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Abstract

Productivity, quality, safety, and environmental concerns have driven major ad-
vancements in the development of process analyzers. Analyzers generate mea-
surement data that are useful for characterizing product and process attributes
(key variables), thereby benefiting the drive towards automatic control and op-
timization. However, these objectives may be severely compromised when key
variables are determined at low sampling rates through off-line analysis. It is
sometimes possible to relate more easily available secondary measurements (pre-
dictors) to key variables (predictands) using data-driven soft sensors or calibra-
tion models. These models can then be used to deliver information about key
variables at a higher sampling rate and/or at lower financial burden.

This work studies multivariate calibration for spectroscopic measurements
(such as near-infrared, mid-infrared, ultra-violet, Raman spectra, or nuclear
magnetic resonance) that are linked to concentrations of one or more ana-
lytes using an inverse regression model based on principal component regression
(PCR) or partial least-squares regression (PLSR). Spectroscopic measurements
are typically corrupted with both random zero-mean measurement errors (noise)
and systematic variations (drift) caused by instrumental, operational and pro-
cess changes. The prediction error can be decomposed into the error due to noise
in the calibration data and bias resulting from truncation in PCR/PLSR, and
the error due to drift and noise in the prediction data. To correct for these errors,
this work proposes three subspace correction methods that use new information
in addition to calibration data. Firstly, latent subspace correction using unla-
beled data (secondary measurements for which the key variables are unknown)
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helps reduce the error due to noise in the calibration data and truncation. Sec-
ondly, drift subspace correction is achieved following a two-step procedure. In
the first step, the drift subspace is estimated using slave data with drift and
master data with no drift. In the second step, the original calibration data are
corrected for the estimated drift subspace using shrinkage or orthogonal projec-
tion. The third subspace correction method involves data reconciliation, which
is the procedure of adjusting predicted key variables to obtain estimates that
are consistent with balance equations. The various methodologies are illustrated
using both simulated and experimental data.

Keywords: spectroscopic measurements; latent variables; unlabeled data;
systematic disturbances; drift; shrinkage; orthogonal projection; data reconcili-
ation.



Résumé

La poductivité, la qualité, la sécurité, et les préoccupations environnemen-
tales conduisent à des progrès majeurs dans le développement d’analyseurs de
processus. Ceux-ci génèrent des données de mesure qui sont utiles pour caracté-
riser les attributs des produits et processus (variables clés), bénéficiant ainsi au
développement des applications en réglage automatique ou en optimisation. Ce-
pendant, ces objectifs peuvent être gravement compromis lorsque les variables
clés sont déterminées à un faible taux d’échantillonnage, lors de l’analyse hors-
ligne par exemple. Toutefois, il est parfois possible de corréler des variables
secondaires (prédicteurs) aux variables clés (prédicats) en utilisant des capteurs
logiciels utilisant les données et des modèles d’étalonnage. Ces modèles peuvent
ensuite être utilisés pour fournir des informations concernant les variables clés
à taux d’échantillonnage plus élevé avec ou sans coût supplémentaire.

Le présent travail étudie l’étalonnage multivariable pour les mesures spec-
troscopiques (que sont par exemple, l’infrarouge proche, l’infrarouge moyen,
l’ultra-violet, les spectres de Raman, ou la résonance magnétique nucléaire).
Dans notre cas, ces mesures sont liées à des concentrations d’un ou plusieurs
analystes à travers un modèle de régression inverse basé soit sur la méthodes
des composantes principales (PCR), soit sur la méthodes des moindres car-
rés partiels (PLSR). Les mesures spectroscopiques sont généralement entachés
d’erreurs de mesure aléatoires de moyenne nulle (bruit), et les variations sys-
tématiques (dérive) sont causées par la variabilité des instruments de mesure,
par les conditions opérationnelles et par la variations du processus. L’erreur
de prédiction peut être décomposée en l’erreur due au bruit dans les données
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d’étalonnage et de distorsion résultant de la troncature en PCR/PLSR, et celle
due à la dérive et le bruit dans les données de prévision. Afin de corriger ces er-
reurs, nous proposons trois méthodes de sous-espace de correction qui utilisent
l’information supplémentaire par rapport aux données d’étalonnage.

Tout d’abord, une correction fondée sur un sous-espace latent utilisent des
données non étiquetées (ce sont des mesures secondaires pour lesquelles les va-
riables clés demeurent inconnues). Ceci améliore l’erreur provoquée par le bruit
dans les données d’étalonnage. Deuxièmement, une méthode de compensation
de dérive utilisant un sous-espace adapté est proposée qui se décompose en deux
étapes. Durant la première étape, le sous-espace de dérive est estimé en utilisant
des données esclaves comportant une dérive et des données de référence qui ne
comportent pas de dérive. A la second étape, les données d’étalonnage originales
sont corrigées à partir du sous-espace de dérive à l’aide de mises à l’échelle et
de projections orthogonales. La troisième méthode fondée sur les sous-espaces
de correction se fonde sur la réconciliation de données. Elle ajuste les variables
clés prédites afin d’obtenir des estimées qui sont consistantes avec les équations
de bilan. Les diverses méthodes sont illustrées à travers à la fois des données de
simulation et des données expérimentales.

Mots-clés : mesures spectroscopiques ; variables latentes ; données non éti-
quetées ; perturbations systématiques ; dérive ; retrait ; projection orthogonale,
réconciliation de données.
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Introduction

1.1 Overview

Productivity, quality, safety, and environmental concerns have driven major ad-
vancements in the development of process analyzers for food, (bio-)chemical,
pharmaceutical, petrochemical, paper/pulp, cement, steel, semiconductor, and
related process industries. The analyzers generate measurement data that are
useful for characterizing product and process attributes (so-called key variables),
thereby benefiting the drive towards automatic control and optimization. In ac-
cordance with the philosophy of "Quality by Design" (QbD)- Quality cannot be
tested into products; quality should be built in by design - the process analyt-
ical technology (PAT) initiative by the US Food Drug Administration (FDA)
encourages the pharmaceutical industries to design process measurement sys-
tems to allow controlling manufacturing with the goal of ensuring final product
quality [1]. However, these objectives may be severely compromised when key
variables are determined at low sampling rates through off-line laboratory anal-
ysis. It is sometimes possible to relate more easily available secondary measure-
ments1 to key variables2 using data-driven soft sensors or calibration models,
which can be used to deliver information about key variables at a higher sam-
pling rate and/or at lower financial burden [2]. For example, in pharmaceutical
manufacturing of tablets, a set of scalar measurements – such as temperature,
pH, pressure, flowrates, calorimetry, turbidity, CO2 concentration, and vector
1 predictors, or X-measurements
2 predictands, y-measurements, properties of interest, or response variables
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measurements – such as spectrum, chromatogram, particle size or shape dis-
tribution, can be related to the key variables such as tablet homogeneity, dis-
solution rate, humidity, active pharmaceutical ingredient (API) concentration,
impurities, polymorphism and crystallographic characteristics [3].

This work studies latent variable (LV) calibration models, with spectroscopy
as a prototypical example. Spectrometers are used routinely to measure the in-
tensities of light absorbed, reflected, or emitted by a sample to determine its
physical or chemical make up. Due to their many advantages – small sam-
pling times, easy in-situ installation, low maintenance requirements, inherent
sterility, non-invasiveness and non-destructiveness – spectrometers are widely
employed in research and industry. Spectroscopic measurements from near-
infrared (NIR), mid-infrared (MIR), ultra-violet (UV), Raman, nuclear mag-
netic resonance (NMR), X-ray fluorescence (XRF), X-ray diffraction (XRD), or
prompt gamma neutron activation (PGNA), can be linked linearly to molar con-
centrations or weight percentages of an analyte of interest. Often, multivariate
spectroscopic calibration involves highly correlated or collinear predictors, with
the number of predictors greatly outnumbering the sample size. Together, the
observations (as rows) and predictor variables (as columns) can be represented
as a ’data matrix’ X (see Fig. 1.1).

∼

O
bs

er
va

ti
on

#

b

Variable#

yX

Fig. 1.1. Schematic of data matrix X, key variables y, and the regression vector
b, such that y ∼ Xb.

Estimation of the regression vector b becomes difficult in high-dimensional
spaces due to the increasing sparseness of data. With the number of variables
greater than the number of observations, the problem is ill-posed. Standard
methods such as ordinary least squares (OLS) are indeterminate and hence can-
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not be applied, while multiple linear regression (MLR) leads to overfit models
with little predictive power [4]. This necessitates some form of regularization. A
wealth of methods are available in the statistics and the machine learning liter-
ature such as ridge regression [5], locally-weighted regression [6], least absolute
shrinkage and selection operator [7], projection pursuit regression [8], multivari-
ate adaptive regression splines [9], artificial neural networks [10], support vector
regression [11], Gaussian process regression [12], science-based calibration [13].
Subspace regression models, such as classical least squares (CLS), principal
component regression (PCR), and partial least-squares regression (PLSR) [14],
solve the problem of high dimensionality by projecting the data onto a lower-
dimensional subspace (latent subspace), resulting in a set of fewer predictor vari-
ables (latent variables), that can be regressed onto the key variables y. CLS,
PCR, and PLSR differ in how the latent subspace is defined. While CLS is
a forward calibration procedure that requires knowledge of all analytes in the
system (which is rarely the case), PCR/PLSR are inverse calibration models
that require knowledge of only the analyte of interest [15]. The subject matter
of this dissertation is limited to PCR and PLSR, that are the de facto standard
calibration methods in spectroscopy [15,16].

Though the focus of this dissertation is on multivariate spectroscopic cal-
ibration, the same principles apply to any vector-based measurement that is
linked linearly to some underlying latent quantity or response variable. For the
measurement vector x, the response variable y, and the LVs t, the difference
between spectroscopic calibration and the LV framework is shown in Fig. 1.2.
In spectroscopic calibration (see Fig. 1.2i), x has a causal relationship3 with y,
and t is an hypothetical construct or a mathematical quantity that is correlated
with both x and y. On the other hand, the LV framework includes the case
shown in Fig. 1.2ii, where both x and y are caused by t, hence allowing one
to build a model to predict y from x. From the point of view of predictive
learning, the two cases in Fig. 1.2 are equivalent. Furthermore, the scope of
this dissertation also includes classification models that proceed via regression,
i.e. where PCR or PLSR are used to find a low-rank representation of the data,
followed by any linear or nonlinear discriminant function.

3 A change in y causes a change in x
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xx yy

tt

(i) (ii)

Fig. 1.2. Schematic of (i) spectroscopic calibration, and (ii) LV framework.
Directed edges indicate causal relationship, while undirected edges indicate cor-
relation.

1.2 Outline of the thesis

The present dissertation is composed of six chapters. Fig. 1.3 shows the outline
of the thesis with the aid of a simplified flowchart. An overview of the material
studied is given below, while the state-of-the-art and the proposed methods are
described in the relevant chapters.

Chapter 2 presents the fundamentals of LV calibration based on PCR
and PLSR, and the specific attributes of calibration with spectroscopic mea-
surements. Most often, calibration data consist of labeled data only, i.e. the
X-measurements for which the corresponding y-measurements are available.
Based on this estimated calibration model, the y-values are predicted from new
X-measurements.

In regression modeling, it is generally assumed that the labeled data are
representative of the prediction data. However, in the prediction step, the
X-measurements may be corrupted by systematic variations (drift) caused by
instrumental, operational and process changes. If the new X-measurements
have unseen drift 4, the original calibration model typically results in large
prediction errors. Chapter 3 discusses a two-step framework of methods for
drift subspace correction. In the first step, the drift subspace is estimated based
on calibration data and small amounts of so-called master/slave data (e.g. X-
measurements at standard room temperature can be considered as master data,
and X-measurements of the same samples at ±5 ◦C can be considered as slave
data). In the second step, the part of the calibration data lying in the estimated

4 Drift is decomposed into drift seen in the calibration data and drift unseen
in the calibration data. Unseen drift is more problematic.
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Fig. 1.3. Flowchart showing the different components of this dissertation work
and the corresponding chapter numbers. A source of (new) information is shown
in an ellipse, working procedure in a rectangle, and a decision step in a rhombus.
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drift subspace is scaled down. Re-calibration with the scaled data results in a
calibration model that is less sensitive to drift directions.

In many practical applications, the labeled data are small owing to the high
costs of reference measurements. However, a large number of X-measurements
may be available at-line/off-line (so-called unlabeled data), which may be used
together with the labeled data for calibration. The use of unlabeled data in ad-
dition to labeled data helps stabilize the latent subspaces in the calibration step,
typically leading to lower subspace modeling errors. Latent subspace correction
based on the use of unlabeled data is discussed in Chapter 4. It is shown that,
prediction data, which by definition qualifies as unlabeled data, can be used for
latent subspace correction only if it has been corrected for unseen drift.

Chapter 5 studies a third form of subspace correction, that is applicable
when calibration models are built for several analytes. Linear dependencies may
exist between the analytes due to e.g. chemical reactions. These balance equa-
tions can be used to adjust and improve the predictions in a data reconciliation
(DR) step. Chapter 6 draws some general conclusions from the work.
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Preliminaries

In this chapter, some background information is given that will be used in the
thesis.

2.1 Notations

The following notations will be used throughout the dissertation. Matrices
are represented by bold capital letters (e.g. X), column vectors by bold lower-
case letters (e.g. y), and scalars by lower-case letters in italics (e.g. α). 1n,
0n, In, and 0[n×q] denote an n-dimensional vector of ones, zeros, the [n × n]

identity matrix and the [n × q] matrix of zeros, respectively. The transpose
operator is represented by (.)T, the Moore-Penrose inverse by (.)+, the l2-norm
of a vector by ||.||, the expectation operator by E , the span of row vectors and
the column vectors of a matrix by R(.) and C(.), respectively, and the normal
distribution with mean μ and standard deviation σ by N (μ, σ). Measured
quantities are indicated with (̃.), and estimated quantities with (̂.). Subscripts
are introduced where necessary to distinguish between variables of the same
type (e.g. prediction or calibration data).
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2.2 LV calibration

2.2.1 Overview of LV framework

Let x̃ denote the nx-dimensional measurement vector (with measurement noise
vx) from a first-order instrument, and ỹ the measured response variable (with
measurement noise vy). In the LV framework with r factors, the model for x̃

and ỹ is written as:
x̃ = x + vx = Lt + vx

ỹ = y + vy = qTt + vy ,
(2.1)

where t is an r-dimensional vector of scores (or LVs), L an [nx × r] orthogonal
X-loading matrix that defines the underlying low-dimensional space in which
the noise-free X-measurements lie, and q the r-dimensional y-loading vector.
For nc calibration measurements (labeled data), Eq. (2.1) can be written in
matrix form as:

X̃c = Xc + Vx,c = TcL
T + Vx,c

ỹc = yc + vy,c = Tcq + vy,c ,
(2.2)

where X̃c is the [nc × nx] X-measurement matrix, ỹc the nc-dimensional y-
measurement vector, Tc the [nc × r] scores matrix, Vx,c the [nc × nx] X-noise
matrix, and vy,c an nc-dimensional vector of y-noise. The linear regression
model reads:

ỹc = X̃cb + fc , (2.3)

where b is the nx-dimensional regression vector, and fc the nc-dimensional
vector of residuals. The regression vector b can be estimated from the data
pair {X̃c, ỹc} using standard regression methods such as PCR and PLSR that
are described in the following sections.

2.2.2 PCR

Before discussing PCR, it is useful to introduce two useful tools from matrix
algebra, the singular value decomposition (SVD) and principal component anal-
ysis (PCA). The SVD of the [nc × nx] matrix X̃c is written as:

X̃c = UΣVT , (2.4)
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where U and V are [nc × nx] and [nx × nx] orthonormal matrices, and Σ is an
[nx ×nx] diagonal matrix with the singular values of X̃c in decreasing order on
its diagonal.

The scores and loadings based on the PCA factorization of X̃c and retaining
rPCR factors is written as:

X̃c = TPCA PT
PCA + EPCA , (2.5)

where TPCA is an orthogonal scores matrix of dimension [nc ×rPCR], PPCA is an
orthonormal loading matrix of dimension [nx × rPCR], and EPCA contains the
residues that are orthogonal to both the scores and the loading matrices, i.e.
EPCAPPCA = 0nc×rPCR

and TT
PCAEPCA = 0rPCR×nx . Let Ur and Vr contain

only the first rPCR columns of U and V, respectively, and Σr be the upper left
[rPCR × rPCR] portion of Σ. Then, TPCA = Ur Σr and PPCA = Vr.

The first step of PCR involves the SVD or PCA factorization, retaining
rPCR factors. In the second step, the regression vector b̂ is computed from the
least-squares regression between {TPCA, ỹc}:

qPCR = T+
PCAỹc

b̂ = PPCRqPCR ,
(2.6)

where qPCR is the estimated rPCR-dimensional y-loading vector. In contrast
to OLS or MLR, that perform least squares with a large number of variables“
= rank

“
X̃c

””
, PCR performs least squares with rPCR (for collinear data rPCR

may be � nc, nx) scores, thereby regularizing b̂. The regularization in PCR
can be seen from the following equivalent description of the optimization done
in PCR:

b̂ = argmin||X̃cb − ỹc|| such that b ∈ C(PPCR)

= argmin||X̃c PPCRPT
PCR b − ỹc|| ,

(2.7)

i.e. b̂ is constrained to lie in the space defining the directions of maximum
variation in X̃c, thereby making b̂ less sensitive to noise.
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2.2.3 PLSR

Two different algorithms for PLSR were developed in parallel [16]. Wold et al.
developed a solution with orthogonal score vectors and non-orthogonal loading
vectors and, for that purpose, they used the nonlinear iterative partial least
squares (NIPALS) algorithm [17]. Martens, on the other hand, developed an
algorithm resulting in non-orthogonal score vectors and orthogonal loading vec-
tors. As shown by Ergon [18], one model can be converted into the other. The
two PLSR models are presented next, followed by a discussion on the similarities
and differences in the two models.

