RVC-CAL DATAFLOW IMPLEMENTATIONS OF MPEG AVC/H.264 CABAC DECODING

Endri Bezati', Marco Mattavelli*, Mickaél Raulet?

! Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
{firstname.lastname } @epfl.ch
2IETR/INSA Rennes F-35708, Rennes, France
mickael.raulet@insa-rennes.fr

ABSTRACT

This paper describes the implementation of the MPEG AVC
CABAC entropy decoder using the RVC-CAL dataflow pro-
gramming language. CABAC is the Context based Adap-
tive Binary Arithmetic Coding entropy decoder that is used
by the MPEG AVC/H.264 main and high profile video stan-
dard. CABAC algorithm provides increased compression ef-
ficiency, however presents a higher complexity compared to
other entropy coding algorithms. This implementation of the
CABAC entropy decoder using RVC-CAL proofs that com-
plex algorithms can be implemented using a high level design
language. This paper analyzes in detail two possible methods
of implementing the CABAC entropy decoder in the dataflow
paradigm.

1. INTRODUCTION

1.1. RVC Standard

The purpose of the MPEG RVC standard is to offer a more
flexible use and faster path to innovation of MPEG standards
in a way that is competitive in the current dynamic and evolu-
tive environment. This is meant to give MPEG standards an
edge over its competitors by substantially reducing the time
for which technology is developed and the time the standard
is available for market applications. The RVC initiative is
based on the concept of reusing commonalities among differ-
ent MPEG standards and provide possible extensions by using
appropriate higher level specification formalisms. Thus the
objective of the RVC standard is to describe current and fu-
ture codecs in a way that makes such commonalities explicit,
reducing the implementation burden by providing a specifica-
tion that is starting point closer to the final implementation.
So as to achieve this objective, RVC provides the specifica-
tion of new codecs by composing existing components and
possibly new coding tools described in modular form [1,5].

This work is part of the ACTORS European Project (Adaptivity and Con-
trol of Resources in Embedded Systems), funded in part by the European
Unions Seventh Framework Programme. Grant agreement no 216586

MPEG-B MPEG-C

Description
(FNL)
Decoder
Descriptio >
Bitstream Syntax

Description
(RVC-BSDL)

Parameter Assignement

Abstract Decoder Model
(FNL + RVC-CAL)

Decoded
Video Data,

Fig. 1. Components of the MPEG RVC Framework.

RVC Decoder Implementation

The MPEG-B standard defines the languages that are used
to build the MPEG RVC framework. The RVC-CAL dataflow
programming language is the core of the system since it the
language describing the behavior of each module called in
RVC a Functional Unit (FU). With the specification of the FU
network topology the functional behavior of a video decoder,
called also abstract decoder module is fully specified. The
term abstract refers to the fact that FUs are only character-
ized by the I/O behavior and by the firing rules embedded in
the RVC-Cal language. Thus the interaction of each FU with
interconnected Fus is fully specified by abstracting time and
by only defining dependencies of dtat generation and consup-
tion. The MPEG-C standard defines the library of the video
coding tools (Video Tool Library or VTL). Figure 1 illustrates
the concept that from any abstract decoder model constituted
by a Functional Unit network description decoding solutions
can be derived for hardware or software implementation.

1.2. CAL Language

CAL Actor Language is a language based on the Actor model
of computation for data flow systems. It provides many natu-
ral concepts to facilitate modeling of those systems. An actor,

or equivalently an FU, is a modular component that encap-
sulates its own state. Each actor interacts with each other
through FIFO channels, see Figure 2. An actor in general
may contains state variables, global parameters, actions, pro-
cedures, functions and finite state machine that controls the
executions of actions. CAL enables concurrent development
and provides strong encapsulation properties. CAL is used in
a variety of applications and has been compiled to hardware
and software implementations. The RVC-CAL language is a
subset of the CAL language and it is normalized by ISO/IEC
as a part of the RVC standard. Although it has some restric-
tions in data types and features that are in used in CAL [1, 3]
is sufficient and efficient for specifying streaming and signal
processing systems such as MPEG compression technology.

