Cells in 3D matrices under interstitial flow: Effects of extracellular matrix alignment on cell shear stress and drag forces

John A. Pedersen a, Seth Lichter b, Melody A. Swartz a,b,c,*

a Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
b Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
c Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), SV - LMBM, Station 15, CH-1015 Lausanne, Switzerland

A R T I C L E I N F O

Article history:
Accepted 4 November 2009

Keywords:
Computational fluid dynamics
Mechanobiology
Perfusion
Collagen
Brinkman flow

A B S T R A C T

Interstitial flow is an important regulator of various cell behaviors both in vitro and in vivo, yet the forces that fluid flow imposes on cells embedded in a 3D extracellular matrix (ECM), and the effects of matrix architecture on those forces, are not well understood. Here, we demonstrate how fiber alignment can affect the shear and pressure forces on the cell and ECM. Using computational fluid dynamics simulations, we show that while the solutions of the Brinkman equation accurately estimate the average fluid shear stress and the drag forces on a cell within a 3D fibrous medium, the distribution of shear stress on the cellular surface as well as the peak shear stresses remain intimately related to the pericellular fiber architecture and cannot be estimated using bulk-averaged properties. We demonstrate that perpendicular fiber alignment of the ECM yields lower shear stress and pressure forces on the cells and higher stresses on the ECM, leading to decreased permeability, while parallel fiber alignment leads to higher stresses on cells and increased permeability, as compared to a cubic lattice arrangement. The Spielman–Goren permeability relationships for fibrous media agreed well with CFD simulations of flow with explicitly considered fibers. These results suggest that the experimentally observed active remodeling of ECM fibers by fibroblasts under interstitial flow to a perpendicular alignment could serve to decrease the shear and drag forces on the cell.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Matrix alignment is common in tissue remodeling and interstitial cells like fibroblasts can readily align their extracellular matrix (ECM) according to mechanical and molecular cues. In vivo, these cues are typically a combination of biochemical (e.g. inflammatory factors such as TGF-β) and mechanical signals (Orr et al., 2006; MacKenna et al., 2000; Ingber, 2006; Rhee and Grinnell, 2007; Chiquet et al., 2009; Davies, 2009; Fritton and Weinbaum, 2009; Hahn and Schwartz, 2009; Riddle and Donahue, 2007) and other inflammatory environments, where interstitial flow (IF) is increased due to capillary hyperpermeability and immune cell infiltration. While normal IF can be in the range of 0.1–1 μm/s (Chary and Jain, 1989; Dafni et al., 2002), increased IF in such inflammatory environments are evidenced by drastically increased lymph flow rates (Mullins and Hudgens, 1987; Matsumoto et al., 1990; He et al., 2002; Modi et al., 2007) because lymph drains the interstitial space. In addition to its role in wound healing, IF is important for tissue homeostasis via transport of metabolites and cell-signaling molecules; it is also an important morphoregulator both in vivo (Boardman and Swartz, 2003; Hirokawa et al., 2006; Schweickert et al., 2007) and in vitro, where it has been used to engineer functional blood and lymphatic capillaries (Ng et al., 2004; Helm et al., 2005; Semino et al., 2006; Helm et al., 2007).

The ways that cells perceive IF are poorly understood. The cells might directly sense the surface forces induced by flow, the drag and tethering forces that result from these surface forces on the ECM, or the effects may be more indirect. For example, recent work has shown that IF can alter the extracellular distribution of secreted chemokines or morphogens and thus direct cell migration or capillary morphogenesis (Helm et al., 2005; Fleury et al., 2006; Shields et al., 2007). Flow may also be focused on small portions of a porous space by larger tissue structures and have a strong effect on cells embedded in that space (Tada and Tarbell, 2000).

Collagen matrices can align in the direction of mechanical strain (Harris et al., 1981; Barocas and Tranquillo, 1997). In contrast, IF-induced cell-mediated matrix realignment is perpendicular to the direction of flow (Ng and Swartz, 2003; Ng, 2009) and other inflammatory environments, where it has been used to engineer functional blood and lymphatic capillaries (Ng et al., 2004; Helm et al., 2005; Semino et al., 2006; Helm et al., 2007).
and Swartz, 2006), and this alignment correlates with myofibroblast differentiation and increased fibrotic potential (Ng et al., 2005). It is also well-known that a matrix made of perpendicularly aligned fibers should experience greater drag force than matrices parallel to the direction of flow (Happel and Brenner, 1965; Jackson and James, 1986). Therefore, we wondered whether local matrix alignment could be a mechanism of stress shielding by the cell and asked how the fiber alignment would affect stresses on a cell embedded within this matrix. We present here a computational fluid dynamics (CFD) study to evaluate the shear and pressure forces on cells in matrices with different fiber alignments and show that perpendicularly aligned matrix alignment shields the cell from fluid stresses by transferring these forces onto the matrix fibers. Thus, by altering local fiber geometry, cells can alter the details of their local mechanical environment, even if the fiber rearrangement does not alter the bulk tissue porosity.

