies a

uniform hash function to a small, fixed portion of each ob-

served packet; if the outcome is equal to a pre-configured

value, then the packet is sampled and a receipt is produced

for it (note that, since all nodes use the same sampling func-

tion, they all sample the same packets). Fλ and Fδ can be

any functions that estimate the loss and delay experienced

by all packets, based on the loss and delay experienced by

a representative subset of sampled packets [22]. Fv is the

same as in Packet Obituaries+.

This protocol fails to meet our first condition: it is possible

that all nodes are honest (i.e., run the protocol as specified),

yet Fλ and Fδ return arbitrarily inaccurate results. In par-

ticular, each input node can engage in the following behav-

ior: for each observed packet, runFr, determine whether the

packet should be sampled and, if yes, treat the packet pref-

erentially, e.g., assign it to a high-priority queue. I.e., the

nodes bias the sampling process, such that they tell the truth

about what happens to the sampled packets, but that is not

representative of what happens to the rest of the traffic.

Symbol Meaning

P k
i Packet stream observed at node i and associated with

path k.

T k
ij Function that defines transformation of path-k traffic

between nodes i and j.

λk
ij Packet loss experienced by path-k traffic between

nodes i and j.

δkij(q) q-th quantile of delay experienced by path-k traffic

between nodes i and j.

Rk
i Receipts for path-k traffic produced by node i.

Fr Function used by honest nodes to compute receipts.

Fλ Function used by receipt collector to compute estimate
of loss rate between two nodes.

Fδ Function used by receipt collector to compute estimate
of delay quantile between two nodes.

Fv Function used by receipt collector to verify whether
peering nodes are running the protocol correctly.

lkij Maximum estimation error incurred by receipt collector

when estimating λk
ij from i and j’s receipts.

dkij Maximum estimation error incurred by receipt collector

when estimating δkij(q) from i and j’s receipts.

πk
ij Probability with which lkij and dkij are honored.

Table 1: Defined symbols.

Note that, even if we modify POTS so that domains sam-

ple non-overlapping subsets of packets, domains can col-

lude, such that all of them treat all subsets of sampled pack-

ets preferentially. In this way, all nodes tell the truth, yet Fλ

and Fδ return arbitrarily inaccurate results.

Verifiable Aggregation. An alternative to sampling is ag-

gregation: instead of producing receipts for sampled pack-

ets, produce receipts for packet aggregates. We could design

such an alternative by combining Packet Obituaries with ei-

ther the Lossy Difference Aggregator [17] or the “Secure

Sketch” technique [14]. We have explored that alternative

extensively elsewhere [8]. To summarize, these combina-

tions fail to meet our first condition, because they do not

provide a delay-quantile function Fδ (only statistics on av-

erage delay). Most importantly, they do not meet our third

condition, because computing their Fr requires maintaining

per-path state.

Our Solution. We employ sampling, but in a way that is

not susceptible to bias. Our solution shares elements with

Trajectory Sampling (nodes produce receipts for a subset of

observed packets and choose which packets to sample using

hash functions), but prevents sampling bias in the following

way: the sampling function is keyed on future traffic, mak-

ing the samples unpredictable. Specifically, a domain does

not know whether it will have to report measurements on a

particular packet until after it has forwarded that packet to

its downstream neighbor. As a result, an unscrupulous do-

main has no way to decide whether to “sugarcoat” its per-

formance by preferentially treating particular packets. The

challenge is implementing this idea in a practical manner,

i.e., without requiring the source to explicitly signal to all

the other nodes which packets to sample, in accordance to

the resource requirements dictated by our third condition,

and with per-domain tunability.

4. BASIC OPERATION

We now describe the basic elements of Network Confes-

sional. For simplicity, we assume, in this section, that all

nodes have synchronized clocks and that there is no ambigu-

ity regarding the path followed by a packet (i.e., when a node

observes a packet, it knows which path this packet is associ-

ated with). We relax these assumptions in the next section.

4.1 Receipt Generation

Each node samples a subset of the packets it observes and

generates a receipt for each sampled packet; each receipt is

made available to all nodes on the path of the correspond-

ing packet and, potentially, a verifier such as a regulator.

A receipt has form R = 〈ReporterID , ReporterConfig ,

PacketID ,Time,NeighborID ,∆〉. ReporterID is the iden-

tity of the reporting node and ReporterConfig a specifica-

tion of its sampling function (more on this later). PacketID

is a digest of the packet’s headers and a small portion of

its content. Time specifies when the packet was observed.

NeighborID is the identity of the node that is peering with

the reporter on the path where the packet belongs. ∆ is a

value agreed upon between the reporter and the neighbor;

it is meant to upper-bound the difference in timestamps one

should expect between the two nodes.

Instead of sampling packets in real time, each node col-

lects state on all observed packets, but only for a fixed, short

period of time (tens of milliseconds). The node is periodi-

cally told which of the stored per-packet state to keep and

which to discard. Since a domain learns whether a packet’s

fate will affect estimates of its performance only after it has

forwarded that packet, it cannot treat sampled packets pref-

erentially.

A key question is who tells each node which packets to

sample. One approach would be to use explicit signaling; for

example, in Fig. 1, domain S could explicitly tell all nodes

which packets to sample from the packet stream sent from S

to D, as in the PAAI-1 packet-dropping adversary identifi-

cation protocol [23]. In our context, however, that approach

would be naı̈ve, because it would require each source do-

main to actively probe all Internet paths through which it

sends traffic Instead, each node decides whether to sample

a packet based on the contents of another packet observed

later. In this sense, domain S implicitly dictates which of its

packets should be sampled, through the traffic it sends out

subsequently.