Wold’s PLSR using {X̃c, ỹc} and retaining rPLSR factors is established fol-
lowing the NIPALS algorithm:

1. Let X0 = X̃c. For a = 1, . . . , rPLSR perform Steps 2–6.

2. Compute wa = XT
a−1ỹc/||XT

a−1ỹc||
3. Compute ta = Xa−1wa

4. Compute qa = ỹT
c ta(tT

a ta)−1

5. Compute pa = XT
a−1ta(tT

a ta)−1

6. Deflate Xa = Xa−1 − tap
T
a

Note that the deflation of X matrix in Step 6 can equivalently be defined with
respect to the y vector. The resulting factorization is written as:

X̃c = TWPT + EW

ỹc = TWqW + f ,
(2.8)

where the [nc×rPLSR] matrix TW = [t1 t2 . . . trPLSR
] is orthogonal, [nx×rPLSR]

matrix P = [p1 p2 . . . prPLSR
], rPLSR-dimensional vector qW = [q1 q2 . . . qrPLSR

]T

and the [nc × nx] matrix EW = XrPLSR
. The [nx × rPLSR] matrix W =

[w1 w2 . . . wrPLSR
] resulting from the algorithm is orthonormal. Furthermore,

TW = X̃cW(PTW)−1 and qW = (TT
WTW)−1TT

Wỹc. The matrices W and P

do not have a closed-form solution, their columns are obtained iteratively. The
regression vector is computed as b̂ = W(PTW)−1qW.

Martens proposed a different PLSR algorithm. However, Martens’ PLSR
model can be established once W is estimated using the NIPALS algorithm.
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Retaining rPLSR factors, the factorization used in Martens’ PLSR [19, 20] is
written as:

X̃c = TMWT + EM

ỹc = TMqM + f ,
(2.9)

where TM = X̃c W = TW(PTW), and qM = (TT
MTM)−1TT

Mỹc. The regression
vector is computed as b̂ = W(WTX̃T

c X̃cW)−1WTX̃T
c ỹc.

Wold’s PLSR and Martens’ PLSR differ in how matrix deflations are carried
out [20]. Wold’s NIPALS algorithm orthogonalizes the columns of X and/or y

with respect to the estimated scores, while Martens’ PLSR orthogonalizes (the
column of) y with respect to the scores and the rows of X with respect to W.
However, the two algorithms are equivalent in the sense that the score vectors
span the same space C(TW) = C(TM), they result in the same regression vector
b̂ = W(PTW)−1qW = W(WTX̃T

c X̃cW)−1WTX̃T
c ỹc, and they result in the

same y-residue f [19]. These similarities are tabulated in Table 2.1.

Similarities between Wold’s and Martens’ PLSR
same W and f

C(TW) = C(TM)

b̂ = W(PTW)−1qW = W(WTX̃T
c X̃cW)−1WTX̃T

c ỹc

Table 2.1. Similarities between Wold’s and Martens’ PLSR.

In contrast to PCR, where the X-residuals are orthogonal to the scores, load-
ings, and regression vector1, in Wold’s PLSR TT

WEW = 0rPLSR×nx but EWP �=
0nc×rPLSR

and EWb̂ �= 0nc , while in Martens’ PLSR EMW = 0nc×rPLSR
and

EMb̂ = 0nc but TT
MEM �= 0rPLSR×nx . The difference between the two PLSR

factorizations stems from the definition of the model space, i.e. the space in
which the relevant part of X̃c lies. While Wold’s PLSR uses oblique projections
to define the relevant part of X̃c as X̃c W(PTW)−1PT, Martens’ PLSR uses
orthogonal projections to define the same as X̃c WWT. Different definitions

1 Algebraic orthogonality is the geometric interpretation of statistical indepen-
dence
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of the model space results in different X-residuals, i.e. EW �= EM. Hence, the
choice between Wold’s and Martens’ PLSR may impact only if X-residuals are
used e.g. for monitoring, fault diagnosis, or noise characterization.

Remarking that TM = TW(PTW) and TMqM = TWqW, Ergon proposed
the following factorization [18]:

X̃c = TWPTWWT + EM

ỹc = TWqW + f .
(2.10)

The above factorization is essentially another form of Martens’ PLSR as it
retains the same X-residuals EM, i.e. Ergon re-interpreted Martens’ PLSR with
scores TW and loadings WWTP. The concept of PLSR as an optimal filter is
explained in Chapter 5 (see also Appendix B). It is shown that Martens’ and
Ergon’s PLSR lead to scores that are optimal with respect to the loadings and
error covariance. However, Wold’s PLSR leads to scores that are not optimal
with respect to the loadings and error covariance.

As in the case of PCR, PLSR performs least squares with rPLSR scores,
thereby regularizing b̂. The regularization in PLSR can be seen from the fol-
lowing equivalent description of the optimization done in PLSR:

b̂ = argmin||X̃cb − ỹc|| such that b ∈ C(W)

= argmin||X̃c WWT b − ỹc|| ,
(2.11)

i.e. b̂ lies in the lower-dimensional space of W, thereby making b̂ less sensitive
to noise. However, note that the constraint on b̂ does not follow from a global
statistical optimization criterion, but is the outcome of an iterative algorithm.

2.2.4 Choice of meta-parameters rPCR or rPLSR

Comparing the LV model in (2.2), and the PCA and PLSR factorizations in
Eqs. (2.5), (2.8), (2.9), and (2.10), one may be led to falsely assume that rPCR

and rPLSR should be equal to the underlying dimensionality r (rank of Xc or the
pseudo-rank of X̃c). However, since rPCR and rPLSR need to be optimized for
prediction, and not for fitting X̃c, good choices of meta-parameters may not be
the same as r [21]. The most commonly applied tool to aid the selection of meta-
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parameters is cross-validation. In cross-validation, the relationship between
prediction errors and meta-parameter values is estimated using calibration data.
The following steps are performed:

1. Leave out part of the labeled data

2. Build the model without these data

3. Use the model to predict y-values on these data

4. Calculate the corresponding prediction error

5. Cycle through this procedure such that each data value has been left out
at least once, and compute the mean of all squared prediction errors

6. Based on expert opinion, choose the number of factors that lead to "low"
prediction errors, with "some" penalty on the number of factors chosen.

Note that different schemes exist to choose the part of the labeled data to be
left out in Step 1. A related method is bootstrapping where, instead of building
calibration models with different subsets of the labeled data, calibration models
are built with subsamples of the labeled data [22]. Also note that Step 6 can
only be guided by rules of thumb or heuristic criteria based on expert opinion
as there exists no optimal strategy that is suitable for all kinds of data.

Cross-validation is often used to choose amongst different models (e.g. PCR
or PLSR), different data pre-treatments (e.g. variable selection algorithms,
mean-centering, smoothening, auto-scaling, normalization or standardization,
scatter correction, alignment), and the model parameters (e.g. the number of
factors retained in PCR/PLSR) and meta-parameters (e.g. width parameter
and polynomial order in Savitsky-Golay smoothening) [15]. However, if the
goal is to select the right combination of models, pre-treatments, and param-
eters from amongst a very large number of possible combinations, then cross-
validation may lead to overfitting. Some extensions such as cross-model valida-
tion schemes, also known in the literature as two-fold or double cross-validation,
have been proposed to reduce overfitting (see [23] and references within).



14 PRELIMINARIES

2.3 Calibration using spectroscopic data

2.3.1 Special case of LV calibration

Let x̃ denote the spectroscopic measurement (absorbance) vector of an nx-
channel spectrometer, and z the ns-dimensional concentration vector, where ns

is the number of absorbing species. For a spectroscopic measurement depending
linearly on z, e.g. when Beer-Lambert law is valid, one can write:

x̃ = Sz + vx, (2.12)

where S is the [nx×ns] pure-component spectra matrix consisting of the columns
s1, . . . , sns . Typically, a PCR/PLSR calibration model is built independently
for each species of interest using labeled data alone. With ỹ as the measured
concentration of the ith species, and Lt = Sz, calibration with spectroscopic
data can be cast into the LV framework. To avoid confusion, it is important to
remark here that, throughout the thesis, z is used to refer to the concentration
vector of ns species, while y is used to refer to the concentration vector of one
species over several samples.

For nc calibration measurements, the X and y-measurements can be written
in matrix form as:

X̃c = ZcS
T + Vx,c

ỹc = yc + vy,c

yc = ith column of Zc .

(2.13)

where Zc is of dimension [nc × ns], Vx,c and vy,c are as defined in Eq. (2.2).

2.3.2 Net-analyte-signal

For noise-free X and y-measurements, PCR and PLSR lead to the same regres-
sion vector b̂ = (Xc)

+yc. Furthermore, if rank (S) = rank (Zc) = ns, (Xc)
+yc

is the net-analyte-signal (NAS) vector [24]. The NAS vector for ith species repre-
sents the portion of the pure-component spectrum of the ith species that resides
in the space orthogonal to the pure-component spectra of all other species. Let
Zc,−i and S−i contain all but the ith columns of Zc and S, respectively. Then
b̂ ∝ sNAS,i , where
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sNAS,i = (Inx − (ST
−i)

+ST
−i) si . (2.14)

Since rank (Zc) = ns (or rank (Zc,−i) = ns−1), the right-hand-side of Eq. (2.14)
projects si orthogonal to R(Zc,−iS

T
−i). Intuitively, the NAS vector indicates a

direction in which the X-measurements are affected only by changes in the
concentration of the species of interest.

In order to relax the assumption of rank (Zc) = ns, we define a pseudo-NAS
(pNAS) vector for the ith species of interest. Let rank (S) = ns, rank (Zc) ≤ ns,
and rank (Zc,−i) = rank (Zc) − 1. The pNAS vector spNAS,i is defined:

spNAS,i :=
`
Inx − (Z+

c,−iZc,−iS
T
−i)

+(Z+
c,−iZc,−iS

T
−i)
´

si . (2.15)

Similar to the case of NAS, the right-hand-side of Eq. (2.15) projects si orthog-
onal to R(Zc,−iS

T
−i).

The regression model with b̂ ∝ sNAS,i will be referred to as NAS regression
(NASR), and with b̂ ∝ spNAS,i as pseudo-NASR (pNASR). Note that, S and
hence the NAS/pNAS vector are usually not known. Also, while the NAS/pNAS
vector is useful for interpretations, it may sometimes not be a good predictor
for real applications [25].

2.3.3 Interferents and drifts

Let nk be the number of (known) absorbing species for which the correspond-
ing concentrations are measured (called analytes), and nu the number of (un-
known) remaining absorbing species (called interferents). The concentration
vector z can be partitioned into the nk-dimensional known part zk and the
nu-dimensional unknown part zu, with ns = nk + nu. Similarly, S, though
unknown, can also be partitioned into the [nx ×nk] pure-component spectra Sk

of the nk known analytes and the [nx × nu] pure-component spectra Su of the
nu interferents:

z =

"
zk

zu

#
; S = [Sk Su]. (2.16)

Eq. (2.12) can thus be written as:

x̃ = Skzk + Suzu + vx. (2.17)
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The X-measurements may also be corrupted by systematic disturbances and
offsets. Slowly-varying continuous systematic disturbances are caused by in-
strumental, operational and process changes, such as the effect of temperature,
pressure and pH on the instrument, residue accumulation or aging of the in-
strument, and interactions between species [26–28]. Furthermore, infrequent
discontinuous systematic disturbances in the X-measurements might also oc-
cur due to operational offsets, changes in probe alignment, addition of new
species, cleaning and maintenance of instruments, differences in raw material
quality used from batch to batch, or when data are collected on different in-
struments [29]. Let the term d∗ correspond to an additive disturbance vector:

x̃ = Sk zk + Suzu + d∗ + vx . (2.18)

If d∗ lies in a low-dimensional space of rank r∗, it can be interpreted as a
contribution from r∗ pseudo-interferents. Hence, for simplicity of notation, let
the term d (henceforth referred to as drift) be the sum of the spectrum of the
interferents and the disturbance vector:

x̃ = Sk zk + d + vx . (2.19)

For nc calibration measurements, Eq. (2.19) can be written in matrix form as:

X̃c = Zc,kS
T
k + Dc + Vx,c , (2.20)

where Zc,k is the known [nc × nk] concentration matrix of analytes, and Dc is
the unknown [nc × nx] drift matrix.

2.3.4 Four sources of measured prediction error

Let a new spectrum be available according to Eq. (2.19), x̃p = Sk zp,k + dp +

vx,p. It is well-known that inverse calibration models of first-order instruments
implicitly compensate for interferents that were present in the calibration data
(see Appendix A). This motivates us to decompose the drift term dp into a
sum of two terms dp||c and dp⊥c:

dp = dp||c + dp⊥c , (2.21)
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where, dp||c lies in the drift subspace R(Dc) seen in the calibration data, i.e.
dp||c = D+

c Dcdp, while dp⊥c lies in the unseen drift subspace, i.e. dp⊥c =

(Inx − D+
c Dc)dp. Using ŷp = x̃T

p b̂, the measured prediction error ỹp − ŷp can
be decomposed into four error terms:

ỹp − ŷp = yp + vy,p − x̃T
p b̂

= (yp − zT
p,k ST

k b̂ − dT
p||cb̂)| {z }

e1

−dT
p⊥cb̂| {z }
e2

−vT
x,p b̂| {z }
e3

+ vy,p|{z}
e4

, (2.22)

where

e1 is the error resulting from an inaccurate modeling of the latent subspace,

e2 is the error due to drift in prediction data,

e3 is the error due to X-noise in prediction data, and

e4 is the error due to y-noise in prediction data.

The error term e1, denoted as ’subspace modeling error’ in this work, is
due to X-noise and y-noise in the calibration data and the bias stemming from
truncation in PCR/PLSR. Note that the four sources of error are independent
of each other in the expectation sense.

For np prediction measurements, Eq. (2.19) can be written in matrix form
as:

X̃p = Zp,kS
T
k + Dp + Vx,p . (2.23)

Predictive ability is evaluated using the relative root-mean-squared error of
prediction2 (RRMSEP), defined as follows:

RRMSEP :=

qPj=np

j=1 (yp(j) − ŷp(j))2/np

R
, (2.24)

where R is the response range. Since yp may only be available with measurement
noise, the apparent RRMSEP, abbreviated RRMSEPapp, is defined as follows
[30]:

RRMSEPapp :=

qPj=np

j=1 (ỹp(j) − ŷp(j))2/np

R
. (2.25)

2 RRMSEP is an empirical estimate of the statistical risk
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Let the RRMSEP be defined separately for each error term:

RRMSEPe1 = RRMSEPapp
e1 =

qPj=np

j=1 (yp(j) − zT
p,k(j) ST

k b̂ − dT
p||cb̂)2/np

R

RRMSEPe2 = RRMSEPapp
e2 =

qPj=np

j=1 (dT
p⊥c(j)b̂)2/np

R

RRMSEPe3 = RRMSEPapp
e3 =

qPj=np

j=1 (vT
x,p(j) b̂)2/np

R

RRMSEPapp
e4 =

qPj=np

j=1 (vy,p(j))2/np

R
.

(2.26)
Since the error term e4 stems from the limitation of the reference instru-
ment used for validation purposes, typically one does not have a handle on
RRMSEPapp

e4 . RRMSEPapp
e3 can be kept low either by using replicate measure-

ments to average out the measurement noise, or by regularizing b̂ such that ||b̂||
is reduced (e.g. by choosing fewer factors in PCR/PLSR). Chapter 3 studies drift
subspace correction to reduce RRMSEPe2, Chapter 4 studies latent subspace
correction to reduce RRMSEPe1, and Chapter 5 studies data reconciliation to
reduce the overall RRMSEP.



3

Drift subspace correction using master/slave

data

This chapter studies drift subspace correction (to reduce RRMSEPe2) based on
additional information in the form of master/slave data.

3.1 Overview

Let the calibration and prediction data be available with drift according to
Eqs. (2.20) and (2.23). Drift can make the calibration model unsuitable for pre-
diction and necessitates re-calibration. This chapter studies measurement-based
drift correction for inverse calibration. A schematic diagram of two approaches
for re-calibration is shown in Fig. 3.1. The first solution (see Fig. 3.1a) is to
repeat the whole calibration procedure and rebuild a new model for the new
instrumental, operational and process conditions. To obtain similar prediction
accuracy as with the old calibration model, a similar large number of data
are required for the full re-calibration. This is costly because it requires ref-
erence concentrations for many samples. The second solution (see Fig. 3.1b)
exploits the fact that spectroscopic data typically retain structural similarities
under different conditions. These similarities can be exploited by reusing the
old calibration data together with master/slave data obtained under new condi-
tions. The amount of master/slave data required is typically less than that for
full re-calibration, thereby circumventing the need for many new reference con-
centrations. Drift correction that proceeds by adding master/slave data with
drift to the calibration data, is referred to as implicit correction method (ICM),
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while an explicit correction method (ECM) estimates the drift subspace based
on calibration and master/slave data and makes the new calibration model less
sensitive to drift. ICM and ECM are shown to be equivalent in the absence of
noise. However, they differ in the way they handle noise.

