Database Queries in Java

THESE N° 4913 (2010)

PRESENTEE LE 20 DECEMBRE 2010

A LA FACULTE INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE SYSTEMES D'EXPLOITATION
PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Christopher Ming-Yee U

acceptée sur proposition du jury:

Prof. R. Guerraoui, président du jury
Prof. W. Zwaenepoel, directeur de thése
Dr E. Cecchet, rapporteur
Prof. W. Cook, rapporteur
Prof. D. Kostic, rapporteur

(PH

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Suisse
2010

Résumé

Dans les langages de programmation conventionnels comme Java, les interfaces pour
accéder aux bases de données sont souvent inélégantes. Typiquement, un langage de
requéte doit étre intégré dans un langage de programmation pour que les programmeurs
puissent accéder a toute la puissance et la vitesse d’'une base de données. Les program-
meurs, eux, ils préferent utiliser un seul langage de programmation a usage général pour
les calculs généraux ainsi que I'acces aux bases de données.

Cette these explore comment les opérations sur les bases de données peuvent étre
exprimée avec la syntaxe existante des langages de programmations. Les programmeurs
peuvent écrire tout leur code—pour les calculs généraux ainsi que ’accés aux bases de
données—dans un seul langage. Pour exécuter ces opérations sur une base de données avec
des performances acceptables, des algorithmes sont nécessaires pour trouver ces opérations
et les optimiser. Cette these s’occupe des techniques qui peuvent étre facilement adoptées
parce qu’elles ne nécessitent pas de changements aux compilateurs existants.

Trois systemes ont été développés: Queryll, JReq, et HadoopToSQL. Chaque systeme
étudie le probleme selon un contexte respectivement du code en style fonctionnel, du code
en style impératif, et du code en style MapReduce.

Mots-clés: bases de données, MapReduce, exécution symbolique, langages de requétes,
Java, réécriture de bytecode

ii

RESUME

Abstract

In conventional programming languages like Java, the interface for accessing databases is
often inelegant. Typically, an entire separate database query language must be embedded
inside a conventional programming languages for programmers to access the full power
and speed of a database. Programmers, though, prefer working entirely from within
their conventional programming languages, both for general-purpose computation and for
database access.

This thesis explores how database operations can be expressed using the existing syntax
of conventional programming languages. Programmers are able to write all their code—
both general purpose code and database access code—in a single language. To run these
database operations efficiently though, algorithms are needed for finding these database
operations and optimizing them. This thesis focuses on techniques that can be easily
adopted because they do not require changes to existing compilers.

Three systems have been developed: Queryll, JReq, and HadoopToSQL. Each system
examines the problem from the context of functional-style code, imperative-style code,
and MapReduce-style code respectively.

Keywords: databases, MapReduce, symbolic execution, query languages, Java, bytecode
rewriting

iii

iv

ABSTRACT

Contents

Résumé i
Abstract iii
1 Introduction 1
2 Background 7
2.1 Related Work e 7
2.1.1 SQL . . e 7

2.1.2 Navigational Databases 8

2.1.3 Object-Oriented Databases 9

2.1.4 Complex Queries e 11

2.1.5 Bytecode Rewriting and Symbolic Execution 13

2.2 Common Infrastructure 14

3 Queryll: Functional-Style Queries 17
3.1 Challenges and Motivation 17
3.2 Syntax 18
3.2.1 Complex Queries 20

3.2.2 Exceptions 25

3.2.3 Tterators vs. Collections, 26

3.2.4 Limitations 26

3.3 Translation Algorithm 26
3.3.1 Finding Anonymous Functions 27

3.3.2 Anonymous Function Analysis 28

3.3.3 Runtime Query Construction 32

3.3.4 Complex Queries 35

3.4 Implementation L Lo 36
3.5 Experiments. 36
3.6 Summaryo e 39

4 JReq: Imperative-Style Queries 41
4.1 JReq Query Syntax Lo 42
4.1.1 General Approach and Syntax Examples 42

vi

4.2 Translating JQSusing JReq L.
4.2.1 Preprocessingo
4.2.2 Transformation of Loops
4.2.3 Query Identification and Generation

4.2.4 Implementation Expressiveness and Limitations

4.3 Evaluation.
4.4 Syntax Usability 0.
4.4.1 Question and Experiment
442 Results
4.4.3 Discussion
444 TPC-W e
445 TPC-H
4.5 Summaryo e e

5 HadoopToSQL: MapReduce-Style Queries

5.1 Background and Motivation
5.2 Transformations
5.2.1 Input Set Restrictions in the Map Function
5.2.2 Complete Translation to SQL
5.3 Implementation Details
5.3.1 Static Analysis Component
5.3.2 Runtime Component
5.4 Experimental Evaluation
5.4.1 Single-Server Experiments
5.4.2 Distributed Behavior
5.0 Extensions. oo
5.6 Summary

6 Conclusion
A Visualizing SQL
Bibliography

Curriculum Vitae

CONTENTS

101

105

111

Chapter 1

Introduction

Databases are an important component of many computer systems. They are used be-
cause they make it easier to work with large amounts of data. Usually, working with
large datasets involves complex algorithms and data structures, but databases are able
to abstract away these details, allowing users to focus on the data and the higher-level
operations they want to perform with this data. A key component in making these ab-
stractions practical is query languages like SQL. These languages allow users to express
how they want to manipulate data in abstract high-level terms. The languages can then
be translated to lower-level data structures and algorithms that can be run efficiently.

Unfortunately, accessing a database using a conventional programming language, like
Java, is often much more difficult than using a database query language like SQL. Conven-
tional programming languages are general-purpose and not narrowly focused on database
access. Because conventional programming languages need to support a wide-variety of
domains, the languages are more general, more complex, and less restrictive than database
query languages. This generality causes the following problems when trying to program
database operations with these languages:

e Their syntax is often too verbose when used to describe database operations

e They rarely perform the types of code optimizations needed to achieve good database
performance because these optimizations are not useful outside the database domain

e The increased expressiveness of these languages are harder to analyze and optimize
than database query languages

Currently, the most common approach for solving this problem is to embed database
query languages into conventional programming languages. Typically, code for the database
query language is stored in strings (Figure 1.1), so that they can be manipulated by con-
ventional programming languages. These strings can then be passed to a library which
contains a proper database language compiler and optimizer for executing the code stored
in the strings. Unfortunately, this separation means that programmers must learn two
completely different programming languages and that the conventional programming lan-
guage compiler is not aware of the database query language and hence cannot error-check

2 CHAPTER 1. INTRODUCTION

PreparedStatement stmt = con.prepareStatement (
"SELECT A.address FROM Apartments A WHERE A.rent < 7");
stmt.setInt (1, 900);
ResultSet rs = stmt.executeQuery();
Vector<String> toReturn = new Vector<String>();
while (rs.next()) toReturn.add(rs.getString(1));
return toReturn;

Figure 1.1: Database query languages can be embedded into conventional programming
languages

it at compile-time. Additionally, programmers often must deal with integration issues like
needing to manually marshal data between the database query language and the conven-
tional programming language.

Another alternative is to modify conventional programming languages to include spe-
cific support for database features. For example, a conventional programming language
can be modified to include syntax specifically for database queries (Figure 1.2). The com-
piler of the language then needs to be modified to recognize this query syntax and to apply
appropriate database optimizations to them. Although this approach is somewhat inele-
gant because it encumbers a general purpose language with a narrow feature that might
only be used by a minority of programmers, it is an effective solution to the problem.
Modifying existing programming languages to include special syntax for database queries
does have some unintended consequences though.

var rs = from a in apartments
where a.rent < 900
select a.address;
return rs.ToList();

Figure 1.2: Creating domain-specific languages where database features are directly sup-
ported in a general purpose programming language can cause maintenance and evolution
problems

Firstly, this approach has a high barrier to adoption. A compiler is not the only
component of the programmer toolchain. If the syntax of a language is altered to include
support for queries, then IDEs, profilers, refactoring tools, debuggers, and all other tools
from the programmer toolchain have to be adapted to handle the new syntax. This
ecosystem of tools can be quite large, and programmers may be reluctant to accept a
modified language syntax if they need to replace all their programmer tools with new
ones.

Secondly, modifying a programming language to include query support may inhibit
language and database evolution. By making a programming language more complex by
including explicit support for database queries, future changes to the language become

more difficult because new features may have complex interactions with these query fea-
tures. Hence, language evolution is inhibited. Also, if databases are modified to include
support for new types of queries, then the syntax of the programming language must be
modified as well to support these new types of queries. This change requires the creation
of a new language specification, the modification of the language compiler, and changes
to all the other tools of the programmer toolchain as well. As a result, evolution of the
database to support new features becomes inhibited.

Ideally, support for queries should be well-integrated into programming languages yet
still be isolated in a separate component so that it can be maintained and evolved sepa-
rately from the programming language. This thesis examines how to merge the function-
ality of the database query language SQL into the conventional programming language
Java without requiring changes to the Java language or compiler. It uses a technique
called bytecode rewriting where the output of the Java compiler, a low-level intermediate
representation of code known as bytecode, is rewritten to transform Java code into queries
that can be executed efficiently on a SQL database. This bytecode rewriting component
is an independent component in the programmer toolchain, but its functionality can be
merged into existing compilers or language runtimes. Although this thesis specifically
deals with SQL and Java, the techniques and algorithms should be applicable to other
modern declarative query languages and other language intermediate representations.

The techniques proposed by this thesis are an advancement over existing techniques
in that

e They allow programmers to write database operations using a subset of existing Java
syntax that is consistent with existing coding conventions. No changes to the Java
language are required

e They include algorithms for finding and efficiently executing database operations
that are written in expressive general-purpose languages instead of restricted domain-
specific languages. This thesis uses symbolic execution as the basis for its algorithms

e They move all optimizations and other database functionality outside of the compiler
and into a separate tool that can be maintained and evolved separately from the
main language. This approach also allows for easier adoption of the system since no
changes to existing tools such as compilers are needed

This thesis explores the hypothesis that bytecode rewriting is a practical apporach
for supporting database queries in Java by studying three different systems: Queryll,
JReq, and HadoopToSQL. For each system, programmers write database queries in Java
but with a different programming style. By showing how each system uses bytecode
rewriting to successfully translate these different styles of code into database queries, this
thesis demonstrates the versatility and robustness of the bytecode rewriting approach to
supporting database queries.

4 CHAPTER 1. INTRODUCTION

Queryll

Queryll [IZ06] speculates on how the addition of support for functional programming to
conventional programming languages can lead to a simpler and more concise approach for
supporting database operations in those languages. Although other systems have examined
how purely functional code can be translated into database queries, imperative languages
with functional features have different characteristics and require their own algorithms.
Queryll demonstrates how the restrictive nature of functional-style code means it can be
analyzed and translated into database operations using simple and robust algorithms.

JReq

The JReq system [ICZ10] takes existing conventions for processing large amounts of data
in object-oriented imperative languages and adapts those conventions so that they can be
used for performing database operations. JReq defines a syntax called the JReq Query
Syntax (JQS) for writing database queries. In JQS, queries are written as loops iterating
over datasets. The queries are normal Java code that can be compiled, error-checked, and
even run by existing Java compilers and virtual machines. Unlike functional-style code,
imperative JQS queries do contain loops and side-effects, so a more complex algorithm
than Queryll is needed to translate JQS queries into efficient SQL.

Although there are existing tools such as object-relational mapping tools that can
translate simple navigational queries written in object-oriented imperative code to SQL,
JReq is notable in that it can handle complex query operations such as aggregation and
nesting.

HadoopToSQL

MapReduce is a popular framework for working with large datasets in computing clus-
ters. Due to the popularity of this framework, programmers would like to use this style
of code to access data stored in databases. HadoopToSQL [IZ10] automatically trans-
forms MapReduce-style queries to use the indexing, aggregation, and grouping features
provided by SQL databases. MapReduce queries are distinctive in that they can contain
arbitrary code that might not be expressible in SQL. Whenever possible, HadoopToSQL
will translate MapReduce code into equivalent SQL queries, allowing the computation to
take advantage of SQL grouping and aggregation features, but if there are no SQL equiva-
lents, HadoopToSQL can still generate input set restrictions, optimizing the computation
by allowing it to avoid scanning entire datasets.

Thesis Organization

Chapter 2 begins the thesis with an overview of related work and of some common infras-
tructure used by all of the systems. The thesis then examines each system in a separate

chapter. Chapters 3, 4, and 5 each deal with the Queryll, JReq, HadoopToSQL systems
respectively. Conclusions are discussed in Chapter 6.

CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter contains two sections. The first section describes existing research in the
area of databases and programming languages. The second section describes common
infrastructure used by the systems of this thesis.

2.1 Related Work
2.1.1 SQL

SQL [Ame92| is currently the most popular database language for expressing database
operations. To extract information from a database, programmers write queries in a
declarative style. In a declarative query, the properties of the desired result are described
while the exact procedures for calculating that result are unexpressed. The database can
then choose the most efficient algorithm for finding the result. By contrast, in imperative
languages, programmers describe the exact algorithm for calculating a result, which makes
it more difficult for a database to optimize since it must understand the algorithm first
before being able to replace it with a more efficient one.

To support database access, most conventional object-oriented languages provide some
sort of API where database queries are stored in strings and passed to a library which
interprets the strings and executes the query on a database. The Java language uses the
Java Database Connectivity (JDBC) API [Sunb] for this purpose. Database operations
are written in SQL, so the language for queries is completely unrelated to Java. Since
SQL code is stored in strings, the Java compiler treats the SQL code as opaque data,
meaning that it cannot be checked for errors until runtime when the strings are given to a
library for processing. This separation of the two languages extends to the underlying data
models, so programmers must manually marshal data between Java and SQL. Although
JDBC provides some helper methods to help with data marshaling, programmers must
still manually pack parameters into queries and then manually read out and interpret
individual fields from the query results. Figure 2.1 shows an example of a JDBC query.

Because of the problems with APIs like JDBC, database vendors have created variants
of common conventional programming languages that include direct database support.
Embedded SQL is the name for embedding SQL into languages in this way. Embedded

7

8 CHAPTER 2. BACKGROUND

PreparedStatement stmt = con.prepareStatement (
"SELECT A.address FROM Apartments A WHERE A.rent < 7");
stmt.setInt (1, 900);
ResultSet rs = stmt.executeQuery();
Vector<String> toReturn = new Vector<String>();
while (rs.next()) toReturn.add(rs.getString(1));
return toReturn;

Figure 2.1: A sample SQL query written using JDBC

int rent = 900;
#sql iterator Addresses(String address);
Addresses a = null;
#sql a = {select address

into

from Apartments

where rent < :rent };

Vector<String> toReturn = new Vector<String>();
while (a.next()) toReturn.add(a.address());
return toReturn;

Figure 2.2: A sample SQL query written using embedded SQL in Java

SQL for Java is often known as SQLJ [EM98], and it allows SQL statements to be inter-
mixed directly with Java code. The SQL code can access Java variables for parameters
and results can be stored directly into Java data structures without explicit marshaling.
Because SQL is no longer treated as opaque strings, it can be error-checked by the com-
piler. Embedded SQL does not, however, hide the differences between the relational model
of SQL and the object-oriented model of Java and between the large syntax differences
between SQL statements and Java statements. There are also problems with tools and
tool evolution. Typically, a precompiler is used to compile SQLJ into Java code that uses
JDBC. Every time the database or Java evolves, the precompiler must be adapted to these
changes. Since most programmers make use of IDEs, these IDEs must be made aware of
the syntax changes, of needing to use the precompiler, and of potential debugging issues.
Embedded SQL tools must constantly be updated in order to keep up with the latest
changes in tools. Less common IDEs or more obscure tools in a programmer’s toolchain

may simply be unsupported. Figure 2.2 shows an example of a query written in embedded
SQL for Java.

2.1.2 Navigational Databases

Although SQL databases are currently the most common type of database, navigational
databases predate SQL databases and are still used in some applications. One of the

2.1. RELATED WORK 9

earliest types of navigational database are the databases based on the CODASYL [TF76]
standard. These databases are based on a network model for databases, in which data is
modeled as entities with navigational links to sets of related entities. CODASYL queries
are typically written in an imperative style where a programmer must specify how and
when to move between related entities. Since navigational paths are fundamental compo-
nents of network databases, it is unsurprising that these databases excel at navigational-
style queries. Given a reference to an entity in the database, one can easily navigate
to references of related entities. For queries which involve ad hoc relationships between
entities and which involve complex filtering of these entities, CODASYL databases tend
to be verbose and difficult to optimize. Though there is much research into query opti-
mization for CODASYL [KW82], the imperative nature of the queries limits the types of
optimizations possible. This thesis shows how modern languages (CODASYL is usually
embedded in COBOL) can support more concise imperative queries and is able to optimize
them to achieve good performance despite complex filtering or the use of ad hoc entity
relationships.

2.1.3 Object-Oriented Databases

The modern incarnation of navigational databases is the object-oriented database (OODB)
[MSOPS86]. In modern object-oriented programming languages, in-memory data is rep-
resented as objects. OODBs extend this representation to persisted data, providing pro-
grammers with a single abstraction for data regardless of storage location. Programmers
do not need to manually translate data between different formats or to have different men-
tal models for data. In fact, OODBs strive to achieve the goal of transparent persistence,
where programmers use data without having to think about how it is stored or accessed
because persistence issues are completely abstracted away. OODBs map well onto a navi-
gational model of databases because objects are primarily accessed through manipulating
their fields and navigating among related objects.