More specifically, each node maintains a circular buffer,

where it stores a tuple (path ID, packet ID, and timestamp)

for the β most recently observed packets. Alg. 1 shows what

happens when a node observes a new packet p. First, the

node computes a tuple Tp for the new packet (line 1). Then,

if the packet satisfies a certain condition, it is chosen as a

“marker” packet (line 2). In that case, its contents determine

which of the β most recently observed packets to sample

(lines 3–5); only packets from the same path with the marker

packet can be sampled (line 4). The tuples of the chosen

Algorithm 1 ProcessPacket(packet p)

PathID(packet) packet’s path

PacketID(packet) hash function

MarkerID(packet) hash function

Hash(packet1, packet2) hash function

µ marking threshold

σ sampling threshold

Buffer circular buffer

Initially Buffer ← ∅

1: Tp ← 〈PathID(p),PacketID(p),Time〉
2: if MarkerID(p) < µ then

3: for all T in Buffer do

4: if T.PathID = Tp.PathID then

5: if Hash(T.PacketID , Tp.PacketID) < σ then

6: Copy T for dissemination

7: Remove T from Buffer

8: Copy Tp for dissemination

9: else

10: Add Tp to Buffer

packets are copied for later dissemination (line 6). All tu-

ples that correspond to packets from the same path with the

marker are removed from the buffer (line 7). The marker

packet itself is also sampled (line 8). If the new packet is not

chosen as a marker, its tuple is added to the circular buffer

(lines 9, 10).

The parameters of the algorithm are: the size of the cir-

cular buffer β, the marking threshold µ, which determines

which packets are markers (line 2), and the sampling thresh-

old σ, which determines which of the tuples in the circular

buffer to sample (line 5). Moreover, MarkerID(p) is a func-

tion that provides uniform hashing between 0 and some max-

imum valueM, while Hash (PacketID(p1), PacketID(p2))
provides uniform hashing between 0 and some maximum

value S .

Lemma 4.1. Suppose that each packet observed by a node

belongs to a path k with probability α. If the node uses

Alg. 1, it samples each packet from path k with probability

πs =

(

1−
(

1−
αµ

M

)β
)

·
σ

S
(1)

PROOF. An observed packet p is sampled when: (1) p’s

tuple is still in the circular buffer when the next marker m

from the same path arrives and (2) Hash (PacketID(p),
PacketID(m)) < σ. We first compute the probability of

event (1). Consider an observed packet p that is not chosen

as a marker. Each of the packets observed after p is from the

same path with p and is chosen as a marker with probabil-

ity αµ
M

. Hence, the number of packets observed between p

and m (we call it the “distance” between p and m) is a ran-

dom variable with geometric distribution and success rate
αµ
M

. It follows that the probability that Distance(p,m) < β

is equal to the cumulative distribution function (CDF) of the

geometric distribution, i.e., 1 −
(

1− αµ
M

)β
. Next, we com-

pute the probability of event (2) given event (1). Given that

p’s tuple is still in the circular buffer when m arrives, p is

sampled with probability σ
S

. Hence, packet p is sampled

with probability
(

1−
(

1− αµ
M

)β
)

· σ
S

.

Eq. 1 says that, as long as β ≫ M

αµ
, then πs ≈

σ
S

, i.e., a

node samples each observed packet p with the same proba-

bility σ
S

, independently from which path p is associated with,

and independently from the size of the circular buffer β. In-

tuitively, as long as the circular buffer is large enough that a

packet p’s tuple is always in the buffer when the next marker

from the same path with p is observed, then the size of the

circular buffer β does not affect which packets are sampled.

For the rest of this section, we will assume that this is the

case. In practice, each node chooses its β such that β ≫ M

αµ

for α ≥ 0.001, i.e., as long as traffic from a certain path ex-

ceeds 0.1% of the overall traffic observed at the node, then

the node samples each packet from that path with the same

probability σ
S

.

The marking threshold µ is a system-wide constant, com-

mon for all nodes; hence, all nodes on a certain path select

the same packets as marker packets for that path (modulo

loss). In contrast, the sampling threshold σ is a local pa-

rameter, chosen independently at each node. If all nodes on

a certain path choose the same σ, they all sample the same

packets from that path (modulo loss and reordering). We

turn next to what happens when different nodes select differ-

ent σ.

4.2 Tunability

Each node chooses its own sampling threshold σ. At the

same time, given any number of nodes and their sampling

thresholds, we maximize the number of packets that are com-

monly sampled by all nodes on the same path. The key el-

ement that enables this property is the inequality in line 5

of Alg. 1. Consider nodes 1 and 2, with different sampling

thresholds σ1 and σ2 > σ1. Suppose there is no packet loss

or reordering between the two nodes; p is a packet sampled

by node 1, and m is the first marker from the same path with

p, observed after p. Since node 1 samples p, this necessarily

means that Hash(PacketID(p),PacketID(m))< σ1 < σ2,

which means that node 2 also samples p.

So, even though each node chooses its sampling thresh-

old σ independently, if there is no packet loss or reordering

between two nodes on the same path, the node with bigger

σ will sample at least all the packets from that path sampled

by the node with smaller σ.

4.3 Receipt-based Statistics

We now consider a receipt collector that collects receipts

from the nodes in Fig. 1 and describe how it computes and

verifies the performance of domain X .

Loss Function. For brevity, we define λ = λ45. For

simplicity, we first assume that there is no packet reorder-

ing within domain X , i.e., packets that are not lost between

nodes 4 and 5 are observed at the two nodes in the same

order. We will remove this assumption later.

The receipt collector considers the receipts R4 and R5

generated by the two nodes during a given time period. By

looking at the ReporterConfig values of these receipts, it di-

vides the time period into sub-periods, such that, throughout

each sub-period, each node used a constant sampling thresh-

old. For each sub-period, it counts the number of packets

K that were sampled by node 4 and should have been sam-

pled by both nodes, i.e., all packets p that: (1) were sampled

by node 4 based on a marker m that was also observed at

node 5 and (2) satisfy Hash(PacketID(p), PacketID(m))
< σmin , where σmin is the smaller sampling threshold used

by the two nodes. Of these K packets, it counts the number

of packets k that were not sampled by node 5 and estimates

the loss rate λ between the two nodes as Fλ(R4, R5) =
k
K

.