point to point, buffered

token passing connections
Actorg guarded atomic actions

J\/

encapsulated state

Fig. 2. The CAL computing model

1.3. Open RVC-CAL Compiler

The Open RVC-CAL Compiler is a tool set which provides
developers with a compiler infrastructure able to generated
source code in several imperative languages starting from a
network of RVC-CAL actors and the XDF network topology
description [8]

e maa]
‘

FU
(*.cal code)

Fig. 3. ORCC Framework

e Functional Unit (FU): is a video processing component
or an actor in CAL language. The RVC framework pro-
vides a Video Tool Library which consists a set of FUs
that can be embedded by the client and combined for
building the required decoder

e Frontend & IR : For a RVC-CAL dataflow program to
be compiled, its compilation process is done in a two-
step process. The fronted will parse all actors and it will
translates them to an Intermediate Representation (IR)

which is serialized to one file per actor in a JSON-based
format (JavaScript Object Notation). The IR is a data
structure that is constructed from input data (the actor) to
a program, and from which part or all of the output data
of the program is constructed in turn. The next steps is
to run a language target-specific back-end.

e Backends: Depending on the target, ORCC offers a
variety of back-ends. Their purpose is to create target
specific code. Each backend will parse the hierarchi-
cal network from a top-level network and its child net-
work. Also optionally it flattens the hierarchical net-
work. ORCC for the moment offers a variety of back-
ends. These back-ends are C, C++, LLVM, VHDL and
a partial support for the Xlim code generation.

To generate a software decoding solution we used the C
backend of ORCC. The generated C code is ANSI-C compat-
ible and it is portable to different platforms such as Windows,
Linux, Mac OS X and others.

1.4. Entropy Encoding

In information theory an entropy encoding is a lossless data
compression scheme that is independent of the specific char-
acteristics of the medium. In the AVC/H.264 three types of
entropy encoding are used. Exp-Golomb for decoding the
headers of the bitstream (video file). Furthermore the de-
scription of a macroblock and its quantized coefficients are
encoded using the CAVLC or CABAC encoding.

original 3 Numerical .| Logical
Data processing “| processing

Y

Source
Modeling

Compressed
Data

Fig. 4. Entropy encoding as the final stage of compression

2. CABAC ENTROPY DECODER

CABAC or Context Adaptive Binary Arithmetic Coding is an
entropy decoder that provides higher compression rates than
the tools available in the Baseline Profile such as the CAVLC
(Context Adaptive Variable Length Coding) entropy decoder.
CABAC selects a probability model for each syntax element,
it adapts the estimated probability based on local statistics and
it uses an arithmetic coder rather than the classical variable-
length coding (CAVLC). The CAVLC is a certainly easier to

implement and require less processing resources, it gets the
value directly by reading the bit-stream. Conversely CABAC
presents a higher implementation complexity and requires a
feedback loop between the context modeler and the arithmetic
coder [2].

NO

Fig. 5. An simple interpretation of the H.264/AVC parser.

Depending on the context, the AVC/H.264 parser demands
to the entropy decoding processing engine to decode the value
of a Syntax Element (SE), see Figure 5. A SE is an element
data represented in the bit-stream, for instance a Macro-block
type(Intrad4x4, Intral 6x16 or others).

2.1. Binarization Process

Each SE has a particular binarization. In H.264/AVC four
types of binarization are defined.

e Unary binarization, used for reference picture list re-
ordering SE

e Truncate unary binarization, used for the Intra chroma
prediction mode SE

e Concatenated unary/k-th order Exp-Golomb(UEKg) bi-
narization, used mainly in the Residual block process
and in the movement prediction for P and B slices

e Fixed Length binarization, used for flag types SE

An example of the Fixed Length binarization process can
be seen in the table below. The binldx, indicates the binary
index of the binary string. For example this same binary
strings indicates the values of the rem_intra_4x4_pred_mode
and rem_intra_8x8_pred_mode SE from the H.264/AVC stan-
dard.