Although the most popular programming languages are object-oriented, the most pop-
ular and most mature databases are SQL databases. Unfortunately, SQL’s table-oriented
model for data is inconsistent with the object model of object-oriented programming lan-
guages. Object-Relational Mapping (ORM) tools such as Ruby on Rails, Hibernate [JBo],
or EJB [Suna, DKO06] attempt to bridge this difference. They provide an object-oriented
abstraction layer on top of a SQL database. Programmers specify a mapping from SQL
tables to an object representation, and the ORM tool then generates code that allows
programmers to manipulate these objects and have these changes be persisted automati-
cally to the corresponding SQL tables. For example, consider a simple database describing
bank clients, each of whom may have multiple bank accounts. This database might be
composed of two tables (Figure 2.3): Client and Account. Using the Queryll ORM tool,
this database can be mapped to the class diagram in Figure 2.4.

An ORM abstraction layer essentially provides an OODB-like API for SQL data. Simi-
lar to when using an OODB, programmers can then manipulate objects without concerning
themselves with data marshaling issues. Again, like an OODB, navigational queries are
well-supported. ORM tools generate accessors on objects for manipulating the fields of a

10 CHAPTER 2. BACKGROUND

Client Account
ClientID — AccountID
Name _\—> ClientID
Address Balance
Country MinBalance
PostalCode

Figure 2.3: A simple database

Client 1 0-" | Account
*ClientID accounts holder | *AccountID
Name Balance
Address MinBalance
Country

PostalCode

Figure 2.4: Class diagram of database entities (* denotes primary keys)

record and simple methods are provided for traversing related objects. They also provide
abstractions for dealing with updates, error-handling, and transactions.

Both OODBs and ORM tools (which provide an OODB abstraction over SQL databases)
face similar limitations when handling more complex queries. Although objects are well-
suited for expressing navigational queries, queries involving complex filtering or ad hoc
relationships cannot be expressed using a simple object API of methods and field accesses.
General-purpose object-oriented languages do not have sufficient query support to handle
these types of queries. To write complex queries, programmers can either switch to a
domain-specific language with integrated query support or they need to use a separate
query language. The common query languages for OODBs and ORMs are derived from
the Object Query Language (OQL), and they have disadvantages that are similar to those
of JDBC. Queries are encoded in strings that cannot be type-checked until runtime, pro-
grammers must manually encode parameters, and programmers must manually marshal
data out of query results. Figure 2.5 shows an example of such a query written using the
Java Persistence API [DKO06].

List 1 = em.createQuery("SELECT a FROM Account a "
+ "WHERE 2 * a.balance < a.creditLimit AND a.country = :country")
.setParameter ("country", "Switzerland")
.getResultList();

Figure 2.5: A sample query written in the Java Persistence Query Language (JPQL)

2.1. RELATED WORK 11

2.1.4 Complex Queries

Many researchers have studied how to support complex queries in general-purpose pro-
gramming languages without changing the languages.

Functional Queries

Current query languages like SQL tend to be declarative. Since functional programming
languages are also declarative, database queries can be easily expressed in functional lan-
guages. Kleisli [Won00] demonstrated that it was possible to translate queries written in
a functional language into SQL.

Microsoft was able to add query support to object-oriented languages by extending
them with declarative and functional extensions in a feature called Language INtegrated
Query (LINQ) [Tor06]. LINQ adds a declarative syntax to .Net languages by allowing
programmers to specify SQL-style SELECT...FROM...WHERE queries from within these
languages (Figure 2.6). This syntax is then internally converted to a functional style in
the form of lambda expressions, which is then translated to SQL at runtime. To support
this runtime translation, the compilers for .Net languages compile lambda expressions into
two forms: executable code and a data structure representation that can be inspected at
runtime. Although there are similar proposals for languages such as Java [WPNO06], LINQ
has demonstrated that significant and invasive changes to the syntax and type system
to the Java language would be required. Adding similar query support to an imperative
programming language like Java without adding specific syntax support for declarative or
functional programming results in verbose queries and requires meta-programming exten-
sions to the language [CRO5].

var rs = from a in apartments
where a.rent < 900
select a.address;
return rs.ToList();

Figure 2.6: A sample LINQ query

Scala [Ode06] is a language that combines object-oriented and functional programming.
Although the language is not a derivative of Java, Scala is often associated with Java
because Scala code is typically compiled to run on Java virtual machines and because
Java’s libraries are commonly used in Java programs. As such, research into supporting
database queries in Scala is often used as an example of how query support can be added
to existing object-oriented languages that have been augmented with some functional
programming features. When database queries are expressed as functions in Scala, Scala
must somehow manipulate the code of these functions to translate them into database
queries. Although limited tricks with type inferencing can be used to support simple
queries [SZ09], changes to the compiler are needed for more complex queries [GIS10].

12 CHAPTER 2. BACKGROUND

Imperative Queries

In imperative languages like Java, the normal style for filtering and manipulating large
datasets is for a programmer to use loops to iterate over the dataset. As a result,
researchers have tried to develop systems that allow programmers to write database
queries in imperative languages using such a syntax. Wiedermann, Ibrahim, and Cook
[WC07, WICO08] have successfully translated queries written in an imperative style into
declarative database queries. They use abstract interpretation and attribute grammars to
translate queries written in Java into database queries. Their work focuses on gathering
the objects and fields traversed by program code into a single query (similar to the opti-
mizations performed by Katz and Wong [KW82]) and on recognizing filtering constraints.
Their approach lacks a mechanism for inferring loop invariants and hence cannot han-
dle queries involving aggregation or complex nesting since these operations span multiple
loop iterations. Their approach does support inter-procedural optimization though and is
particularly well-suited for optimizing code written in a transparently persistent style.

The difficulty of translating imperative program code to a declarative query language
can potentially be avoided entirely by translating imperative program code to an impera-
tive query language. The research of Liewen and DeWitt [LD92] or of Guravannavar and
Sudarshan [GS08] demonstrate dataflow analysis techniques that could be used for such
a system. Following such an approach is impractical though because all common query
languages are declarative because declarative query languages are easier for databases to
optimize.

MapReduce Queries

Programmers are increasingly using MapReduce [DGO04] for performing queries over large
datasets. With MapReduce, programmers write queries by defining two functions—map
and reduce—for filtering, processing, and grouping records together. MapReduce is popu-
lar because it transparently handles many of the difficulties of processing data on clusters
of commodity hardware, including issues such as fault tolerance, data transfer, and data
partitioning.

Both MapReduce and databases are used for processing and querying large datasets
stored in computing clusters. Because the two approaches have different processing models
but are used in similar domains, researchers have been studying the relative merits of the
two approaches. In fact, there has recently been many position papers comparing SQL-
based approaches for querying data stored on a cluster of machines versus MapReduce-
based approaches [PPRT09, SAD*10, DG10]. The two approaches show different strengths
and weaknesses in areas such as scalability, fault tolerance, performance, and flexibility.
As a result, some researchers have tried building hybrid systems that combine properties
of both approaches.

This thesis examines the possibility of combining MapReduce and databases by us-
ing MapReduce as the interface for expressing data processing code, but to make use of
database features such as indices to accelerate the computation. Programmers have started
using the MapReduce abstraction with advanced storage engines that support database

2.1. RELATED WORK 13

features [CDG106] instead of cluster file systems. To make use of the database features
though, programmers must write their database operations in a separate database query
language instead of normal MapReduce code. This thesis focuses on automatically rewrit-
ing MapReduce code to use database operations. Unlike the functional and imperative
query systems described previously, MapReduce programs are distinctive in that they not
only use a syntax that is a mix of functional and imperative styles, but programs can also
include arbitrary computation in their data processing code.

Another approach to combining MapReduce and databases involves layering a declar-
ative query language on top of MapReduce, so that MapReduce exports a database-like
interface. Hive [TSJT09] and PigLatin [ORS™08] are examples of such an approach. These
query languages are much less verbose than regular MapReduce, and their restricted struc-
ture can be analyzed with conventional techniques. Unfortunately, a programmer loses
many of the benefits of MapReduce by using such query languages. One of the main ad-
vantages of MapReduce is that programmers can perform arbitrary computation at data
nodes. This computation can save communication bandwidth by aggressively filtering,
compressing, and transforming data before the data is transferred. The restricted syntax
of query languages built on top of MapReduce is not rich enough to express such complex
algorithms.

HadoopDB [ABPA109] is another system that provides a database-like declarative
query language as its interface. It uses a Hive-derived query language as its input. This
query language is not merely translated to MapReduce but to a mix of MapReduce and
SQL. Hence the resulting query execution uses the scaling features of MapReduce but
can also take advantage of SQL features like indices. Although the queries are easier to
analyze and optimize, they are not sufficiently expressive to describe complex performance-
enhancing algorithms.

DryadLINQ [YIFT08] is a query language for the Dryad [IBY"07] distributed exe-
cution engine, which, like MapReduce, is designed for processing large datasets in large
computing clusters. Instead of providing a simple declarative query language on top of
Dryad, DryadLINQ uses a variation of LINQ. Consequently, in addition to writing sim-
ple declarative-style queries, programmers can also include arbitrary computation in their
queries. DryadLINQ researchers are also studying how to adapt DryadLINQ to support
using database features like indices on the back-end datastore.

2.1.5 Bytecode Rewriting and Symbolic Execution

The systems described in this thesis make heavy use of an approach to program transfor-
mation called bytecode rewriting that allows a tool to modify the behavior of a program
without changing compilers or virtual machines. Because bytecode is a low-level represen-
tation of program code, symbolic execution is used to build higher-level representations of
the code, which can be more easily manipulated.

All Java compilers compile Java programs into a machine independent intermediate
representation known as bytecode. This bytecode is stored in files called class files. Java
programs are distributed as class files which can be executed using a Java VM. Bytecode
rewriting is a well-known Java technique for modifying the behavior of compiled Java code.

14 CHAPTER 2. BACKGROUND

A typical example would be J-Orchestra [TS04] which can alter Java objects so that they
can be invoked remotely without requiring changes to the original code. Many aspect-
oriented programming [KLM'97] tools also make use of bytecode rewriting to support
dynamic aspect weaving [PSDF01]. And some ORM tools already make use of bytecode
rewriting to transparently add persistence code to ordinary Java objects to enable those
objects to be stored in databases. These uses of bytecode rewriting are limited to only
modifying surface features of code such as intercepting method calls; the bytecode analysis
used in this thesis requires a deeper understanding of the structure of code. The automatic
parallelization program javab [BG97] is one example of a bytecode rewriting tool that
performs similar detailed code analysis. One can consider class file decompilation [MHO02],
where bytecode is converted to Java source files, to be another form of bytecode rewriting
involving deep code analysis.

The type of symbolic execution used by the algorithms in this thesis is similar to work
done in the software verification community, especially work on translation validation and
credible compilation [Rin99, Nec00]. With translation validation, a compiler not only
translates an input program into an output program, it also generates a proof that the
output program implements the input program. A proof-checker can then be used to verify
that the proof and hence the compilation is correct. Proofs are usually composed of sim-
ulation relations, which describe the relationship between variables and execution points
in the input and output programs. Proof-checkers will use symbolic execution to execute
both the input program and output program. The preconditions and postconditions of
executing the code will be gathered and often stored as Hoare triples. A proof-checker will
then use the simulation relations to verify that the postconditions that hold at various
points in the code are equivalent, thus proving the equivalences of the input and output
programs. For complex compiler optimizations, it is often difficult to prove the correct-
ness of a compiler for all inputs, but it is feasible for a compiler to automatically generate
proofs showing the correctness of a particular run of the compiler. In the situation that
a compiler is not correct for all inputs, when the compiler processes a problematic input,
its outputted correctness proof will not hold, and the proof-checker will catch that error.

2.2 Common Infrastructure

When programmers need to work with persisted data in a modern object-oriented lan-
guage, it is now generally accepted that an object representation of this data is highly
desirable. All of the systems described in this thesis work with persisted data, so an
object mapping layer has been written that provides an object representation of data for
these systems. This layer essentially serves as an ORM although it is not restricted to
relational data; nevertheless, it will be referred to as an ORM, for lack of a better term.
This ORM serves as a common piece of infrastructure for all of the systems in this thesis.

The ORM is written in a combination of Java and XSLT. Programmers provide an
XML description of entities, their fields, and the relationships between these entities to
the ORM (Figure 2.7). The ORM then generates a series of Java classes representing these
entities as objects (Figure 2.8). The classes contain getter and setter accessor methods for

2.2. COMMON INFRASTRUCTURE 15

<entity name="Customer" table="Customers">
<field name="CustomerId" type="int" key="true" column="CustomerId"/>
<field name="Name" type="String" column="Name"/>

</entity>

<link map="1:N">
<from entity="Customer" field="Accounts"/>
<to entity="Account" field="Customer"/>
<column from="CustomerId" to="CustomerId"/>
</1link>

Figure 2.7: An example of an XML description of a Customer entity

class Customer {

String getName();
int getCustomerId();
Collection<Account> getAccounts();

Figure 2.8: The ORM will generate a class to represent each entity in the database

manipulating the fields of the entities. The ORM also generates a special EntityManager
class that ensures that when the object representation of entities are manipulated, the
database versions remain updated and consistent. For MapReduce programs, it is not
possible to alter data that has been persisted, so the ORM instead provides simple classes
for reading and writing entities from a database or text file.

In addition to generating Java classes that provide an object representation of entities,
the ORM also parses the information about entities into a form that can be understood by
later bytecode analysis tools. Figure 2.9 shows how the ORM tool fits into the programmer
toolchain. The programmer first provides a description of their entities to the ORM tool,
which generates some entity classes. The programmer can then write a Java program
that uses these entity classes. All of this Java code is compiled by a Java compiler into
Java bytecode. Before the code is run in a VM, a bytecode analysis tool can analyze the
program’s bytecode by using information about the generated entity classes.

More modern ORMs do not require a separate stage in the programmer pipeline for
generating entity classes because they allow a programmer to write their entity classes
directly in Java themselves (augmented with some annotations describing how they should
be mapped to a database). When this Java code is compiled, the annotations describing
the mapping between a class’s methods and database fields is embedded into the Java
bytecode. A bytecode analysis tool can then read this mapping information directly from
the bytecode. The ORM used in this thesis serves as an easily-modifiable prototyping
tool; hence, its basic design as a code generator. Nothing precludes a more advanced

16 CHAPTER 2. BACKGROUND

ORM
Description
ORM Tool
1 Java
Program
Generated
Entity
Classes \
Java
Compiler
Java
Bytecode
Bytecode
Analyzer
Java VM

\

Running
Application

Figure 2.9: The ORM used in this thesis behaves as a code generator in the programmer
toolchain

ORM from being used in its place.

Chapter 3

Queryll: Functional-Style Queries

Functional-style queries are often desired even in imperative languages because the syn-
tax of functional-style queries is similar to that of declarative query languages like SQL.
This familiarity of this syntax also means programmers can more easily reason about
the behavior of their queries and compiler writers can more easily design mappings from
functional-style queries to declarative query languages.

Traditionally, functional-style queries have been problematic in Java due to insuffi-
cient language support for functional programming, resulting in extremely verbose queries.
However, there are many proposals for adding improved support for functional program-
ming to Java like CICE [LLB], FCM [CS], and BGGA [BGGvdA]. When one of these
proposals is eventually adopted, it will become possible to write functional-style queries
in Java much more compactly. This improvement in syntax makes a functional approach
to database queries in Java much more practical.

This chapter describes how functional-style queries might eventually look in Java, and
it describes an algorithm called Queryll for translating these queries into SQL. The primary
research contribution of this chapter is the Queryll algorithm, which translates imperative
Java code into declarative SQL. The algorithm is able to take advantage of the fact that
the code is written in a functional-style, resulting in a simple and robust algorithm.

3.1 Challenges and Motivation

Although Kleisli [Won00] demonstrated how one could translate functional code into re-
lational queries, and Microsoft’s LINQ [Tor06] provides a commercial implementation
of such a system, Java has peculiarities that require a distinct algorithm. In full func-
tional languages, functions have a high-level representation that can be easily analyzed
and manipulated. As an imperative language, Java does not provide a nice high-level
representation of functions like a functional language.

The Java compiler can be enhanced with support for database queries, thereby allow-
ing the query framework to access the high-level abstract syntax tree of a program. As
mentioned in the thesis introduction, this thesis specifically avoids this approach. Putting
database query facilities in a separate tool results in easier maintenance, easier evolution,

17

18 CHAPTER 3. QUERYLL: FUNCTIONAL-STYLE QUERIES

and faster adoption.

In LINQ, the compiler automatically annotates functions with a high-level intermediate
representation. At runtime, the query system can read and manipulate this high-level
representation to generate queries. Unfortunately, this high-level representation is limited
to expressions only and not general functions. There are no proposals for adding such a
compiler annotation to Java.

Instead, Queryll uses bytecode analysis to analyze already compiled Java code. It
requires no changes to the Java compiler or Java VM. Queryll uses this analysis to create
a high-level representation of the behavior of the code, which allows it to generate database
queries at runtime. Because code written in a functional-style has no side-effects, Queryll
can use a straight-forward algorithm based on symbolic execution to trace through the
effects of running low-level bytecode instructions. Queryll can support complex queries
and exhibits good performance.

3.2 Syntax

The key to making functional-style database queries feasible in Java is the addition of
anonymous functions to the Java language. At present, there are many different proposals
for how this can be done. Fortunately, in all of these proposals, the functions are com-
piled down to a similar representation. Since Queryll operates on already compiled Java
code, the exact syntax of these lambda expressions is not relevant to the design of the
algorithm. Nevertheless, to understand how a functional-style query system might work
in Java, it is useful to see a possible syntax. This chapter uses the BGGA v0.6 anonymous
function syntax [GvdA] to illustrate a possible query syntax. Other proposals for adding
functional programming features to Java will result in database query systems with similar
characteristics though slightly different syntaxes.

With the BGGA syntax (Figure 3.1), functions are denoted with the hash symbol (#),
followed by a list of parameters, and then the code of the function. In many situations,
a function will simply evaluate an expression and return the result. For these cases, the
BGGA syntax allows for a shorter lambda expression syntax which is denoted with a hash
symbol, followed by function parameters, and ended with the expression to be evaluated
and returned by the function. In BGGA, functions can be stored in variables and passed
around. The data type of a variable that holds a function is denoted with a hash symbol,
followed by the return type of the function, and then the parameters of the function.