Now assume that there is some packet reordering between

the two nodes. As above, the receipt collector first counts

the number of packets K that were sampled by node 4 and

should have been sampled by both nodes and, of these, the

number of packets k that were not sampled by node 5. Of

these k packets, let’s say that kl were lost between nodes 4

and 5, while kr = k− kl were reordered with their previous

or next marker such that node 5 did observe them but did

not sample them. Hence, to accurately estimate the loss rate

between the two nodes (as kl

K
), the receipt collector would

need to know kl or kr.

Fortunately, there is a simple way around this problem.

Packet reordering caused node 5 not to sample kr packets

that it would have sampled otherwise, but it also caused node

5 to sample k̄r packets that it would not have sampled, had

there been no reordering. Assuming that the probability of

two packets being reordered depends only on the distance

between them [12], then kr and k̄r should be statistically the

same. The receipt collector does not know kr (it is masked

by the kl packets that were lost between the two nodes), but

it does know k̄r; it is the number of packets p that: (1) were

not sampled by node 4, (2) were sampled by node 5 based

on a marker m that was also observed at node 4, and (3) sat-

isfy Hash(PacketID(p),PacketID(m)) < σmin . Hence,

the receipt collector computes k̄r and estimates the loss rate

between the two nodes as Fλ(R4, R5) = k−k̄r

K
, i.e., it ap-

proximates kr with k̄r.

Lemma 4.2. The expected value of the estimate is λ. The

relative standard deviation is
√

1− λ

N πs λ
+

2 πr(1− πr)

N πs λ2
(2)

where all the parameters are specified in Table 2.

PROOF. In our technical report [8].

Parameter Meaning

λ Actual loss rate (that we are trying to estimate).
N Number of packets observed at node 4 during the

given sub-period before a marker m that was also
observed at node 5.

πs Probability that a packet is sampled, given by Eq. 1.
πr Probability that a packet is reordered with its marker

and observed at node 5 but not sampled by it.

Table 2: Parameters for Lemma 4.2.

Once we know the standard deviation of the estimate, it is

straightforward to compute its maximum distance from the

actual loss with a given probability π [21].

Lemma 4.2 tells us that packet reordering does not prevent

us from estimating λ correctly, however, it does increase the

relative standard deviation of our estimate. The relative stan-

dard deviation depends on the average number of sampled

packets that we use to produce the estimate (N πs in Eq. 2):

the better (lower) the relative standard deviation that we want

to achieve, the more samples (receipts on sampled packets)

we need to collect. To give some concrete numbers, sup-

pose that λ = 5%, and we want to estimate it with a relative

standard deviation of 0.1. According to Eq. 2, if there is no

packet reordering (πr = 0), we can produce a new estimate

every time we have collected receipts on N πs = 1900 new

packets; if there is packet reordering, such that πr = 10%

of the packets that should be sampled by node 5 miss their

marker and are not sampled, then we can produce an esti-

mate every time we have collected receipts on N πs = 9100
new packets. Assuming a traffic rate of 100 Mbps, a sam-

pling rate of πs = 1%, and about 400 bytes/packet, 1900
sampled packets correspond to 7 seconds, while 9100 pack-

ets correspond to 30 seconds. So, packet reordering forces

us to estimate loss rate at longer intervals in order to achieve

a given level of accuracy.

Delay-Quantile Function. The receipt collector consid-

ers all the receipts generated by nodes 4 and 5 during a given

time period. By looking at the PacketID of these receipts, it

determines the set of packets that were commonly sampled

by the two nodes. By comparing the Time reported by the

two nodes for each commonly sampled packet, it computes

the delay incurred by the packet within X . Finally, by com-

bining the delay incurred by multiple packets, it estimates

the maximum delay incurred by q% of the packets, by us-

ing the algorithm proposed in [22]. That algorithm takes as

input (1) the delays incurred by all sampled packets, (2) the

quantile q we are interested in, and (3) a probability π, and

outputs a lower and upper bound, such that the actual delay

value we are estimating falls between the two bounds with

probability π.

Verification Function. The receipt collector considers all

the receipts generated by each pair of peering nodes i and

j during a given time period. Then it identifies the set of

packets that were sampled by node i and should have been

sampled by both nodes (we explained how this is achieved in

the “Loss Function” paragraph above). Fv(Ri, Rj) returns

“true” when all of the following hold for all packets p that

belong to this set: (1) Either both nodes i and j or none

of them provide a receipt on p. (2) If both nodes provide

receipts on p (say, Ri(p) and Rj(p)), then:

Ri(p).∆ = Rj(p).∆
Ri(p).Time −Rj(p).Time ≤ Rj(p).∆

These rules express the fact that a correct inter-domain link

does not introduce loss or unpredictable delay.

In Section 2.2, we stated that we wanted functionFv(Ri, Rj)
to return “true,” if both nodes i and j run the protocol cor-

rectly and the link between them is not faulty, otherwise, it

should return “false.” Network Confessional meets this con-

dition when nodes i and j use the same sampling threshold.

However, if node i is expected to sample more packets than

node j (because it uses a larger sampling threshold), then

node i is free to lie about the packets that should be sampled

by i but not by j. This means that the receipt collector can

verify X’s performance, only based on the packets that are

expected to be commonly sampled by X and its neighbors.

4.4 Adversarial Conditions

Network Confessional tries to (1) maximize the number

of packets commonly sampled by all nodes and (2) prevent

nodes from biasing their sampling. We now look at how it

reacts when node behavior undermines these two goals.