2. Theory

Typical approaches for modeling flow through porous media use a single parameter to describe the flow resistance of the solid phase of the media rather than modeling the media explicitly as a two-phase material. The hydraulic permeability, K, was first described empirically by Darcy (Darcy, 1856) and later modified by Brinkman to allow for fluid velocity gradients and the satisfaction of no-slip boundary conditions (Brinkman, 1947). Brinkman’s equation, with a few modest corrections, has been theoretically validated using the Navier–Stokes equation and ensemble averages of spherical and fibrous obstacles (Tam, 1969; Lundgren, 1972; Chernyakov, 1998).

Fibrous media constitute a distinct subclass of porous media because the solid phase can be very sparse and may be oriented spatially, unlike granular porous media. As a result, permeability relationships designed for particle suspensions, packed beds, and other non-fibrous media typically have a poor fit with experimental results on the permeability of fibrous media (Jackson and James, 1986). We previously found good correlation between the average shear stress on a sphere in a 3D fiber lattice computed by CFD and that predicted by the Brinkman equation, provided that the relationship used to compute the permeability (K) is appropriate for fibrous media (Pedersen et al., 2007); however, the shear distribution and the peak values of shear stress were not well predicted by the Brinkman equation using several published K relationships. While average stresses on cells in complex 3D structures can be well predicted using simpler models, knowledge of shear stress maxima and distributions on cells requires a 3D geometrical model (Boschetti et al., 2006), since the architecture of the matrix determines the gradients in shear stress. Here our goal is to determine the effects of local ECM fiber alignment on fluid forces on the cell. Thus, to compare our CFD results with experimental predictions, we consider previous continuum-based models that estimate K in aligned fibrous matrices.

Spielman and Goren presented permeability relationships for random and aligned fibrous matrices which have been substantiated by, or compare well with, later work by other groups (Spielman and Goren, 1968; Jackson and James, 1986; Higdon and Ford, 1996; Chernyakov, 1998). Their computations resulted in implicit relationships between a dimensionless permeability ($K/\frac{r_i^2}{\nu}$, where r_i is the fiber diameter) and the solid volume fraction of the medium, φ_s, for matrices with fibers aligned randomly, parallel to flow, or perpendicular to flow, respectively:

$$\frac{1}{3} + \frac{5}{6} \frac{\sqrt{K}}{\nu} \frac{r_i}{\sqrt{\varphi_s}} = \frac{1}{4\varphi_s}, \quad \frac{1}{3} + \frac{\sqrt{K}}{\nu} \frac{r_i}{\sqrt{\varphi_s}} = \frac{1}{4\varphi_s}, \quad \frac{1}{3} + \frac{\sqrt{K}}{\nu} \frac{r_i}{\sqrt{\varphi_s}} = \frac{1}{4\varphi_s},$$

(2)

$$K_p(x) = \frac{K}{\sqrt{\varphi_s}}$$

(3)

$K_p(x)$ is the modified Bessel function of the second kind with order p and argument x, and $\varphi_s < 0.75$. Once K is known for a given matrix, whether via direct measurement in an experiment or by using a theoretical relationship like those above, the Brinkman equation can be used to estimate the average shear stress on the surface of the sphere, as well as the fluid drag on a sphere from a given average flow velocity U_0. Ganapathy’s form of the shear stress on a sphere in a Brinkman medium is (Ganapathy, 1997):

$$\tau = \frac{3U_0\mu}{2a} \sin \theta \left(1 + \frac{1}{\alpha}\right)$$

(4)

where

$$\alpha = \sqrt{\frac{K}{\nu}} \left(1 + \frac{5}{2}\varphi_s\right)$$

(5)

Note that α is a dimensionless permeability that is normalized by the embedded sphere (cell) radius, a, rather than the fiber radius, r_i, as in Eqs. 1–3. μ is the fluid viscosity, and θ is the angle from the free stream velocity axis.