Once support for functional programming features is added to Java, it becomes possible
to use standard functional syntax for manipulating large collections of data. In standard
functional languages, collections can be manipulated with operations such as map, which
remaps each collection entry into a different value, or filter/find_all, which filters out
collection entries that satisfy certain restrictions. These operations take a collection and a
function as parameters. Each item in the collection is iterated over, and a new collection
is created by evaluating each item using the supplied function. The new collection then
becomes the result of the operation.

This convention can be used to make database query operations in Java that directly

3.2. SYNTAX 19

Anonymous Function Syntax
#(parameters) {statements}
e.g. #(int x, int y) { return x+y; }

Lambda Expression Syntax
#(parameters) expression
e.g. #(int x, int y) x+y

Function Type Syntax
#returnType (parameters)
e.g. #int(int x, int y) variable = #(int x, int y) x+y;

Figure 3.1: An overview of the BGGA v0.6 [GvdA] syntax used in this chapter

class QueryList<T> implements List<T> {

public <U> QueryList<U> select (#U(T value) f)
public QueryList<T> where (#boolean(T value) f)

Figure 3.2: Method signatures for the select and where methods of a QueryList

correspond to existing SQL operations. Special Collection classes can be created that
have extra methods for manipulating the collection data. For example, one could define a
QueryList class with select and where methods, corresponding to SQL’s SELECT and
WHERE operations. These methods take an anonymous function as a parameter and
depending on the semantics one wants, these methods can either return a new collection
or an iterator. Figure 3.2 shows the method signatures for select and where methods.
The select method iterates over all the elements of the collection. Each element is, in
turn, passed as a parameter to the supplied function £, and the results are stored in a new
collection. Finally, the select method returns the new collection. Similarly, the where
method iterates over all the elements of the collection, but it only adds elements to the
new collection if the function f returns true.

Figure 3.3 shows how a simple database query could be expressed using these select
and where methods. Figure 3.4 shows an equivalent SQL query. The query uses an
object db, which needs to be generated by an ORM tool. This object has methods such
as getCustomers() that returns a QueryList of all the Customer records in a database.
Programmers can then invoke select and other methods on this QueryList to define their
query.

In this syntax for queries, the anonymous functions passed to the select and where
methods should not contain any complex control-flow structures such as loops. The control
flow graph can be in the form of an arbitrary directed-acyclic graph though. The functions
also cannot have any side-effects since it is not possible to recreate this side-effect behavior

20 CHAPTER 3. QUERYLL: FUNCTIONAL-STYLE QUERIES

QueryList<String> results =
db.getCustomers ()
.where (#(Customer c) c.getCountry().equals("UK"))
.select (#(Customer c) c.getName());

Figure 3.3: Simple database query in Java using lambda expressions

SELECT C.Name
FROM Customer C
WHERE C.Country = ‘UK’

Figure 3.4: This SQL query is equivalent to the query in Figure 3.3

using a database query. The only changes in program state caused by execuating a function
should be for the function to return a value. In particular, functions ...

e Can call other methods, but only those from a restricted list with known side-effects

e Can read and modify local variables (since these changes will be discarded once the
function exits)

e Can read but not modify non-local variables

e Can instantiate certain known classes if their constructors are known to be safe

These restrictions result in queries with reasonable expressiveness while being fairly
straight-forward. As such, programmers can easily determine whether their queries satisfy
the syntax and will be translated in database queries correctly. The restrictions also
simplify the translation process.

This syntax for queries in Java also supports query parameters. This is expressed
by having the anonymous functions make use of variables defined outside of their scope.
These variables can be fields of other objects or final local variables (Figure 3.5).

3.2.1 Complex Queries
The syntax can be extended to handle complex queries. The important operations that a

relational query system must support are selection, projection, join, aggregation, duplicate

final String country = "UK";
QueryList<Customer> results =
db.getCustomers ()
.where (#(Customer c) c.getCountry().equals(country));

Figure 3.5: A database query in Java that makes use of parameters

3.2. SYNTAX 21

removal, nested queries, set operations, sorting, and limiting (Appendix A). Other rela-
tional operations can then be expressed using combinations or simple variations of these
basic operations. A convenient syntax for grouping operations is also desirable, given
the frequency of their use. Queryll supports these operations by adding methods to the
QueryList collection class.

Selection

The basic operation of most queries involves selecting a subset of a dataset to examine.
As demonstrated earlier, this can be expressed by taking an initial set of data and then
filtering the data with a boolean expression.

db.getCustomers() .where (#(Customer c) (c.getName().equals("Bob")));

Projection

A query may only need certain fields from a record. It may also be necessary to construct
new data structures to hold these fields. Queryll supplies a Pair object that can hold
two arbitrary values. Similar to a LISP list which also holds only two values (car and
cdr), Pair objects can be chained together to construct simple data structures during a
query. Queryll also provides Tuple objects as a convenience for programmers who want to
create simple fixed size n-tuples. This ability to create new data structures is equivalent
to using projection operations to create new columns for database relations or to remove
columns from database relations. The example below iterates over the Customer entities
in a database and creates a new Collection consisting of only the first names and last
names of these customers.

db.getCustomers() .select (#(Customer c) (
new Pair<String, String>(c.getFirstName(), c.getLastName())));

Projection operations themselves are not directly expressible in Queryll, as doing so
would mean that Queryll would have to support the creation of new classes at runtime.
Java only allows classes to be created at runtime through complicated bytecode rewriting
schemes, and forcing programmers to statically declare special classes for holding their
query results is quite verbose and cumbersome. Queryll’s use of Pair objects to provide
power equivalent to projection is much more consistent with existing Java syntax.

Another important aspect of the expressiveness of SQL is its CASE WHEN...ELSE...-
END statements. These statements allow SQL to conditionally return different values
from a query. Queryll’s select method may contain control-flow statements, which give
equivalent expressiveness to SQL’s CASE WHEN...ELSE...END statements.

22 CHAPTER 3. QUERYLL: FUNCTIONAL-STYLE QUERIES

db.getCustomers() .select (#(Customer c) {
if (c.getCountry().equals("US"))
return "US";
else
return "Other";

B;

Join

Arbitrary full cross-joins between different tables can be expressed by taking one QueryList
and calling a join method. This join method iterates through each element of the list and
passes this element to a supplied function. This function returns a QueryList of objects
that should be joined with that element. This will generate a new QueryList filled with
Pair objects of all combinations of elements. This new QueryList can then be further
queried.

db.getCustomers () .join(#(Customer c){db.getAccounts()})
.where (#(Pair<Customer, Account> p) (p.getFirst().getID() == 10))
.where (#(Pair<Customer, Account> p)
(p.getFirst() .getID() == p.getSecond().getCustomerID()))
.select (#(Pair<Customer, Account> p) (p.getSecond()));

In the above example, each customer is arbitrarily joined with all of the accounts in
the database. This results in a collection of Customer-Account pairs. These pairs are then
filtered. The method getFirst() is called on the Pair object, returning the first element
of the pair, the Customer object. Those pairs where the customer does not have an id of 10
are filtered out. Then the pairs are filtered a second time. This filtering produces a result
set of only those Customer-Account pairs where the account belongs to the corresponding
customer. Finally, a projection operation is performed that restricts the result set to only
the account information of the Pair objects.

Although this syntax for joins can be used to express arbitrary joins, it can be ver-
bose, especially for common joins. Fortunately, since the programmer must describe the
relationship between entities to the underlying ORM tool of Queryll, Queryll is able to
generate methods for navigating among objects, and these methods can be used during
queries. These methods can simplify common join operations. When a query navigates
over a 1:1 or N:1 relationship between entities, Queryll translates the query into a cross
join, a selection constraint on the join, and then the operation described by the query.

When a query navigates 1:N or N:M relationships between entities, the programmer
must either use an aggregation operation to reduce the multiple related entities to a single
value or the programmer must use the join method for this purpose.

3.2. SYNTAX 23

// an aggregation operation over a 1:N relationship returning a scalar
// value
db.getCustomers ()

.where (#(Customer c) (c.getAccounts().size() > 3));

// a 1:N join expressed using a join operation
db.getCustomers ()
.join(#(Customer c) (c.getAccounts()));

Aggregation

To support common SQL aggregation operations, the QueryList collection has methods for
calculating aggregate values over the objects in the collection. For example, in the query
below, the sumDouble () method iterates over a collection of Order objects and calculates
a sum of double-precision floating point values. The method takes a function which takes
an Order object and returns the double value to be summed.

db.getOrders()
.sumDouble (#(0rder o) (o.getTotalValue()));

To calculate multiple aggregate values, a special selection method is available. The
selectAggregates () method iterates over a collection and returns a pair or other tuple,
where each value of the tuple is the result of an aggregation operation.

db.getOrders()
.where (#(0rder o) (o.getTotalValue() > 1000))
.selectAggregates (#(QueryList<Order> oo0)
(new Pair<Integer, Double>
(co.size(),
00.SumDouble (#(0rder o) (o.getTotalValue())))));

Duplicate Removal

A method called unique () returns a copy of the list with all duplicate entries removed.

db.getCustomers ()
.select (#(Customer c) (c.getCountry()))
.unique();

Nested Queries

Since operations on QueryList collections return new QueryList objects, operations can
be chained together or joined together to provide one form of nesting.

24 CHAPTER 3. QUERYLL: FUNCTIONAL-STYLE QUERIES

db.getOrders ()
.where (#(0Order o) (o.getTotalValue() > 1000))
.select (#(0Order o) (o.getCustomer())
.asSet ()
.where (#(Customer c) (c.getAccounts().size() > 5));

Calculating aggregate values can convert a QueryList into a scalar value, which allows
queries to be nested inside operations that take single values. For example, the nested
query below counts the number of accounts belonging to each customer in the UK. It uses
a nested aggregation operation inside a projection operation to calculate the number of
accounts belonging to each customer.

db.getCustomers ()
.where (#(Customer c) c.getCountry().equals("UK"));
.select (#(Customer c) c.getAccounts().sum(#(Account a) 1));

Grouping

Although grouping operations can be expressed using nested queries, the frequency of
grouping operations in queries demands some syntactic sugar to make such operations
easier to express. In Queryll, a grouping operation takes two parameters, one is a function
that returns the keys to group by, and the other is a function that returns aggregates on
the keys and associated values, as in selectAggregates.

db.getCustomers ()
.group(#(Customer c) (c.getCountry()),
#(String country, QueryList<Customer> cc) (cc.Count()));

Set Operations

To support set operations, the QueryList has method corresponding to SQL’s UNION,
INTERSECT, and EXCEPT set operations. In the example below, the except () method
is used to subtract the set of customers from the UK from the full set of customers. As a
result, it returns the set of customers who are not from the UK.

db.getCustomers ()
.except (db.getCustomers()
.where(#(Customer c) (c.getCountry().equals("UK")));

Sorting and Limiting

Finally, a query may want its results sorted or to have only partial results returned. Sorting
is supported by letting programmers pass in a Comparator function which describes which
fields should be compared. Returning partial results can be support using a method where
programmers can pass in the number of results they desire.

3.2. SYNTAX 25

db.get0Orders()
.select (#(0rder o) (o.getCustomer());

Figure 3.6: If o.getCustomer () can throw an exception, the exception will propagate out
of the anonymous function and will be handled inside the select method

try {
QueryList<Customer> results = db.getOrders()
.select (#(0Order o) (o.getCustomer());
for (Customer c: results) { ... }
} catch (QueryException e) {}

Figure 3.7: If this query is run directly, then if o.getCustomer() throws an exception,
the exception will propagate outwards to the outer exception handler. Conveniently, if
the query is translated the SQL, exceptions from the generated SQL can be caught with
the same exception handler

toplOAccounts = db.allAccounts
.sortedByDoubleDescending (#(Account a) (a.getBalance()));
.firstN(10);

3.2.2 Exceptions

Since queries need to access a database, communication and database exceptions may
occur, and these exceptions need to be signaled to the program. The issue of exceptions
must be addressed at two levels: at the ORM level and at the generated query level.

Generated ORM objects may need to access the database when certain fields are
accessed or when certain navigational links are followed. These database accesses may
throw exceptions. As a result, a query may involve invoking methods on ORM objects
that throw exceptions. Handling these exceptions inside the query itself is verbose, and
the exception handling code has no meaning if the entire query is translated to SQL. As
such, the query API should let ORM exceptions propagate out of anonymous functions
and into the collection methods (Figure 3.6).

If a query is translated into SQL, an exception may occur when executing the generated
SQL. To allow the programmer to handle this situation, the query methods should be
marked as potentially throwing exceptions. This is convenient because it provides a single,
consistent place where programmers can catch exceptions when writing queries, regardless
of whether the query is translated into SQL or simply run in-memory (Figure 3.7). If a
query is translated to SQL, then query methods can throw exceptions signaling problems
with this SQL. If a query is not translated to SQL and the anonymous functions passed
to a query method are executed directly, any exceptions from these anonymous functions
can be caught inside the query method and rethrown to be handled outside the query.
The same exception handler can be used for both cases.

26 CHAPTER 3. QUERYLL: FUNCTIONAL-STYLE QUERIES

3.2.3 Iterators vs. Collections

So far, the syntax description has shown how collections of database records can be repre-
sented and manipulated as Java Collections. This syntax is consistent with the existing
conventions used in functional programming for working with large sets of data in mem-
ory. One alternative is to represent collections of database records as iterators instead.
Query methods like select and where for manipulating these records can be added to the
iterators instead of a Collection object. Such an approach is used by LINQ. Although
manipulating iterators instead of collections deviates from standard functional program-
ming conventions, it does have some advantages. Some database queries return results
which are too large to fit into memory and can only be streamed through. When using
a collections approach, large result sets must either be disallowed or the need to stream
them must somehow be hidden behind an abstraction. When using a iterator approach,
all result sets are represented as a stream, so no special handling is needed for large result
sets.

3.2.4 Limitations

One important aspect of SQL that is not addressed by Queryll is support for NULL values
and related operators. Since Java is a Turing-complete language, nothing precludes Java
from supporting NULL values. Unfortunately, since Java does not support three-value
logic or operator overloading, providing the same semantics for NULL as SQL does would
be extremely verbose. Solving this problem is outside the scope of Queryll, but if a solution
to this problem is eventually found, Queryll can be easily adapted to support it.

3.3 Translation Algorithm

The main challenge in translating these Java queries into SQL is in deciphering the oper-
ations performed by the anonymous functions. In all the proposals for adding support for
functional programming to Java, anonymous functions are compiled down into separate
classes at the bytecode level! [LLB, CS, BGGvdA]. For example, the sample query in Fig-
ure 3.3 can be compiled down into the classes shown in Figure 3.8. The different syntaxes
for functions then become irrelevant because all anonymous functions are compiled down
to normal Java classes and methods regardless of syntax.

The translation algorithm operates at the bytecode level. This design allows it to be
independent of Java compilers, IDEs, and virtual machines. Queryll can be added to an
existing software project without requiring programmers to adopt a new compiler or to
use a special debugger. Programmers are free to adopt new tools without worrying if these
tools are compatible with Queryll. Queryll is also designed to use only bytecode analysis.
By not using any bytecode rewriting, the Queryll implementation becomes vastly simpler

'More recent proposals for anonymous functions in Java have suggested extending the Java virtual
machine with new instructions that support direct references to methods of classes [Goel0]. The translation
algorithm can also handle Java code that has been compiled to use this functionality.

3.3. TRANSLATION ALGORITHM 27

class Wherel implements Lambda {
public boolean call(Customer c) { return c.getCountry().equals("UK"); }
}
class Selectl implements Lambda {
public String call(Customer c) { return c.getName(); }
}

QueryList<String> results =
db.getCustomers ()
.where(new Wherel())
.select(new Selectl());

Figure 3.8: Simple database query in Java with lambda expressions expanded into lower-
level classes

and all the components of Queryll can be traced through in a debugger (unlike bytecode
generated by a bytecode rewriter).
This section describes

How Queryll finds anonymous functions to analyze

The bytecode analysis algorithm

e Query generation

How query parameters and nested queries are handled

3.3.1 Finding Anonymous Functions

The translation must first choose which pieces of code to analyze. In the worst case,
Queryll can simply analyze the bytecode of every class file used by a program, but all this
analysis would slow down the startup time of the program.

Depending on how anonymous functions are eventually implemented in Java, Queryll
can use different approaches for narrowing down the number of classes it must analyze:

e Since functions do not currently exist in Java, a common substitute is to define an
interface containing only a single method. If a programmer wants a method to take
a function as an argument, they can use an interface as an argument instead. It has
been proposed that future versions of Java will allow programmers to pass anony-
mous functions to methods that accept such interfaces, and Java will automatically
convert the function into a class implementing the appropriate method. If this oc-
curs, Queryll can define its query methods to accept interfaces, and it can narrow
down its bytecode analysis to only those classes that implement one of these special
interfaces

28 CHAPTER 3. QUERYLL: FUNCTIONAL-STYLE QUERIES

QueryList<Office> results =
db.getOffices()
.where(#(0ffice o) o.getName().equals("UK")
|| o.getName().equals("US"));

Figure 3.9: A simple query that will be translated into SQL

e Anonymous functions may support programmer annotations, so programmers can
annotate their functions to flag them for analysis by Queryll

e Queryll can cache a copy of all the code of all the classes of a program. It can then
perform its bytecode analysis when actual classes are created and passed to Queryll
for building queries.

e It’s possible that anonymous functions may be implemented in such a way that
anonymous functions are obscured by opaque proxy objects. To handle such a sit-
uation, Queryll would require static dataflow analysis of all code that makes use of
Queryll to understand where functions are proxied and how these proxies eventually
propagate to Queryll.