For inverse calibration problems, several ECMs exist in the literature, e.g.
component correction (CC) [31], independent interference reduction (IIR) [32],
generalized least squares (GLS) [33, 34], external parameter orthogonalization
(EPO) [35], calibration transfer by orthogonal projection (TOP) [36], dynamic
orthogonal projection (DOP) [37, 38], difference correction of prediction spec-
tra (DCPS) [39], and error removal by orthogonal subtraction (EROS) [40].
Confronted with a choice from this alphabet soup of ECMs only adds to the
confusion of a practitioner. It is the endeavor of this chapter to show that these
ECMs can be cast in a two-step framework. In the first step, the drift subspace
is estimated using different types of master/slave data. In the second step,
the calibration data lying in the estimated drift subspace is scaled down either
partially using shrinkage or fully using orthogonal projection (OP).

The different ECMs for inverse calibration are investigated analytically and
with experimental data. The first example studies the validity of a key as-
sumption, that typically drift lies in a low-dimensional space. The next three
examples study drift correction on one instrument (temperature effects, spectral
differences between samples obtained from different plants, instrumental drift),
while the fifth example studies calibration transfer between two instruments.
The chapter is organized as follows. Sections 3.2 and 3.3 propose the two-step
framework for several ECMs proposed in the literature and discusses their es-
sential differences. Section 3.4 discusses two propositions on the equivalence
of various methods. Five experimental studies then illustrate drift correction
in Section 3.5. Related methods are discussed in Section 3.6, and Section 3.7
concludes the chapter.

3.2 Drift subspace estimation (Step 1)

ECMs involve the two steps of drift-space estimation and drift correction. The
first step is described in this section.
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(a)

(b)

New conditions

New conditions

New

calibration
Old calibration

Old calibration data

datadata {X̃c, ỹc}

data {X̃c, ỹc}
Prediction

Prediction

data X̃p

data X̃p

Re-calibration

Re-calibration

New calibration model

New calibration model

Prediction, ŷp

Prediction, ŷp
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Calibration

Calibration

Old calibration model

Old calibration model

Master/slave

{X̃s, Z̃s,k},
{X̃m, Z̃m,k}

Similarities

Fig. 3.1. (a) Full re-calibration for new conditions, (b) drift correction using
master/slave data.
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3.2.1 Master/slave data

The drift subspace is estimated from nd master/slave samples that are available
on-line or off-line in addition to the calibration data. The master/slave data,
which encompass the four matrices X̃s, Z̃s,k, X̃m and Z̃m,k, are of two types as
indicated next:

(i) the measured [nd × nx] slave spectroscopic matrix X̃s with unseen drift:

X̃s = Zs,kS
T
k + Ds + Vx,s, (3.1)

(ii) the [nd × nk] slave concentration matrix Z̃s,k of the nk analytes,

(iii) the [nd × nx] master spectroscopic matrix X̃m (without unseen drift) com-
puted as a linear combination of X̃s or X̃c using a [nd ×nd] linear operator
A:

X̃m = AX̃s (Type 1)

X̃m = AX̃c (Type 2).
(3.2)

If X̃m contains only seen drift, then it can alternatively be written as:

X̃m = Zm,kS
T
k + Dm + Vx,m, (3.3)

with Dm such that R(Dm) ⊆ R(Dc), and

(iv) the [nd ×nk] master concentration matrix Z̃m,k of the nk analytes with the
property following from Eq. (3.2):

Z̃m,k = AZ̃s,k (Type 1)

Z̃m,k = AZ̃c,k (Type 2).
(3.4)

Since the drift affects the spectroscopic measurements but not the concentra-
tions, the following condition must be satisfied:

Z̃m,k = Z̃s,k. (3.5)

Note that the concentrations of the interferents, Zs,u, can take any arbitrary
values. A suitable linear operator A is such that Eqs. (3.2), (3.3), (3.4), and
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(3.5) are simultaneously satisfied. In Type 1 data, A is deduced from the
knowledge of Xm, while in Type 2 data, A is computed from the knowledge
of Zm,k. Some concrete examples of A will be discussed in Sections 3.2.2 and
3.2.3.

The basic idea is to estimate the drift subspace from the difference between X̃s

and X̃m:
D̂ = X̃s − X̃m . (3.6)

3.2.2 Type 1: Operator A deduced from knowledge of Xm

In [35,39,40], master/slave data at different temperatures are used to make the
calibration model robust against temperature effects. In general, if q samples
are measured at t different conditions (e.g. temperatures, pH, particle forms and
sizes, sample preparation and suppliers), the mean spectrum (in fact, any linear
combination) of the t slave spectra can be considered as the master spectrum
for the jth sample. Let 1t be a t-dimensional vector of ones, and the a priori
known operator A correspond to mean-centering, i.e. A = 1

t
1t1

T
t . For the q

samples, nd = q t and:

X̃s =

2
4Xs,1

...
Xs,q

3
5 ; X̃m =

2
4Xm,1

...
Xm,q

3
5 with (3.7)

Xs,j =

2
4 xT

j,1

...
xT

j,t

3
5 ; Xm,j = AXs,j ∀j = 1, . . . , q . (3.8)

Since the analyte concentrations of the slave and master are identical (but
possibly unknown) for each of the q samples, it can be verified that Z̃m,k,j =

AZ̃s,k,j = Z̃s,k,j , ∀j = 1, . . . , q. Note that the concentrations need not be
known explicitly for drift-space estimation. Furthermore, mean-centering in
Eq. (3.8) can potentially cause rank deficiency, thereby removing one factor of
the drift subspace for each sample. For example, if the drift is a sample-invariant
constant baseline, this drift is not captured in D̂.

In [33, 34, 36], q samples are used for calibration transfer between t = 2

instruments. Here, a reasonable choice of X̃m corresponds to the spectroscopic
measurements on the instrument corresponding to the calibrated instrument
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(say, first instrument). With X̃s and X̃m defined as:

X̃s =
h

Xs,1
Xs,2

i
; X̃m = AX̃s =

h
Xs,1
Xs,1

i
, (3.9)

this corresponds to A =
h

Iq 0[q×q]
Iq 0[q×q]

i
. It is easy to verify that A satisfies

Z̃m,k = AZ̃s,k = Z̃s,k.

In [32, 41], X̃s are measured for samples containing negligible amounts of
the analytes of interest, i.e. Z̃s,k = 0. Here, since X̃s is due to factors that
are unrelated to the analytes of interest, a reasonable choice for the master
spectroscopic matrix is X̃m = 0. This corresponds to the operator A = 0,
which satisfies Z̃m,k = 0 = Z̃s,k.

In [31], X̃s are known to contain significant analyte information, however,
the analyte is held constant. Therefore, the estimated drift is mean-centered to
remove all analyte information. This way, it becomes a special case of Eqs. (3.7)
and (3.8) with q = 1.

3.2.3 Type 2: Operator A computed from knowledge of Zm,k

In [37], an alternate way for capturing the drift subspace is proposed. It uses
nd on-line measurements X̃s together with the corresponding concentrations
Z̃s,k that are either measured by reference analytics or known a priori (e.g.
known initial concentrations in a batch reactor). With on-line measurements,
X̃m is not known beforehand, and must be computed using known values of
Z̃m,k = Z̃s,k and the calibration data. Here, the [nd ×nc] matrix A is based on
a linear combination of the calibration data such that Z̃m,k = Z̃s,k = AZ̃c,k.
Hence, A satisfies the condition:

Z̃s,k = AZ̃c,k , (3.10)

leading to
X̃m = AX̃c . (3.11)

For Type 2, Eqs. (3.2) and (3.3) are simultaneously satisfied by definition. How-
ever, if a solution to Eq. (3.10) does not exist, Eqs. (3.4) and (3.5) are not simul-
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taneously satisfied. Any A satisfying Eq. (3.10) leads to an unbiased estimate
of the drift subspace, e.g. a minimum-norm solution A = Z̃s,kZ̃

+
c,k.

In [38], an injection method was proposed that involves adding known
amounts of analytes Z̃s,k = Z̃m,k. X̃s is the corresponding difference spectrum
before and after the addition, while X̃m is the expected difference spectrum
computed as in Eq. (3.11). However, the injection method does not always cap-
ture the drift. For example, if the drift spectrum before and after the addition
remains the same, the difference spectrum does not contain any information
regarding this drift.

3.3 Drift correction (Step 2)

In Step 2, the calibration data lying in the estimated drift subspace are scaled
down using shrinkage or orthogonal projection (OP), as discussed in the follow-
ing.

3.3.1 Shrinkage

In GLS [33,34], b̂ is computed from the calibration data pair {X̃cH, ỹc}, where
the [nx × nx] weighting matrix H is used to downweigh (or shrink) the drift
subspace:

H =

„
1

nd − 1
D̂TD̂ + α2Inx

«− 1
2

. (3.12)

The positive real parameter α determines the extent of shrinkage; as α decreases,
the drift subspace is shrunk more. Typically, α is adjusted for each analyte. For
a prediction spectrum x̃p, ŷp = x̃T

p b̂∗, where b̂∗ = Hb̂. Note that b̂∗ is invariant
to multiplication of H by any scalar.

3.3.2 Orthogonal projection (OP)

In CC [31], EPO [35], TOP [36], DOP [37,38], DCPS [39], and EROS [40], only
rd significant loadings of D̂, computed by PCA, are retained:
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D̂ = TPT + E

ˆ̂
D = TPT,

(3.13)

where T and P are the [nd × rd] scores matrix and the [nx × rd] loading matrix,
respectively. The [nx × nx] orthogonal projection matrix N̂ = (Inx − PPT) is
computed, and b̂ is obtained from calibration with the data pair {X̃cN̂, ỹc}.
Hence, b̂ ∈ N̂ and b̂∗ = N̂b̂ = b̂. For a prediction sample x̃p, ŷp = (x̃T

p N̂) b̂ =

x̃T
p b̂.

3.3.3 Choice of the meta-parameters rd and α

Specifying the meta-parameters rd for OP and α for shrinkage is a delicate task.
Ideally, the choice of these meta-parameters should be based on the four sources
of prediction error (see Eq. (2.22)) analyzed simultaneously. The equation is
repeated here with the recalibrated b̂∗:

ỹp − ŷp = (yp − zT
p,k ST

k b̂∗ − dT
p||cb̂

∗)| {z }
e1

−dT
p⊥cb̂

∗| {z }
e2

−vT
x,p b̂∗| {z }

e3

+ vy,p|{z}
e4

. (3.14)

Let si be the pure-component spectrum of the ith analyte, and the overlap
of dp with si be defined by a parameter γ =

|sTi b̂∗|
||si|| ||b̂∗|| , γ varying between 0

(full drift overlap) and 1 (no overlap). An ideal b̂∗ would be such that error
terms e1 = e2 = e3 = 0, which means that (i) b̂∗ is orthogonal to dp||c, dp⊥c,
and the pure-component spectra excluding the analyte of interest, (ii) sT

i b̂∗ =

1, and (iii) ||b̂∗|| tends to zero. However, satisfying these three conditions
simultaneously is impossible for the following reasons: Firstly, because of the
noise in the calibration and master/slave data, Conditions (i) and (ii) can only
be approximately satisfied. Secondly, Conditions (ii) and (iii) can obviously not
be satisfied simultaneously. This results in a trade-off between the first three
sources of prediction error in Eq. (3.14).

Shrinkage or OP reduce the effect of error term e2 but increase the effects of
error terms e1 and e3. Error term e1 increases if drift overlaps significantly with
si, thereby reducing the NAS component and the signal-to-noise ratio (SNR).
Also, error term e3 increases because reduction in the NAS component results
in an increase in ||b̂∗||.
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The trade-off is regulated in OP by the parameter rd (which determines how
many significant drift directions are considered in the estimated drift subspace),
and in shrinkage by the parameter α (which determines how aggressively the
estimated drift subspace is shrunk). If a large number of samples (nd) were
available for drift correction, a separate cross-validation could be performed to
determine the meta-parameters. However, a large nd defeats the purpose of
migrating the calibration model to the new conditions with unseen drift using
only a few samples. For small nd and in the absence of prior information about
the pure-component spectra, the drift component and the noise variance, the
choice of the meta-parameters is often guided by rules of thumb or heuristic
criteria based on expert opinion.

3.4 Equivalence of methods

3.4.1 Proposition 1: Equivalence of shrinkage and OP

The following proposition specifies the conditions for which OP and no correc-
tion become special cases of shrinkage. Let σ1 and σrmax be the maximum and
minimum singular values of D̂, respectively, with rmax = rank

“
D̂
”
.

Proposition 1 Drift correction by OP is a special case of shrinkage for rd =

rmax and α/σrmax → 0. For α/σ1 → ∞, no correction is performed.

Proof:

Let the SVD of 1
nd−1

D̂TD̂ = VΣVT, where the dimensions of V and Σ

are both [nx ×nx]. Only the first rmax diagonal elements of Σ are nonzero, i.e.
Σ = diag(σ1, . . . , σrmax , 0, . . . , 0). Since VVT is a projection matrix spanning
the complete nx-dimensional space, VVT = Inx . From Eq. (3.12):

H =

„
1

nd − 1
D̂TD̂ + α2Inx

«− 1
2

= (VΣVT + Vα2VT)−
1
2

= (V(Σ + α2Inx )VT)−
1
2

= V(Σ + α2Inx)−
1
2 VT . (3.15)
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Thus, shrinkage with H results in a projection of rows of X̃c in the nx-
dimensional R(VT). The resulting scores X̃cV are shrunk by the corresponding

shrinkage coefficients
j

1√
σ1+α2

, . . . , 1√
σrmax+α2

, 1
α

, . . . , 1
α

ff
. Since b̂∗ is in-

variant to multiplication of H by any scalar, the shrinkage coefficients can also

be expressed as
j

α√
σ1+α2

, . . . , α√
σrmax+α2

, 1, . . . , 1

ff
. Hence, as α/σrmax → 0,

the first rmax coefficients corresponding to drift directions tend to 0, implying
that shrinkage tends to OP. Furthermore, if α/σ1 → ∞, the shrinkage coeffi-
cients are {1, . . . , 1}, implying that no correction is performed.

It can be observed from Eq. (3.15) that each drift direction (column of V)
is scaled down as the square root of the sum of its eigenvalue and α2.

3.4.2 Proposition 2: Equivalence of ICM and ECM with OP

Consider the following assumptions:

A1: Eqs. (2.20), (2.23), (3.1), and (3.3) are valid and the noise is negligible,

A2: a suitable A exists, i.e. Eqs. (3.2), (3.3), (3.4), and (3.5) are simultaneously
satisfied,

A3: rank

„»
ST

k
Dc
Ds

–«
= nk + rank

`ˆ
Dc
Ds

˜´
, i.e. the seen drift space does not fully

overlap with the signal space, and rank
“h

Zc,k

Zs,k

i”
= nk, i.e. the matrix

containing the calibration and slave concentrations of the known analytes
is full rank, and

A4: R(Dp) ⊆ R(
ˆ
Ds
Dc

˜
), i.e. the unseen drift space in the prediction spectro-

scopic data lies within the union of the drift spaces seen in the calibration
and slave data.

Proposition 2 Let the working assumptions A1–A4 hold and R(D̂) be esti-
mated as:

R(D̂) = R(X̃s − X̃m) . (3.16)

Then, the [nx × nk] regression matrix B̂aug
k from ICM,

B̂aug
k =

"
Xc

Xs

#+ »
Zc,k
Zs,k

–
, (3.17)
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and the [nx × nk] regression matrix B̂proj
k from ECM with OP,

B̂proj
k =

“
Xc(Inx − D̂+D̂)

”+

Zc,k , (3.18)

are identical and, furthermore:

DpB̂
proj
k = DpB̂

aug
k = 0[np×nk ] . (3.19)

Proof:

Without loss of generality, consider calibration for the ith analyte, and
let Sk,−i contain all but the ith column of Sk. With Assumption A3, cal-
ibration with noise-free data leads to b̂ ∝ pNAS vector (see Section 2.3.2).

The pNAS vector for
j»

Xc
Xs

–
,

»
yc
ys

–ff
is the projection of si on the space

orthogonal to R(ST
k,−i) ∪ R(Dc) ∪ R(Ds). Similarly, the pNAS vector forn“

Xc(Inx − D̂+D̂)
”

, yc

o
is the projection of (Inx − D̂+D̂)si on the space or-

thogonal to R
“
ST

k,−i(Inx − D̂+D̂)
”
∪R

“
Dc(Inx − D̂+D̂)

”
. This is equivalent

to the projection of si on the space orthogonal to R(ST
k,−i) ∪R(Dc) ∪R(D̂).

Using Zs,k − Zm,k = 0 (which follows from Assumption A2),

R(D̂) = R(Xs − Xm)

= R `Ds − Dm + (Zs,k − Zm,k)ST
k

´
= R(Ds − Dm) .