2.2. CABAC Variables

In the H.264/AVC standard the prediction of the binary value
is basically calculated by these variables.

e ctxlIdx, which indicates the context of the syntax element

Value of Syntax Element | Bin String
0 000
1 100
2 010
3 110
4 001
5 101
6 011
7 111
binldx 012

Table 1. FL binarization with cMax = 7.

e codIRange and codIOffset, corresponds to the status of
the arithmetic decoding process

e pStateldx, corresponds to the probability state index

e valMPS, corresponds to the value of the most probable
symbol

2.3. CABAC Arithmetic coding engine

After the binarization of an SE, each bin in the binarized
string will be given a context (ctxIdx) and then encoded using
the CABAC arithmetic coding. The Context Arithmetic cod-
ing theory is based on the principle of recursive interval sub-
division. Given a probability estimation pp and p; = 1 — pg
of the binary decision (0,1), codIRange will be initially gives
the code sub-interval, this range will be subdivided into two
sub-intervals having the following range pg * codl Range and
codl Range — pg * codl Range, respectively. Depending on
the decision, the corresponding sub-interval is going to be
chosen as the new code interval, and the binary code string
pointing into that interval will represent the sequence of ob-
served binary decisions. In the decoding decision procedure
it is useful to distinguish between the most probable symbol
(MPS) and the least probable symbol (LPS), it is better that
the binary decisions have to be identified as either MPS or
LPS, rather than O or 1. Given this terminology, each context
is specified by the probability p of the LPS and the value of
MPS (valMPS), which is either O or 1. [7]

3. RVC-CAL CABAC IMPLEMENTATION

The implementation of the RVC H.264/AVC parser FU in
the current RVC-CAL AVC CBP (Constrained Base Pro-
file) [4], [6] decoder is being used as a base for the CABAC
entropy decoder. That means that each action used by the
parser from the CAVLC is modified so that can support
CABAC SE’s extraction. The CABAC implementation is
modeled by twelve untagged actions. These actions are not
named in the source code because they are executed outside
the FSM (Finite State Machine) of the parser FU. Here we

give them names for clarity. We developed two methods to re-
trieve the Syntax Elements values from the AVC/H.264 parser
Functional Unit. The first method is using a Look Up Ta-
ble (LUT) for comparing the decode binary string given by
the CABAC procedure and the binarized Value of an Syntax
Element. This method was later abandoned due to the com-
plexity of the binarization LUT of the quantized coefficients
(Macroblock residual values) and its slow double loop algo-
rithm. Given the difficulty of the binarized residual values,
we developed a new method, Bin By Bin, which is an adap-
tive decoding solution for each Syntax Element.

Un-tagged Actions Outside the FSM

[AVC Parzer FU, Fsm

Fig. 6. RVC-CAL main CABAC parsing actions

In the Figure 6 we represent the LUT and Bin by Bin
method as CabacPasrsing, depending the method we want to
use. CabacPasrsing is the main action and it controls the ac-
tivation of the CABAC decoding actions. Depending the SE
three actions are used to decode the binary value. These ac-
tions are DecodeDecision, DecodeByPass and DecodeTermi-
nate. All three of them execute smaller actions to read the
bitstream.

3.1. Look Up Table method

After the CABAC arithmetic decoding the decoded bins have
to be de-binarized so the value can be retrieved. A very simple
way to get the decoding value from CABAC de-binarization
is to use a Look Up Table. As each SE has a specific bina-
rization the idea was to create a look up-table for each SE
and to stock the binarized values in a multi dimension ar-
ray. Thus index of the array will be the decoded value and
the rows of the table represents binarized bin string. With
this method bits are recovered one by one and then are com-
pared with the binarization table of the searched SE. As we
mentioned before we abandoned this method, but all the SEs
expect the coeff_abs_level_minusl (quantized coefficients),
ref_1x and mvd_Ix (mouvement vectors) fully functional.