3.3.2 Anonymous Function Analysis

Once the anonymous functions used in a query are found, these functions can then be
analyzed. These anonymous functions are compiled down to classes with a method con-
taining the code of the function. For example, the anonymous function from the query in
Figure 3.9 might be translated into the bytecode shown in Figure 3.10. Different compilers
may generate slightly different bytecode from the same Java code. Since Queryll operates
at the bytecode level, it must be tolerant of these variations. It employs symbolic execu-
tion to convert low-level bytecode instructions back into high-level expressions. Since the
anonymous functions accepted by Queryll do not contain loops and are not supposed to
have any side-effects, this conversion can be done using a fast and efficient algorithm.

Firstly, Queryll verifies that the code does not contain any complex control flow nor
contain any side-effects. Checking for the presence of loops can be done by simply perform-
ing a depth-first search walk of the control flow graph from the head of the function and
noticing if there are any backwards edges. The detection of side-effects can be performed
by ensuring that each instruction of the code does not have side-effects (i.e. modification
of non-local variables, calls to unknown methods, etc.).

Queryll then interprets what sort of query is being performed in the code. Since
the code might contain many variables and branching instructions, it can be difficult to
understand the code. To avoid this problem, the code is broken down into straight paths
during the analysis. The control flow graph can be walked, and every path leading from
the code entry point to a return statement are noted. The instructions that form a path
are then treated as a straight-line piece of code. Analyzing straight-line code is much
easier because it is easy to calculate both the values of variables at any point in the code

3.3. TRANSLATION ALGORITHM 29

aload_1

invokevirtual Office.getName: ()Ljava/lang/String;

ldc "US"

invokevirtual java/lang/String.equals:(Ljava/lang/0bject;)Z
ifne 11

aload_1

invokevirtual Office.getName: ()Ljava/lang/String;

ldc "UK"

invokevirtual java/lang/String.equals:(Ljava/lang/0Object;)Z
ifeq 13

iconst_1

goto 14

iconst_0

ireturn

© 0 N O O W N -

e e
S W NN e O

Figure 3.10: Java bytecode instructions of the query from Figure 3.9

and dependencies between any instructions. Table 3.1 shows the three paths that exist in
the bytecode from Figure 3.10.

Symbolic execution is then used for converting the instructions along each path into
a higher level representation. Queryll starts at the first instruction of a path, and then
executes each instruction of the path using abstract values instead of real concrete values.
For example, if it sees an instruction for adding values a and b together, instead of ac-
tually adding those two values, Queryll will use the expression a + b as the result of the
operation. Similarly, instead of storing numbers and objects on the execution stack and
in local variables, Queryll will store symbolic expressions there. When branch instruc-
tions are encountered, they are encoded as conditions for the path. When the symbolic
execution reaches the last instruction along a path, it will have generated an expression
representing the value returned by the anonymous function. Table 3.2 shows the process
of symbolically executing the first path from Table 3.1. Since this path is used by a where
method, Queryll is primarily interested in when a path returns true (i.e. which records are
not filtered out). Queryll represents this by generating an expression for when the return
value is 1 and the path conditions are true.

Because Java bytecode instructions for conditional GOTOs can only work with condi-
tions involving integers (Java bytecode does not have a boolean data type), the resulting
expression may contain redundant comparisons. These extra comparisons can confuse
some SQL implementations, so Queryll always performs a simplification step on the final
expression to remove them.

Alternate Formulation

The previous algorithm works well for raw Java bytecode, but there are bytecode frame-
works that work with other code representations. For example, many optimizations are

30 CHAPTER 3. QUERYLL: FUNCTIONAL-STYLE QUERIES
Table 3.1: There are three paths through anonymous function
Path 1 Path 2 Path 3
1: aload_1 1: aload_1 1: aload_1
2: Office.getName() | 2: Office.getName() | 2: Office.getName()
3: ldc “US” 3: Idc “US” 3: ldec “US”
4: String.equals(...) | 4: String.equals(...) | 4: String.equals(...)
5: ifne 11 5: ifne 11 5: ifne 11
branch taken branch not taken branch not taken
11: iconst_1 6: aload_1 6: aload_1
12: goto 14 7: Office.getName() | 7: Office.getName()
14: ireturn 8: ldc “UK” 8: Idc “UK”
9: String.equals(...) | 9: String.equals(...)
10: ifeq 13 10: ifeq 13
branch taken branch not taken
13: iconst_0 11: iconst_1
14: ireturn 12: goto 14
14: ireturn

Table 3.2: State of the execution stack and of path conditions when Path 1 from Figure
3.1 is symbolically executed

Path 1

Stack

Conditions

1: aload_1

2: Office.getName()

3:1dc “US”

4: String.equals(...)

0: $arg0
0: $arg0.getName()
0: “US”
-1: $arg0.getName()

0: $arg0.getName() = “US”

5: ifne 11 ($arg0.getName() = “US”) !I=0
branch taken ($arg0.getName() = “US”) I=0

11: iconst_1 0:1 ($arg0.getName() = “US”) !I=0

12: goto 14 0:1 ($arg0.getName() = “US”) =0

14: ireturn Returned Value: 1 ($arg0.getName() = “US”) =0

Final Expression 1=1 AND ($arg0.getName() = “US”) =0

Simplification $arg0.getName() = “US”

3.3. TRANSLATION ALGORITHM 31

1: $r2 = $0.<0ffice: String getName()>();
: $2z0 = $r2.<String: boolean equals(Object)>("UK");
3: if $z0 != 0 goto labelO;

4: $r3 $0.<0ffice: String getName()>();
$z1 = $r3.<String: boolean equals(Object)>("US");
6: return $z1;

(%}

labelO: 7: return 1;

Figure 3.11: A possible Jimple representation of the query from Figure 3.9

Table 3.3: There are two paths through anonymous function
Path 1 Path 2
1: $r2 = $o.getName() 1: $r2 = $o.getName()
2: $20 = $r2.equals(“UK”) | 2: $20 = $r2.equals(“UK”)
3. if $20 != 0 goto label0 3. if $20 != 0 goto label0
(branch not taken) (branch taken)
4: $r3 = $o.getName() 7: return 1
$z1 = $r3.equals(“US”)
6: return $z1

o

easier to implement when using a three-address form. Although normal symbolic exe-
cution still works when instructions are represented in these alternate forms, a slightly
different formulation may be more efficient and easier to implement.

This section will now describe an alternate formulation of the function analysis algo-
rithm. This formulation is appropriate for code in a three-address form, such as Jimple
[VRCG199], a three-address form of Java bytecode. Figure 3.11 shows a possible Jimple
representation of the anonymous function used in the query shown in Figure 3.9.

In this alternate formulation, the code of the anonymous function is still broken down
into different paths, and each path is analyzed separately. Table 3.3 shows the two paths
through the function from Figure 3.11.

For each path, Queryll needs to determine the value returned by the function if that
path is followed and the conditions that need to hold for that path to be followed. In the
case of the function passed to the where method in Figure 3.11, Queryll is interested in
determining when the function returns true. Instead of symbolically executing the path
to determine this, this formulation involves iterating backwards over the instructions. For
each path, Queryll starts at the last instruction and walks backwards over each instruction.
As Queryll performs this walk, it reconstructs expressions representing the returned value
and path conditions.

If Queryll encounters an instruction returning a value, it stores which value is returned.
If it encounters a conditional branch instruction, it merges this branch condition into the

32 CHAPTER 3. QUERYLL: FUNCTIONAL-STYLE QUERIES

path condition expression with an AND operation. The variables in these expressions will
be made up of mostly local variables. If Queryll encounters an instruction that makes an
assignment to one of these local variables, it goes through the returned value expression
and path condition expression, and it replaces all of the instances of the local variables with
the value assigned to the local variable in the instruction. Unlike with symbolic execution,
this formulation only needs to keep track of the returned value and path conditions; it
does not need to store the value of all local variables or an execution stack.

When Queryll finishes walking through all the instructions, the resulting expressions
should be made up of operations acting on constants, outside variables, or entries from
the source collection. For example, if Queryll was trying to construct an expression to
describe the paths of Table 3.3, it would go through the steps shown in Table 3.4. The
expressions for the returned value and path conditions can then be merged into a final
expression that can then be used in query generation.

Table 3.4: For a given path, Queryll can construct an expression that describes when the
path is executed

Instruction Returned Value Conditions

Initial

6: return $z1 $z1

5: $z1 = $r3.equals(“US”) | ($r3 = “US”)

4: $r3 = $o.getName() ($0.Name = “US”)

3. if $20 != 0 goto label0 ($0.Name = “US”) | $20 = 0

(branch not taken)

2: $20 = $r2.equals(“UK”) | ($0.Name = “US”) | ($r2 = “UK”) =0

1: $r2 = $o.getName() $0.Name = “US”) | ($0.Name = “UK”) = 0
$o

Final Expression

(
(
($0.Name = “US”) AND ($o.Name = “UK”) =0
(

Simplification entry.Name = “US”) AND (entry.Name != “UK”")
Instruction Returned Value | Conditions
Initial
7: return 1 1
3: if $z0 !'= 0 goto label0 1 $z0 =0
(branch taken)
2: $20 = $r2.equals(“UK”) | 1 ($r2 = “UK”) =0
1: $r2 = $o.getName() 1 ($0.Name = “UK”) =0
Final Expression (1 =1) AND ($o.Name = “UK”) =0
Simplification entry.Name = “UK”

3.3.3 Runtime Query Construction

It is easier to translate functional-style Java queries into SQL code at runtime instead
of statically. Although static SQL query generation is possible, it requires deeper code

3.3. TRANSLATION ALGORITHM 33

db.getCustomers ()
QF .select (#(Customer c){c.getName()}) 7
.where (#(String name){name.equals("Bob")})

Figure 3.12: An example Java query that will be used to illustrate how runtime query
generation in Queryll

analysis that is less flexible and hence more restrictive on how programmers write their
queries. Also, statically inserting the gemerated SQL query into Java code requires a
bytecode rewriting framework; whereas, runtime SQL query generation does not need to
modify existing code, so only a much simpler bytecode analysis framework is needed.

With runtime query generation, queries are built up inside query methods, like select
and where. When these query methods are invoked with anonymous functions as pa-
rameters, the query methods can look up the static bytecode analysis results for these
anonymous functions and construct a SQL query. Since a programmer must call multiple
query methods to build up a full SQL query, the generated SQL should not be executed
on a database. The generated SQL should only be executed lazily when the programmer
actually tries to access the data because then Queryll can be sure that the programmer
has finished specifying their query. As a result, each of the special Queryll Collection ob-
jects will have an associated SQL query. Whenever data is accessed from the Collection,
the associated SQL query will be executed and the Collection populated with the query
result. Invoking query methods on the Collection will return a new Collection with a
different associated SQL query.

The general approach used for runtime query construction will be illustrated using a
simple example. Figure 3.12 shows a simple query. Translation mapping) is used to
denote the mapping of how Java code is translated into a SQL representation.

The query can be broken into three method calls (Figure 3.13). The first call to
db.getCustomers() returns all of the Customer records from the database, select()
discards everything except the name field of each record, and where () restricts the name
field to only those called “Bob.”

Because Queryll needs to store the SQL representations that underlie each query
Collection, it requires different data structures for all the different types of SQL queries.
All of the queries in the example can be expressed using SELECT...FROM... WHERE...
SQL queries. To represent a SELECT...FROM...WHERE... query, Queryll needs a data
structure that stores four pieces of information: the column values that should appear
in the SELECT clause, the table being queried, where restrictions for filtering the table,
and a description of how to convert the returned columns of a result set into Java objects.
Queryll stores these four pieces of information using the 4-tuple SFW(columns, from, where,
reader).

In the example, Customer records are assumed to have three fields—id, name, and
address—so db.getCustomers() returns a SFW() tuple for reading these columns from
a Customer table. select() takes this SFW() tuple, looks up the symbolic execution

34 CHAPTER 3. QUERYLL: FUNCTIONAL-STYLE QUERIES

QI db.getCustomers() |
SFW((Id, Name, Address), Customer, 1=1, CUSTOMERREADER)

S+ (query, @argl.getName()) |} newquery

Q F query.select (#(Customer c){c.getName()}) || newquery

W {(query, @argl = “Bob") |} newquery

Q F query.where (#(String name) {name.equals("Bob")}) | newquery
Figure 3.13: The query in Figure 3.12 is broken down into three method calls

Y F (fun,cols,reader) | (newcols, newreader)

S+ (SFW(cols, from,where,reader), fun) |
SFW(newcols, from,where, newreader)

Y+ (fun,cols,reader) | {{(newwhere), BOOLREADER)

Wt (SFW(cols, from,where, reader), fun) |
SFW(cols, from,where AND newwhere, reader)

Figure 3.14: S and W apply select() and where() operations respectively to a
SELECT...FROM...WHERE... query by creating a new SELECT...FROM... WHERE...
query with different columns or a modified WHERE clause

analysis of the given anonymous function, and passes everything to a S mapping for
further analysis. Similarly, the where() query method takes the query generated by
select (), looks up the symbolic execution analysis of the supplied anonymous function,
and delegates further processing to a W mapping.

The mappings S and W both perform similar processing (Figure 3.14). They take
a SELECT...FROM...WHERE... query and apply a projection or selection operation to
the query, generating a new SELECT...FROM...WHERE... query. The S mapping, used
by the select () query method, will generate new columns and a new reader for the new
query. The W mapping, used by the where () query method, will generate a new WHERE
clause for the new query. Both S and W make use of a mapping . X takes as input
the symbolic execution expression calculated for the anonymous function plus information
about the original query being modified. It calculates the effect of applying the anonymous
function to the original query and expresses the result in terms of a tuple of column values
and a description of how to interpret these column values.

The > mapping simply finds SQL equivalents to the operators that appear in the
previously calculated symbolic execution expressions (Figure 3.15). References to the
argument of an anonymous function (i.e. records from the original query that are being
iterated over) are replaced with appropriate values from the original query.

Finally, a SQL query represented as a SFW() can be mapped into an actual SQL query
string using a mapping G (Figure 3.16).

3.3. TRANSLATION ALGORITHM 35

Y+ (left, cols,readery |} ((leftexpr), exprreader)
Y F (right, cols, reader) | ((rightexpr), exprreader)

Y F (left=right, cols,reader) || (leftexpr=rightexpr, BOOLREADER)

Y+ (@argl, cols, reader) | {cols,reader)

Y F ("Bob", cols, reader) | ({(“Bob”), STRINGREADER)

Y F (expr, cols,reader) | ((newcol;, newcols, newcols), CUSTOMERREADER)
Y F (expr.getName(), cols, reader) | ((newcols), STRINGREADER)

Figure 3.15: ¥ finds SQL equivalents to the expressions computed by symbolic execution

Q + java |} SFW({coly,cola,...), from,where, reader)
G+ java || SELECT coly, cols,... FROM from WHERE where

Figure 3.16: When a Collection is accessed, the underlying SFW() query will be con-
verted into a SQL query string and executed on the database

3.3.4 Complex Queries
Query Parameters

The anonymous functions used in Queryll queries may refer to variables outside the scope of
the function. These references are treated as query parameters by Queryll. Constructing
queries at runtime allows for the easy handling of these query parameters. When an
anonymous function makes a reference to a static variable, query methods like where and
select can look-up the values of these static variables and store them in the generated
query. For other types of variables, such as in the example shown in Figure 3.5, the
Java compiler will store the values of these variables in the anonymous function objects
themselves. Java will generate a constructor for these anonymous function objects that
take a value for these variables and store them in a field (Figure 3.17). Query methods can
simply read the values of these fields in the anonymous function object and store them in
the generated query.

Nested Queries

Because the anonymous functions used in Queryll nested queries do not have complex
control flow nor side-effects, they can be analyzed using the same techniques used for non-
nested queries. There is one additional complication involving query parameters though.
In the non-nested case, the query generator could rely on parameters being stored in the
fields of anonymous function objects. This is not possible with nested queries because
the inner-nested anonymous functions are only instantiated when the outside anonymous
functions are run. When the code is translated into a database query, the outside anony-

36 CHAPTER 3. QUERYLL: FUNCTIONAL-STYLE QUERIES

class Wherel implements Lambda {
final String country;
public Wherel(final String country) {
this.country = country;
}
public boolean call(Customer c) {
return c.getCountry().equals(country);

}

final String country = "UK";
QueryList<Customer> results =
db.getCustomers ()
.where(new Wherel(country));

Figure 3.17: The query parameter from Figure 3.5 is compiled by Java into a variable
passed to a constructor where it is stored in a field. The where method can access this
field to read the query parameter

mous functions are never executed, so the inner-nested functions are never instantiated
and the values of fields extracted.

Instead, Queryll must separately analyze the constructors of these inner-nested anony-
mous function objects to see where parameters passed in to the anonymous function objects
are stored in fields. Then Queryll can map the usage of fields in anonymous functions to
parameters passed in to the constructors.

3.4 Implementation

A prototype implementation of Queryll has been constructed. Since the Queryll syntax
requires support for anonymous functions, the experimental OpenJDK7 b105 release with
Lambda patches from September 6, 2010 was used for the implementation. This version of
Java contains some early support for anonymous functions. The Queryll prototype uses the
ASM 3.3 [BLCO02] library for its bytecode analysis. The prototype does not yet implement
exceptions and set operations. It also only supports scalar nested queries without query
parameters. It does not verify that there no side-effects in the constructors of those nested
queries, and it does not include pointer aliasing support.

3.5 Experiments

For Queryll to be a practical query system, programmers must be able to encode real-life
queries in the system, and these queries must exhibit reasonable performance when run.
To evaluate these properties, the database queries from the TPC-W benchmark [Tra02]

3.5. EXPERIMENTS 37

were taken and adapted to run using Queryll.