(3.20)

Multiplying both sides by (Inx − D+
c Dc), and using R(Dm) ⊆ R(Dc), gives:

R
“
D̂(Inx − D+

c Dc)
”

= R `(Ds − Dm) (Inx − D+
c Dc)

´
= R `Ds (Inx − D+

c Dc)
´

.
(3.21)

Since Eq. (3.21) says that R(D̂) may differ from R(Ds) only in the space of
R(Dc), one can write:

R(D̂) ∪ R(Dc) = R(Ds) ∪R(Dc) , (3.22)

and



30 DRIFT SUBSPACE CORRECTION

R(ST
k,−i) ∪ R(Dc) ∪ R(Ds) = R(ST

k,−i) ∪ R(Dc) ∪R(D̂) . (3.23)

Hence, the pNAS of the two calibrations are identical. Furthermore, since
R(Dp) ⊆ R(

ˆ
Ds
Dc

˜
) (Assumption A4), Dpb̂ = 0np .

Proposition 2 says that, under Assumptions A1–A3, ICM and ECM with
OP are equivalent. Furthermore, if Assumption A4 is also valid, ICM and
ECM with OP lead to correct prediction. Note that Proposition 2 holds for the
noise-free case. In the presence of noise, ICM and ECM with OP differ.

3.5 Illustrative examples

3.5.1 First example (experimental data): Drift lies in a
low-dimensional space

This data set is from the "Shootout" at Chimiométrie 2007 involving wheat
samples analyzed for protein content [42]. The data involves artificial variations
created by varying the moisture and the particle size of wheat samples, measured
at different temperatures, and on different instruments. The X-measurements
are NIR transmittance spectra recorded at 550 wavelengths over the range of
1300-2398 nm on a Foss NIRSystems 4500 spectrometer, while the weight per-
centage of protein content is used as the response variable.

Three sets of data are available. The first set consists of 10 X-measurements
on 31 instruments (Dataset 1). The second set consists of a different set of 10
X-measurements on 17 instruments (Dataset 2). Also, 11 whole grain samples
are moistened at two levels, ground to two particle sizes, and two replicate X-
measurements are obtained at three temperatures (Dataset 3). Hence, Dataset
1 contains 10 × 31 = 310 spectra, Dataset 2 contains 10 × 17 = 170 spectra,
and Dataset 3 contains 11× 2× 2× 3× 2 = 264 spectra. The goal of this study
is to show that drift due to instrument, moisture, particle size, or temperature
differences lies in a low-dimensional space. Since the reference protein values
are unknown, master/slave data of Type 1 are used for drift-space estimation.

Datasets 1 and 2 are used to study instrument drift. For Dataset 1, X̃s

and X̃m are obtained as discussed in Eqs. (3.7)–(3.8) using all the 10 samples,
leading to D̂ of size [310 × 550].
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Several statistical tests exist in the literature that help to determine the
pseudo-rank of D̂, e.g. Wilks’ λ test, Malinowski’s F-test, and Faber-Kowalski
F-test [43,44]. Based on the analysis of the eigenvalues of the covariance matrix
D̂TD̂, these tests attempt to distinguish between the eigenvalues due to signal
and noise. However, results based on random matrix theory and perturbation
theory show that even for randomly generated matrices, few principal com-
ponents may capture significant amount of variation in the data [45]. Hence,
instead of trying to answer the question "What is the pseudo-rank of D̂?", we
answer a related but more pertinent question "Let drift subspace be estimated
from a few samples. Does drift in new samples lie in the same subspace?". A
subspace comparison method is discussed in [46]. However, in accordance with
the philosophy of cross-validation, we partition D̂ into the two blocks D̂1 and
D̂2, where D̂1 is used for model fitting, and D̂2 for testing. Choosing two
samples randomly out of the ten, D̂ can be partitioned as:

D̂ =
h

D̂1
D̂2

i
, (3.24)

where D̂1 of dimension [62 × 550] consists of 31 measurements each from the
chosen two samples, and D̂2 of dimension [248×550] consists of 31 measurements
each from the remaining eight samples. SVD of D̂1 and D̂2 leads to:

D̂1 = U1 Σ1 VT
1

D̂2 = U2 Σ2 VT
2 .

(3.25)

For Block i ( = 1,2), the percentage variation captured by the kth factor is:

pi,k% = 100
Σ2

i (k,k)Pj=ndi
j=1 Σ2

i (j,j)

, (3.26)

where, Σi (j,j) denotes the jth diagonal element of matrix Σi, for i = 1, 2;
nd1 = 62, and nd2 = 248. Let v1 (k) be the kth column of V1. The projection
of D̂2 onto C(v1 (k)) is D̂2v1 (k)v

T
1 (k), which can be factorized using SVD:

D̂2v1 (k)v
T
1 (k) = U3 Σ3 VT

3 . (3.27)

Then, the percentage variation of D̂2 in the direction of v1 (k) is:
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p3,k% = 100
Σ2

3 (1,1)Pj=248
j=1 Σ2

2 (j,j)

. (3.28)

The similarity of p2,k and p3,k, for different values of k, indicates the similar-
ity of the subspaces R(D̂1) and R(D̂2). This is shown in Table 3.1i. High
percentage of variance captured using few components (for all cases more than
98% variation is captured with 3 components), and the close correspondence of
p2,k and p3,k, for k = 1, . . . , 5, suggest that the drift space due to differences
in instrumental responses is low dimensional. Similar results are obtained with
Dataset 2 (see Table 3.1ii).

Using Dataset 3, D̂ due to moisture effects is computed using master and
slave spectra at corresponding values of particle size and temperature, for each
of the 11 samples, leading to D̂ of size [264 × 550]. Choosing two samples
randomly out of the eleven, D̂ is partitioned into two blocks D̂1 and D̂2, and
the same procedure is repeated to obtain p2,k and p3,k, for different values of
k. The results are shown in Table 3.2i. D̂ due to particle size variation, and
temperature variation are also found to be low dimensional (see Table 3.2ii
and 3.2iii). With moisture, particle size, and temperature effects together, the
results are shown in Table 3.2iv. In each case, the loadings computed from the
first block of data correspond to the loadings computed for the second block of
data, i.e. p2,k ≈ p3,k, for k = 1, . . . , 5. This suggests that drift due to a variety
of different sources lies in a low-dimensional space.

(i)

k p2,k% p3,k%
1 91.36 91.22
2 5.17 5.15
3 2.00 2.03
4 0.77 0.77
5 0.34 0.37

(ii)

k p2,k% p3,k%
1 92.13 91.75
2 4.01 4.00
3 2.32 2.51
4 0.95 1.03
5 0.36 0.39

Table 3.1. First example: Study of drift due to differences in instrumental
responses for (i) Dataset 1, and (ii) Dataset 2.
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(i)

k p2,k% p3,k%
1 96.78 96.23
2 2.83 3.32
3 0.32 0.35
4 0.04 0.05
5 0.02 0.03

(ii)

k p2,k% p3,k%
1 99.46 99.43
2 0.30 0.28
3 0.20 0.25
4 0.01 0.01
5 0.01 0.01

(iii)

k p2,k% p3,k%
1 97.35 97.22
2 1.51 1.54
3 0.66 0.68
4 0.32 0.36
5 0.07 0.08

(iv)

k p2,k% p3,k%
1 97.14 96.96
2 2.62 2.77
3 0.18 0.20
4 0.03 0.03
5 0.02 0.02

Table 3.2. First example: Study of drift (in Dataset 3) due to (i) moisture, (ii)
particle size variations, (iii) temperature, and (iv) moisture, particle size, and
temperature variations together.

3.5.2 Second example (experimental data): Spectra measured at
different temperatures

Calibration, prediction and master/slave data: NIR spectra of 22 mix-
tures of ethanol, water and isopropanol are measured at 5 temperatures (30,
40, 50, 60, 70 ◦C) on a HP 8453 UV-VIS spectrometer at 512 wavelengths in
the range of 580–1091 nm [47]. The properties of interest are the mole fractions
of the analytes. Fig. 3.2 shows the spectra of Sample#11 at five temperatures.
Significant differences can be observed due to temperature variation.

For illustration purposes, the data are split in such a way that the prediction
data contains drift unseen in the calibration data. This is done by choosing the
calibration data and the prediction data at distinct temperatures and concen-
trations. Let Xa be the [22× 512] spectra at temperature Ta, a = 1, . . . , 5. For
all a, let Xa be split into two [11 × 512] matrices, Xa,o and Xa,e consisting of
odd and even numbered samples, respectively. Then, the [22 × 512] calibration
spectra X̃c and the [55 × 512] prediction spectra X̃p are chosen to be:
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Fig. 3.2. Example 2: Spectra of Sample#11 at five temperatures.

X̃c =
h

X1,o

X2,o

i
; X̃p =

2
64

X1,e

X2,e

X3,e

X4,e

X5,e

3
75 . (3.29)

Master/slave data of Types 1 and 2 are used for drift-space estimation. For
both types, the slave matrix X̃s is composed of two samples (q = 2) at five
temperatures (t = 5) randomly chosen from the prediction spectra matrix X̃p

(i.e. nd = 10). For Type 1 data, X̃m is computed as in Eqs. (3.7)–(3.8), while for
Type 2 data, X̃m is computed using a minimum-norm solution to Eq. (3.10).
Note that the concentrations of the Type 1 data can be unknown, while the
concentrations of the three analytes of the Type 2 data must be known.

The drift subspace is estimated from Eq. (3.6). Drift is corrected using
shrinkage and OP. Calibration models of column-mean centered data are then
built using PLSR with the numbers of PLSR factors corresponding to the min-
imum RRMSEPapp. The RRMSEPapp is averaged over all combinations for
selecting two samples out of the 11 samples at the 5 temperatures, i.e.

`
11
2

´
= 55

Monte Carlo simulations. The averaged RRMSEPsapp of the calibration models
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without correction, with shrinkage, and with OP are compared for a range of
values of the meta-parameters α and rd.
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Fig. 3.3. Experimental Example 2: RRMSEPsapp averaged over 55 Monte
Carlo simulations, without correction, with shrinkage, and with OP for a range
of meta-parameter values and master/slave data of Types 1 and 2.

Discussion: Fig. 3.3 shows the RRMSEPsapp for ethanol without drift correc-
tion, with OP, and with shrinkage. The RRMSEPapp of shrinkage varies as a
function of α, whereas separate horizontal lines for each value of rd = 1, . . . , rmax

denote the RRMSEPsapp with OP. For small α, RRMSEPapp of shrinkage is the
same as RRMSEPapp of OP with rd = rmax = 8 for Type 1 and rd = rmax = 10

for Type 2. For large α, RRMSEPapp of shrinkage is the same as RRMSEPapp

with no correction, thus confirming Proposition 1. It can be seen in Fig. 3.3
that Type 2 data lead to larger RRMSEPsapp than Type 1 data for most of the
meta-parameter settings. The non-monotonicity in the RRMSEPapp of shrink-
age with Type 2 data implies a significant contribution from error terms e2

and e3, possibly due to high overlap between the estimated drift and the signal.
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While it is possible to get a better RRMSEPapp for certain values of α, realizing
the gain is a matter of choosing the meta-parameters correctly, which may be
difficult with small amounts of master/slave data.

3.5.3 Third example (experimental data): Spectra measured from
samples collected at different plants

Calibration, prediction and master/slave data: UV spectra of 114 sam-
ples of light gas oil and diesel fuel are measured on a Cary 3 UV-VIS spec-
trometer at 572 wavelengths in the range of 200–400 nm [48]. The properties of
interest are the weight percentages of saturates, monoaromatics, diaromatics,
and polyaromatics.

The 114 samples are obtained from three pilot plants exhibiting different
treatment, feed, catalyst, etc. and measured on the same instrument. For illus-
tration purposes, the data are split in such a way that the prediction data con-
tains drift unseen in the calibration data. This is done by choosing the calibra-
tion data and the prediction data from distinct pilot plants: the spectroscopic
measurements from the 3rd pilot plant (30 samples) are used for calibration
and those from the 1st and 2nd pilot plants (59 and 25 samples, respectively)
are used for prediction. Let Xa be the spectra from plant a, a = 1, 2, 3. The
[30 × 572] calibration spectra X̃c and the [84 × 572] prediction spectra X̃p are:

X̃c = X3; X̃p =
ˆ
X1
X2

˜
. (3.30)

Master/slave data of Type 2 are used for drift-space estimation. The slave
matrix X̃s is composed of three samples randomly chosen from X1 and two from
X2 (i.e. nd = 5). The master matrix X̃m is computed using a minimum-norm
solution to Eq. (3.10). Drift is corrected as in Example 2. The RRMSEPapp is
averaged over 100 combinations for selecting the five correction samples out of
the 84 prediction samples.

Discussion: Fig. 3.4 shows the RRMSEPsapp for percentage polyaromatics
without drift correction, with OP, and with shrinkage. For small α, RRMSEPapp

of shrinkage is the same as RRMSEPapp of OP with rd = rmax = 5. For large α,
RRMSEPapp of shrinkage is the same as RRMSEPapp with no correction. It can
be seen in Fig. 3.4 that drift correction based on shrinkage is a monotonically
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increasing function of α, implying that the drift term dominates the trade-off
between the first three error terms in Eq. (3.14). Also, the correction with OP is
not sensitive to the choice of rd, implying that the drift has only one preferential
direction.
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Fig. 3.4. Experimental Example 3: RRMSEPsapp averaged over 100 Monte
Carlo simulations, without correction, with shrinkage, and with OP for a range
of meta-parameter values and master/slave data of Type 2.

3.5.4 Fourth example (experimental data): Spectra measured with
instrumental drift

Calibration, prediction and master/slave data: During anaerobic fer-
mentation of glucose, Fourier-transform infrared (FTIR) spectra is monitored
using a ReactIRTM 4000 single-beam spectrometer at 142 wavelengths in the
frequency range of 1500–950 cm−1 [38]. The properties of interest are the molar
concentrations of metabolites such as glucose, ethanol, ammonium, phosphates
and glycerol. The FTIR spectra of nc = 49 mixture samples constitute the
[49 × 142] calibration spectra X̃c, and the spectra of np = 16 samples collected
during a batch run constitute the [16×142] prediction spectra X̃p. High perfor-
mance liquid chromatography (HPLC) concentration measurements of the 16
samples are used for validation.
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Instrumental drift and physico-chemical drift is expected during batch oper-
ation due to changing spectral interactions between species. Master/slave data
of Type 2 are used for drift-space estimation. Six-component mixtures are in-
jected into the culture medium at roughly equal time intervals during the run
(i.e. nd = 6). The slave matrix X̃s is composed of the difference in spectra
before and after the injections. The master matrix X̃m is computed using a
minimum-norm solution to Eq. (3.10). Drift is corrected as in Example 2, ex-
cept that the correction samples are fixed, i.e. the RRMSEPapp is not averaged
over different combinations of correction samples.
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Fig. 3.5. Experimental Example 4: RRMSEPsapp without correction, with
shrinkage, and with OP for a range of meta-parameter values and master/slave
data of Type 2.

Discussion: Fig. 3.5 shows the RRMSEPsapp for molar concentration of glucose
without drift correction, with OP, and with shrinkage. For small α, RRMSEPapp

of shrinkage is the same as RRMSEPapp of OP with rd = rmax = 6. For large
α, RRMSEPapp of shrinkage is the same as RRMSEPapp with no correction. At
the optimal values of meta-parameters, the RRMSEPsapp with shrinkage and
with OP are within 0.2% RRMSEPapp. While it is possible to get a better
RRMSEPapp with shrinkage and OP, a poor choice of the meta-parameters rd

and α can potentially lead to worse RRMSEPsapp than without correction (see
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shrinkage with 10−6 < α < 10−4 and OP with rd = 2). The sharp peak observed
in the RRMSEPapp of shrinkage cannot be validated as an artifact due to noise
since the number of prediction samples np is too small.

3.5.5 Fifth example (experimental data): Spectra measured using
different instruments

Calibration, prediction and master/slave data: NIR spectra of 80 samples
of corn are measured on 3 spectrometers at 700 wavelengths in the range of
1100–2498 nm [49]. The properties of interest are the weight percentages of
moisture, oil, protein and starch.

For illustration purposes, the data are split in such a way that the prediction
data contains drift unseen in the calibration data. This is done by choosing
the calibration data and the prediction data from distinct instruments and at
distinct concentrations: Let Xa be the [80 × 700] spectra on instrument Ia,
a = 1, 2. For both a, let Xa be split into two [40×700] matrices, Xa,o and Xa,e

consisting of odd and even numbered samples, respectively. Then, the [40×700]

calibration spectra X̃c and the [40 × 700] prediction spectra X̃p are chosen to
be:

X̃c = X1,o; X̃p = X2,e. (3.31)

For calibration transfer, typically Type 1 data are used. However, in this
example it is shown that Type 2 can also be used for calibration transfer. For
Type 1, five samples (q = 5) randomly chosen from the forty even prediction
samples are measured on the two instruments (t = 2), leading to nd = 10. It
can easily be shown for this two-instrument case that X̃s =

h
Xs,1
Xs,2

i
, X̃m =h

(Xs,1+Xs,2)/2

(Xs,1+Xs,2)/2

i
can be simplified to X̃s = Xs,2, X̃m = Xs,1. For Type 2, the

slave matrix X̃s is composed of the five spectroscopic measurements on the
second instrument, while X̃m is computed using a minimum-norm solution to
Eq. (3.10). Hence, the procedure for Type 2 requires the samples to be measured
on only one instrument (i.e. nd = 5). Drift is corrected as in Example 2. The
RRMSEPapp is averaged over 100 combinations for selecting five correction
samples out of the 40 prediction samples.