3.2. Bin by Bin method

Using a LUT demands more memory and the comparison
algorithm could be much more time consuming. For exam-
ple to decode the 255 value of the coeff_abs_level minus1 SE
with LUT method, the algorithm needed to execute 255*(n

H 1
H is
5| =
H a3
H E
E g

Fig. 7. The LUT Method

bins) double loops. So to make the process faster we devel-
oped the Bin By Bin method. In this method each SE has a
different de-binarization procedure. In this way the CABAC
decoding is unique for each SE.

Fig. 8. The Bin By Bin Method

The Figure 9 shows a part of the coeff_abs_level_minusl
SE de-binarization process, this procedure is called as many
times as the SE value is completely de-binarized.

4. RESULTS

4.1. Conformance sequences support

The RVC-CAL CABAC implementation supports all
the SEs found in the AVC/H.264 standard except the
mb_field_decoding_flag (which indicates if the macroblock

procedure CoeffAbsParsing ()
begin
if StartPrefix then
if binValDecoded = false then

binldx := binldx + 1;
//give the ctxldx
ctxIdxCoeffAbsLevel ();
//Get the bin Value

StartDecodeDecision := true;
CabacStartProcess := false;
NextBitToDecode := false;
binldx := 0;

end

if binValDecoded = true then
// Increment binldx
binldx := binldx + 1;
if binVal = 1 then

CabacValue := —1;
else
CabacValue := 1;
end
// Finishing the Prefix for a 0 binVal
StartPrefix := false;
numDecodAbsLevelEql := numDecodAbsLevelEql + 1;
//Stop cabac process and give the value
CabacStartProcess := false;
FoundSE := true;
end
Fig. 9. A part of the coeff abs_level minusl SE de-

binarization procedure.

is field coded). Also because the abstract decoder model
used in this implementation is coming for the AVC CBP
FU, it does not support the decoding of the BiPred slices.
Thus our CABAC implementation supports all the encoded
Macroblock SE except those coded in field order. The follow-
ing Table 2 is a list of supported conformance AVC/H.264
sequences coded using the CABAC entropy encoding.
Because of the AVC CBP FU the sequence marked as IPB
are supported only by the AVC Parser FU, the decoding of
those sequences is a work in progress of the AVC FRExt
(Fidelity Range Extensions) decoder FU.

4.2. RVC-CAL CABAC versus JM CABAC implementa-
tion

The RVC-CAL is by design intended to be a high level lan-
guage. The Decode Decision process is used by almost all
Syntax Element in the H.264/AVC standard. Here we com-
pare the interpretation of the H.264/AVC Decode Decision
flowchart(Figure 10) with the RVC-CAL (Figure 11) and the
C language used in the JM software Reference software of the
H.264/AVC Standard (Figure 12).

In term of source code we have approximately the same
number of code lines for this two different implementations,
but the difference is in the readability and the understanding
of the source code. The RVC-CAL implementation results to
be an identical copy the of the Decode Decision flowchart. In
addition the C code of the JM software contains pointers, the
variables are not named exactly the same and in general the

Name Slice Type | N. Frames Status
CABAI1_Sony_D I 50 Passed
CABA2_Sony_E 1P 300 Passed
CABA3_Sony C IPB 300 Only Parser
CABA3_TOSHIBA_E IP 300 Passed
CABAI_SVA B I 17 Passed
CABA2_SVA_B P 17 Passed
CABA3_SVA_C IPB 33 Only Parser
CANLI1_TOSHIBA_G I 300 Passed
CANLI1 Sony_E I 17 Passed
CANL2_Sony_E 1P 300 Passed
CANL3_SVA_C IPB 300 Only Parser
CANLI_SVA_B I 17 Passed
CANL2_SVA_B I 17 Passed
CANL3_SVA B 1P 17 Passed
CANL4_SVA_C IPB 33 Only Parser
CAQP1_Sony_B IP 50 Passed
CACQP3_Sony_D IPB 50 Only Parser

Table 2. Conformance sequences supported by the Bin By
Bin RVC-CAL implementation

code readability is not as easy to read and analysable as the
RVC-CAL code.