TPC-W emulates the behavior of database-driven websites by recreating a website for
an online bookstore. The experiments use the Rice implementation of TPC-W [ACCT02],
which uses JDBC/SQL to access a database. Queryll focuses on database queries only
and not data manipulation, so only the database queries of the benchmark were used.
In particular, the experiments do not include database updates, transactions, persistence
lifecycle, or application server code. For each query, an equivalent query was written in
Queryll. The SQL generated from the Queryll versions of the query were manually verified
to be comparable to the SQL versions of the query. The performance of the JDBC version
and Queryll version could then be compared.

A 600 MB database in PostgreSQL 8.3.0 [Pos] was created by populating the database
with the number of items set to 10000. Each query was first executed 200 times with
random valid parameters to warm the database cache, then the time needed to execute
the query 3000 times with random valid parameters was measured, and finally the system
was garbage collected. A single run of the benchmark consists of alternately running each
query using both JDBC and Queryll. The benchmark was run 30 times, and the averages
of only the last 10 runs were included in the final results. The database and the query code
were both run on the same machine, a 2.5 GHz Pentium IV Celeron Windows machine
with 1 GB of RAM. The symbolic execution component of Queryll is only run once at the
start of the benchmark. This component required 766 milliseconds to scan through the
342 class files of the benchmark and process the 46 of them used in queries.

Table 3.5 shows the results of the experiment. All of the TPC-W database queries
were successfully expressed as Queryll queries. This demonstrates that Queryll approach
is capable of handling real-world database queries. Hand inspection of the SQL generated
by Queryll shows the generated SQL to be structurally similar to the hand-written SQL.
Overall, the performance of Queryll seems reasonable. The use of Queryll does impose
some small overhead over hand-written SQL though. A deeper investigation into the
causes of this overhead shows that it accumulates from many small inefficiencies such as

e Queryll generates SQL that is more verbose than hand-written SQL because it care-
fully provides aliases for every table and column to avoid ambiguity. This extra
verbosity takes longer for the SQL driver to parse and process. This overhead can
be reduced though PreparedStatement caching where the SQL driver parses queries
into an intermediate form, and that intermediate form can be reused for subsequent
queries. The Rice JDBC implementation of TPC-W does not use this optimization,
so it is also not used in Queryll

e For some queries, extra fields are fetched from the database as compared to hand-
written SQL because of inefficiencies in the ORM tool used by Queryll

e Because Queryll generates queries at runtime, it must use an abstraction to handle
the setting of query parameters, which imposes some overhead over simply setting
them directly

e Similarly, Queryll must use factory objects to read query results into objects whereas
with hand-written SQL, the code for reading results can be executed directly

38 CHAPTER 3. QUERYLL: FUNCTIONAL-STYLE QUERIES

Table 3.5: The average execution time and standard deviation of TPC-W queries are shown
in milliseconds. The Queryll with Analysis column includes the time required by Queryll
to fully rebuild a SQL query each time a query is executed, thereby giving an indication
of the overhead required for runtime query construction. The columns for differences in
execution time compares the performance of JDBC and normal Queryll, which caches and
reuses its analysis and constructed queries

Queryll with
JDBC Queryll A Analysis

Query Time o | Time o | Time % || Time o
getName 3652 384 | 4041 66.9 389 11% || 4920 105.1
getCustomer 8441 40.9 | 9222 61.7 781 9% | 11263 189.1
getMostRecentOrder | 29147 1626.3 | 33131 1580.1 | 3984 14% || 42769 7747.4
getBook 6436 60.2 | 6909 110.8 473 7% || 9602 164.8
doAuthorSearch 10442 58.9 | 10406 181.8 -36 (0%) || 12252 196.9
doSubjectSearch 16841 132.9 | 17067 72.5 227 1% | 18447 185.7
getIDandPassword 3873 83.1 | 4189 878 316 8% || 5077 74.9
getBestSellers 53135 587.0 | 53741 403.2 606 1% | 57702 349.7
doTitleSearch 26833 231.6 | 27286 208.1 453 2% || 29073 315.1
getNewProducts 23096 308.2 | 25161 385.8 | 2065 9% || 26747 211.9
getRelated 6381 217.7 | 8059 164.4 | 1678 26% | 12098 207.6
getUserName 3681 68.6 | 4005 105.8 324 9% || 4769 127.3

e Query generation, factory objects, etc. result in extra memory objects that may
reduce cache locality and impose extra garbage collection overhead

Table 3.5 also includes a column Queryll with Analysis which shows the time needed
for Queryll to construct its queries at runtime and then to execute them. Although
the symbolic execution of anonymous functions is done statically, the actual composition
and transformation of these functions into SQL queries occurs at runtime. Most database
applications execute the same queries often and repeatedly, so Queryll normally caches and
reuses the queries it constructs. To generate the Queryll with Analysis results, Queryll’s
caching of constructed queries is disabled. These results give an indication of the overhead
of runtime query construction for ad hoc queries.

Overall, the TPC-W experiment demonstrates that Queryll can handle real database
queries used in real applications. Although there is some inevitable overhead due to the
use of a middleware abstraction for executing queries, for the most part, Queryll offers
comparable performance to hand-written SQL.

3.6. SUMMARY 39

3.6 Summary

Adding support for functional programming to traditional object-oriented languages like
Java makes it possible to write database queries in those languages using a syntax similar to
common declarative query languages like SQL. This functional-style for writing database
queries does not have complex control flow such as loops and the functions describing the
query itself do not contain any side-effects. As a result, it is possible to write a simple,
robust algorithm for translating Java code written in this style into SQL. Queryll is able to
do this translation by building an expression representing the return values of the functions
used in the Java code.

40

CHAPTER 3. QUERYLL: FUNCTIONAL-STYLE QUERIES

Chapter 4
JReq: Imperative-Style Queries

The most popular general purpose programming languages today are object-oriented lan-
guages like Java. Because of the imperative nature of these languages, it is difficult to
embed database query languages, which tend to be declarative, into these languages in
a consistent way. This chapter describes an approach for allowing programmers to write
database queries in an imperative style inside the imperative language Java. Queries
can be written using the normal imperative Java style for working with large datasets—
programmers use loops to iterate over the dataset. The queries are valid Java code, so
no changes are needed to the Java language to support these complex queries. To run
these queries efficiently on common databases, the queries are translated into SQL using
an algorithm based on symbolic execution. These algorithms have been implemented in a
system called JReq.

Current techniques for integrating database query support into imperative languages
are not yet able to handle complex database queries involving aggregation and nesting.
Support for aggregation is important because it allows a program to calculate totals and
averages across a large dataset without needing to transfer the entire dataset out of a
database. Similarly, support for nesting one query inside another significantly increases
the expressiveness of queries, allowing a program to group and filter data at the database
instead of transferring the data to the program for processing. JReq is able to handle
these constructs.

These are the main technical contributions of this work:

e An approach for expressing complex queries in Java code using loops and iterators
is demonstrated. This programming style is called the JReq Query Syntax (JQS).

e An algorithm that can robustly translate complex imperative queries involving ag-
gregation and nesting into SQL is described.

e This algorithm is implemented in JReq and its performance is evaluated.

41

42 CHAPTER 4. JREQ: IMPERATIVE-STYLE QUERIES

QueryList<String> results = new QueryList<String>();
for (Account a: db.allAccounts())
if (a.getCountry().equals("UK"))
results.add(a.getName());

Figure 4.1: A more natural Java query syntax

4.1 JReq Query Syntax

The JReq system allows programmers to write queries using normal Java code. JReq is
not able to translate arbitrary Java code into database queries, but queries written in a
certain style. This subset of Java code that can be translated by JReq into SQL code is
called the JReq Query Syntax (JQS). Although this style does impose limitations on how
code must be written, it is designed to be as unrestrictive as possible.

4.1.1 General Approach and Syntax Examples

Databases are used to store large amounts of structured data, and the most common
coding convention used for examining large amounts of data in Java is to iterate over
collections. As such, JReq uses this syntax for expressing its queries. JQS queries are
generally composed of Java code that iterates over a collection of objects from a database,
finds the ones of interest, and adds these objects to a new collection (Figure 4.1). For
each table of the database, a method exists that returns all the data from that table, and
a special collection class called a QueryList is provided that has extra methods to support
database operations like set operations and sorting.

JQS is designed to be extremely lenient in what it accepts as queries. For simple
queries composed of a single loop, arbitrary control-flow is allowed inside the loop as long
as there are no premature loop exits nor nested loops (nested loops are allowed if they
follow certain restrictions), arbitrary creation and modification of variables are allowed as
long as they are scoped to the loop, and methods from a long list of safe methods can
be called. At most one value can be added to the result-set per loop iteration, and the
result-set can only contain numbers, strings, entities, or tuples. Since JReq translates its
queries into SQL, the restrictions for more complex queries, such as how queries can be
nested or how variables should be scoped, are essentially the same as those of SQL.

One interesting property of the JQS syntax for queries is that the code can be executed
directly, and executing the code will produce the correct query result. Of course, since one
might be iterating over the entire contents of a database in such a query, executing the
code directly might be unreasonably slow. To run the query efficiently, the query must
eventually be rewritten in a database query language like SQL instead. This rewriting
essentially acts as an optional optimization on the existing code. Since no changes to the
Java language are made, all the code can compile in a normal Java compiler, and the
compiler will be able to type-check the query statically. No verbose, type-unsafe data
marshaling into and out of the query is used in JQS.

4.1. JREQ QUERY SYNTAX 43

In JQS, queries can be nested, values can be aggregated, and results can be filtered
in more complex ways. JQS also supports navigational queries where an object may have
references to various related objects. For example, to find the customers with a total
balance in their accounts of over one million, one could first iterate over all customers.
For each customer, one could then use a navigational query to iterate over his or her
accounts and sum up the balance.

QueryList results = new QueryList();
for (Customer c: db.allCustomer()) {
double sum = O;
for (Account a: c.getAccounts())
sum += a.getBalance();
if (sum > 1000000) results.add(c);

Intermediate results can be stored in local variables and results can be put into groups.
In the example below, a map is used to track (key, value) pairs of the number of students
in each department. In the query, local variables are freely used.

QueryMap<String, Integer> students =
new QueryMap<String, Integer>(0);
for (Student s: db.allStudent()) {
String dept = s.getDepartment();
int count = students.get(dept) + 1;
students.put(dept, count);

Although Java does not have a succinct syntax for creating new database entities,
programmers can use tuple objects to store multiple result values from a query (these
tuples are of fixed size, so query result can still be mapped from flat relations and do not
require nested relations). Results can also be stored in sets instead of lists in order to
query for unique elements only, such as in the example below where only unique teacher
names (stored in a tuple) are kept.

QuerySet teachers = new QuerySet();
for (Student s: db.allStudent()) {
teachers.add(new Pair(
s.getTeacher() .getFirstName(),
s.getTeacher () .getLastName ()));

In order to handle sorting and limiting the size of result sets, the collection classes used
in JQS queries have extra methods for sorting and limiting. The JQS sorting syntax is
similar to Java syntax for sorting in its use of a separate comparison object. In the query
below, a list of supervisors is sorted by name and all but the first 20 entries are discarded.

44 CHAPTER 4. JREQ: IMPERATIVE-STYLE QUERIES

JReq Java
Rewriter || |Using SQL

Figure 4.2: JReq inserts itself in the middle of the Java toolchain and does not require
changes to existing tools

QuerySet<Supervisor> supervisors = new QuerySet<Supervisor>();
for (Student s: db.allStudent())
supervisors.add(s.getSupervisor());
supervisors
.sortedByStringAscending(new StringSorter<Supervisor>() {
public String value(Supervisor s) {return s.getName();}})
FirstN(20);

For certain database operations that have no Java equivalent (such as SQL regular ex-
pressions or date arithmetic), utility methods are provided that support this functionality.

4.2 Translating JQS using JReq

For imperative JQS code to execute efficiently on a database, it must be translated into
a declarative form that a database can optimize. This section explains this translation
process using the query from Figure 4.1 as an example.

Since JQS queries are written using actual Java code, the JReq system cannot be
implemented as a simple Java library. JReq must be able to inspect and modify Java
code in order to identify queries and translate them to SQL. A simple Java library cannot
do that. One of the goals of JReq, though, is for it to be non-intrusive and for it to be
easily adopted or removed from a development process like a normal library. To do this,
the JReq system is implemented as a bytecode rewriter that is able to take a compiled
program outputted by the Java compiler and then transform the bytecode to use SQL.
It can be added to the toolchain as an independent module, with no changes needed to
existing IDEs, compilers, virtual machines, or other such tools (Figure 4.2). Although
the current implementation has JReq acting as an independent code transformation tool,
JReq can also be implemented as a postprocessing stage of a compiler, as a classloader
that modifies code at runtime, or as part of a virtual machine.

The translation algorithm in JReq is divided into a number of stages. It first prepro-
cesses the bytecode to make the bytecode easier to manipulate. The code is then broken
up into loops, and each loop is transformed using symbolic execution into a new repre-
sentation that preserves the semantics of the original code but removes many secondary
features of the code, such as variations in instruction ordering, convoluted interactions be-
tween different instructions, or unusual control flow, thereby making it easier to identify

4.2. TRANSLATING JQS USING JREQ 45

$accounts = $db.allAccounts()
$iter = $accounts.iterator()
goto loopCondition
loopBody: $next = $iter.next()
$a = (Account) $next
$country = $a.getCountry()
$cmp0 = $country.equals("UK")
if $cmp0==0 goto loopCondition
loopAdd: $name = a$.getName ()
$results.add($name)
loopCondition: $cmpl = $iter.hasNext()
if $cmpl!=0 goto loopBody
exit:

Figure 4.3: Jimple code of a query

queries in the code. This final representation is tree-structured, so bottom-up parsing is
used to match the code with general query structures, from which the final SQL queries
can then be generated.

4.2.1 Preprocessing

Although JReq inputs and outputs Java bytecode, its internal processing is not based on
bytecode. Java bytecode is difficult to process because of its large instruction set and the
need to keep track of the state of the operand stack. To avoid this problem, JReq uses the
SOOT framework [VRCG199] from Sable to convert Java bytecode into a representation
known as Jimple, a three-address code version of Java bytecode. In Jimple, there is no
operand stack, only local variables, meaning that JReq can use one consistent abstraction
for working with values and that JReq can rearrange instruction sequences without having
to worry about stack consistency. Figure 4.3 shows the code of the query from Figure 4.1
after conversion to Jimple form.

4.2.2 Transformation of Loops

Since all JQS queries are expressed as loops iterating over collections, JReq needs to
add some structure to the control-flow graph of the code. It breaks down the control
flow graph into nested strongly-connected components (i.e. loops), and from there, it
transforms and analyzes each component in turn. Since there is no useful mapping from
individual instructions to SQL queries, the analysis operates on entire loops. Conceptually,
JReq calculates the postconditions of executing all of the instructions of the loop and then
tries to find SQL queries that, when executed, produce the same set of postconditions. If
it can find such a match, JReq can replace the original code with the SQL query. Since
the result of executing the original series of instructions from the original code gives the

46 CHAPTER 4. JREQ: IMPERATIVE-STYLE QUERIES

Type Path

Exiting loopCondition — exit

Looping loopCondition — loopBody —O

Looping loopCondition — loopBody — loopAdd —O

Figure 4.4: Paths through the loop

same result as executing the query, the translation is safe. Unfortunately, because of
the difficulty of generating useful loop invariants for loops [BMO07], JReq is not able to
calculate postconditions for a loop directly.

Loop Paths

To understand the behavior of loops, JReq will examine all the different execution paths
through the loop. It can then combine the behaviors of these different paths to determine
the behavior of an arbitrary iteration of a loop. To find these paths, JReq starts at the
entry point to the loop and walks the control flow graph of the loop until it arrives back
at the loop entry point or exits the loop. As it walks through the control flow graph, JReq
enumerates all possible paths through the loop. The possible paths through the query code
from Figure 4.3 are listed in Figure 4.4. Theoretically, there can be an exponential number
of different paths through a loop since each if statement can result in a new path. In
practice, such an exponential explosion in paths is rare. JReq’s Java query syntax has an
interesting property where when an if statement appears in the code, one of the branches
of the statement usually ends that iteration of the loop, meaning that the number of paths
generally grows linearly. The only types of queries that seem to lead to an exponential
number of paths are ones that try to generate “CASE WHEN...THEN” SQL code, and
these types of queries are rarely used. Although exponential path explosion is not thought
to be a problem for JReq, such a situation can be avoided by using techniques developed
by the verification community for dealing with similar problems [FSO01].

For each path, JReq generates a Hoare triple. A Hoare triple describes the effect of
executing a path in terms of the preconditions, code, and postconditions of the path. JReq
knows what branches need to be taken for each path to be traversed, and the conditions
on these branches form the preconditions for the paths. Method calls and modifications
of variables become the postconditions of the paths.

Symbolic Execution

Symbolic execution is used when calculating these preconditions and postconditions. The
use of symbolic execution means that all preconditions and postconditions are expressed in
terms of the values of variables from the start of the loop iteration and that minor changes
to the code like simple instruction reordering will not affect the derived postconditions.
There are many different styles of symbolic execution, and JReq’s use of symbolic execution
to calculate Hoare triples is analogous to techniques used in the software verification

4.2. TRANSLATING JQS USING JREQ 47

$cmpl = $iter.hasNext()

if $cmpl !'= 0 goto loopBody (branch taken)

$next = $iter.next()

$a = (Account) $next

$country = $a.getCountry()

$cmp0 = $country.equals("UK")

if $cmpO == 0 goto loopCondition (branch skipped)
$name = a$.getName()

$results.add($name)

© 00 NO O WN -

Figure 4.5: Instructions of the last path from Figure 4.4

community, particularly work on translation validation and credible compilation [Rin99,
Nec00].