Discussion: Fig. 3.6 shows the RRMSEPsapp for moisture content without
drift correction, with OP, and with shrinkage. For small α, RRMSEPapp of
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shrinkage is the same as RRMSEPapp of OP with rd = rmax = 5 for Type 1
and Type 2. For large α, RRMSEPapp of shrinkage is the same as RRMSEPapp

with no correction. As in the previous examples, it can be inferred that the non-
monotonicity in the RRMSEPapp of shrinkage implies a significant contribution
from error terms e2 and e3, possibly due to high overlap between the estimated
drift and the signal. In contrast to Example 2, in this example Type 2 data
lead to smaller RRMSEPsapp than Type 1 data. Note also that it is possible
to get a better RRMSEPapp in some cases with shrinkage (α � 10−3 for Type
1, α � 10−4 for Type 2) than with OP with any rd. However, at the optimal
values of meta-parameters, the RRMSEPsapp with shrinkage and with OP are
within 0.5% RRMSEPapp. Furthermore, a good value of α is not known a priori
and is difficult to determine with small amounts of master/slave data.

−8 −6 −4 −2 0 2
0.09

0.1

0.11

0.12

0.13

0.14

 r = 1
 r = 2

 r = 3

 r = 4
 r = 5

−8 −6 −4 −2 0 2
0.09

0.1

0.11

0.12

0.13

0.14

 r = 1

 r = 3
 r = 2, 4
 r = 5

log(α)log(α)

Type 1 Type 2

R
R

M
SE

P
a

p
p

R
R

M
SE

P
a

p
p

Without correction
With shrinkage
With OP

Fig. 3.6. Experimental Example 5: RRMSEPsapp averaged over 100 Monte
Carlo simulations, without correction, with shrinkage, and with OP for a range
of meta-parameter values and for master/slave data of Types 1 and 2.
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3.6 Related methods

The scope of the chapter did not include related methods discussed in the fol-
lowing four points.

1. A measurement-based drift-correction method may pre-process the spectra
(predictor correction) or post-process the concentrations (predictand cor-
rection). The chapter has investigated only predictor-correction methods.
Examples of predictand-correction methods include Kalman filtering for
slope-and-bias correction [50,51] using on-line master/slave data, and pro-
cess migration [52] using an additional predictand-correction model built
off-line. However, Kalman filtering for slope-and-bias correction requires
frequent master/slave data to track the drift locally, while process migration
requires many representative correction samples to build a global off-line
model.

2. For forward calibration, Haaland and Melgaard proposed a prediction-
augmented classical least squares (PACLS) [53]. However, the PACLS al-
gorithm is often too restrictive since the shapes of all the drift components
need to be known [54]. To overcome this restriction, the same authors
proposed a hybrid PACLS/PLS algorithm that proceeds in two steps. In
Step 1, the known shapes of the drift components are modeled using PA-
CLS. In Step 2, the unknown shapes of the drift components are extracted
from the residues of the PACLS model using PLSR. If the goal of fusing
forward and inverse calibration modeling was better interpretability, the
hybrid PACLS/PLSR defeats its purpose since the pure components esti-
mated in Step 1 are corrupted by the unknown drift, thereby leading to
poor interpretability. Hence, despite the tedious modeling of known drift,
the hybrid PACLS/PLS seems to offer little advantage over drift-correction
methods for inverse calibration.

3. A calibration model based on orthogonal partial least squares (OPLS) has
an inbuilt filter for orthogonal signal correction (OSC), that can be used
to estimate the drift subspace [55, 56]. However, OPLS suffers from the
drawbacks of ICM. Assuming that the amount of slave data (with drift)
is much smaller compared to the original calibration data (with no drift),
building an OPLS calibration model on the augmented data will not pro-
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vide good estimates of the drift subspace, since small amounts of slave data
will typically account for a small percentage of the variation in the aug-
mented data. While OPLS often results in a model with fewer factors, its
prediction accuracy is similar to that obtained with standard PLSR built
on the augmented data [57].

4. Another solution for drift correction is to use prior knowledge to build a
drift-invariant calibration model. For example, polynomial principal com-
ponent regression (polyPCR) and pseudo principal component regression
(pPCR) models are invariant to all polynomial-shape drifts of a user-
specified order [58]; data pretreatment via standard normal variate (SNV)
or multiplicative scatter correction (MSC) corrects specifically for possible
scatter effects [59], and first-order or second-order differentiation renders
prediction invariant to offsets that are constant or linear along the spec-
trum. However, the drift model must be known beforehand, which is seldom
the case.

3.7 Conclusions

This chapter provides a framework for ECMs that consists of two main steps:
(i) estimation of the drift subspace based upon different types of master/slave
data, and (ii) correction of the calibration model for the estimated drift sub-
space by shrinkage or orthogonal projection. The drift subspace is estimated
in a master/slave setting, whereby the master/slave data are measured for the
slave with drift and computed for the master (with no drift) through a linear
operator. This work characterizes the master/slave data as Type 1 if A is de-
duced from the knowledge of the master spectra (e.g., mean-centered spectra),
and as Type 2 if A is computed from the known master concentrations (e.g.,
from reference measurements or prior knowledge) and the calibration concen-
trations. It has been shown analytically and with experimental examples that,
for large α, shrinkage corresponds to no correction, while drift correction by OP
can be seen as a special case of shrinkage when rd = rank

“
D̂
”

and small α,
i.e. the drift subspace is shrunk completely. Lastly, in the absence of noise, the
concept of pNAS is used to show that ICM and ECM with OP are equivalent.
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Latent subspace correction using unlabeled

data

This chapter studies latent subspace correction (to reduce RRMSEPe1) based
on additional information in the form of unlabeled data.

4.1 Overview

In LV calibration based on PCR or PLSR, most often, calibration data con-
sist of labeled data only, i.e. X-measurements for which the corresponding y-
measurements are available. In many practical applications, the set of labeled
data is small owing to the high costs of measuring y-values. However, a large
number of X-measurements may be available (so-called unlabeled data), which
may be used together with the labeled data for calibration [60]. The use of la-
beled and unlabeled data for regression and classification modeling, commonly
referred to as semi-supervised learning, represents an increasing focus of the ap-
plied statistics, machine learning, and chemometric literature. Several methods
that improve prediction performance by a judicious use of labeled and unla-
beled data, e.g. transductive support vector machine (SVM) [61], co-training
[62], graph-based methods [63], imputation and expectation-maximization al-
gorithm [64], have been developed. The present work focusses on the workhorses
of chemometrics, namely PCR and PLSR.

Isaksson et al. and Thomas have developed a method, abbreviated here as
IT-PCR, that uses both labeled and unlabeled data in the PCA step to stabi-
lize the latent subspace in PCR [65, 66]. Ergon and Esbensen approached the
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unlabeled data problem using optimal filtering (OF) [67, 68] and developed an
OF-based PCR predictor that was shown to be equivalent to IT-PCR. The same
authors also derived an OF-based predictor for PLSR. The loadings of this pre-
dictor are not estimated sequentially1. Besides being computationally intensive
during cross-validation, non-sequential estimation leads to confounding between
the latent vectors, and are hence difficult to interpret. This work proposes a
sequential version of this OF-based PLSR that solves these problems through
the addition of a deflation step. It is shown analytically that the sequential
version of the OF-based PLSR is equivalent to a PLSR model built on the PCA
scores estimated from the labeled and unlabeled data (PCA-PLSR).

Simulated and experimental data sets are used to point out the usefulness
and pitfalls of using unlabeled data. By stabilizing the latent subspaces in the
calibration step, these methods lead to a lower RMSEP. In other words, un-
labeled data help reduce the amount of labeled data required for a particular
RMSEP. Since labeled data are often expensive, while unlabeled data are some-
times freely available, there may be a cost incentive in using unlabeled data. It
is shown experimentally that the advantage gained from using unlabeled data
can be significant when the measurements have low SNR. This may be rel-
evant, for example, for calibrating APIs present in low concentrations, or in
NIR reflectance spectrum at high wavelengths due to light losses resulting from
transport along the fiber-optic probes [3].

In regression modeling, it is generally assumed that the labeled data are
representative of the prediction data. This may not be true in the presence of
drift (see Chapter 3). It is shown with Monte Carlo simulations that, in the
presence of drift, the use of unlabeled data can result in an increase in prediction
error compared to that obtained with a model based on labeled data alone. The
four constituents of the prediction error (see Eq. (2.26)) are analyzed separately,
leading to a better understanding of the different effects in the presence of drift.

The chapter is organized as follows. The PCA-based and the OF-based use
of unlabeled data, and the proposed extensions, are presented in Section 4.2.
Section 4.3 discusses two propositions on the equivalence of various methods.
Section 4.4 compares these methods for simulated and real spectroscopic data,
and Section 4.5 concludes the chapter.

1 Sequential estimation involves determining one loading followed by deflation
of the measurement matrix, from which the next loading can be estimated.
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4.2 Reducing subspace modeling error using
unlabeled data

Let ne measurements of unlabeled data X̃e be available to help reduce the
subspace modeling error. It is assumed that Xe is representative of Xp with
respect to row-space, drift, and range of response variable.

4.2.1 PCA-based use of unlabeled data

Since the y-values are not required in PCA, it is reasonable to stabilize the
principal component subspace using both the labeled and unlabeled data (X̃c

and X̃e) as discussed next.

PCR with unlabeled data (IT-PCR)

Isaksson et al. [65] and Thomas [66] proposed a PCR model with unlabeled data
that uses the following steps:

1. Compute the PCA factorization of

"
X̃c

X̃e

#
and retain rPCR factors:

"
X̃c

X̃e

#
= TIT−PCRPT

IT−PCR + EIT−PCR , (4.1)

where TIT−PCR, PIT−PCR and EIT−PCR are the [(nc + ne) × rPCR] scores
matrix, [nx × rPCR] loading matrix, and [(nc + ne) × nx] residual matrix,
respectively. TIT−PCR can be decomposed as

TIT−PCR =

"
TIT−PCR−l

TIT−PCR−u

#
, (4.2)

where TIT−PCR−l and TIT−PCR−u are the [nc × rPCR] and [ne × rPCR] scores
matrices corresponding to the labeled and unlabeled data, respectively.

2. Compute b̂ from the least-squares regression between {TIT−PCR−l, ỹc}:

b̂ = PIT−PCR(TT
IT−PCR−lTIT−PCR−l)

−1TT
IT−PCR−lỹc . (4.3)
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PCA-based PLSR (PCA-PLSR)

A direct extension of the above method for PLSR is proposed here with PCA-
PLSR. PCA-PLSR uses both labeled and unlabeled data to stabilize the prin-
cipal components as in Eq. (4.1), and then builds a PLSR model with rPLSR

factors on the data pair {TIT−PCR−l, ỹc}. The advantage of this approach is
that typically fewer factors are required in PCA-PLSR than in IT-PCR, i.e.
rPLSR ≤ rPCR. A schematic block-diagram of PCA-PLSR is shown in Fig. 4.1.

ỹc PLSR, rPLSR factors TPCA−PLSR»
X̃c

X̃e

–
PCA, rPCR factors TIT−PCR−l

Fig. 4.1. Schematic block-diagram of PCA-PLSR

4.2.2 OF-based use of unlabeled data

Consider the LV model in Eq. (2.1). An optimal estimate of the scores t̂ is
obtained by minimizing E [(t − t̂)(t − t̂)T] over an [r × nx] matrix K, where
t̂ = Kx̃. Differentiating E [(t − t̂)(t − t̂)T] with respect to K and equating to
zero leads to:

K = RtL
T(LRtL

T + Rv)−1 , (4.4)

where Rt = E [t tT], and Rv = E [vx vT
x ] (see [67] for details). K can be inter-

preted as a regularized inverse of L.

The OF-based PCR predictor has been shown to be equivalent to IT-PCR
[67] and is discussed in Appendix B.1. Only the OF-based PLSR is presented
in the following sections.

Non-sequential optimized PLSR (NSO-PLSR)

The main steps proposed in [67,68] are repeated below:
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1. Compute the scores and loadings based on Martens’ PLSR [19, 20] using
the data pair {X̃c, ỹc} and retaining rPLSR factors,

X̃c = TMWT + EM

ỹc = TMqM + f .
(4.5)

Martens’ PLSR is chosen over the more popular Wold’s version of PLSR
because Martens’ PLSR leads to estimates of TM, W and EM that are
consistent with the OF-based PLSR (see Appendix B.2).

2. Compute the OF-based scores TNSO−PLSR = X̃cK̂
T, where

K̂ = R̂tW
T(WR̂tW

T + R̂v)−1 , (4.6)

and R̂t and R̂v are the empirical estimates of the scores and X-noise co-
variance matrices, respectively. R̂t is computed using PLSR scores:

R̂t =
1

nc − 1
TT

MTM . (4.7)

Similarly, R̂v can be computed using PLSR X-residuals, i.e. R̂v = 1
nc−1

ET
MEM.

However, the PLSR X-residuals lead to a poor estimate of the true X-noise
covariance matrix [21]. Moreover, the PLSR models built separately for
each analyte lead to different estimates of R̂v. On the other hand, PCA has
been shown useful to compute the X-noise covariance matrix [21]. Further-
more, an additional advantage of PCA is that both labeled and unlabeled
data can be used. This leads to:

R̂v =
1

nc + ne − 1
ET

IT−PCREIT−PCR , (4.8)

where EIT−PCR is defined in Eq. (4.1).

3. Compute b̂ from the least-squares regression between {TNSO−PLSR, ỹc}:

b̂ = K̂T(TT
NSO−PLSRTNSO−PLSR)−1TT

NSO−PLSRỹc . (4.9)

This method will be referred to as non-sequential optimized PLSR (NSO-PLSR)
since the loadings are estimated non-sequentially. This leads to confounding in
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latent vectors, meaning that the scores (or loading) vector with rPLSR = 1 is
not the same as the first of the two scores (or loading) vectors with rPLSR = 2.
A schematic block-diagram of NSO-PLSR is shown in Fig. 4.2.

{X̃c, ỹc} PLSR, rPLSR factors

OF TNSO−PLSR»
X̃c

X̃e

–
PCA, rPCR factors

TM,W

ET
IT−PCREIT−PCR

Fig. 4.2. Schematic block-diagram of NSO-PLSR

Sequential optimized PLSR (SO-PLSR)

Non-sequential fitting methods involve heavy computations during cross-validation
since higher factors cannot be computed incrementally. Furthermore, NSO-
PLSR is difficult to interpret for two reasons: (i) neither the loading matrix K̂

in Eq. (4.6) nor the scores TNSO−PLSR are orthogonal, and (ii) the scores and
loadings are confounded. We propose next a sequentially-estimated OF-based
PLSR that solves these problems. This method is a minor adaptation of NSO-
PLSR, as it proceeds with the same Steps 1–3, except that one scores vector
is computed at a time, followed by deflation to ensure orthogonality with the
subsequent scores vectors.

The schematic block-diagram of SO-PLSR is shown in Fig. 4.3, where
{Xc∗(1), yc∗(1)} = {X̃c, ỹc}, and deflation is defined as:

Xc∗(k + 1) =

„
I − tSO−PLSR(k)tSO−PLSR(k)T

tSO−PLSR(k)TtSO−PLSR(k)

«
Xc∗(k) . (4.10)

The steps are repeated until rPLSR scores are computed to obtain TSO−PLSR

of size [nc × rPLSR]. Note that, at each iteration, R̂t = 1
nc−1

tT
MtM is a scalar,

and k̂T = R̂t wT(w R̂t wT + R̂v)+ is a vector.
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{Xc∗(k),yc∗(k)} PLSR, 1 factor

OF tSO−PLSR(k)»
X̃c

X̃e

–
PCA, rPCR factors

tM, w

ET
IT−PCREIT−PCR

DEFLATION, k → k + 1

Fig. 4.3. Schematic block-diagram of SO-PLSR

4.3 Equivalence of methods

This section presents two theoretical results about the equivalence of different
regression methods with unlabeled data.

4.3.1 Proposition 3: Equivalence of SO-PLSR and PCA-PLSR

Proposition 3 SO-PLSR and PCA-PLSR lead to the same scores and load-
ings.

Proof:
First, we present two lemmas that will be used in the proof.