Using Ganapathy’s notation, the total drag on a sphere in a Brinkman medium is

$$D = U_0\alpha \frac{\mu}{2} \left[2\pi \left(1 + \frac{1}{\alpha} + \frac{1}{\alpha^2}\right) + 4\pi \left(1 + \frac{1}{\alpha}\right)\right]$$

(6)

The first term is the drag arising from the pressure gradient acting on the sphere and the second term is the integrated shear stress on the sphere surface.

Eqs. 1–6 describe the continuum-averaged approximations to the fluid flow around a cell embedded in a 3D fibrous matrix. Again, we note that these equations are based on descriptions of the matrix architecture that rely on only a permeability and solid volume fraction. Thus, as comparisons to our CFD solutions, Eqs. 1–5 were used to compute the Brinkman shear stress on the cell, while Eqs. 5 and 6 were used to compute the expected drag force. The results of these computations are referred to as the “Brinkman prediction” throughout this report.

3. Methods

Methods used in this study were similar to those described previously (Pedersen et al., 2007). Briefly, a 3D model of the fluid flow domain was created using Rhinoceros (v2.0, Robert McNeel & Assoc; Seattle, WA), centered on a spherical cell of radius a (7.5 μm) embedded in a lattice of fibers with diameter d and spacing s (Fig. 1). The domain was sufficiently large such that increasing its size had no effect on the computed results. The 3D models were exported in ACIS format, loaded into Gambit (v2.2, Fluent Inc; Lebanon, NH), and meshed using triangular face meshes and tetrahedral/hybrid volume elements. The mesh interval varied by model, but a grid convergence study based on the method of Roache (Roache, 1997) showed that the meshes used were sufficiently fine that the shear stress results were not adversely affected by the grid spacing (data not shown).

Models were designed in sets of three to test the effects of fiber orientation on the fluids forces on cells embedded in the matrices (Fig. 1 and Table 1). For instance, models A1, B1 and C1 all had fiber diameters of 500 nm and a porosity of 98.4%; in A1, the fibers were organized in a cubic lattice, and in each of the other two fibers were organized in a square lattice that was either perpendicular (B1) or parallel (C1) to the flow direction. All lattices were homogeneous—for any given model, both d and s were constant throughout the domain. To simulate cell-mediated matrix remodeling by fiber reorganization and realignment, we kept fiber diameter and porosity (fluid volume fraction) constant and allowed fiber spacing to change.
4. Results

In vivo, interstitial flow is driven by pressure gradients resulting from hydrostatic and osmotic pressure differences between the blood and the interstitial space (Guyton, 1963). When the ECM is remodeled in a way that changes K, the pressure gradient remains the same so the flow rate would vary; in this way, the effects of remodeling would be to change the local flow rates and distributions of flow through the matrix. Therefore we used fixed pressure gradients and found that for a given pressure drop, a cell embedded within idealized fibrous matrices experiences smaller shear stresses (both average and maximum) when the lattice is perpendicularly aligned as opposed to cubic, for the same porosity (Fig. 2). This was in contrast to the shear stresses on the ECM fibers, which were higher overall on a perpendicularly aligned matrix than on those aligned in a random or parallel direction, as expected (Spielman and Goren, 1968; Jackson and James, 1986). In addition, both the pressure and shear drag on the cell were lower in perpendicularly aligned (vs. cubic) matrices (Fig. 3 A,B).

In addition to total fluid forces, the distribution of shear stress on the cell surface was also significantly altered by fiber alignment. In a perpendicularly aligned matrix (e.g., model B2), there were more discrete areas of maximal shear stress distributed over a larger area than those in a cubic lattice (model A2). When fibers were aligned parallel to flow (model C2), there was a smoother shear stress distribution around the cell (Fig. 3A), but the average and integrated shear stresses, shear drag, and

Table 1
Summary of computational model parameters.