JReq’s symbolic execution begins at the first instruction of a path and then traces
through the execution of each instruction along the path. Instead of working with real
concrete values for variables, which may differ each time a path is executed, JReq uses
symbolic values for variables when executing the instructions. As it symbolically executes
each instruction, JReq will gather preconditions and postconditions. On reaching the last
instruction of the path, it will have computed the preconditions and postconditions for
executing the entire path.

For each instruction, JReq essentially performs three steps:

e It will propagate any preconditions and postconditions from the previous instruction
to the current instruction since any changes in the state of the program made by the
previous instruction will continue to hold in the following instruction

e Any changes in state such as method calls or assignments to variables will be recorded
as postconditions while any conditional branches will be noted as preconditions

e The new preconditions and postconditions may make use of variables that are known
to contain other values, so those values are substituted in for those variables

As an example, consider the instructions (Figure 4.5) from the last path from Fig-
ure 4.4. If JReq applies the three steps of its symbolic execution algorithm to the first
instruction, it generates the results shown in Figure 4.6. Because there are no previous
instructions, there are no preconditions or postconditions to propagate during the first
step. In the second step, the call to the hasNext () method and the assignment of the
result to the variable $cmp1 are both added to the list of postconditions. In the final step,
there are no variables that need to be substituted, so the list of postconditions remains
the same.

When symbolic execution to the second instruction (Figure 4.7), the postconditions
calculated after the first instruction are propagated first. The second instruction is a con-
ditional branch, so the condition becomes a precondition. Finally, this new precondition

48 CHAPTER 4. JREQ: IMPERATIVE-STYLE QUERIES

Instruction
1: $cmpl = $iter.hasNext()
After Propagation
None
After Gathering
Preconditions
Postconditions $iter.hasNext()
$cmpl = $iter.hasNext()
After Substitution
Preconditions
Postconditions — $iter.hasNext()
$cmpl = $iter.hasNext()

Figure 4.6: The effect of applying the three steps of JReq’s symbolic execution to the first
instruction in Figure 4.5

references the $cmpl variable, and the list of postconditions shows that $cmpl has been
assigned a certain value, so this value can be substituted into the precondition expression.

If symbolic execution is applied to all the instructions in the path, JReq will calculate
the final preconditions and postconditions for the path.

Simplification

Figure 4.4 shows the final preconditions and postconditions for the path. Not all of the
postconditions gathered are significant though, so JReq uses variable liveness information
to prune assignments that are not used outside of a loop iteration and uses a list of methods
known not to have side-effects to prune safe method calls. Figure 4.9 shows the final Hoare
triples of all paths after pruning.

Basically, JReq has transformed the loop instructions into a new tree representation
where the loop is expressed in terms of paths and various precondition and postcondition
expressions. The semantics of the original code are preserved in that all the effects of
running the original code are encoded as postconditions in the representation, but problems
with instruction ordering or tracking instruction side-effects, etc. have been filtered out.

In general, JReq can perform this transformation of loops into a tree representation in
a mechanical fashion, but JReq does make some small optimizations to simplify processing
in later stages. For example, constructors in Java are methods with no return type. In
JReq, constructors are represented as returning the object itself, and JReq reassigns the
result of the constructor to the variable on which the constructor was invoked. This
change means that JReq does not have to keep track of a separate method invocation
postcondition for each constructor used in a loop.

4.2. TRANSLATING JQS USING JREQ 49

Instruction

2: if $cmpl != O goto loopBody (branch taken)
After Propagation

Postconditions — $iter.hasNext()

$cmpl = Siter.hasNext()
After Gathering

Preconditions $cmpl != 0
Postconditions $iter.hasNext()

$cmpl = Siter.hasNext()
After Substitution

Preconditions $iter.hasNext() != 0
Postconditions $iter.hasNext()
$cmpl = Siter.hasNext()

Figure 4.7: The effect of applying the three steps of JReq’s symbolic execution to the
second instruction in Figure 4.5

Path: loopCondition — loopBody — loopAdd —O
Preconditions $iter.hasNext() = 0
((Account)$iter.next()).getCountry().equals(”UK”) 1= 0
Postconditions $iter.hasNext()
$cmp1 = $iter.hasNeat()
$iter.next()
$next = Siter.next()
$a = (Account) $iter.next()
((Account)Siter.next()).get Country()
$country = ((Account)$iter.next()).getCountry()
((Account)Siter.next()).getCountry().equals(” UK”)
$ecmp0 = ((Account)$iter.next()).getCountry().equals(”UK”)
((Account)$iter.next()).getName()
$name = ((Account)$iter.next()).getName()
$results.add(((Account)$iter.next()).getName())

Figure 4.8: Hoare triple expressing the result of a path (expressions that will be pruned
by liveness analysis are indented)

50 CHAPTER 4. JREQ: IMPERATIVE-STYLE QUERIES

Exiting Path
Preconditions $iter.hasNext() ==
Postconditions
Looping Path
Preconditions $iter.hasNext() != 0
((Account)Siter.next()).getCountry().equals("UK”) == 0
Postconditions $iter.next()

Looping Path
Preconditions $iter.hasNext() != 0
((Account)Siter.next()).getCountry().equals(”UK”) 1= 0
Postconditions $iter.next()
$results.add(((Account)$iter.next()).getName())

Figure 4.9: Final Hoare triples generated from Figure 4.3 after pruning

4.2.3 Query Identification and Generation

Once the code has been transformed into Hoare triple form, traditional translation tech-
niques can be used to identify and generate SQL queries. For example, Figure 4.10 shows
how one general Hoare triple representation can be translated into a corresponding SQL
form. That particular Hoare triple template is sufficient to match all non-nested SE-
LECT...FROM...WHERE queries without aggregation functions. In fact, because the
transformation of Java code into Hoare triple form removes much of the syntactic vari-
ation between code fragments with identical semantics, a small number of templates is
sufficient to handle most queries.

Since the Hoare triple representation is in a nice tree form, bottom-up parsing can be
used to classify and translate the tree into SQL. When using bottom-up parsing to match
path Hoare triples to a template, one does have to be careful that each path add the same
number and same types of data to the result collection (e.g. in Figure 4.10, one needs to
check that the types of the various valA,, being added to $results is consistent across the
looping paths). One can use a unification algorithm across the different paths of the loop
to ensure that these consistency constraints hold.

One further issue complicating query identification and generation is the fact that a
full JQS query is actually composed of both a loop portion and some code before and after
the loop. For example, the creation of the object holding the result set occurs before the
loop, and when a loop uses an iterator object to iterate over a collection, the definition
of the collection being iterated over can only be found outside of the loop. To find these
non-loop portions of the query, the JReq transformation is recursively applied to the code
outside of the loop at a higher level of nesting. Since the JReq transformation breaks down
a segment of code into a finite number of paths to which symbolic execution is applied,
the loop needs to be treated as a single indivisible “instruction” whose postconditions are
the same as the loop’s postconditions during this recursion. This recursive application of
the JReq transformation is also used for converting nested loops into nested SQL queries.

4.2. TRANSLATING JQS USING JREQ o1

Exiting Path

Preconditions $iter.hasNext() == SELECT

Postconditions exit loop CASE WHEN pred; THEN vall;
Looping Path; WHEN preds THEN vall,

Preconditions $iter.hasNext() != 0

END,

Postconditions $iter.next() CASE WHEN pred; THEN valB;
...etc. WHEN pred; THEN valBp
Looping Path,,

Preconditions $iter.hasNext() != 0 END,

pred, ...
Postconditions ~ $iter.next() FROM 7
$results.add(valA,, valB,, ...) WHERE pred; OR preds OR ...
...etc.

Figure 4.10: Code with a Hoare triple representation matching this template can be
translated into a SQL query in a straight-forward way

Figure 4.11 shows the Hoare triples of the loop and non-loop portions of the query from
Figure 4.1.

Figure 4.12 shows some sample operational semantics that illustrate how the example
query could be translated to SQL. In the interest of space, these operational semantics
do not contain any error-checking and show only how to match the specific query from
Figure 4.1 (as opposed to the general queries supported by JReq). The query needs to
be processed three times using mappings S, F', and W to generate SQL select, from, and
where expressions respectively. ¢ holds information about variables defined outside of a
loop. In this example, o describes the table being iterated over, and ¥ describes how to
look up fields of this table.

JReq currently generates SQL queries statically by replacing the bytecode for the JQS
query with bytecode that uses SQL instead. Static query generation allows JReq to apply
more optimizations to its generated SQL output and makes debugging easier because one
can examine generated queries without running the program. During this stage, JReq
can also optimize the generated SQL queries for specific databases though the prototype
currently does not contain such an optimizer. In a previous version of JReq, SQL queries
were constructed at runtime and evaluated lazily. Although this results in slower queries,
it allows the system to support a limited form of inter-procedural query generation. A
query can be created in one method, and the query result can later be refined in another
method.

During query generation, JReq uses line number debug information from the bytecode
to show which lines of the original source files were translated into SQL queries and what
they were translated into. IDEs can potentially use this information to highlight which
lines of code can be translated by JReq as a programmer types them. Combined with
the type error and syntax error feedback given by the Java compiler at compile-time, this

52 CHAPTER 4. JREQ: IMPERATIVE-STYLE QUERIES

Hoaretriples(

Exit(
Pre($iter.hasNext() == 0),
Post ()

),

Looping(
Pre($iter.hasNext() != 0,

((Account)$iter.next()) .getCountry() .equals("UK") == 0),

Post (Method($iter.next()))

),

Looping(
Pre($iter.hasNext() !'= 0,
((Account)$iter.next()).getCountry() .equals("UK") !'= 0),
Post (Method($iter.next()),
Method ($uk.add (((Account)$iter.next()) .getName())))))

PathHoareTriple(
Pre(),
Post($results = (new QueryList()).addA1ll(
$db.allAccounts().iterator () .AddQuery()))))

Figure 4.11: The Hoare triples of the loop and non-loop portion of the query from Figure
4.1. The loop Hoare triples are identical to those from Figure 4.9, except they have been
rewritten so as to emphasize the parsability and tree-like structure of the Hoare triple
form

4.2. TRANSLATING JQS USING JREQ 53

a = Exit (Pre($iter.hasNext()==0), Post())

b = Looping(Pre($iter.hasNext()!=0, ...),
Post (Method($iter.next())))

¢ = Looping(Pre($iter.hasNext()!=0, d),
Post (Method($iter.next()), e))

e = Method (resultset .add (child))

St (child, o) || select

Wt (d,o) |} where

S I+ (Hoaretriples(a,b,c), o) || select
W + (Hoaretriples(a,b,c), o) || where

Wk (left,o) || where,
Wk (right, o) | where,
W I (left.equals (right)==0,0) |} where;<>where,

Wt (left,o) | where,
Wt (right, o) || where,
Wk (left.equals (right) '=0,0) |} where;=where, SE ("UK", o) || “UK”
W <HUKII’ 0.> ll “UK”

¥ F (child,o, NAME) | val Y F (child,o, COUNTRY) |} val
S+ (child.getName), o) | val S+ (child.getCountry), o) | val
Wt (child .getName), o) | val Wt (child .getCountry (), o) |} val

Y F ((Account)$iter.next (), o, COUNTRY) |} 0(NEXT).Country
Y F ((Account)$iter.next (), o, NAME) |} o(NEXT).Name

F F ($db.allAccounts() .iterator(),o) || Account

S F (HoareTriples(...),o[NEXT := A]) |} select
W t (HoareTriples(...),o[NEXT := A]) || where
F + (iterator,o) || from

(resultset .addAll(iterator .AddQuery ()), o) |}
SELECT select FROM from AS A WHERE where

Figure 4.12: Sample operational semantics for translating Figure 4.11 to SQL

54 CHAPTER 4. JREQ: IMPERATIVE-STYLE QUERIES

feedback helps programmers write correct queries and optimize query performance.

4.2.4 Implementation Expressiveness and Limitations

The translation algorithm behind JReq is designed to be able to recognize queries with
the complexity of SQL92 [Ame92]. This implementation, though, focuses on the subset of
operations used in typical SQL database queries. Figure 4.13 shows a grammar of JQS, the
Java code that JReq can translate into SQL. JQS is specified using the grammar of Hoare
triples from after the symbolic execution stage of JReq. This approach is used because
it is concise and closely describes what queries will be accepted. Specifying JQS using a
traditional grammar directly describing a Java subset was found to be too imprecise or
too narrow to be useful. Because JReq uses symbolic execution, for each query, any Java
code variant with the same semantic meaning will be recognized by JReq as being the
same query. This large number of variants cannot be captured using a direct specification
of a Java grammar subset.

In the figure, the white boxes refer to grammar rules used for classifying loops. The
gray boxes are used for combining loops with context from outside of the loop. There
are four primary templates for classifying a loop: one for adding elements to a collection,
one for adding elements to a map, one for aggregating values, and another for nested
loops resulting in a join. Most SQL operations can be expressed using the functionality
described by this grammar.

Some SQL functionality that is not currently supported by JQS include set operations,
intervals, and internationalization because the queries used in this thesis did not require
this functionality. Support for NULL and related operators was also left out of this
iteration of JQS. Because Java does not support three-value logic or operator overloading,
special objects and methods to emulate the behavior of NULL would have been necessary,
resulting in a verbose and complicated design. Operations related to NULL values such
as OUTER JOINs are not supported as well.

JQS also currently offers only basic support for update operations since it focuses only
on the query aspects of SQL. SQL’s more advanced data manipulation operations are
rarely used and not too powerful, so it would be fairly straight-forward to extend JQS
to support these operations. Most of these operations are simply composed of a normal
query followed by some sort of INSERT, DELETE, or UPDATE involving the result set
of the query.

In the end, the JReq system comprises approximately 20 thousand lines of Java and
XSLT code. Although JReq translations can be applied to an entire codebase, annotations
are used to direct JReq into applying its transformations only to specific methods known
to contain queries. Additionally, some planned features were never implemented because
the experiments did not require them: the handling of non-local variables, type-checking
or unification to check for errors in queries, and pointer aliasing support.

4.2. TRANSLATING JQS USING JREQ 95

<Query> ::=
PathHoareTriple(Pre(), Post(<var> = <add-subquery-instruction>[<SortLimit>]))
| PathHoareTriple(Pre(), Post(<var> = <group-subquery-instruction>[.asList()<SortLimit>]))
| PathHoareTriple(Pre(), Post(<var> = <agg-subquery-instruction>))

|

<SortLimit> ::=
[.sortedBy(Int | Double | String | Date)(Ascending | Descending)(<sort expr>)]*
[firstN(<constant>)]

<add-subquery-instruction>, <group-subquery-instruction>,
<agg-subquery-instruction>, <partial-subquery-instruction> ::=
new (QueryList | QuerySet)().addAll(<iterator>.AddQuery(<parameters>))
| new QueryMap().putAll(<iterator>.GroupQuery(<parameters>))
| <agg-init> (+= | max= | min= | tuple=) <iterator>.AggQuery(<parameters>)
| <var>.addAll(<iterator>.AddQuery(<parameters>))
| <var>.putAll(<iterator>.GroupQuery(<parameters>))
| <var> (+= | max= | min= | tuple=) <iterator>.AggQuery(<parameters>))

<iterator> ::=
<list>.iterator()
<HoareTriples> ::=

<parameters> ::= HoareTriples(
<expr> [, <expr>]* Exit(Pre(<var>.hasNext() == 0), Post())

[, <Looplgnorable>]* [, <LoopTemplate>]+)
| HoareTriples(
Exit(Pre(<var>.hasNext() == 0), Post()),
Looping(Pre(<var>.hasNext() != 0),
Post(<partial-subquery-instruction>)))

l l

<LoopTemplate> ::=
Looping(
Pre(<var>.hasNext() != 0 [, <Precondition>]),
Post(Method(<var>.next()), <LoopAction>))

!

<LoopAction> ::=
Method(<var>.add(<expr>))
| Method(<var>.put(<expr>, <expr>))
| <var> = <Agg>

<Looplgnorable> ::=
Looping(
Pre(<var>.hasNext() != 0
[, <Precondition>]*),
Post(Method(<var>.next())))

<Precondition> ::= l
<expr> (==|<|>|<=|>=| =) <expr>
| <expr>.equals(<expr>) <Agg> =
| Date.(before | after)(<expr>, <expr>) <expr> + <expr>
| Util.SQLStringLike(<expr>, <expr>) | Math.max(<expr>, <expr>)
| <list>.contains(<expr>) | new <Tuple>(<Agg> [,<Agg>]+)

<expr> =
<expr> (*| /| +| -) <expr>
| <list>.getValue()
| <var>
| <constant>
| <var>.next()
| new <Tuple>(<expr> [, <expr>]+) | (Integer | Double | String).valueOf(<expr>)
| <expr>.(int | double)Value()
| Util.(SQLSubstring | addDays | addMonths | addYears)(<expr>, <expr>)
| Util.extractYear(<expr>)
| <expr>.get<field name>()
| <agg-subquery-instruction>

I 1

<list> ::=
<expr>.get<joinLink>()
| <var>.all<table name>()
| new QueryList()
| <list>.with(<expr>)
| <group-subquery-instruction>.asList()
| <add-subquery-instruction>

Figure 4.13: JQS grammar

56 CHAPTER 4. JREQ: IMPERATIVE-STYLE QUERIES

4.3 FEvaluation

4.4 Syntax Usability

Although JQS provides a syntax for database queries that is consistent with existing Java
conventions for processing collections, it is unclear whether programmers would prefer this
syntax. Intuitively, having a single common syntax for both general purpose computation
and for database queries should benefit programmers by eliminating the “semantic gap.”
Modern object-oriented languages are written in an imperative style and use an object
abstraction to model data. Database query languages like SQL are written in a declarative
style and use a relational abstraction to model data. Programmers supposedly require
extra training and expertise to handle this difference in the semantics of these languages.
Even then, their productivity may be reduced by having to mentally use both models
simultaneously when programming a database.