Lemma 1 Let A ∈ R
n×m, B ∈ R

n×l, C ∈ R
k×m, and D ∈ R

k×l. Then,

"
A B

C D

#
=

"
I 0

CA+ I

# "
A B − AA+B

C −CA+A D − CA+B

# "
I A+B

0 I

#
(4.11)

Proof of Lemma 1: (see page 237 in [69])

Lemma 2 Let a1 ∈ R
n (a1 �= 0n), a2 ∈ R

m (a2 �= 0m), and C ∈ R
m×m a

diagonal matrix with rank (C) = m. Then,

"
a1a

T
1 a1a

T
2

a2a
T
1 a2a

T
2 + C

#+

=

2
4 (1+aT

2 C−1a2)a1a
T
1

||a1||4
−a1a

T
2 C−1

||a1||2
−C−1a2a

T
1

||a1||2 C−1

3
5 (4.12)
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Proof of Lemma 2:
Using Lemma 1, it can be shown that

"
a1a

T
1 a1a

T
2

a2a
T
1 a2a

T
2 + C

#
=

"
I 0

a2a
T
1

||a1||2 I

# "
a1a

T
1 0

0 C

# "
I

a1a
T
2

||a1||2
0 I

#
. (4.13)

Hence,

"
a1a

T
1 a1a

T
2

a2a
T
1 a2a

T
2 + C

#+

=

"
I

a1a
T
2

||a1||2
0 I

#−1 "
a1a

T
1 0

0 C

#+ "
I 0

a2a
T
1

||a1||2 I

#−1

.(4.14)

It can be verified by direct substitution that

"
I

a1a
T
2

||a1||2
0 I

#−1

=

"
I − a1a

T
2

||a1||2
0 I

#
,

"
I 0

a2a
T
1

||a1||2 I

#−1

=

"
I 0

− a2a
T
1

||a1||2 I

#
, and

"
a1a

T
1 0

0 C

#+

=

2
4 a1a

T
1

(aT
1 a1)2

0

0 C−1

3
5. Substitut-

ing these into Eq. (4.14) leads to Eq. (4.12).

Let the PCA factorization of

"
X̃c

X̃e

#
be

"
X̃c

X̃e

#
= T1P

T
1 + T2P

T
2 , (4.15)

where T1 and T2 are the [(nc +ne)× rPCR] and [(nc +ne)×min(nc +ne, nx)−
rPCR] scores matrices, respectively, P1 and P2 the [nx×rPCR] and [nx×min(nc+

ne, nx)− rPCR] loading matrices, respectively. Consider the first loading vector

w in PLSR on the data pair {X̃c, ỹc}. Since w ∈ R
 "

PT
1

PT
2

#!
, let

w := P1a1 + P2a2 . (4.16)

Using w ∝ X̃T
c ỹc (see NIPALS in Section 2.2.3), the first scores vector in PLSR,

tPLSR = X̃c w ∝ X̃cX̃
T
c ỹc. Similarly, the first scores vector in PCA-PLSR,

tPCA−PLSR
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tPCA−PLSR ∝ (X̃cP1) (X̃cP1)
Tỹc ,

∝ X̃cP1P
T
1 w . (4.17)

The definition of w in Eq. (4.16) leads to

tPCA−PLSR ∝ X̃cP1P
T
1 w = X̃cP1a1 . (4.18)

The first scores vector in SO-PLSR, tSO−PLSR

tSO−PLSR = X̃ck̂ = X̃c(w R̂t wT + R̂v)+R̂t w ,

= X̃c(wwT + R̂v/R̂t)
+w . (4.19)

Let wSO−PLSR := (wwT + R̂v/R̂t)
+w, and C := TT

2 T2/R̂t. Using Eq. (4.16)
and R̂v = (T2P

T
2 )T(T2P

T
2 ) leads to:

wSO−PLSR = [P1a1a
T
1 PT

1 + P2a2a
T
2 PT

2 + P1a1a
T
2 PT

2 +

P2a2a
T
1 PT

1 + P2T
T
2 T2P

T
2 /R̂t]

+(P1a1 + P2a2) ,

=

 h
P1 P2

i "a1a
T
1 a1a

T
2

a2a
T
1 a2a

T
2 + C

#"
PT

1

PT
2

#!+

(P1a1 + P2a2) ,

=
h
P1 P2

i " a1a
T
1 a1a

T
2

a2a
T
1 a2a

T
2 + C

#+ "
a1

a2

#
. (4.20)

Using Lemma 2, it is straightforward to show that Eq. (4.20) reduces to
wSO−PLSR ∝ P1a1. Hence, tPCA−PLSR ∝ tSO−PLSR. This proves that the first
scores and loading vectors from PCA-PLSR and SO-PLSR are equivalent up to
a scaling factor. The proportionality can be replaced by equality if the loading
vectors are normalized. After deflation, as defined in Eq. (4.10), the next scores
and loading vectors are also equal.

4.3.2 Proposition 4: Equivalence of various methods with
rPLSR = rPCR

Proposition 4 With rPLSR = rPCR, all methods IT-PCR, PCA-PLSR, NSO-
PLSR and SO-PLSR lead to the same regression vector.
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Proof:

NSO-PLSR leads to the same regression vector as IT-PCR for rPLSR = rPCR

(for proof see [67]). Next, consider PCA-PLSR with rPLSR = rPCR. Since there is
no dimensionality reduction, the PLSR step in PCA-PLSR is equivalent to least-
squares, hence b̂PCA−PLSR = PIT−PCR (X̃cPIT−PCR)+ỹc = b̂IT−PCR. Lastly, by
Proposition 3, the equivalence of scores and loadings of SO-PLSR and PCA-
PLSR implies that of the regression vectors, which completes the proof.

Note that this proposition does not state the equivalence of scores and load-
ings (which is a stronger condition), but only the equivalence of predictions
from IT-PCR, PCA-PLSR, NSO-PLSR and SO-PLSR.

4.4 Illustrative examples

Five examples are presented in this section. Simulated data to motivate the
use of unlabeled data and to study the effect of drift are presented in Examples
1 and 2, respectively. The two propositions are illustrated using experimental
data in Example 3. Finally, Examples 4 and 5 use experimental data to show
the advantage of using unlabeled data at different X-noise levels.

4.4.1 First example (simulated data): Motivation to use unlabeled
data

The use of unlabeled data together with labeled data is motivated with a toy
example of a two-component mixture. The labeled, unlabeled and validation
data are generated for the case of no drift, using Eq. (2.12), with the pure
component spectra S as shown in Fig. 4.4. Fig. 4.5 shows schematically Zc and
Ze for 6 different cases. The analyte of interest is the first mixture component,
for which the y-values are available with measurement noise vy , i.e. ỹ = z1 + vy,
where vy ∼ N (0, 0.1). X-noise is generated from N (0, 2). Spectra at nx = 100

channels, measured for nc = 10 mixture samples, are used for calibration using
PCR and IT-PCR with 2 latent vectors. X̃e from hundred samples (ne = 100) is
assumed to be available to correct the model. An independent test set {X̃p, ỹp}
from hundred samples (np = 100) is used for validation, with Zp generated from
the same probability distribution as Ze.
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The following cases are shown in Fig. 4.5: (1) Zc and Ze are sampled from
the same probability density functions, (2) and (3) Zc and Ze have different
variances, (4) Zc and Ze have different means, (5) Zc and Ze have different
covariance structures, and (6) Ze is rank deficient (e.g. samples collected on-
line during the run may be correlated due to stoichiometry).
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Fig. 4.4. First example: Pure component spectra used in simulation.

Since the measurements are free of drift, and noise-free yp is used, RRMSEPe2

= RRMSEPapp
e4 = 0. Fig. 4.6 shows RRMSEP, RRMSEPe1, and RRMSEPe3

obtained from PCR and IT-PCR, and averaged over 1000 Monte Carlo simu-
lations with different realizations of Zc, Ze and measurement noise. For each
of the six distributions, the error associated with the inaccurate modeling of
subspace (RRMSEPe1) is reduced through the use of unlabeled data due to the
stabilization of the principal components (or better noise averaging), while the
error due to noise in the prediction data (RRMSEPe3) increases slightly due
to the increase in the norm of the regression vector ||b̂||. Overall, RRMSEP
from IT-PCR is reduced because of larger contribution from the reduction in
RRMSEPe1. Fig. 4.7 shows that IT-PCR results in a smoother b̂ than that
obtained with PCR, an indication of better noise averaging, and is closer to the
NAS vector. The smoothening of b̂ can result in an increase or decrease of ||b̂||.
Note that, while RRMSEPe1 is always reduced for drift-free X-measurements,
RRMSEPe3 may either increase or decrease.
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Zc = 2 + randn(nc, 2)

Zc = 2 + randn(nc, 2)Zc = 2 + randn(nc, 2)

Zc = 2 + randn(nc, 2)
Ze = 2 + randn(ne, 2)Ze = 2 + randn(ne, 2)
Zc = 2 + 3 randn(nc, 2)

Ze = 2 + 3 randn(ne, 2) Ze = 3 + randn(ne, 2)

Zc = [zc1 zc2]
zc1 = 2 + randn(nc, 1)
zc2 = 2 + 3 randn(nc, 1)

Ze = [ze1 ze2]
ze1 = 2 + 3 randn(ne, 1)
ze2 = 2 + randn(ne, 1)

Ze = [ze1 ze2]
ze1 = 2 + randn(ne, 1)
ze2 = 4 − ze1

Fig. 4.5. First example: Schematic diagram of Zc and Ze (generated using
MATLAB command randn(g, m) that creates a g × m matrix whose samples
are drawn from a normal distribution with zero mean and unit variance).
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Fig. 4.6. First example: RRMSEP, RRMSEPe1, and RRMSEPe3 using stan-
dard (without unlabeled data) PCR and IT-PCR (with unlabeled data) for the
six cases illustrated in Fig. 4.5.
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Fig. 4.7. First example: b̂ for the first analyte using standard (without unla-
beled data) PCR and IT-PCR (with unlabeled data) for the first case illustrated
in Fig. 4.5. IT-PCR results in a smoother b̂ than that obtained with PCR, and
is closer to the NAS.

4.4.2 Second example (simulated data): Study of drift

The simulation example used in [67] illustrates the effect of drift in the unlabeled
data on the three error terms individually. The description of the simulated data
is repeated here for convenience. For a three-component mixture, the frequency
spectrum in the range 0 < f ≤ 100 frequency units is obtained as:
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x̃(f) =
f1 f z1p

(f2
1 − f2)2 + (2ζ1f1f)2

+
f2 f z2p

(f2
2 − f2)2 + (2ζ2f2f)2

+
f3 f z3p

(f2
3 − f2)2 + (2ζ3f3f)2

+ v(f) ,

(4.21)

with resonance frequencies f1 = 40 fu, f2 = 50 fu, f3 = 60 fu, and the relative
dampings ζ1 = ζ2 = ζ3 = 0.05. It is assumed that z1 ∼ N (3, 1), z2 ∼ N (3, 1),
z3 ∼ N (3,

√
0.5), and v(f) ∼ N (0, 5). With nc = 40, the [40 × 100] X̃c is

constructed as in Eq. (2.12), with the [100×3] matrix S defined from Eq. (4.21).
With ne = 160 and np = 200, the [160 × 100] X̃e and the [200 × 100] X̃p

are constructed as in Eq. (2.19), using the same S and a randomly generated,
smooth baseline dp. The baseline is assumed to be invariant over time, hence,
Dp = 1npd

T
p . The analyte of interest is the second mixture component, for

which the corresponding y-values are available with measurement noise vy , i.e.
ỹ = z2 + vy, where vy ∼ N (0, 0.1).
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Fig. 4.8. Second example: X-noise, drift and pure spectrum (i.e. noise-free and
drift-free) plotted separately.

Fig. 4.8 shows the three components of a spectrum belonging to the unla-
beled data: the pure (noise-free and drift-free) spectrum, drift with l2-norm 9.4,
and X-noise. Fig. 4.9 shows RRMSEP as a function of the l2-norm of the drift.
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This study shows that PCA-PLSR performs well if the new data are drift-free.
However, in the presence of drift, PCA-PLSR can lead to even larger prediction
errors than by standard PLSR. Even a drift of small magnitude (compare the
X-noise and drift magnitudes in Fig. 4.8) offsets the advantage gained from the
stabilization of the principal component subspace.
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Fig. 4.9. Second example: RRMSEP averaged over 1000 Monte Carlo simula-
tions.

Fig. 4.10 shows that each of the error terms e1, e2, and e3 increases with
||dp||. RRMSEPe1 increases with the increase in drift that causes sT

1 b̂, sT
2 b̂, and

sT
3 b̂ to deviate further away from the desired values 0, 1, and 0, respectively

(see Fig. 4.10iv). Let θ denote the angle between b̂ and dp vectors. The |cos(θ)|
plot shows that b̂ is rotated towards dp (see Fig. 4.10v), thereby increasing the
inner product b̂Tdp and hence RRMSEPe2. The increase in ||b̂|| (see Fig. 4.10vi)
results in an increase in RRMSEPe3. In contrast to the simulation example in
Section 4.4.1, at ||dp|| = 0 (case of no drift), ||b̂|| from PCA-PLSR is smaller
than that from PLSR. As discussed in Section 4.4.1, the use of unlabeled data
can result in an increase or decrease of RRMSEPe3. However, RRMSEPe1 is
reduced as expected for the case of no drift. Each of sT

1 b̂, sT
2 b̂, and sT

3 b̂ is closer
to the desired value at ||dp|| = 0. Similar conclusions can be drawn also for
IT-PCR.
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4.4.3 Third example (experimental data): Illustration of
Propositions 3 and 4

This data set is from a designed experiment involving mixtures of three metal
ions (Co(II), Cr(III), and Ni(II)) [70,71]. The X-measurements are absorbance
spectra recorded at 176 wavelengths over the range of 300-650 nm on a HP 8452
diode array spectrophotometer, while the concentration of Cobalt is used as the
response variable. Five replicate spectra were obtained for each of the twenty-
six mixtures using randomized blocks (i.e. 5 blocks of 26 mixtures, randomly
ordered within each block, leading to a total of 130 measurements). To minimize
the effects of instrumental drift, a reference spectrum was run prior to each new
sample. As in [67], the data are auto-scaled and partitioned such that nc = 20,
ne = 84 and np = 26. With rPCR chosen as 5, the RRMSEPapp is shown in
Table 4.1. Since PLSR uses more degrees of freedom per factor than PCR [72],
often fewer factors are required in PLSR than in PCR [73], and so the study is
limited to cases with rPLSR ≤ 5.

The following observations can be made: SO-PLSR and NSO-PLSR lead to
slightly different RRMSEPsapp for certain values of rPLSR, while, as expected,
SO-PLSR and PCA-PLSR lead to equivalent RRMSEPsapp for all values of
rPLSR. Proposition 3 was verified numerically by confirming that the scores
and loadings in PCA-PLSR and SO-PLSR were the same. The non-sequential
nature of NSO-PLSR is illustrated in Fig. 4.11 by showing that the first scores
and loading vectors are different for rPLSR = 1, . . . , 5. Although the scores
and loadings appear to overlap, the zoomed region shows that small differences
exist. Though not shown here, the second and higher scores and loading vectors
too have only minor variations due to the non-sequential evaluation. Thus,
NSO-PLSR and SO-PLSR model nearly the same space, thereby leading to
nearly the same regression vectors. Hence, it can be seen in Table 4.1 that for
1 < rPLSR < rPCR, SO-PLSR and NSO-PLSR differ by less than 0.05%. When
rPLSR = 1, NSO-PLSR is equivalent to SO-PLSR and hence the RRMSEPsapp

are the same. For rPLSR = rPCR = 5, both NSO-PLSR and SO-PLSR become
a similarity transform of IT-PCR, and hence the RRMSEPsapp are again equal
(see the bold numerical values in Table 4.1). Proposition 4 is thus verified
numerically.
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Fig. 4.11. Third example: (i) First scores vector, and (ii) first loading vector
of NSO-PLSR for rPLSR = 1, . . . , 5. Although the vectors appear to overlap,
the zoomed region shows that small differences exist since this method is non-
sequential.

rPCR PCR IT-PCR
1 47.992 49.090
2 17.788 18.859
3 3.566 3.346
4 3.694 2.586
5 3.694 2.489

rPLSR PLSR NSO-PLSR SO-PLSR or
PCA-PLSR

1 42.146 42.271 42.271
2 5.332 4.030 4.039
3 3.429 2.393 2.355
4 3.497 2.592 2.594
5 3.402 2.489 2.489

Table 4.1. For the experimental metal ion data, %RRMSEPapp (i.e.
RRMSEPapp × 100) obtained from standard (without unlabeled data)
PCR/PLSR models and the different regression models with unlabeled data.

4.4.4 Fourth example (experimental data): Study of different
X-noise levels

This data set is from the "Shootout" at the International Diffuse Reflectance
Conference (IDRC 2002) involving 654 pharmaceutical tablets analyzed for as-
say value (the name of the active ingredient was not disclosed for proprietary
reasons), tablet weight, and tablet hardness [74]. The X-measurements are NIR
transmittance spectra recorded at 650 wavelengths over the range of 600-1898
nm on a Foss NIRSystems Multitab spectrometer, while the concentration of
assay value is used as the response variable.
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The reduction in RRMSEPapp due to stabilization of the latent subspace
is illustrated at different SNR values by artificially adding noise to the X-
measurements. Zero-mean Gaussian noise with standard deviation σv is added
to achieve different noise levels 0 ≤ σv ≤ σx, where σx is the average standard
deviation in X-variables. The RRMSEPapp with PCA-PLSR and PLSR are
computed as a function of σv/σx. For their comparison, the oracle values of
meta-parameters (rPLSR in PLSR, {rPCR, rPLSR} in PCA-PLSR) are chosen, i.e.
the calibration model is developed for all values of rPCR and rPLSR and those
leading to the minimum RRMSEPapp are selected. The data are mean-centered
and randomly partitioned such that nc = 100, ne = 300 and np = 255. At each
X-noise level (0 ≤ σv ≤ σx), the RRMSEPsapp are averaged over 100 Monte
Carlo runs, and in each run the data are randomly partitioned as labeled, un-
labeled and prediction data.