Deliberate Marker Loss. An under-performing domain

(say X in Fig. 1) may drop all marker packets, causing the

next domain (N , in our example) to not sample any packets,

in order to ensure that X’s performance is never verified ac-

cording to N ’s receipts or simply to make N look bad. Such

behavior is necessarily exposed, because all marker packets

must be sampled. If X drops a marker m, it either has to

admit dropping it, or lie and be inconsistent with N ’s report

that it never received m. So, if X consistently drops marker

packets, it either admits it and is globally exposed as under-

performing and misbehaving, or blames the losses on N and

is exposed to N as a liar.

Delayed Forwarding. A dishonest domain may store ev-

ery packet, wait to learn whether the packet has to be sam-

pled, then decide how to treat the packet. Such behavior can

be beneficial, when the domain has multiple internal paths

whose latencies vary by tens of milliseconds. However, to

game the system in this way, a domain needs to equip its

border routers with the capability to temporarily store entire

packets (not just their tuples) and index/forward these pack-

ets at line rate as the corresponding marker packets arrive;

hence, the domain would have to pay a router manufacturer

to equip the domain’s border routers with hardware designed

especially for nefarious goals. We consider this case in our

technical report, where we show how to configure Network

Confessional such that, by delayed forwarding, a domain

makes its own performance appear worse than real (because

it is forced to wait too long to learn whether a packet has to

be sampled, in order to game the system) [8].

Packet Crafting. Network Confessional was not designed

to resist attacks where domains deliberately inject or modify

packets (Section 2), however, we do discuss what happens

when it encounters such behavior. Suppose domain X mod-

ifies an observed packet p or, equivalently, drops p and in-

troduces a new packet q in its place. Let’s first assume that q

has a different packet ID from p. There are several cases: (1)

p is sampled, in which case node 4 produces a receipt on p,

but node 5 does not, hence X appears to have dropped p. (2)

q is sampled, in which case X appears to have introduced

a new packet. (3) Neither packet is sampled, in which case

X’s behavior does not impact its receipts. So, it is possible

for X to modify a few packets and get away with it. How-

ever, if it consistently engages in such behavior, given that it

cannot predict which packets will be sampled, it will even-

tually have to report on one of the modified packets, and its

behavior will be exposed. On the other hand, if X can craft q

such that it has the same packet ID with p, then its behavior

does not impact its receipts at all. We believe that we can de-

fend against such attacks by making it hard to craft packets

with a given packet ID, but we defer this to future work.

5. PRACTICAL CONSIDERATIONS

We now relax the assumptions made in Section 4—that

all nodes must have perfectly synchronized clocks and that

there is no ambiguity regarding the path followed by each

observed packet.

Clock Synchronization. Network Confessional does not

dictate any particular clock-synchronization policy. How-

ever, it is to each participating domain’s best interest to keep

its reporting nodes (its border routers) reasonably synchro-

nized, since the domain’s delay performance will be esti-

mated based on the timestamps reported by these nodes. More-

over, it is to two neighboring domains’ best interest to keep

peering nodes reasonably synchronized, otherwise their times-

tamp difference will exceed the reported ∆, and the two

neighbors will generate inconsistent reports (hence appear

to have a problematic inter-domain link or be involved in a

lie). We should clarify that domains are free to report arbi-

trarily large ∆ values: nothing prevents nodes 3 and 4 from

reporting a ∆ of seconds between them, hence not needing

to synchronize their clocks beyond that granularity. How-

ever, that does make it look like they are connected through

an awfully slow inter-domain link—not a good feature to ad-

vertise to their customers and peers.

So, what is a reasonable granularity at which a domain

should keep its border routers synchronized? Since typical

intra-domain latency is on the order of tens of milliseconds, a

granularity of a millisecond is sufficient. This is reportedly

achievable with NTP [9]. But if NTP is not deemed suffi-

ciently reliable, a domain can equip its border routers with

radio or GPS receivers [2], currently costing $200 a piece—a

negligible cost compared to that of a border router.

Mapping Packets to Paths. In reality, a node cannot

know the path followed by each observed packet, so it clas-

sifies packets per {source prefix, destination prefix} pair,

where “prefix” is the origin prefix of the corresponding IP

address as obtained through BGP, such that all domains that

observe a packet p derive the same prefix pair for the packet.

This has no implication for us when all packets with the

same source and destination prefix follow the same path;

otherwise, it requires a straightforward extension [8]. We

should clarify that this extension is not needed by domains

that apply the common types of load-balancing. For in-

stance, domains can load-balance traffic per destination pre-

fix or source/destination prefix across multiple inter-domain

paths without the extension. It is only needed by domains

that load-balance traffic with the same source and destina-

tion prefix across different inter-domain paths; we are not

aware of ISPs engaging in such load-balancing, but there is

no way to verify that they do not.

Privacy. We will now argue informally that external ob-

servers can see no more internal information about a domain

with Network Confessional than they can see today without

it. We acknowledge that privacy deserves a fuller, formal

analysis, but defer that to future work.

First, we consider the “privacy perimeter” lying around

a single participating domain, i.e., consider whether Net-

work Confessional exposes to the outside world any infor-

mation that was previously exclusively known to the domain.

Our privacy argument is based on the content of traffic re-

ceipts. The two receipt fields directly dependent on traffic

are PacketID and Time, both of which can be filled in by

the domain’s neighbor transmitting packets to or receiving

packets from the domain. ReporterID , NeighborID , and

∆ are already known to the corresponding neighbors, hence

leak no information that was previously exclusively known

to the domain.