Our full implementation of the CABAC in RVC-CAL con-
tains less source code than the C implementation of the JM
AVC decoder. 2500 source code lines for the RVC-CAL and
more than 3000 lines for the C code.

?

qCodIRangeldx := (codiRange >> 6) & 3
codIRangeLPS := rangeTabbLPSIpStateldxllqCodIRangeldx]
= - PS

codioffset >= codiRange

binval := valMPS

codIRange := codiRangeLPS = t 1

binVal := lvalMPS

YES

valMPS := 1 - valMPS

pStateldx == 07

= PSI]| 1 |

I RenormbD

Fig. 10. Decoding Decision flowchart in the H.264/AVC stan-
dard.

5. TO A DATA FLOW MODEL

The actual form of the AVC parser in RVC-CAL is sequen-
tial, as supposed to be for a parser. As RVC-CAL is a data

DecodeDecision: action =

guard
StartDecodeDecision and
bypassFlag = false and ctxIdx != 276 and
StartRenormD = false

do
qCodIRangeldx := (codIRange >> 6) & 3;
codIRangeLPS :=

rangeTabLPS[pStateldx [ctxIdx]][qCodIRangeldx];

codIRange := codIRange — codIRangeLPS;

if codIOffset >= codIRange then
binVal intXOR (valMPS [ctxIdx]);
codIOffset codlOffset — codIRange;
codIRange codIRangeLPS;

if pStateldx[ctxIdx] = O then
valMPS[ctxIdx] := 1 — valMPS[ctxIdx];

end

pStateldx [ctxIdx] :=
transIdXLPS [pStateldx [ctxIdx]];

else
binVal := valMPS[ctxIdx];
pStateldx [ctxIdx] :=
transIdxMPS[pStateldx[ctxIdx]];
end

// Give the right to compare in CabacParsing
binValDecoded := true;

// write the bit into the ReadBinString
ReadBinString [binldx + 1] := binVal;

if codIRange < 0x0100 then
StartRenormDRead := true;

else
CabacStartProcess := true;

end

// Do not call again DecodeDecision

StartDecodeDecision := false;

// Do not give the hand to CabacParsing

end

Fig. 11. Decoding Decision action written in RVC-CAL.

flow based language, the idea here is to transform its sequen-
tial form to a data flow one. Actually the challenge is how
to pipeline a sequential parser that includes feedback loops.
As a matter of fact the bitsream has a start up code when a
new slice starts. We could store the whole bitstream for a
slice to buffer and then analyzed it and dispatched it to where
is necessary. Actually in this way we could partition the
parser process in smaller actors and create a pipeline archi-
tecture. These actors are the BitstreamAnalyser, NAL, SPS,
PPS, SliceHeader and EntropyDecoding. Appart EntropyDe-
coding all other actors are explicit, for a reconfigurable de-
coder is a necessity to separate the CAVLC and the CABAC
entropy Decoding. So in the EntropyDecoding actor we will
regroup SliceData, macroblock_layer, mb_pred, sub_mb_pred,
residual and residual_block [7]. The Figure 13 shows how
the sequential AVC/H.264 parser can be transformed to a
dataflow model using RVC-CAL.