<table>
<thead>
<tr>
<th>Alignment</th>
<th>d (nm)</th>
<th>s (μm)</th>
<th>K (μm2)</th>
<th>ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 Cubic</td>
<td>500</td>
<td>6.0</td>
<td>2.554</td>
<td>98.4%</td>
</tr>
<tr>
<td>B1 Perpendicular</td>
<td>500</td>
<td>3.5</td>
<td>1.595</td>
<td>98.4%</td>
</tr>
<tr>
<td>C1 Parallel</td>
<td>500</td>
<td>3.5</td>
<td>2.856</td>
<td>98.4%</td>
</tr>
<tr>
<td>A2 Cubic</td>
<td>700</td>
<td>4.0</td>
<td>0.737</td>
<td>93.4%</td>
</tr>
<tr>
<td>B2 Perpendicular</td>
<td>700</td>
<td>2.4</td>
<td>0.447</td>
<td>93.3%</td>
</tr>
<tr>
<td>C2 Parallel</td>
<td>700</td>
<td>2.4</td>
<td>0.828</td>
<td>93.3%</td>
</tr>
<tr>
<td>A3 Cubic</td>
<td>750</td>
<td>6.0</td>
<td>1.751</td>
<td>96.6%</td>
</tr>
<tr>
<td>B3 Perpendicular</td>
<td>750</td>
<td>3.6</td>
<td>1.222</td>
<td>96.6%</td>
</tr>
<tr>
<td>C3 Parallel</td>
<td>750</td>
<td>3.6</td>
<td>2.192</td>
<td>96.6%</td>
</tr>
<tr>
<td>D Cubic</td>
<td>1000</td>
<td>6.0</td>
<td>1.356</td>
<td>94.0%</td>
</tr>
</tbody>
</table>

Fig. 1. CFD model setup. (A) Definition of the geometrical parameters of the model. Panels (B–D) show rendered samples of a cell in a matrix with fibers aligned perpendicular to flow (B), a cubic fiber lattice (C), and a matrix with fibers aligned parallel to flow (D). Flow is from left to right.

Fig. 2. Under a constant pressure gradient, cells in matrices aligned perpendicular to flow are subjected to lower maximum (solid) and average (dashed) shear stresses as compared to those in cubic lattices with the same fiber diameter and porosity. In contrast, cells in matrices aligned with flow experience nearly the same maximum shear stress as cells in cubic lattices, while average shear stress is elevated between 10% and 20% compared to the cubic lattice case.
pressure drag on the cell were higher than those found in models A2 or B2 (Fig. 3B).

Although the fiber size and matrix porosity were held constant between matrices, the effective K was different (Eqs. 1–3)—parallel alignment had a higher K than a cubic lattice, increasing the flow velocity, while perpendicular alignment had the lowest K, in turn decreasing the overall flow velocities. Thus, by remodeling its local matrix in a perpendicular alignment to interstitial flow, the cell reduces its shear stress and drag forces, and slows the local flow around it. We can expect from Darcy's Law that K/C_0 reflects the overall drag of the fibers (Spielman and Goren, 1968), and thus the drag on the matrix fibers in a perpendicularly aligned matrix is higher than that on fibers in the same matrix if it is aligned parallel to flow (Eqs. 2 and 3). Therefore, while the cell becomes shielded from fluid forces by remodeling its matrix to a perpendicular alignment, the matrix absorbs them.

Rotating a cubic fiber lattice should not affect its K because cubic lattices have no preferred direction. To ensure that the model results were not due to the co-alignment of the flow and fibers, models were constructed with the matrix rotated with respect to the flow direction. In Fig. 3 C–E, matrix D was rotated 45° in either two planes (matrix 1) or one plane (matrix 2). While rotating the cubic fiber lattice redistributed shear on the cell surface, average shear stresses for the two models were within 5% of each other and of Matrix D, and integrated pressure and drag forces were within 6%; these are near the expected error predicted by a grid convergence study (data not shown). Therefore, rotating the cubic lattice did not change the K or average shear stresses on the cell.

To compare with continuum-based approaches, we determined the permeability of our fibrous matrices by modeling the flow (without a cell in place) using constant velocity boundary conditions until it reached steady state, and then “measuring” the pressure drop required to drive that flow as determined by the simulation. Once the flow speed and pressure drop were known, we solved the Darcy equation for K and compared it to Spielman...
and Goren’s predictions for matrices with the same porosities. For cubic fiber lattices, our CFD permeabilities matched well with the Spielman and Goren predictions (Fig. 4). Therefore, our results for average fluid forces on the cell were consistent with results obtained from the Brinkman equation with Spielman and Goren’s K.