Next, we consider the privacy perimeter lying around a

pair of neighboring domains. As described in Section 4.1,

traffic receipts do reveal some information that would oth-

erwise remain private between the two neighbors: the num-

ber of peering points (as exposed via distinct ReporterID’s

and NeighborID’s), as well as the expected delay imposed

by the inter-domain links (as exposed via ∆). However, in

practice, two neighbors can easily conceal both types of in-

formation from outsiders. First, they can conceal the number

of peering points by using a single pair of ReporterID and

NeighborID in traffic receipts. They can also conceal the

actual delay of links in a similar fashion, as follows. They

can agree to “absorb” the latency of the inter-domain link

into their own intra-domain latencies. For instance, consider

nodes 5 and 6 from Fig. 1 and assume the latency of the link

between them is 1 msec. Instead of reporting ∆ = 1 msec,

the two nodes report ∆ ≈ 0. When node 5 observes packet

p at time t1, it reports observing it at time t1 + 0.5 msec;

similarly, when node 6 observes packet p at time t2, it re-

ports observing it at time t2 − 0.5 msec. In this way, the

latency of the inter-domain link is hidden from the outside

world and “charged” equally to the two domains. Note that

this does not affect in any way the capability of Network

Confessional to detect and expose lies.

Partial Deployment. Partial deployment is still beneficial

to the participating domains. Even if X is the only domain

on a certain path that has deployed Network Confessional,

its performance reports may not be verified by its neigh-

bors, but they are still verifiable. So, during a congestion

incident, X can still position itself as the “good” ISP that

provides troubleshooting information to its customers—it is

not its fault that the other ISPs on the path are not up to

the task. X can even use this as an incentive to encour-

age multi-network customers to connect all their networks

through X—since that way they avoid domains that do not

provide troubleshooting information.

Incentives. If domain X has not deployed Network Con-

fessional, but its neighbors have, then X’s neighbors are

free to blame their performance problems on X (since X

does not produce any receipts to refute their claims). Conse-

quently, the fault localization properties of Network Confes-

sional are provided only at the granularity of deployment—

informally, the sub-graph of the domain topology whose ver-

tices are participating domains and whose edges link par-

ticipating domains only over domain paths that include no

participating domain in the topology. On the other hand,

the loss of fault-localization resolution due to partial deploy-

ment can be viewed as an incentive for adoption: a domain

has to report on its performance in order to prevent its neigh-

bors from blaming their problems on it undetected.

6. IMPLEMENTATION

Hardware Implementation. We now outline one possi-

ble implementation of Network Confessional that requires

an SRAM buffer and a small TCAM (ternary content ad-

dressable memory) chip per linecard. TCAM is already widely

used in routers for storing forwarding and filtering tables, in

general, any state that needs to be accessed at line rate. It

is appropriate for such applications, because it can access

in parallel all the entries of a stored table and return any

matches within a few nanoseconds, independently of the ta-

ble’s size.

Each node uses two circular buffers per linecard: one for

marker packets, stored in TCAM, and one for non-marker

packets, stored in SRAM. Upon receiving a packet p, the

node determines whether p is a marker packet, creates for it

a 〈PathID , PacketID , Time〉 tuple, and adds it to the head

of the marker or non-marker buffer, accordingly. In paral-

lel, a separate process reads tuples from the tail of the non-

marker buffer and determines whether each tuple Tp should

be kept or discarded, as follows. First, it reads Tp.PathID

and Tp.Time , and identifies the corresponding marker tuple:

it uses the TCAM search capabilities to identify all tuples T ′

in the marker buffer with T ′.PathID = Tp.PathID , deletes

any tuple with T ′.Time < Tp.Time from the marker buffer,

and chooses the marker tuple T with the smallest times-

tamp that also satisfies T.Time > Tp.Time. Then, if Hash

(T.PacketID , Tp.PacketID) < σ, it copies Tp elsewhere

for later dissemination, otherwise, it discards Tp.

The feasibility and cost of this implementation are de-

termined by the sizes of the two buffers. The non-marker

buffer must have size β ≫ M

0.001µ
(Section 4.1). The marker

buffer must have size significantly larger than µ
M

β, so that

the probability of an overflow (i.e., that a marker tuple is

deleted before it is used) is negligible. For instance, for
µ
M

= 0.01, we need a non-marker buffer that can store

around 1 million tuples and a marker buffer that can store

around 0.1 million tuples; assuming 10 bytes per tuple, the

resources we need per linecard are: 10 MB of SRAM and a

TCAM chip of 1 MB with the ability to store 10 bytes per

entry, which is readily available today.

Receipt Overhead. Each router that supports Network

Confessional must periodically extract the sampled state from

its data-path and export it in the form of receipts, akin to

how a NetFlow-enabled router periodically extracts NetFlow

records from its data-path and exports them to a management

server for processing. The amount of memory, processing,

and bandwidth required for this operation is directly propor-

tional to the rate at which the router produces receipts, i.e.,

its sampling rate. This can be locally tuned to match the

router’s resources by changing the sampling threshold σ.

We have said that each domain makes each receipt avail-

able to every other domain that observed the corresponding

traffic. Whether this happens pro-actively (through a con-

stant receipt stream) or on-demand (e.g., through a secure

web interface), receipt dissemination introduces, in each path,

bandwidth overhead that depends on (1) the number of bor-

der routers on that path and (2) the rate at which each of

these routers produces receipts. This may seem, at first,

to be cause for concern—one could argue that introducing

bandwidth overhead that grows with the total number of bor-

der routers per path is not a scalable approach. In practice,

this is not a problem: Paths consist on average of 3–4 do-

mains (hence 4–6 border routers), while most paths consist

of fewer than 6 domains (10 border routers) [3]. Consider a

6-domain path, where each border router samples 1% of the

path’s packets. Assuming 20 bytes per receipt, this path will

incur an overhead of 2 bytes per packet; assuming 400 bytes

per packet, this leads to a 0.5% bandwidth overhead.