The averaged RRMSEPsapp with PLSR and PCA-PLSR are shown in
Fig. 4.12. As expected, the advantage gained from using unlabeled data is
more significant when the X-measurements are noisy.
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Fig. 4.12. Fourth example: RRMSEPapp averaged over 100 Monte Carlo runs,
using standard (without unlabeled data) PLSR and PCA-PLSR (with unlabeled
data) at different SNR values.
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4.4.5 Fifth example (experimental data): Unlabeled data can
replace labeled data

This data set is from a designed experiment involving mixtures of three alcohols
(propanol, butanol, and pentanol) [75]. 1H NMR spectra were recorded at 14000
shifts over the range of 3.85-0.65 ppm on a Bruker Avance Ultra Shield 400
spectrometer. The X-measurements are spectral intensities selected at 3000
shifts, while the concentration of propanol is used as the response variable.
Each alcohol is varied on 21 concentration levels in increments of 5% from 0%
to 100%, resulting in 231 mixtures.

In this example, it is shown that (sometimes freely available) unlabeled
data help reduce the amount of (costly) labeled data required for a particu-
lar RRMSEPapp. For PCA-PLSR, the data are mean-centered and randomly
partitioned such that nc = 8, ne = 16 and np = 207. The RRMSEPapp with
PCA-PLSR is compared to that with PLSR built on nc,a labeled data, where
nc,a = nc + na, and na represents additional labeled data required such that
RRMSEPapp

PLSR = RRMSEPapp
PCA−PLSR.

As in the previous example, (i) zero-mean Guassian noise is added to the
X-measurements, and (ii) oracle values of meta-parameters are chosen for model
building. At each X-noise level (0 ≤ σv ≤ σx), the RRMSEPsapp are averaged
over 100 Monte Carlo runs, and in each run the data are randomly partitioned
as labeled, unlabeled and prediction data.

The value of na found from the Monte Carlo study is plotted as a function
of σv/σx in Fig. 4.13. It can be seen that, when no artificial X-noise is added, 16
unlabeled samples are equivalent (in the sense that they improve RRMSEPapp

by the same amount) to 1 additional labeled sample. However, at σv/σx = 1, 16
unlabeled samples are equivalent to 15 labeled samples! This example illustrates
that, depending upon the expected SNR and the relative cost of obtaining
labeled and unlabeled data, one may decide upon the number of (costly) labeled
and (sometimes freely available) unlabeled data needed during calibration.
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Fig. 4.13. Fifth example: Number of additional labeled data in PLSR at differ-
ent SNR values such that, averaged over 100 Monte Carlo runs, RRMSEPapp

PLSR

= RRMSEPapp
PCA−PLSR with ne = 16.

4.5 Conclusions

Simulated and experimental data sets have been used to illustrate the usefulness
and pitfalls of using unlabeled data. In the absence of drift, the use of unlabeled
data helps stabilize the latent subspaces in the calibration step, thus leading to a
lower RRMSEP. Hence, unlabeled data can replace labeled data to some extent
and bring some economic benefit. However, in the presence of drift, the use of
unlabeled data can result in an increase in prediction error compared to that
obtained with a model based on labeled data alone. In prediction data, which
by definition qualifies as unlabeled data, the presence of drift can be checked
using the Q-statistic and a properly defined threshold. If drift is present, drift
correction methods should be applied before using unlabeled data (see Chapter
3). This chapter has also discussed the equivalence of different methods using
unlabeled data in PCR and PLSR. The only difference between NSO-PLSR and
PCA-PLSR (or SO-PLSR) lies in the non-sequential estimation of factors in the
NSO-PLSR and the sequential estimation in PCA-PLSR. Furthermore, it was
shown analytically that, with rPLSR = rPCR, all methods IT-PCR, PCA-PLSR,
NSO-PLSR and SO-PLSR lead to the same regression vector. For the examples
considered, the difference in the RRMSEP with PCA-PLSR and NSO-PLSR is
less than 0.05%. PCA-PLSR may be preferred over OF-based methods due to
its simplicity.





5

Data reconciliation based on balance

equations

This chapter studies data reconciliation (to reduce the overall RRMSEP) based
on additional information in the form of balance equations.

5.1 Overview

Calibration models to predict the concentrations of various analytes from spec-
troscopic measurements are typically developed off-line. Such calibration mod-
els do not take into account certain relationships that exist amongst the vari-
ous analytes e.g. due to the presence of chemical reactions. Additional on-line
measurements (from e.g. flow rate devices and gas analyzers) and prevailing
mass and elemental balance equations, along with the criteria of monotonicity,
smoothness and non-negativity of concentrations, can be used to adjust and
improve the predictions [76]. Data reconciliation (DR) is the procedure of opti-
mally adjusting process measurements to obtain more accurate estimates, which
are consistent with the balance equations and other constraints, to detect gross
errors and estimate unmeasured variables. DR has been traditionally applied
to chemical processes involving flow circuits, where model equation and mass
balance equations are readily definable [77]. In this chapter, the use of DR for
spectroscopic calibration is discussed. The following simplifying assumptions
are made:
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A1: The concentrations of all ns analytes are predicted from the X-measurements,
i.e. nk = ns, and

A2: the true concentrations zp of the prediction set follow ng balance equations:

Gzp = c , (5.1)

where G is an [ng × ns] matrix and c an ng-dimensional vector.

The prediction error for the ith analyte can be expressed according to Eq. (2.22),

εp,i := yp,i − ŷp,i = (yp,i − zT
p STb̂i − dT

p||cb̂i)| {z }
e1

−dT
p⊥cb̂i| {z }

e2

−vT
x,p b̂i| {z }

e3

.
(5.2)

The predicted values of the ns analyte concentrations are given by:

ẑp = B̂T x̃p = zp + εp , (5.3)

where B̂ = [b̂1 . . . b̂ns ] is the [nx × ns] matrix of regression vectors, and εp =

[εp,1, . . . , εp,ns ] the ns-dimensional prediction error vector with the dispersion
matrix E [εp εT

p ] = Ψ of size [ns × ns]. Let the [ns × ns] empirical dispersion
matrix Ψ e of εp be defined by:

Ψ e :=
1

np
FFT , (5.4)

where F = [εp(1) . . . εp(np)] is an [ns×np] matrix composed of prediction errors
from np measurements. Typically, Ψ and Ψ e are unknown and approximated by
an [ns ×ns] matrix H. DR is formulated as the following optimization problem
with a weighted l2-norm cost function, and balance equations as linear equality
constraints:

ε̂p = argmin
ˆ
εTH−1ε

˜
such that G(ẑp − ε) = c , (5.5)

which has the closed-form solution1 [77]:

1 Note that DR is invariant to multiplication of H by any scalar
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ε̂p = HGT(GHGT)−1(Gẑp − c) = HGT(GHGT)−1G εp

= MH εp ,
(5.6)

where MH = HGT(GHGT)−1G is an [ns × ns] square matrix. Since MH is
an idempotent matrix (i.e. MHMH = MH), it is a projection matrix. The
reconciled predictions ẑr are:

ẑr = ẑp − ε̂p . (5.7)

The residual error after DR, εr := ẑr − zp can be expressed as:

εr = ẑp − ε̂p − zp = εp − ε̂p . (5.8)

In spectroscopic calibration, estimating Ψ (or Ψ e) is a challenging task. In the
absence of prior information, a naive assumption is to use H = Ins , leading to
MI = GT(GGT)−1G = G+G, i.e. orthogonal projection.

Consider the following toy example: zp =
ˆ yp,1

yp,2

˜
where the variables yp,1

and yp,2 satisfy the balance equation yp,1 + yp,2 = 1 with G = [1 1] and c = 1

(see Fig. 5.1i). With H = I2 = [ 1 0
0 1 ], the reconciled solution ẑr is the nearest

point (minimum l2-norm) on the line that satisfies the balance equation, i.e. ẑp

is orthogonally projected onto the line yp,1 + yp,2 = 1. Note that orthogonal
projection leads to ||zp − ẑr|| ≤ ||zp − ẑp|| or ||εr|| ≤ ||εp||. However, this does
not imply that both variables yp,1 and yp,2 have lower prediction error after
DR. In this example, |ŷr,1 − yp,1| < |ŷp,1 − yp,1| (improved prediction of y1) but
|ŷr,2 − yp,2| > |ŷp,2 − yp,2| (worsened prediction of y2).

If the standard deviation of errors in yp,1 and yp,2 were known, this prior
knowledge could be used for oblique projection using H =

ˆ
1 0

0 h22

˜
. For ex-

ample, if the variance of the yp,1 prediction is 5 times larger than that of yp,2,
h22 = 1/5, thereby leading to an oblique projection that adjusts more ŷp,1 as
opposed to ŷp,2 in order to satisfy the constraint (see Fig. 5.1ii). Using the
uncertainty in y2 relative to y1, oblique projection will produce a lower residual
error, i.e. E [||zp − ẑr||oblique] ≤ ||E [zp − ẑr||orthogonal ]. This example assumed
a diagonal matrix H, with larger entries chosen for more accurate predictions.
This is a common assumption in the literature [76, 78–80]. However, such a
choice of H ignores the correlation between the prediction errors of different
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. .
.

. ..

yp,1yp,1

yp,2yp,2

ẑpẑp

ẑr

ẑr

zpzp

(i) (ii)

Fig. 5.1. (i) Orthogonal projection, (ii) oblique projection.

analytes. In the case of spectroscopic measurements, since the same X-noise
vx,p propagates to the prediction errors for different analytes, the prediction
errors of the various analytes are indeed correlated.

The chapter is organized as follows. Section 5.2 motivates DR through two
properties of the error after DR. The properties are illustrated with simulation
and experimental studies in Section 5.3, and Section 5.4 concludes the chapter.

5.2 Features of DR

This section investigates two properties of the reconciled error εr and discusses
the different cases of H used in this work.

5.2.1 Proposition 5: Reduced overall error

The following Proposition says that the weighted l2-norm of the prediction error
after DR is smaller than that of prediction error before DR, regardless of the
choice of H.

Proposition 5 εT
r H−1εr ≤ εT

p H−1εp ∀H.

Proof: Using Eqs. (5.6) and (5.8),
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εT
r H−1εr = (εp − ε̂p)

TH−1(εp − ε̂p)

= εT
p (Ins −MH)TH−1(Ins − MH)εp .

(5.9)

Substituting for MH,

εT
r H−1εr = εT

p (H−1 − GT(GHGT)−1G)εp

= εT
p H−1εp − εT

p GT(GHGT)−1Gεp .
(5.10)

Since GT(GHGT)−1G is positive semi-definite (PSD), εT
p GT(GHGT)−1Gεp

≥ 0, thereby leading to εT
r H−1εr ≤ εT

pH−1εp .

5.2.2 Proposition 6: Reduced error for each analyte

The following Proposition says that with H = Ψ , RRMSEP for each analyte is
reduced in expectation sense. The proof can be found in [77], and is restated
here for convenience.

Proposition 6 H = Ψ leads to reduced expected RRMSEP for each analyte,
i.e. E [ε2r,i] ≤ E [ε2p,i], ∀ i = 1, . . . , ns, where εr,i and εp,i are the ith elements of
εr and εp, respectively.

Proof:

Using Eqs. (5.6) and (5.8),

E [εrε
T
r ] − E [εpεT

p ] = E [(εp − MHεp)(εp − MHεp)T] − Ψ

= (Ins − MH)Ψ (Ins −MT
H) − Ψ .

(5.11)

Substituting for MH when H = Ψ leads to,

E [εrε
T
r ] − E [εpεT

p ] = −ΨGT(GΨGT)−1GΨ . (5.12)

Since GT(GHGT)−1G is PSD, diagonal elements of ΨGT(GΨGT)−1GΨ are
≥ 0, and the diagonal elements of

`E [εrε
T
r ] − E [εpεT

p ]
´

are ≤ 0. In other words,
E [ε2r,i] ≤ E [ε2p,i], ∀ i = 1, . . . , ns.

Replacing the expectation E [εrε
T
r ]−E [εpεT

p ], by empirical average
Pnp

j=1 εr(j)εr(j)
T

−Pnp

j=1 εp(j)εp(j)
T, leads to the following corollary.
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Corollary of Proposition 6: H = Ψ e leads to decreased RRMSEP for each
analyte, i.e.

Pnp

j=1 εr,i(j)
2 ≤Pnp

j=1 εp,i(j)
2, ∀ i = 1, . . . , ns, where the summa-

tion is over np prediction samples.

5.2.3 Cases of H considered

The four cases of H studied in this work are described below and summarized
in Table 5.1. This list of H is exemplary, not comprehensive.

(i) H = Ins : In the absence of prior knowledge, a naive assumption is to use
the identity matrix, leading to orthogonal projection.

(ii) H = B̂TB̂: Assuming that the bias in the prediction errors (due to er-
ror terms e1 and e2) is negligible compared to the variance (due to er-
ror term e3), εp ≈ B̂T vx,p. Hence E [εp εT

p ] ≈ E [B̂T vx,p(B̂
T vx,p)

T] =

B̂TE [vx,pv
T
x,p]B̂. Furthermore, assuming that the elements of vx,p are iid

from N (0, σ), E [vx,pv
T
x,p] = σ2Inx . Hence, H = B̂TB̂ is one candidate

approximation of Ψ .

(iii) H = HASTM: Assuming the off-diagonal elements of Ψ are negligible com-
pared to the diagonal elements, the prediction confidence intervals of all
analytes can be chosen as diagonal elements of H. Several methods exist
that approximate the confidence intervals [81–83]. We use the American
Society for Testing and Materials (ASTM) standard [84], which allows to
choose a sample specific H. For the kth prediction,

HASTM(k) := diag
“p

m1 (1 + h1(k)), . . . ,
p

mns (1 + hns(k))
”

mi :=

j=ncX
j=1

(ỹc,i(j) − ŷc,i(j))
2/(nc − df) ,

(5.13)

where hi(k) is the leverage of the ith analyte for the kth prediction [15],
yc,i(j) the jth calibration concentration for the ith analyte, and df the
degrees of freedom. In PCR, df is equal to the number of factors retained.
Though PLSR uses more than one degree of freedom per factor [72], df is
commonly approximated as the number of factors retained.

Furthermore, the loading space of PCR calibration models of ns analytes are
identical for the same number of factors retained. In this case, using h1(k) =



5.3 Illustrative examples 71

h2(k) = · · · = hns(k), and the fact that DR is invariant to H(k) multiplied
by a scalar, H(k) can be simplified to H(k) = H = diag(

√
m1, . . . ,

√
mns).

In contrast to PCR, the loading space of the PLSR calibration model is
different for each analyte.

(iv) H = Ψ e: As shown in Proposition 6, H = Ψ e guarantees reduction in
RRMSEP for each analyte.

Case of H Features
Ins orthogonal projection; naive

B̂TB̂ oblique projection; ignores the bias
HASTM oblique projection; ignores off-diagonal elements

Ψ e oblique projection; reduced RRMSEP for each analyte

Table 5.1. Features of the different choices of H.

5.3 Illustrative examples

Two examples are presented in this section. Example 1 compares RRMSEP
before and after DR using simulated data. DR on experimental data is studied
in Example 2.

5.3.1 First example (simulated data): Use of material balance
equation

Generation of simulated data: DR is illustrated via spectroscopic measure-
ments from a simulated isothermal constant-density batch reactor involving
ns = 4 absorbing analytes and 2 chemical reactions (example taken from [85]).
Reactant A1 is converted to the desired product A4 following an auto-catalyzed
two-step reaction:

2 A1
κ1−→ A2

κ2−→ A3 + 2 A4 . (5.14)

All four analytes are assumed to absorb. For calibration, nc = 30 mixture
samples are randomly generated (rank (Zc) = ns) within the operational con-
centration ranges. The spectroscopic measurements Xc are generated accord-
ing to Eq. (2.12) using nx-dimensional pure-component spectra (nx = 101;
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see Fig. 5.2i). Measurement noise with elements of vx from N (0, 0.03), and
vy ∼ N (0, 0.05), is added to the X and y-measurements. Three calibration
models (NASR, PCR, and PLSR) are built for each analyte. For each analyte,
four factors are chosen in its PCR and PLSR models. On-line spectroscopic
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Fig. 5.2. Example 1: (i) Pure–component spectra, and (ii) concentration pro-
files of the four species, used for generating the simulated data.

measurements xp are generated according to Eq. (2.12), where the concentra-
tions are simulated from the following mole balances (see also Fig. 5.2ii):

d z1

d t
= − 2κ1 z2

1

d z2

d t
= κ1 z2

1 − κ2 z2 z3 ,

(5.15)

where zi is the molar concentration of ith analyte, and the numerical values
of the rate constants are κ1 = 0.245 L mol−1h−1 and κ2 = 2.133 L mol−1 h−1.

Based on the null space of the stoichiometric matrix

"
−2 1 0 0

0 −1 1 2

#
, the following

ng = 2 reaction-invariant relationships can be formulated:
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"
0.5 1 1 0

0.5 1 0 0.5

# 266664
z1

z2

z3

z4

3
77775 =

2
66664

z1(0)

z2(0)

z3(0)

z4(0)

3
77775 , (5.16)

where zi(0) (i = 1, . . . , 4) refers to the initial analyte concentrations at the start
of the reaction.