Finally, examining the Brinkman equation for drag on a sphere in a porous matrix shows that the majority of the drag force on cells in typical in vitro fibrous matrices is from the pressure drag (Fig. 5, Eq. (6)). Using K as measured from the CFD simulations yields dimensionless permeability (σ) values between 0.1 and 0.2. Eq. (6) shows that in this range, pressure drag accounts for 72–85% of the total drag on the cell; our CFD results confirm this finding (see discussion below). Thus, as matrices become more restricted (as many in vivo matrices are), K decreases and the pressure forces become more dominant compared to shear forces. By contrast, in matrices with very high porosities (such as the sparse matrices often used for 3D in vitro experiments), the shear on the cell will account for a higher fraction of the drag and thus may be a stronger signal to the cell regarding the local flow environment.

5. Discussion

The organization and density of the fibers around cells embedded in a 3D matrix define the distribution of shear stress on the surface of those cells, and together with the pressure gradient determine the magnitude of the shear and drag on those cells as well. Consequently, changes in the matrix architecture alter the forces imposed on a cell by interstitial flow. Thus, by changing local ECM fiber organization, cells can modulate their mechanical environment.

Using CFD simulations, we demonstrated that the average, but not peak, shear stresses and pressure drag forces on a cell embedded in an in vitro fibrous matrix with no preferred orientation are accurately predicted using continuum approximations such as those calculated from Ganapathy’s solution (Eqs. 4–6). Instead, the peak magnitudes and shear stress distributions on the cell surface depend on the details of the local fiber architecture, and are also significantly affected by the matrix alignment even more than would be predicted by computing a permeability that takes fiber alignment into account.

We have previously shown that the rearrangement of only a few fibers close to the cell can result in a mitigation of the shear stress on the cellular surface (Pedersen et al., 2007) without affecting K, but our results here show that the shear force might be a small part of the total drag on the cell. Furthermore, interstitial cells are capable of remodeling the architecture of the entire matrix given sufficient time (Grinnell and Lamke, 1984; Ng et al., 2005); thus, altering the global architecture will alter the matrix permeability thereby altering the pressure forces on the cells inside the matrix.

As the matrix becomes more restricted, pressure forces dominate the shear forces. For example, as computed in model A2, the pressure gradient required to drive flow at 4 μm/s was 4.3×10^{-3} Pa/μm; integrating this across the cell surface yields a pressure drag of 12.7 pN. Peak shear stress was 1.2×10^{-2} Pa, but the integrated shear drag was 2.8 pN. A similar pattern held for all models reported here.

Our estimate of the tethering forces required to hold a cell in place against the fluid forces directly imposed on the cell is very small compared to other cellular-scale forces. The drag on a cell in a typical matrix under 4 μm/s flow was about 16 pN (see discussion above). Assuming 10 fibers are placed under tension to hold the cell in place against this drag, the load on a single fiber/cell junction would be a mere 1.6 pN. By comparison, the bond-strength of a typical integrin–ligand interaction is 40 pN (Lehenkari and Horton, 1999; Sun et al., 2005); thus, altering the global architecture will alter the matrix permeability thereby altering the pressure forces on the cells inside the matrix.

As the matrix becomes more restricted, pressure forces dominate the shear forces. For example, as computed in model A2, the pressure gradient required to drive flow at 4 μm/s was 4.3×10^{-3} Pa/μm; integrating this across the cell surface yields a pressure drag of 12.7 pN. Peak shear stress was 1.2×10^{-2} Pa, but the integrated shear drag was 2.8 pN. A similar pattern held for all models reported here.

Our estimate of the tethering forces required to hold a cell in place against the fluid forces directly imposed on the cell is very small compared to other cellular-scale forces. The drag on a cell in a typical matrix under 4 μm/s flow was about 16 pN (see discussion above). Assuming 10 fibers are placed under tension to hold the cell in place against this drag, the load on a single fiber/cell junction would be a mere 1.6 pN. By comparison, the bond-strength of a typical integrin–ligand interaction is 40 pN (Lehenkari and Horton, 1999; Sun et al., 2005); thus, altering the global architecture will alter the matrix permeability thereby altering the pressure forces on the cells inside the matrix.

As the matrix becomes more restricted, pressure forces dominate the shear forces. For example, as computed in model A2, the pressure gradient required to drive flow at 4 μm/s was 4.3×10^{-3} Pa/μm; integrating this across the cell surface yields a pressure drag of 12.7 pN. Peak shear stress was 1.2×10^{-2} Pa, but the integrated shear drag was 2.8 pN. A similar pattern held for all models reported here.