Software Implementation. As a proof of concept, we

implemented Alg. 1 in Click, configured an eight-core Intel

Nehalem server as a standard IPv4 router, and fed to it a real

trace. Then we measured the router’s performance with and

without running Alg. 1 and saw no difference (in both cases,

the server routed 25 Gbps). This is not surprising, given that,

when fed realistic traffic, a Nehalem server is bottlenecked

at the I/O [10], whereas our algorithm burdens the CPU.

In our implementation, we computed the PathID of each

packet as the concatenation of its source and destination ori-

gin prefixes. We implemented the MarkerID and PacketID

functions using the “Bob” hash function with different seeds,

because it has been shown to work well with Internet traf-

fic [20]. Given that the CAIDA traces do not include the full

payload of the captured packets, we applied the two func-

tions only to the IP header (modulo the TTL field) and the

small portion of the payload that is included—typically 20
bytes of TCP headers. Our results show that this is suffi-

cient, i.e., our implementation indeed collects a random sam-

ple from each path, with the sampling rate given by Eq. 1.

7. PERFORMANCE EVALUATION

The key properties of Network Confessional that differ-

entiate it from previous work are its bias-resistance, which

is guaranteed by the fact that domains cannot guess future

traffic, and tunability, which is guaranteed by the fact that

domains mostly sample non-overlapping packet sets (Sec-

tion 4). The key challenge was designing an implementation

that did not require per-packet, per-flow, or per-path state,

and showing that it can be realized with existing hardware

and reasonable overhead (Section 6). Beyond these prop-

erties, Network Confessional is a random sampling mech-

anism: it measures the loss and delay incurred by a ran-

dom subset of each domain’s traffic and estimates the loss

and delay incurred by the rest. Hence, the results we show

in this section—that Network Confessional accurately es-

timates domain performance—will not come as a surprise.

But that is precisely the point of this work: once we can effi-

ciently implement bias-resistant, tunable sampling, measur-

ing domain performance is straightforward, and we already

know how to do it accurately.

We would like to explain why we do not compare Network

Confessional to network tomography. One could argue that

tomography is a natural candidate for comparison, since it

enables end systems to estimate ISP performance. However,

tomography was designed to work in scenarios where net-

work nodes treat observed traffic independently from which

path it belongs to and conditions in subsequent network links

are uncorrelated. Network Confessional does not need these

assumptions (this is why, unlike tomography, it requires sup-

port from the network). Hence, we could easily show sim-

ulation results where Network Confessional outperforms to-

mography by considering scenarios where domains selec-

tively drop, delay, or throttle traffic from certain paths and/or

the failures/congestion of subsequent links are correlated.

We did not deem this to be either fair (to tomography) or

interesting.

Methodology. Suppose we use Network Confessional to

estimate the loss and delay performance of domain X from

Fig. 1. Our goal is to compare these estimates to X’s actual

loss and delay performance under different traffic scenarios.

Each experiment we present consisted of the following steps:

(1) we took an actual packet trace and assumed that it corre-

sponds to the traffic observed at node 4; (2) created a second,

modified trace, by introducing loss, delay, and reordering in

the first one, and assumed that it corresponds to the traffic

observed at node 5; (3) generated the receipts that nodes 4

and 5 would generate if they observed the respective traffic;

(4) estimated X’s performance from its receipts as described

in Section 4.3 and compared the estimates to X’s actual per-

formance.

For step 1, we used packet traces provided by CAIDA,

collected in 2008 and 2009 from a Tier-1 ISP. For step 3 (i.e.,

to generate the receipts), we used our Click implementation

(Section 6). For step 2, we introduced loss by discarding a

subset of the packets from the original trace, assuming ei-

ther uniform loss or the Gilbert-Elliot loss model [1] (the

results were the same). Introducing delay was more com-

plicated, as we are not aware of any commonly acceptable

delay model for Internet traffic. Instead, we used the NS2

simulator to create two realistic congestion scenarios, and

generated the sequence of delay values that a packet stream

would encounter in each case. In both scenarios, nodes 4

and 5 were connected through a congested 10 Gbps intra-

domain path with a minimum latency of 50 msec. In the

first scenario, our packet stream competed with an aggres-

sive UDP flow that saturated the path; in the second one, it

competed with hundreds of long-lived TCP flows.

Moreover, we wanted to introduce a certain amount of

packet reordering. For this, we looked at the latest pub-

lished reordering experiment that we could find, in which

the authors sent packet streams of different rates along dif-

ferent Internet paths and measured the amount and type of

reordering that occurred along each path as a function of

the packet rate [12]. From the reported results, we chose

those corresponding to the packet stream that incurred the

largest amount of reordering—the one labeled F600(UDP,

DC→LA, 1500) in [12]—to generate a reordering profile. In

our experiments, this reordering profile caused about 0.5%

of the packets that would have been sampled at some node to

be reordered with a marker and not be sampled. The results

reported in this section were derived by using this profile.

Before delving into performance evaluation, we performed

a simple sanity check: we ran our implementation of Alg. 1

over several packet traces for different values of β, µ and

σ, and verified that the resulting sampling rate for any given

path follows Eq. 1. Once that was verified, we fixed β to

1 million and µ
M

to 0.01 (i.e., chose 1% of the packets as

markers) and varied only σ
S

to change the sampling rate.

Loss Performance. Suppose that, for some period of

time, domain X introduces loss rate λ into a given path.

The question is, how accurately can we estimate λ? The

answer depends on the number of samples used for the es-

timate, as well as the loss rate itself (Section 4.3). For in-

stance, suppose that we want to estimate λ with a relative

standard deviation of 0.1. Eq. 2 tells us that, if λ = 1%

and πr = 0.5%, then we should compute our estimate after

collecting receipts for 19 850 packets; however, if λ = 25%

(and πr remains the same), then we only need receipts for

315 packets. To see what happens in practice, we looked

at different traces and different paths from them, introduced

different amounts of loss into each path, and estimated this

loss as a receipt collector would.