DR is illustrated for the three calibration models (NASR, PCR, and PLSR)
and the four cases of H (= Ins , B̂TB̂, HASTM, and Ψ e). Note that HASTM is
applicable for PCR and PLSR, but not for NASR.

Discussion: For one realization of the noise, the plots of 100
“

εT
r H−1εr

εT
p H−1εp

−1) are
shown in Fig. 5.3. Negative values indicate a reduction in the weighted l2-norm.
Proposition 5 is satisfied for NASR, PCR, and PLSR for all the four cases of H.
For NASR, the difference in weighted error norm is randomly distributed be-
cause the prediction errors in consecutive samples are independent. In contrast
to NASR, the difference in weighted error norm from PCR and PLSR is not
random iid. This is because the bias in prediction error, resulting from the error
term e1, depends upon the smoothly varying analyte concentrations. Hence, in
consecutive samples, the prediction errors are highly correlated.

The RRMSEP of the four analytes, averaged over 100 Monte Carlo simu-
lations for the three calibration models, and different cases of H, are shown in
Fig. 5.4. With H = Ψ e and H = HASTM, RRMSEP is reduced for NASR, PCR,
and PLSR, and for all four analytes. While this was expected for H = Ψ e (see
Proposition 6), it does not hold in general for H = HASTM. With H = Ins and
H = B̂TB̂, RRMSEP is not reduced for all combinations of calibration models
and analytes. Unfortunately, without knowledge of Ψ e, one cannot determine
in advance the predictions of which analytes will be worsened.

Note that, in the case of NASR, H = B̂TB̂ leads to approximately same
RRMSEP as obtained with H = Ψ e since B̂TB̂ ≈ Ψ e. In contrast, due to
the subspace modeling errors in PCR and PLSR, B̂TB̂ does not approximate
Ψ e well, thereby leading to different RRMSEP. In this example, the RRMSEP
from PCR and PLSR, with H = B̂TB̂, are worse than even those obtained with
H = Ins .
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Fig. 5.4. Example 1: RRMSEP of the four analytes, averaged over 100 Monte
Carlo simulations, for NASR, PCR, and PLSR, and different H.

5.3.2 Second example (experimental data): Use of closure equation

UV spectra of 114 samples of light gas oil and diesel fuel, used in the third
example in Chapter 3, is used here with a different split for calibration and
prediction. The properties of interest are the weight percentages of saturates,
monoaromatics, diaromatics, and polyaromatics. The reference weight percent-
ages are not actual measurements of saturates, monoaromatics, diaromatics,
and polyaromatics, but rather values assigned based on a standard protocol,
for example, monoaromatics are taken to be anything that elutes between a
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specified range. Since the entire region is integrated, the weight percentages
sum up to 100, leading to ng = 1 closure equation:

h
1 1 1 1

i
2
66664

z1

z2

z3

z4

3
77775 =

h
100
i

. (5.17)

For illustration purposes, the data are split in such a way that the calibration
data is representative of the prediction data. Ten samples from the first plant
(out of 59), five from the second (out of 25), and five from the third (out of 30)
are used for calibration, and the rest for prediction. This leads to a [20 × 572]

matrix of calibration spectra X̃c, and a [94 × 572] matrix of prediction spectra
X̃p. For each property of interest, four factors are chosen in its PCR and PLSR
models. Since the pure-component spectra are unknown, NASR is not studied.
Furthermore, the computation of Ψ e requires the knowledge of εp. Since exper-
imental reference measurements are always corrupted by measurement noise,
the case of PCR or PLSR with H = Ψ e is also not included.

Discussion: The RRMSEPapp of the four response variables, averaged over
100 Monte Carlo simulations with different selection of data for calibration and
validation, are shown in Fig. 5.5. In this example, H = Ins leads to a small
reduction in RRMSEPapp of the first response variable at the cost of a large
increase in RRMSEPapp of the other three. Despite satisfying Proposition 5,
if the predictions of all analytes were of equal importance in this example, DR
with orthogonal projection may be judged to be of little merit. This example
illustrates the importance of finding good estimates of the dispersion matrix of
the prediction error. In contrast to Example 1, here RRMSEPapp with H =

B̂TB̂ and H = HASTM are significantly better than those obtained with H =

Ins .

5.4 Conclusions

DR applications commonly use H = Ins , i.e. all the variables involved in the
balance equations are assumed to be predicted with equal uncertainty. However,
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Fig. 5.5. Example 2: RRMSEPapp of the four analytes, averaged over 100
Monte Carlo simulations, for PCR and PLSR, and different H.

if variables have widely differing prediction errors, DR may distribute the large
prediction error amongst all variables, improving the prediction of the variables
with large error at the expense of the variables with small errors. However, for
H = Ψ e, it is shown analytically that DR leads to reduction in RRMSEP for
each variable.

If the bias of prediction errors is negligible compared to the variance, Ψ can
be readily obtained as B̂TB̂. If the off-diagonal elements of Ψ are negligible com-
pared to the diagonal elements, Ψ can be approximated using analytical expres-
sions of prediction confidence intervals. In PCR/PLSR, the bias in prediction
is caused by subspace modeling error and drift. Furthermore, the off-diagonal
elements of Ψ are non-zero since the same measurement noise propagates to
the prediction errors for different analytes. In the author’s opinion, estimation
of Ψ in the presence of significant bias or off-diagonal elements must rely on
"several" reference measurements. However, this may be expensive owing to
the high costs of reference measurements. Alternately, drift subspace correction
and latent subspace correction should be applied prior to data reconciliation.





6

Conclusions

6.1 Contributions

This section presents the main conclusions and contributions of the dissertation
related to drift subspace correction using master/slave data, latent subspace
correction using unlabeled data, and DR based on prior knowledge of linear
dependencies.

Drift subspace correction:

• A framework for explicit drift-correction methods has been provided that
consists of two main steps: (i) estimation of the drift subspace based upon
different types of master/slave data, and (ii) correction of the calibration
model for the estimated drift subspace by shrinkage or OP. The master/slave
data are characterized as Type 1 if the linear operator is deduced from the
knowledge of the master spectra, and as Type 2 if it is computed from the
known master concentrations. The linear operator is constrained to sat-
isfy equality of master and slave concentrations, since the drift affects the
spectroscopic measurements but not the concentrations. This framework fa-
cilitates the evaluation and comparison of explicit drift-correction methods.

• The framework has been illustrated with different experimental data sets,
correcting for effects of variations in temperature, moisture, particle size
distribution, raw material, instrumental drift, and calibration transfer.
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• It has been shown analytically that OP with full orthogonalization is equiv-
alent to shinkage with a large meta-parameter, i.e. the drift subspace is
shrunk completely. Under noise-free conditions, ICM and ECM with OP
have been shown to be equivalent.

Latent subspace correction:

• Simulated and experimental data sets have been used to point out the use-
fulness and pitfalls of using unlabeled data. For drift-free measurements,
the use of unlabeled data in addition to labeled data helps stabilize the la-
tent subspaces in the calibration step, typically leading to a lower subspace
modeling error. Unlabeled data can replace labeled data to some extent,
thereby leading to an economic benefit. The advantage gained from us-
ing unlabeled data can be significant when the spectroscopic measurements
have low signal-to-noise ratios. However, in the presence of drift, the use
of unlabeled data can result in an increase in prediction error compared to
that obtained with a model based on labeled data alone.

• The equivalence of different methods using unlabeled data in PCR and
PLSR has been discussed. PCA-PLSR is shown to be equivalent to SO-
PLSR. Hence, the only difference between NSO-PLSR and PCA-PLSR (or
SO-PLSR) lies in the non-sequential estimation of factors in the NSO-PLSR
and the sequential estimation in PCA-PLSR. For the examples considered,
the difference in the RRMSEP with PCA-PLSR and NSO-PLSR is less than
0.05%. It is shown analytically that, with rPLSR = rPCR, all methods IT-
PCR, PCA-PLSR, NSO-PLSR and SO-PLSR lead to the same regression
vector. PCA-PLSR may be preferred over OF-based methods due to its
simplicity.

Data reconciliation:

• It has been shown that a weighted l2-norm of the prediction error vector is
reduced for any estimate of the dispersion matrix of the prediction error.
Moreover, RRMSEP for each analyte is reduced for "good" estimates of the
dispersion matrix.

• If the bias components of prediction errors are negligible compared to the
variance components, the dispersion matrix can be obtained directly from
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the estimated regression vectors. If the off-diagonal elements of the disper-
sion matrix are negligible compared to the diagonal elements, the dispersion
matrix can be obtained using analytical expressions of prediction confidence
intervals. However, if the assumption does not hold and the dispersion ma-
trix is poorly estimated, DR may improve the prediction of some analytes
at the expense of others.

6.2 Perspectives

Soft sensors are indispensable tools for the process industries. These sensors
facilitate process understanding and allow monitoring process operations to de-
tect abnormal situations, thereby improving process reliability and leading to
less wastage. However, the use of process analyzers in closed-loop control is
still limited owing to their lack of robustness in harsh industrial environments.
The proposed methods for drift subspace correction, latent subspace correction,
and data reconciliation can contribute to increased robustness and reliability of
predictions with few or no additional reference measurements. However, real-
izing the gains from the proposed methods is a matter of choosing the meta-
parameters correctly. Ideally, this choice reflects the trade-offs between the dif-
ferent sources of prediction error. Since direct measurement of the error terms is
in general not possible, finding suitable proxy estimates is an important subject
for further investigation. Until such estimates are available, the choice of meta-
parameters can only be guided by rules of thumb or heuristic criteria based on
expert opinion, impeding the automated maintenance of models that is crucial
for almost all advanced measurement systems in research and industry. More-
over, for soft sensors to be useful in QbD applications, better interpretability of
the calibration models and mechanistic understanding of drift evolution will be
indispensable.

The proposed methods can be extended to data-driven optimization schemes
[86] for the purpose of process improvement. For example, in the context of the
operational optimization of batch processes (e.g. by adjusting the trajectories of
feed rates and/or process temperature [87, 88]) with terminal constraints (e.g.
concentration of a side product less than a specified threshold at batch end),
drift relates to batch-to-batch variations, which necessitates finding new opti-
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mal input trajectories. The following challenges are anticipated. Firstly, based
on historical batch data, the batch process should be approximated as a static
linear (or nonlinear) calibration model between the parameterized input trajec-
tories and the key variables at batch end. Secondly, based on on-line or at-line
measurements (akin to master/slave data), the effect of batch variations on the
calibration model should be evaluated, and a correction (akin to drift correc-
tion) applied to the calibration model to reduce sensitivity to the batch-to-batch
variations. The proposed methods can also be extended to LV model predictive
control [89], where the controlled errors are a function of LVs representing linear
combinations of measurements, process variables, setpoints, and manipulated
inputs. Subspace correction based on additional sources of information (e.g. un-
labeled batch data or master/slave batch data) can lead to improved estimates
of the LVs, and thus to a more reliable control action based on the corrected
LVs.
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Appendix A

The Appendix has space-inclusion conditions for noise-free spectra.

A.1 Space-inclusion conditions

Consider the following assumptions:

A1: Xc = Zc ST, xp = Szp (the calibration data and measured spectrum have
no noise),

A2: rank(S) = ns, rank (Zc) = q ≤ ns (pure-component spectra are of full rank
but the concentration matrix can be rank deficient).

Proposition 7 Let Assumptions A1–A2 hold. Then, the concentrations of the
ns analytes are predicted correctly from xp using the inverse calibration model

ẑT
p = xT

p B̂, where B̂ = X+
c Zc (A.1)

iff xp ∈ R (Xc).

Proof of Proposition 7:

1) xp ∈ R (Xc) → correct prediction:

Let Xc be factorized using PCA and Zc be factorized using the same scores:
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Xc = Zc ST = TPT,

Zc = TQT
(A.2)

where T is the [nc × q] scores matrix, and P and Q the loading matrices of size
[nx × q] and [ns × q], respectively. From Eq. (A.2), TPT = TQT ST, which
gives:

PT = QT ST (A.3)

and
B̂ = X+

c Zc = (PT+T+) (TQT) = PQT. (A.4)

From space inclusion, xp ∈ R (Xc), i.e. xT
p = gT

p Xc = gT
p Zc ST. Since

rank (S) = ns and xT
p = zT

p ST, it follows that zT
p = gT

p Zc, which gives:

ẑT
p = xT

p B̂ = (gT
p TPT) (PQT) = gT

p TQT = gT
p Zc = zT

p . (A.5)

2) Correct prediction → xp ∈ R (Xc):

Using xT
p = zT

p ST, ẑT
p = zT

p and Eqs. (A.3) and (A.4),

xT
p = ẑT

p ST = xT
p PQTST = xT

p PPT, (A.6)

i.e. xT
p = xT

p X+
c Xc, implying space inclusion.

Proposition 8 Let Assumptions A1–A2 hold. Then, the concentrations of the
nk analytes are predicted correctly from xp using the inverse calibration model

ẑT
p,k = xT

p B̂k, where B̂k = X+
c Zc,k (A.7)

if xp ∈ R (Xc).

Proof of Proposition 8:

1) xp ∈ R (Xc) → correct prediction:

Let Zc = [Zc,k Zc,u] and B̂ = X+
c Zc = [B̂k B̂u]. Zc,k = Zc Jk, B̂k = B̂ Jk,

Zc,u = Zc Ju and B̂u = B̂ Ju, where Jk ≡
h

Ink
0nu×nk

i
and Ju ≡

h
0nk×nu

Inu

i
.

Following the steps leading to Eq. (A.5),
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ẑT
p Jk = xT

p B̂Jk = zT
p Jk = zT

p,k. (A.8)

Hence, ẑT
p,k = zT

p,k.

2) Correct prediction � xp ∈ R (Xc):

One example will suffice to illustrate that correct prediction does not imply
space inclusion. Choose,

zT
p = gT

p Zc + z⊥T
p , z⊥T

p = [0T
nk

mT] , (A.9)

where z⊥
p is the orthogonal complement to R (Zc), and m �= 0nu is an nu-

dimensional vector. Analyte concentrations are predicted as,

ẑT
p,k = xT

p B̂k = zT
p ST B̂k = (gT

p Zc + z⊥T
p )ST PQTJk

= gT
p TQT ST PQTJk + z⊥T

p ST PQTJk .
(A.10)

Using QT ST PQT = QT (see Eq. (A.3)) and z⊥T
p ST = mT ST

u ,

ẑT
p,k = gT

p TQTJk + mT ST
uPQTJk = gT

p ZcJk + mT ST
uB̂k

= zT
p,k + mT ST

uB̂k .
(A.11)

It is easy to construct a synthetic example with m, Zc, and S, that leads to
correct predictions, i.e. mT ST

uB̂k = 0T
nk

. The corresponding spectra is given
as,

xT
p = (gT

p Zc + z⊥T
p )ST = gT

p Zc ST + z⊥T
p ST . (A.12)

The first term gT
p Xc ∈ R (Xc), but the second term z⊥T

p ST �∈ R (Xc).
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Appendix B

The Appendix provides discussions on OF-based PCR and PLSR.

B.1 Discussion on OF-based PCR

Ergon and Esbensen showed that the OF-based PCR is the same as IT-PCR [67].
However, this claim needs to be clarified as the following two schematics can be
considered for OF-based PCR:

Schematic 1:("
X̃c

X̃e

#
, ỹc

)
IT-PCR, rPCR factors

OF TIT−PCR−l"
X̃c

X̃e

#
PCA, rPCR factors

TIT−PCR−l,PIT−PCR

ET
IT−PCREIT−PCR

Schematic 2:
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{X̃c, ỹc} PCR, rPCR factors

OF TOF−PCR �= TIT−PCR−l"
X̃c

X̃e

#
PCA, rPCR factors

TPCR,PPCR

ET
IT−PCREIT−PCR

Schematic 1 was considered in [67]. Here, OF does not alter TIT−PCR−l, implying
that the scores in IT-PCR are already optimized with respect to the loadings
and error covariance. However, strictly speaking, Schematic 1 represents an OF-
based IT-PCR rather than an OF-based PCR. In Schematic 2, the output of OF
is TOF−PCR with, in general, TOF−PCR �= TIT−PCR−l. Since Schematic 1 uses
stabilized estimates of the scores and loadings, it is preferred over Schematic 2.

B.2 Discussion on OF-based PLSR

Recently, several authors have debated whether Wold’s PLSR is inconsistent
with respect to the model space used in calibration and prediction, while
Martens’ PLSR is consistent [18, 90–92]. In the context of OF, this incon-
sistency can be noted in the fact that the scores in Martens’ PLSR and Ergon’s
PLSR are optimized with respect to its loadings and error covariance, while
scores in Wold’s PLSR are not. This is shown in the following schematic for
Martens’ PLSR,

TM,W OF TM|{z}
optimized

ET
MEM

and for Ergon’s PLSR,
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TW,WWTP OF TW|{z}
optimized

.

ET
MEM

Since TM is already optimized with respect to W and EM, OF does not alter
TM. Similarly, since TW is already optimized with respect to WWTP and
EM, OF does not alter TW. However, in the case of Wold’s PLSR, TW is not
optimized with respect to P and EW as shown in the following schematic:

TW,P OF Tnew| {z }
optimized

�= TW|{z}
not optimized

ET
WEW

The different PLSR models with unlabeled data presented in Chapter 4 are
valid only for consistent PLSR models, i.e. Martens’ PLSR or Ergon’s PLSR.
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