Alternatively, one could believe that the effect of this semantic gap is small and that
there are more important factors that should be considered in designing a query language.
Because query languages like SQL are designed specifically for accessing databases, it
is possible that their syntax is more intuitive than what can be achieved using a more
general-purpose syntax. Although programmers may be more familiar with the object-
oriented imperative syntax of languages like Java, the declarative nature of SQL queries
might be inherently better-suited to the database domain.

To gain some insight into whether JQS provides a reasonable syntax for describing
database queries, a small user study has been conducted into how people understand
database queries written in either JQS or in SQL using JDBC. The user study involves
observing users as they interacted with database queries in order to see how users ap-
proached the queries and to see what difficulties they encountered.

4.4.1 Question and Experiment

The user study was designed to focus on the task of understanding database queries rather
than the task of writing database queries. This was done because

e Studies that involve the writing of program code are time-consuming, requiring a
larger time commitment from study participants and resulting in less data to be
analyzed

e Before study participants can write database queries, they must be given instruction
in the corresponding query languages, and this can introduce a potential source of
bias in the experiments

The user study experiment was performed in groups of two people. The participants
were told to imagine a scenario where they have a computer program that queries a
database of apartment listings, but that the database is currently unavailable. Instead,
they have to phone up someone with printouts of all the apartment listings and ask them
to look up the data instead. Unlike a study design where participants can simply try to

4.4. SYNTAX USABILITY o7

For the apartment at Rue de P. 32B, Apartments
which floor is it on?” = ==Z zo & 000000

String address = "Rue de P. 32B";

PreparedStatement stmt =
con.prepareStatement(
"SELECT A.floor "

+ "FROM Apartments A " “pe »

+ "WHERE A.address = ?"); First floor.
stmt.setString(l, address);
rs = stmt.executeQuery();

if (rs.next())
return rs.getint(l);

Figure 4.14: In the user study, one study participant must interpret a database query and
ask the other study participant to look up the answer to the query from a printout of the
database contents

interpret database queries on their own, this study design provides a much richer set of
data because the interaction between the two subjects can provide some insight into their
thought processes. By forcing subjects to actually describe queries orally, one can see how
they converge to their chosen answers and what sort of difficulties they encounter along
the way.

During the experiment, one person sits in front of a computer, while the other sits with
a two page printout of apartment listings (Figure 4.14). A short Styrofoam wall separates
the two persons. The person in front of the computer sees the program code of a computer
program that queries a database of apartment listings. This person then needs to ask the
other person to lookup the answer to the query in the printouts. The participants are told
to complete the task correctly but also as quickly as possible.

The person in front of the computer has to find the answers to six queries, which will
all be written either in SQL or JQS. They have a five minute time-limit to find the answer
to each query. After answering the six queries, the experiment participants switch roles.
If the first set of programs were written using SQL, then the next set of programs will be
written in JQS and vice versa. When the experiment is completed, both participants fill
in a short questionnaire about their experiences.

The experiment is designed to assess the difficulty that people have in understanding
the queries written in SQL and JQS based on whether they correctly interpret the meanings
of each query. It also provides some insight into the mental thought processes that people

58 CHAPTER 4. JREQ: IMPERATIVE-STYLE QUERIES

Apartment #8 Rooms / Piéces: 3 Agency / Agence:
= Rent / Loyer: CHF 1200 DCOG Agency SA
Rue du Centre 5
1000 Lausanne Surface: 65 m2 Avenue du Centre 2
Date: 01’.06.2008 1000 Lausanne
Floor / Etage: 8 5555555

Lausanne Taxes / Impots: 83

Figure 4.15: A sample apartment listing

Commune
*Alm, 1 *communeid
apartmentid name
address taxes
postalcode
communeid
rooms
rent >
surface Agm_
date *agencyid
floor name
agencyid address
postalcode
communeid
phone

Figure 4.16: Relational schema envisioned for the apartment listings

may use in understanding the queries since they must orally describe the queries to others
during the course of the experiment.

The Database

The queries used in the experiment are intended to act on a database of apartment listings.
There are twelve apartments in the listings, and the data for each apartment is printed
in the format shown in Figure 4.15. When participants are given instructions about the
experiment, they are also given a sample listing of five apartments that they can study
so that they can familiarize themselves with the data available. This was intended to
reduce the variability in results between the first half of the experiment and the second
half of the experiment where the roles of the study participants are reversed and the study
participants have more experience with the queries and the data schema.

The queries in the experiment assume that the apartment data is represented using
the relational schema shown in Figure 4.16 (or in a corresponding object-oriented schema
in the case of JQS). Fields marked with an asterisk are primary keys for the relation.

4.4.

Query Description

SYNTAX USABILITY

Variation A

99

Variation B

1 | Single table query

2 | Single table query
with aggregation and
two conditions

3 | Single table query

4 | Natural join between
two tables

5 | Single table query

6 | Join of a table with
itself

Table 4.1:

The Queries

The rents of apartments with
1.5 rooms or less

The number of apartments
available before 15.8.2008
and with a surface greater
than 100 square meters

The floor of the apartment at
the address Avenue de A.

The taxes of the commune
for the apartment at the ad-
dress Rue de A.

The addresses of apartments
with a rent of below 900

The name of communes with
taxes higher than the Renens
commune

The rents of apartments with
a surface of 30 square meters
or less

The number of apartments
with a rent of less than 1500
and with more than 2 rooms

The address of the apart-
ment with postal code 1025

The name of the agency re-
sponsible for the apartment
at the address Rue de A.

The addresses of apartments
available before 15.5.2008

The name of the agencies
with the same phone number
as the agency named A.

Descriptions of queries from the user study

In total there are twelve queries in the experiment, divided into two groups of six queries.
Queries from between the two groups are designed to have comparable difficulty and
structure. Table 4.1 gives descriptions of all the queries used in the experiment. Within
each group of six queries, the queries alternate between fairly simple queries and queries
of moderate difficulty. Overall, the task of understanding these queries is supposed to be
comparable to what a programmer might face if they had to learn the codebase of a new
web application that uses a database.

Each pair of participants in the study alternated between starting with the first six
queries being written in SQL or with the first six queries being written in JQS. Participants
were allowed to choose amongst themselves who would start with the queries and who
would start with the printouts of apartments.

The Questionnaire

The questionnaire asked participants to rank their knowledge of SQL into one of four
levels of experience—none, beginner, intermediate, and expert—based on whether they

60 CHAPTER 4. JREQ: IMPERATIVE-STYLE QUERIES

have no experience with SQL, have taken a course or read a book on SQL, taken multiple
courses on SQL or have worked on a SQL databases project, or have used SQL extensively
in multiple databases projects. Participants’ programming experience was also classified
into one of four categories—none, beginner, intermediate, and expert—based on whether
they do not know how to program, have 4 years or less of programming experience, over
4 years of programming experience, or over 4 years of experience and experience with
programming projects not related to courses. Participants were also asked to rank their
understanding of queries on a scale of one to five, to describe what they found difficult in
understanding the queries and to describe which queries were difficult to understand and
why.

4.4.2 Results

After a small pilot test involving two participants to find potential problems with the
study design, the user study was run with twelve participants drawn from various graduate
students and interns doing systems research at the computer science department of EPFL.

The audio of the conversations between the two participants was recorded and tran-
scribed. Two timing measurements were gathered for each query. The first measurement
is of the time between when a query is first shown and when the participant trying to
understand the query gives their first instruction to the participant with the printouts.
This is supposed to capture the time needed for someone to understand some part of a
query. The data is potentially noisy though because the timing data includes the time
that participants sometimes spent discussing the previous query and because some partic-
ipants start giving instructions as soon as they understand even only a small part of the
query while others wait until they fully understand the query before speaking. The second
measurement is of the time between when a query is first shown and when the participant
enters their answer to the query and clicks on a button to move on to the next query. This
is intended to capture the total time needed to understand a query, but, again, the data
is noisy for the same reasons listed before and also due to the variability in the amount
of time needed for the other study participant to look up data and the variability in the
amount of time needed to type in answers at the computer.

The audio transcripts were also analyzed to judge the correctness of the participants’
interpretations of the queries. The user study’s correctness criteria was that participants
needed to correctly identify the fields returned by the query, the subset of data selected
by the query, and the relationship between the different entities used in the query. Partic-
ipants’ final formulation of the query could not refer to unnecessary elements (so partici-
pants could not simply read the query verbatim, for example) though participants could
give instructions asking for more data than is strictly necessary to answer the query if
they later filter this data themselves when entering the answer to the query.

Overall, the experiment unfolded without incident, though some study participants still
expressed some confusion about the data schema during the experiment despite being able
to study it before the experiment commenced. Also, participants who had to understand
queries written in JQS tended to have more programming experience and slightly more
SQL experience than the participants who had to understand queries written in SQL.

4.4. SYNTAX USABILITY 61

JQsS SQL
Mean S.D. | Mean S.D. | F
Overall 22s 17s 28s 31s | F(1, 60) = 1.16, p<0.28
Simple Queries (Q1, Q3, Q5) 22s 11s 29s 38s | F(1,30) = 0.72, p<0.40
Moderate Queries (Q2, Q4, Q6) 22s 22s 27s 23s | F(1, 30) = 0.45, p<0.51
Q1 31s 10s | 60s 53s| F(1, 10) = 1.79, p<0.21
Q2 13s 3s 30s 34s | F(1, 10) = 1.51, p<0.25
Q3 20s 9s| 10s T7s| F(1, 10) = 5.64, p<0.04
Q4 11s 5s 29s 18s | F(1, 10) = 5.07, p<0.05
Q5 15s Ts 16s 19s | F(1, 10) = 0.03, p<0.86
Q6 43s 30s | 225 17s | F(1, 10) = 2.08, p<0.18

Table 4.2: ANOVA results of the time needed for a participant to give his or her first
instruction after seeing a query. Interaction effects are excluded because they do not have
a meaningful interpretation in this experiment

JQS SQL
Important details missed 2 3
Confusion about multiple entities 1 1
General misunderstanding 1
Problems with joins and entity keys 4

Table 4.3: A summary of the errors in query understanding that occurred during the user
study

Analysis

For completeness, a table with the analysis of variance of the times needed for study
participants to understand queries is included (Table 4.2). The user study was not designed
to generate quantitative conclusions given its small size, and this fact is reflected in the
results.

Table 4.3 shows the number of incorrectly interpreted queries from the user study and
the reasons behind each error. Although the results seem to suggest that participants had
more difficulty understanding SQL queries than JQS queries, this conclusion cannot be
definitively drawn due to the small size of the study. Nonetheless, this error data provides
some insights into query language features that can cause confusion among programmers.

In terms of errors caused by important details missed, it seems likely that the verbosity
of a query language might obscure important information or its syntax may emphasize
unimportant query features rather than important ones. For example, two of the JQS
errors were caused by participants asking for the wrong field to be returned in the result.
Figure 4.17 shows such an example. With SQL, there was only one such error. But JDBC’s
syntax for passing parameters to SQL did result in two errors. Participants mistook the
parameter index as being the parameter itself. Figure 4.18 shows the query in question.
The specific mistake made was that participants asked for apartments with less than a
single room instead of less than 1.5 rooms. No such problems occurred with the equivalent

62 CHAPTER 4. JREQ: IMPERATIVE-STYLE QUERIES

QUERY: OK, give me all the apartments that ...ah, number of rooms is less or equal
or 1.5

PRINTOUTS: Number of apartments?

QUERY: Number of rooms.

PRINTOUTS: No, you want to know number of apartments that has this?

QUERY: Uh, no, each of them.

PRINTOUTS: Apartment four, five, uh, that’s it.

Figure 4.17: A participant fails to ask for the rent field of apartments

double numRooms = 1.5;

PreparedStatement stmt = con.prepareStatement (
"SELECT A.rent "
+ "FROM Apartments A "
+ "WHERE A.rooms <= ?7");
stmt.setDouble(1, numRooms) ;
rs = stmt.executeQuery(Q);

Vector<Integer> toReturn = new Vector<Integer>();
while (rs.next())

toReturn.add(rs.getInt (1)) ;
return toReturn;

Figure 4.18: Potential SQL parameter confusion in a JDBC query

JQS query (Figure 4.19).

For SQL, problems understanding the use of keys in joins resulted in four errors.
Figure 4.20 shows a typical example of the confusion that occurs. SQL uses keys to
identify entities and to relate different entities with each other. These keys are usually not
inherent to the entity but are artificial constructs needed to model entities in the database.
In an object-oriented query language, this sort of confusion is rarer because entity keys
are rarely exposed, and the relationship between entities are exposed as methods (Figure
4.21).

The query from the same SQL example in Figure 4.21 also caused some confusion
about the multiple entities (apartments and agencies) involved. Participants thought
solely in terms of apartment entities. One of the errors for JQS was caused by a similar
misunderstanding (Figure 4.22).

Finally, one participant using JQS and one participant using SQL experienced general
confusion in trying to understand the queries (Figure 4.23).

4.4. SYNTAX USABILITY 63
double numRooms = 1.5;

DBSet<Integer> toReturn = new DBSet$<$Integer$>$();
for (Apartment a: db.allApartments()) {
if (a.rooms() <= numRooms)
toReturn.add(a.rent());
}

return toReturn;

Figure 4.19: This JQS query is equivalent to the JDBC query in Figure 4.18, but did not
lead to confusion about parameters

QUERY: Uh, you have to select, uh, you have to select the name of an apartment
PRINTOUTS: Mm.

QUERY: Whose ...agency id same as the id of Rue du [A].

PRINTOUTS: So the apartment, uh, where the agency is on this address?

QUERY: Uh, you first look at the agency id of, Rue du [A].

PRINTOUTS: There is no agency there

QUERY: What is this? Agency Id?...

Figure 4.20: A participant cannot understand how foreign and primary keys describe a
relationship between two tables

SELECT B.name for (Apartment a: db.allApartments())
FROM Apartments A, Agencies B if (a.address().equals(address))
WHERE A.address = ? toReturn.add(a.agency().name());

AND A.agencyid = B.agencyid

Figure 4.21: These query excerpts demonstrate how in an object-oriented query language
like JQS, the relationship between entities is explicit, unlike in SQL

QUERY: Agency [B] S dot A.

PRINTOUTS: Wait, wait, wait ...yeah?

QUERY: One second, I'll tell you ...OK. Find the apartments with that, ah, agency
[B] S dot A

PRINTOUTS: Got it.

QUERY: Got it, nah? ... Now...and find all other apartments with the phone num-
ber, with the same phone number as this.

PRINTOUTS: With the same phone number?

QUERY: Yeah

Figure 4.22: Participants became confused between apartment and agency entities

64 CHAPTER 4. JREQ: IMPERATIVE-STYLE QUERIES

QUERY: Yeah, um ...Oh my god. Give me two different communes ...that have
the same name. Uh. Wait. Two different communes that have the same name
but somehow the taxes are ...in one of them is higher than in the other.

PRINTOUTS: Mmm.

QUERY: Uh, so ... Hmm. Find two communes that have the same name, but, some-
how, y’know, different taxes.

PRINTOUTS: There’s none.

QUERY: Hmm? Nothing

PRINTOUTS: No.

Figure 4.23: General confusion over a join

4.4.3 Discussion

Overall, although a user study of this size does not allow one to make definitive state-
ments about whether one language is superior to another, the results do suggest that JQS
compares favorably with SQL using JDBC and that JQS avoids characteristics such as
joins and entity keys that can cause problems in SQL queries.

Furthermore, the study provides some insight into ways in which query languages ease
of use can be improved in general:

e Requiring programmers to manually marshal parameters into a query can cause
confusion

e Explicitly encoding the relationship between entities and hiding the use of keys will
result in more easily understood queries

e Programmers sometimes have trouble identifying the entities being examined by a
query and the fields returned by a query, so a query language should try to make
these elements of a query more clear

The concept of the “semantic gap” was evident in the study results in the form of users
having difficulty understanding joins between relations whereas they had little difficulty
understanding the explicit links between objects.

Interestingly, the user study did not find any indication that these query language
characteristics caused any difficulties:

e Declarative-style vs. imperative-style queries

e Syntax differences between a query language and the object-oriented language it is
embedded inside

This may be explained by the fact that the user study focused solely on understanding
queries, and these language characteristics may primarily be useful for programmers trying
to write new queries.

4.4. SYNTAX USABILITY 65

4.4.4 TPC-W

The behavior of JReq was evaluated by testing the ability for the JReq system to handle the
database queries used in the TPC-W benchmark [Tra02]. TPC-W emulates the behavior
of database-driven websites by recreating a website for an online bookstore.

The Rice implementation of TPC-W [ACC™02], which uses JDBC to access its database,
was used as a starting point. For each query in the TPC-W benchmark, an equivalent
query using JQS was written. The SQL generated from JQS was manually verified to
be semantically equivalent to the original SQL. The performance of each query when us-
ing the original JDBC and when using the JReq system could then be compared. The
JReq prototype does not provide support for database updates, so queries involving up-
dates were not tested. Since this experiment is intended to examine the queries generated
by JReq as compared to hand-written SQL, some of the extra features of JReq such as
transaction and persistence lifecycle management were also disabled.

A 600 MB database in PostgreSQL 8.3.0 [Pos] was created by populating the database
with the number of items set to 10000. The complete TPC-W benchmark, which tests the
complete system performance of web servers, application servers, and database servers,
was not run. Instead, the experiment focused on measuring the performance of individual
queries instead. Each query was first executed the query 200 times with random valid
parameters to warm the database cache, then the time needed to execute the query 3000
times with random valid parameters was measured, and finally the system was garbage
collected. Because of the poor performance of the getBestSellers query, it was only ex-
ecuted it for 50 times to warm the cache and the performance of executing the query
only 250 times was measured. The experiment first took the JQS version of the queries,
measured the performance of each query consecutively, and repeated the benchmark 50
times. The averages of only the last 10 runs are recorded to avoid the overhead of Java
dynamic compilation. The experiment then repeated this experiment using the original
JDBC implementation instead of JQS. The database and the query code were both run
on the same machine, a 2.5 GHz Pentium IV Celeron Windows machine with 1 GB of
RAM. The benchmark harness was run using Sun’s 1.5.0 Update 12 JVM. JReq required
approximately 7 seconds to translate the 12 JQS queries into SQL.