unsigned int biari_decode_symbol
(DecodingEnvironmentPtr dep,
BiContextTypePtr bi_-ct)

bi_ct —>MPS;
&dep—>Dvalue ;
&dep—>Drange ;
&bi_ct—>state ;

unsigned int bit
unsigned int xvalue
unsigned int xrange
uintl6 *state
unsigned int rLPS

rLPS_table_64x4[*state J[(*range >>6) & 0x03];
int xDbitsLeft = &dep—>DbitsLeft;

xrange —= rLPS;
if (xvalue < (xrange << xDbitsLeft)) { //MPS
xstate = AC_next_state_MPS_64[*xstate]; // next state

if (xrange >= QUARTER){
return (bit);
} else
xrange <<= 1;
(xDbitsLeft)——;
} else { //LPS

int renorm = renorm_table_32 [(rLPS>>3) & Ox1F];
*value —= (xrange << dep—>DbitsLeft);

srange = (rLPS << renorm);

(xDbitsLeft) —= renorm;

bit "= 0x01;

if (!(xstate))
// switch meaning of MPS if necessary
bi_ct—>MPS "= 0x01;

xstate = AC_next_state _LPS_64[*xstate]; // next state

}

if (xDbitsLeft > 0){
return (bit);

} else {
*value <<= 16;
xvalue |= getword(dep);
(xDbitsLeft) += 16;
return (bit);

Fig. 12. Decoding Decision action written in C from the JM.

Fig. 13. A DataFlow model for the H.264/AVC Parser

6. CONCLUSIONS

Implementing the basic CABAC process in RVC-CAL took
one month and two months for making it possible to decode
the I,P and B slices. Our implementation is supporting all the
CABAC encoded Syntax Elements found in the AVC/H.264
standard except the Macroblock field flag. The software gen-

erated decoder by our RVC-CAL abstract description can suc-
cessfully decode a large part of the AVC/H.264 conformance
sequences. Using RVC-CAL to interpret the H.264/AVC stan-
dard is really easy and this effectively reduces the concep-
tion time and actual work compared to other languages. With
RVC-CAL is not only possible to implement a type of al-
gorithm in one way, but it can be implemented as sequen-
tial monolithic process, as a monolithic dataflow model and
as a networked data flow model. Thus implementing the
AVC/H.264 Parser in a data flow model and its entropy de-
coding engines (CAVLC and CABAC) could achieve better
performances than the current monolithic data flow model.

7. REFERENCES

[1] S.S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mat-
tavelli, and M. Raulet. Overview of the MPEG Reconfigurable
Video Coding Framework. Springer journal of Signal Process-
ing Systems. Special Issue on Reconfigurable Video Coding,
2009.

[2] H. Eeckhaut, M. Christiaens, D. Stroobandt, and V. Nollet. Op-
timizing the critical loop in the H.264/AVC CABAC decoder.
Field Programmable Technology, 2006. FPT 2006. IEEE Inter-
national Conference, 2006.

[3] J. Eker and J. Janneck. CAL Language Report. Technical Re-
port ERL Technical Memo UCB/ERL M03/48, University of
California at Berkeley, Dec. 2003.

[4] J. Gorin, M. Raulet, Y. Cheng, H. Lin, N. Siret, K. Sugimoto,
and G. Lee. An RVC Dataflow Description of the AVC Con-
strained Baseline Profile Decoder. In Proceedings of ICIP’09,
Nov. 2009.

[5] ISO/IEC FDIS 23001-4. MPEG systems technologies — Part 4:
Codec Configuration Representation, 2009.

[6] J. W. Janneck, M. Mattavelli, M. Raulet, and M. Wipliez. Re-
configurable video coding: a stream programming approach to
the specification of new video coding standards. In MMSys
"10: Proceedings of the first annual ACM SIGMM conference
on Multimedia systems, pages 223-234, New York, NY, USA,
2010. ACM.

[7] L. JTC1/SC29/WG11 and L-T. S. Q.6. Joint Draft ITU-T Rec.
H.264 — ISO/IEC 14496-10 / Amd.3 Scalable video coding ,
2007.

[8] M. Wipliez, G. Roquier, and J. Nezan. Software Code Genera-
tion for the RVC-CAL Language. Journal of Signal Processing
Systems, 2009.