Loss (%) # Samples Time (seconds)
theoretical actual theoretical actual

1 19 850 13 200 66.17 44.00
5 2300 2000 7.67 6.67

10 1000 815 3.34 2.72
15 600 760 2.00 2.54
25 315 330 1.05 1.10

Table 3: Samples and time needed to estimate loss with a

relative standard deviation of 0.1.

Table 3 shows results for a representative path. The first

column specifies the loss rate λ. The second column shows

how many samples we need according to Eq. 2, in order to

estimate this loss rate with a relative standard deviation of

0.1. The third column shows how many samples we needed

in practice in order to achieve this accuracy (e.g., for λ =
1%, we had to collect 13 200 samples in order to reach a rela-

tive standard deviation of 0.1). The fourth and fifth columns

show how much time it would take to collect the respec-

tive number of samples given a path of 30 000 packets/sec

(roughly 100 Mbps, assuming 400 bytes/packet) and a sam-

pling rate of 1%. Consistently with the theory, the lower the

loss rate that we tried to estimate, the larger the number of

samples that we needed in order to estimate it accurately.

However, even a loss rate of 1% was accurately estimated in

less than 1 minute.

Delay Performance. Now suppose that we are trying to

estimate X’s delay distribution with respect to a given path,

over a certain period of time. As described in Section 4.3,

we use the technique from [22], which gives us an upper and

a lower bound for the delay distribution, which hold with

probability π. We ask two questions: how far are these upper

and lower bounds from each other in different congestion

scenarios, i.e., with what granularity can we estimate the

delay distribution? and how does this granularity change in

the face of loss?

Again, the answer to the first question depends on the

number of samples used for the estimation. We computed

the upper and lower bounds for different paths and our

aggressive-UDP-flow and competing-TCP-flows congestion

scenarios, after collecting receipts for 1200 packets from

each path (given a path of 30 000 packets/sec and a sampling

rate of 1%, 1200 sampled packets correspond to T = 4 sec).

In all cases, the bounds stayed within one or two millisec-

onds from one another. Of course, the credit for this result

goes to the authors of [22], who devised the technique for

obtaining the bounds. Still, we mention this result, to make

the point that their technique matches well our goal of accu-

rately estimating the delay performance of network domains

in the presence of severe congestion (which is when they

would mostly want to hide it).

The second question is more relevant to our contribution.

Intuitively, the more loss we have between nodes 4 and 5,

the fewer the packets that are commonly sampled by the

two nodes over the given time period, hence, the worse the

granularity with which we can estimate X’s delay distribu-

 0.5
 1

 1.5
 2

 2.5
 3

 3.5

 0 10 20 30 40 50

D
e

la
y
 g

ra
n

u
la

ri
ty

 (

m
s
e

c
)

Loss rate (%)

Aggressive UDP flow
Competing TCP flows

Figure 2: Granularity with which we can estimate the

90th quantile with confidence 90%.

tion. Fig. 2 focuses on the 90th delay quantile and shows

how the granularity with which we can estimate that quan-

tile with probability π = 90% changes as a function of loss.

We see that, in the aggressive-UDP-flow scenario, loss rate

does affect granularity, but not to a practically significant

extent—introducing 50% loss decreases granularity barely

by 1 msec.

8. RELATED WORK

The idea of delayed disclosure of a secret—the sampling

seed—has appeared before in networked systems. In the

closest related work (which was developed in parallel with

our own) Zhang et al. [23] describe a taxonomy of schemes

that enable a trusted source/destination pair to identify on-

path network adversaries that are maliciously dropping pack-

ets. In one of these schemes (PAAI-1), delayed disclosure

comes in the form of an explicit request from the source to

all the nodes on the path identifying a packet that should

be acknowledged. First, that work targets a stronger adver-

sarial model (adversaries who may modify or inject pack-

ets) but relies on stronger assumptions as well: symmetric

traffic paths and application-layer processing of all receipts

by all nodes on a path (onion cryptography). In contrast,

Network Confessional makes no claim about the path tra-

versed by receipts to collectors and requires processing only

by the issuer of a receipt. Second, PAAI-1 requires that

the source generates explicit signaling in addition to nor-

mal traffic and that all nodes implement fine-granularity, per-

packet timers. In contrast, Network Confessional requires no

explicit signaling—using instead later traffic to derive late-

disclosed secrets—and a common circular buffer per node

without any associated timers. At a higher level, the work

by Zhang et al. concerns a usage model that requires end

points (e.g., the source and the destination) to be intimately

involved implementing functionality such as end-to-end re-

ceipts, whereas our approach could be implemented locally,

only within a short sub-path of an end-to-end path; and all

domains must participate equally to the monitoring scheme,

whereas local tunability is an explicit, fundamental require-

ment of Network Confessional.

The Packet Obituaries protocol [6] and the fault-localization

protocols from [13] inform traffic sources where individual

packets get lost or corrupted. AudIt provides source do-

mains with similar per-TCP-flow information [7]. Network

Confessional is similar to these protocols in that it relies on

in-path elements collecting and exporting traffic statistics;

it also borrows the concept of report consistency from Au-

dIt. However, unlike these protocols, Network Confessional

avoids the overheads necessary for collecting and propagat-

ing per-packet or per-flow state, while maintaining the veri-

fiability property.

In Trajectory Sampling, routers within an ISP sample pack-

ets using a hash function and record their digests, with the

purpose of inferring the internal paths (sequences of routers)

followed by packets [11]. The Lossy Difference Aggregator

enables two monitoring points to measure the loss and aver-

age delay between them by maintaining packet counts and

average timestamps for packet aggregates [17]. The “Secure

Sketch” technique from [14] enables Alice and Bob to detect

when the packets they exchange are lost, delayed, or modi-

fied beyond a certain level. All three protocols are relevant

to our work, in the sense that they measure network perfor-

mance, but, as explained in Section 3, none of them could

provide the properties necessary in our context.