Our estimate of the tethering forces required to hold a cell in place against the fluid forces directly imposed on the cell is very small compared to other cellular-scale forces. The drag on a cell in a typical matrix under 4 μm/s flow was about 16 pN (see discussion above). Assuming 10 fibers are placed under tension to hold the cell in place against this drag, the load on a single fiber/cell junction would be a mere 1.6 pN. By comparison, the bond-strength of a typical integrin–ligand interaction is 40 pN (Lehenkari and Horton, 1999; Sun et al., 2005); thus, altering the global architecture will alter the matrix permeability thereby altering the pressure forces on the cells inside the matrix.

As the matrix becomes more restricted, pressure forces dominate the shear forces. For example, as computed in model A2, the pressure gradient required to drive flow at 4 μm/s was 4.3×10^{-3} Pa/μm; integrating this across the cell surface yields a pressure drag of 12.7 pN. Peak shear stress was 1.2×10^{-2} Pa, but the integrated shear drag was 2.8 pN. A similar pattern held for all models reported here.

Our estimate of the tethering forces required to hold a cell in place against the fluid forces directly imposed on the cell is very small compared to other cellular-scale forces. The drag on a cell in a typical matrix under 4 μm/s flow was about 16 pN (see discussion above). Assuming 10 fibers are placed under tension to hold the cell in place against this drag, the load on a single fiber/cell junction would be a mere 1.6 pN. By comparison, the bond-strength of a typical integrin–ligand interaction is 40 pN (Lehenkari and Horton, 1999; Sun et al., 2005); thus, altering the global architecture will alter the matrix permeability thereby altering the pressure forces on the cells inside the matrix.

As the matrix becomes more restricted, pressure forces dominate the shear forces. For example, as computed in model A2, the pressure gradient required to drive flow at 4 μm/s was 4.3×10^{-3} Pa/μm; integrating this across the cell surface yields a pressure drag of 12.7 pN. Peak shear stress was 1.2×10^{-2} Pa, but the integrated shear drag was 2.8 pN. A similar pattern held for all models reported here.

Our estimate of the tethering forces required to hold a cell in place against the fluid forces directly imposed on the cell is very small compared to other cellular-scale forces. The drag on a cell in a typical matrix under 4 μm/s flow was about 16 pN (see discussion above). Assuming 10 fibers are placed under tension to hold the cell in place against this drag, the load on a single fiber/cell junction would be a mere 1.6 pN. By comparison, the bond-strength of a typical integrin–ligand interaction is 40 pN (Lehenkari and Horton, 1999; Sun et al., 2005); thus, altering the global architecture will alter the matrix permeability thereby altering the pressure forces on the cells inside the matrix.

As the matrix becomes more restricted, pressure forces dominate the shear forces. For example, as computed in model A2, the pressure gradient required to drive flow at 4 μm/s was 4.3×10^{-3} Pa/μm; integrating this across the cell surface yields a pressure drag of 12.7 pN. Peak shear stress was 1.2×10^{-2} Pa, but the integrated shear drag was 2.8 pN. A similar pattern held for all models reported here.

Our estimate of the tethering forces required to hold a cell in place against the fluid forces directly imposed on the cell is very small compared to other cellular-scale forces. The drag on a cell in a typical matrix under 4 μm/s flow was about 16 pN (see discussion above). Assuming 10 fibers are placed under tension to hold the cell in place against this drag, the load on a single fiber/cell junction would be a mere 1.6 pN. By comparison, the bond-strength of a typical integrin–ligand interaction is 40 pN (Lehenkari and Horton, 1999; Sun et al., 2005); thus, altering the global architecture will alter the matrix permeability thereby altering the pressure forces on the cells inside the matrix.

As the matrix becomes more restricted, pressure forces dominate the shear forces. For example, as computed in model A2, the pressure gradient required to drive flow at 4 μm/s was 4.3×10^{-3} Pa/μm; integrating this across the cell surface yields a pressure drag of 12.7 pN. Peak shear stress was 1.2×10^{-2} Pa, but the integrated shear drag was 2.8 pN. A similar pattern held for all models reported here.
Conflict of interest statement

The authors have no conflicts of interest.

Acknowledgments

The authors are grateful to Mark Johnson and Matthew Glucksberg for helpful advice. This work was funded by the National Science Foundation (BES-0134551), the Whitaker Foundation (R-01-0348), and the Swiss National Science Foundation (107602).

References