Finally, Network Confessional can be viewed as a “per-

formance accountability mechanism,” which holds domains

accountable for their performance. An economic analysis

has showed that such a performance accountability mecha-

nism would foster ISP competition and innovation [18].

9. CONCLUSIONS

We have presented Network Confessional, a system by

which network domains can estimate and verify each other’s

loss and delay performance. Network Confessional relies on

domains producing and exchanging receipts for the traffic

they receive and deliver. A domain can estimate a neigh-

bor’s performance by processing the receipts produced by

the neighbor; it can verify that the neighbor’s receipts are

honest by comparing them to the receipts produced by other

domains for the same traffic. If a domain lies about its per-

formance, that leads to receipt inconsistencies and exposes

the liar to its neighbors. Network Confessional comes at

the cost of deploying (modest) new functionality at domain

boundaries. The processing, memory, and bandwidth over-

head incurred by a deploying domain is configurable and in-

dependently determined by the domain.

Acknowledgments. We would like to thank Marco Canini,

Olivier Crameri, Mihai Dobrescu, Denisa Ghita, Gianluca

Iannaccone, Ming Iu, Jean-Philippe Martin-Flatin, Sylvia

Ratnasamy, Vyas Sekar, Nina Taft, Willy Zwaenepoel, and

our shepherd, John Byers, for their invaluable help.

10. REFERENCES
[1] Gilbert-Elliot Loss Model. http://www.eecs.tu-berlin.

de/fileadmin/fg112/Papers/tkn_report02.pdf.
[2] USNO GPS Time Transfer.

http://tycho.usno.navy.mil/gpstt.html.
[3] BGP Table Data. http://bgp.potaroo.net/as6447,

October 2009.

[4] Ofcom Reveals UK Real Broadband Speeds. http://www.
ofcom.org.uk/media/features/broadbandspeedsjy,
2009.

[5] Office of Communications, Traffic Management and Net Neutrality.
http://www.ofcom.org.uk/consult/condocs/

net-neutrality/summary/, June 2010.
[6] K. Argyraki, P. Maniatis, D. R. Cheriton, and S. Shenker. Providing

Packet Obituaries. In Proceedings of the ACM Workshop on Hot

Topics in Networking (HotNets), November 2004.
[7] K. Argyraki, P. Maniatis, O. Irzak, S. Ashish, and S. Shenker. Loss

and Delay Accountability for the Internet. In Proceedings of the

IEEE International Conference on Network Protocols (ICNP),
October 2007.

[8] K. Argyraki, P. Maniatis, and A. Singla. Verifiable
Network-Performance Measurements. Technical report, EPFL,
Switzerland, November 2010.

[9] J. Burbank, W. Kasch, J. Martin, and D. Mills. Network Time
Protocol Version 4 Protocol and Algorithms Specification.
http://tools.ietf.org/html/

draft-ietf-ntp-ntpv4-proto-06, May 2007.
[10] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,

G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: Exploiting Parallelism to Scale Software Routers. In
Proceedings of the ACM Symposium on Operating Systems

Principles (SOSP), October 2009.
[11] N. Duffield and M. Grossglauser. Trajectory Sampling for Direct

Traffic Observation. IEEE/ACM Transactions on Networking,
9(3):280–292, June 2001.

[12] L. Gharai, C. Perkins, and T. Lehman. Packet reordering, high speed
networks and transport protocol performance. In Proceedings of the

International Conference on Computer Communications and

Networks (ICCCN), October 2004.
[13] S. Goldberg, D. Xiao, B. Barak, and J. Rexford. A Cryptographic

Study of Secure Internet Measurement. Technical Report TR-783-07,
Princeton University, May 2007.

[14] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford.
Path-Quality Monitoring in the Presence of Adversaries. In
Proceedings of the ACM SIGMETRICS Conference, June 2008.

[15] E. Katz-Bassett, H. V. Madhyastha, V. K. Adhikari, C. Scott,
J. Sherry, P. van Wesep, T. Anderson, and A. Krishnamurthy. Reverse
Traceroute. In Proceedings of the USENIX Conference on Networked

Systems Design and Implementation (NSDI), April 2010.
[16] E. Katz-Bassett, H. V. Madhyastha, J. P. John, A. Krishnamurthy,

D. Wetherall, and T. Anderson. Studying Black Holes in the Internet
with Hubble. In Proceedings of the USENIX Conference on

Networked Systems Design and Implementation (NSDI), April 2008.
[17] R. R. Kompella, K. Levchenko, A. C. Snoeren, and G. Varghese.

Every Microsecond Counts: Tracking Fine-Grain Latencies with a
Lossy Difference Aggregator. In Proceedings of the ACM

SIGCOMM Conference, August 2009.
[18] P. Laskowski and J. Chuang. Network Monitors and Contracting

Systems. In Proceedings of the ACM SIGCOMM Conference,
September 2006.

[19] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turn. OpenFlow:
Enabling Innovation in Campus Networks. ACM Computer

Communications Review, 38(2), April 2008.
[20] M. Molina, S. Niccolini, and N. G. Duffield. A Comparative

Experimental Study of Hash Functions Applied to Packet Sampling.
In Proceedings of International Teletraffic Congress (ITC),
September 2005.

[21] P. Phaal and S. Panchen. Sampling Basics. http://www.sflow.
org/packetSamplingBasics/index.htm.

[22] J. Sommers, P. Barford, N. Duffied, and A. Ron. Accurate and
Efficient SLA Compliance Monitoring. In Proceedings of the ACM

SIGCOMM Conference, August 2007.
[23] X. Zhang, A. Jain, and A. Perrig. Packet-dropping Adversary

Identification for Data Plane Security. In Proceedings of the ACM

CoNext Conference, December 2008.