The performance of each of the queries is shown in Table 4.4. In all cases, JReq
is faster than hand-written SQL. These results are a little curious because one usually
expects hand-written code to be faster than machine-generated code. If one looks at the
one query in Figure 4.24 that shows the code of the original hand-written JDBC code and
compares it to the comparable JQS query and the JDBC generated from that query, one
can see that the original JDBC code is essentially the same as the JDBC generated by
JReq. In particular, the SQL queries are structurally the same though the JReq-generated
version is more verbose. What makes the JReq version faster though is that JReq is able
to take advantage of small runtime optimizations that are cumbersome to implement when
writing JDBC by hand. For example, all JDBC drivers allow programmers to parse SQL
queries into an intermediate form. Whenever the same SQL query is executed but with
different parameters, programmers can supply the intermediate form of the query to the
SQL driver instead of the original SQL query text, thereby allowing the SQL driver to

66 CHAPTER 4. JREQ: IMPERATIVE-STYLE QUERIES

Table 4.4: The average execution time, standard deviation, and difference from hand-
written JDBC/SQL (all in milliseconds) of the TPC-W benchmark are shown in this table
with the column JReq NoOpt referring to JReq with runtime optimizations disabled. One
can see that JReq offers better performance than the hand-written SQL queries

JDBC JReq NoOpt JReq
Query Time o Time o A Time o A
getName 3502 112 | 3633 24 1% | 2241 15 (38%)
getCustomer 8424 79 8944 57 6% 3939 24 (53%)
getMostRecentOrder | 29108 731 88831 644 205% 8009 57 (72%)
getBook 6392 30 7347 55 15% 3491 27 (45%)
doAuthorSearch 10216 24 || 10414 559 2% 7306 46 (28%)
doSubjectSearch 16999 128 || 16898 86 (1%) | 13667 120 (20%)
getIDandPassword 3706 33 3820 41 3% 2375 25 (36%)
getBestSellers 4472 50 4455 51 (0%) 3936 39 (12%)
doTitleSearch 27302 203 | 26979 418 (1%) | 23985 61 (12%)
getNewProducts 23111 68 || 24447 128 6% | 21086 70 (9%)
getRelated 6162 52 7731 92 25% 2690 34 (56%)
getUserName 3506 57 3569 13 2% 2214 11 (37%)

skip repeatedly reparsing and reanalyzing the same SQL query text. Taking advantage of
this optimization in hand-written JDBC code is cumbersome because the program must
be structured in a certain way and a certain amount of bookkeeping is involved, but this
is all automated by JReq.

Table 4.4 also shows the performance of code generated by JReq if these runtime
optimizations are disabled (denoted as JReq NoOpt). Of the 12 queries, the performance
of JReq and hand-written JDBC is identical for six of them. The other six queries show
slower performance in JReq than with hand-written JDBC for a variety of different reasons:

e Three queries (getBook, getCustomer, and getMostRecentOrder) are slower because
they fetch too much data. The original queries fetched most of the fields of certain
entities but not all of them, whereas the Queryll version of the query was written in
such a way as to read in the whole entity with all of its fields.

e One query (getNewProducts) also fetched more data than the original query. This
is caused by a limitation of the current Queryll syntax for sorting, which only allows
results to be sorted based on data in the results. The original query sorted its results
based on a field not in the final results. This field had to be fetched in the Queryll
version to allow it to be sorted properly. A better syntax for sorting would resolve
this issue.

e One of the queries (getRelated) was slower because the generated SQL was much
longer than the original SQL. The query involves ORing together five expressions,

4.4. SYNTAX USABILITY 67

Original hand-written JDBC query

PreparedStatement getUserName = con.prepareStatement (
"SELECT c_uname FROM customer WHERE c_id = ?7");

getUserName.setInt(1, C_ID);

ResultSet rs=getUserName.executeQuery();

if (!rs.next()) throw new Exception();

u_name = rs.getString("c_uname");
rs.close(); stmt.close();

Comparable JQS query
EntityManager em = db.begin();
DBSet<String> matches = new QueryList<String>();
for (DBCustomer c: em.allDBCustomer())
if (c.getCustomerId()==C_ID) matches.add(c.getUserName());
u_name = matches.get();
db.end(em, true);

JDBC generated by JReq
PreparedStatement stmt = null; ResultSet rs = null;
try { stmt = stmtCache.poll();
if (stmt == null) stmt = em.db.con.prepareStatement (
"SELECT (A.C_UNAME) AS COLO "
+ "FROM Customer AS A WHERE (((A.C_ID)=?))");
stmt.setInt (1, param0);
rs = stmt.executeQuery();
QueryList toReturn = new QueryList();
while(rs.next()) { Object value = rs.getString(l);
toReturn.bulkAdd(value); }

return toReturn;
} catch (SQLException e) { ... } finally {
if (rs != null) try { rs.close(); } catch...
stmtCache.add(stmt); }

Figure 4.24: Comparison of JDBC vs. JReq on the getUserName query

and due to JReq’s ORing together of paths, this gets translated into a long query
(Figure 4.25). This is not an actual problem with exponential path explosion since
there is only one path for each OR, but each path is translated into a long conjunction
of terms. The use of boolean algebra minimization techniques (like those used in IC
circuit simplification) could solve this problem.

e Finally, one query (getIDandPassword) resulted in a query that was structurally
identical to the original query, but it was more verbose due to the fact that it was
machine-generated, resulting in slightly longer times to parse the query. This excess

68 CHAPTER 4. JREQ: IMPERATIVE-STYLE QUERIES

Queryll query
i.getItemld() == iid &&
(i.getRelatedIteml() == j.getItemld() || i.getRelatedItem2() == j.getItemld()
|| i.getRelatedItem3() == j.getItemld() || i.getRelatedItem4() == j.getItemld()
|| i.getRelatedItemb() == j.getItemld())

SQL generated by JReq

(((A.iid)=?) AND
OR (((A.iid)=?) AND
OR (((A.iid)=?) AND

Ai_relatedl)=(B.i.id)

A.irelatedl)!=(B.iid AND ((A.irelated1)=(B.i_id)))

AND ((A.irelatedl)!=(B.i-id))

Ai_relatedl)!=(B.i.id

)
)
)
AND ((A.irelatedl)=(B.i_id)
)= ((A.irelatedl)!=(B.i_id))
AND ((A.irelatedl)!=(B.i_id AND ((A.irelated1)=(B.iid)))
OR (((A.iid)=?) AND ((A..relatedl)!=(B.i.id)) AND ((A.i_relatedl)!=(B.i.id))
AND ((A.irelatedl)!=(B.i_id AND ((A.i_relatedl)!=(B.i_id))

(()
(()
(()
(()
OR (((A.iid)=?) AND ((A.irelatedl)!=(B.i.id)) AND

(()
(()
(()

)

AND ((A.irelatedl)=(B.i_id)

Figure 4.25: Although the 5 ORs in the getRelated query do not result in path explosion,
the ORs are still not translated very efficiently

verbosity can be handled by filtering out extraneous elements from the outputted
query.

Overall though, all the queries from the TPC-W benchmark, a benchmark that emu-
lates the behavior of real application, can be expressed in JQS, and JReq can successfully
translate these JQS queries into SQL. JReq generates SQL queries that are structurally
similar to the original hand-written queries for all of the queries. Although the machine-
generation of SQL queries may result in queries that are more verbose and less efficient
than hand-written SQL queries, by taking advantage of various optimizations that a nor-
mal programmer may find cumbersome to implement, JReq can potentially exceed the
performance of hand-written SQL.

4.4.5 TPC-H

Although TPC-W does capture the style of queries used in database-driven websites, these
types of queries make little use of more advanced query functionality such as nested queries.
To evaluate JReq’s ability to handle more difficult queries, some benchmarks have been
run involving TPC-H [Tra08]. The TPC-H benchmark tests a database’s ability to handle
decision support workloads. This workload is characterized by fairly long and difficult ad
hoc queries that access large amounts of data. The purpose of this experiment is to verify
that the expressiveness of the JQS query syntax and JReq’s algorithms for generating SQL
queries are sufficient to handle long and complex database queries.

The 22 SQL queries and parameter generator from the TPC-H benchmark were ex-
tracted and modified to run under JDBC in Java. MySQL 5.0.51 was chosen for the

4.4. SYNTAX USABILITY 69

database instead of PostgreSQL in this experiment in order to demonstrate JReq’s abil-
ity to work with different backends. The following changes were required to the TPC-H
queries to run them on MySQL:

e Query 1 was altered to remove the precision indicator during mathematics on dates
since this feature is not supported by MySQL.

e For Query 13, the method used for naming columns was altered to be compatible
with MySQL.

e Query 15 used temporary tables. Since JReq focuses on queries only, query variant
15a, rewritten to use nested queries instead of temporary tables, was used instead.

The queries were rewritten using JQS syntax. All 22 of the queries could be expressed
using JQS syntax except for query 13, which used a LEFT OUTER JOIN, which was
not supported in this version of JQS, as described in Section 4.2.4. To verify that the
JQS queries were indeed semantically equivalent to the original queries, the query results
between JDBC and JReq when run on a small TPC-H database using a scale factor of
0.01 were compared, and the results matched. This shows the expressiveness of the JQS
syntax in that 21 of the 22 queries from TPC-H can be expressed in the JQS syntax and
be correctly translated into working SQL code. JReq required approximately 33 seconds
to translate the 21 JQS queries into SQL.

A TPC-H database using a scale factor of 1 was generated, resulting in a database
about 1GB in size. Each of the 21 JQS queries from TPC-H were executed in turn using
random query parameters, with a garbage collection cycle run in-between each query. The
corresponding JDBC queries using the same parameters were then executed. This was
repeated six times, with the last five runs kept for the final results. Queries that ran
longer than one hour were canceled. A 2.5 GHz Pentium IV Celeron machine with 1
GB of RAM running Fedora Linux 9, and Sun JDK 1.5.0 Update 16 was used for the
experiment. Table 4.5 summarizes the results of the benchmarks.

Unlike TPC-W, the queries in TPC-H take several seconds each to execute, so runtime
optimizations do not significantly affect the results. Since almost all the execution time
occurs at the database and since the SQL generated from the JQS queries are semantically
equivalent to the original SQL queries, differences in execution time are mostly caused
by the inability of the database’s query optimizer to find optimal execution plans. In
order to execute the complex queries in TPC-H efficiently, query optimizers must be
able to recognize certain patterns in a query and restructure them into more optimal
forms. The particular SQL generated by JReq uses a SQL subset that may match different
optimization patterns in database query optimizers than hand-written SQL code.

e For example, the original query 16 evaluates a COUNT(DISTINCT) operation inside
of GROUP BY. This is written in Queryll using an equivalent triply nested query,
but MySQL is not able to optimize the query correctly, and running the triply nested
query directly results in extremely poor performance.

70

CHAPTER 4. JREQ: IMPERATIVE-STYLE QUERIES

Table 4.5: TPC-H benchmark results showing average time, standard deviation, and time
difference (all results in seconds)

JDBC JReq JDBC JReq

Query | Time o | Time o A || Query | Time o | Time o A
ql 73.5 04| 719 3.4 (2%) ql2 23.4 0.5 29.7 0.2 2%
q2 1454 2.2 1460 19 0% ql4d 491.7 8.9 | 500.8 10.1 2%
q3 379 06| 386 09 2% qlb 24.9 0.7 24.8 0.6 (0%)
q4 23.0 05| 238 02 3% ql6 21.3 0.6 | > 1hr - -
qb 209.1 4.2 206.1 3.2 (1%) ql7 2.1 0.2 11.0 3.6 429%
q6 152 03| 15.8 0.3 4% ql8 | >1hr -| 3493 4.0 -
q7 79.1 05| 831 16 5% ql9 2.8 0.1 18.1 0.4 540%
q8 488 1.7 51.0 1.9 4% q20 69.4 4.3 | 508.4 11.4 633%
q9 682.0 97.4 | 690.2 979 1% q21 245.5 3.2 | 517.0 7.1 111%
ql0 471 1.0| 472 05 0% q22 1.1 0.0 1.6 0.0 43%
qll 41.7 06| 419 0.7 1%

e Oddly, in query 18, JReq’s use of deeply nested queries instead of a more specific SQL

operation (in this case, GROUP BY...HAVING) fits a pattern that MySQL is able to
execute efficiently, unlike the original hand-written SQL. Because of the sensitivity
of MySQL’s query optimizer to the structure of SQL queries, it will be important in
the future for JReq to provide more flexibility to programmers in adjusting the final
SQL generated by JReq.

e Queries 20 and 21 in Queryll are slower than the hand-written SQL because the

queries use the IN and EXISTS keywords several times, but Queryll’s syntax cur-
rently does not provide a way to express the meanings of these keyword directly,
so instead they are expressed by counting the number of elements that match and
checking if the count is greater than 0.

e In queries 17 and 22, the Queryll queries were slower than the original because

Queryll does not currently have direct support for calculating averages, so averages
are calculated indirectly by taking the total of the data and dividing by the number of
elements. When calculating averages over large subqueries, this approach is slower.

e Finally, queries 7, 12, and 19 are slower in JReq because the queries make use of

OR, which can result in a large number of long paths being generated by the JReq
algorithm, resulting in longer queries.

Overall, 21 of the 22 queries from TPC-H could be successfully expressed using the

JQS syntax and translated into SQL. Only one query, which used a LEFT OUTER JOIN,
could not be handled because JQS and JReq do not currently support the operation yet.
For most of the queries, the JQS queries executed with similar performance to the original

4.5. SUMMARY 71

queries. Where there are differences in execution time, most of these differences can be
eliminated by either improving the MySQL query optimizer, adding special rules to the
SQL generator to generate patterns that are better handled by MySQL, or extending the
syntax of JQS to allow programmers to more directly specify those specific SQL keywords
that are better handled by MySQL.

4.5 Summary

The JReq system translates database queries written in the imperative language Java
into SQL. Unlike other systems, the algorithms underlying JReq are able to analyze code
written in imperative programming languages and recognize complex query constructs
like aggregation and nesting. In developing JReq, a syntax for database queries that can
be written entirely with normal Java code was created, an algorithm based on symbolic
execution to automatically translate these queries into SQL was designed, and a research
prototype of the system that shows competitive performance to hand-written SQL was
implemented.

72

CHAPTER 4. JREQ: IMPERATIVE-STYLE QUERIES

Chapter 5

HadoopToSQL: MapReduce-Style
Queries

In object-oriented imperative languages like Java, large datasets are typically processed
by using a loop to iterate over the records of the dataset. The JReq system demonstrated
how to build a query language using such a syntax. There are alternate approaches to
processing large datasets in languages like Java though.

Programmers are increasingly using MapReduce [DG04] for performing queries over
large datasets. With MapReduce, programmers write queries by defining two functions—
map and reduce—for filtering, processing, and grouping records together. MapReduce
is popular because it transparently handles many of the difficulties of processing data on
clusters of commodity hardware, including issues such as fault tolerance, data transfer, and
data partitioning. Although initially used for log-processing, it has now been applied to
new workloads such as scientific computing [CS08] and business decision support systems
[KJH'08].

Although MapReduce is used for processing large amounts of data, MapReduce code
cannot automatically use database features like indices to improve its performance [PPR*09].
Programmers have started using the MapReduce abstraction with advanced storage en-
gines that support database features [CDGT06] instead of cluster file systems, but to make
use of the database features, programmers must write their database operations separately
from their MapReduce code. These database operations are typically written in their own
separate query language.

With HadoopToSQL, programmers can write their code for processing large datasets
entirely within the MapReduce framework. HadoopToSQL can then analyze the code and
automatically extract database operations that can be used to improve the performance
of the code. It operates on MapReduce queries written for the Hadoop [Apa] open-source
MapReduce implementation. Hadoop queries are written using normal Java code. Unlike
JReq, which focuses on allowing programmers to describe database operations by working
with a restricted subset of the Java language, HadoopToSQL cannot impose such restric-
tions. Much of the power and usefulness of MapReduce comes from the fact that it allows
arbitrary computation inside the map and reduce functions. As a result, HadoopToSQL

73

74 CHAPTER 5. HADOOPTOSQL: MAPREDUCE-STYLE QUERIES

function map(LogEntry, output):
output.collect(LogEntry.Country, 1);

function reduce(Country, Iterator, output)

int sum = 0;

loop:
if !Tterator.hasNext() goto end
Iterator.next();
sum += 1;
goto loop

end:
output.collect(Country, sum);

Figure 5.1: Pseudocode for a MapReduce query that counts the LogEntries for each coun-
try.

SELECT A.Country, COUNT(*)
FROM LogEntry A
GROUP BY A.Country

Figure 5.2: HadoopToSQL is able to analyze the MapReduce query from Figure 5.1 and
generate this equivalent SQL query.

acts more as a query optimizer that optimizes MapReduce code by finding code that can be
more efficiently run as a database operation and rewriting them. In certain cases though,
HadoopToSQL is able to translate a MapReduce query entirely to SQL. For example, the
MapReduce query in Figure 5.1 can be translated to the equivalent SQL query in Figure
5.2. If HadoopToSQL is not capable of generating an equivalent SQL query, it tries to find
input restrictions for the query so that the query can take advantage of indexing features
of SQL storage engines.
This work makes the following research contributions:

e Algorithms are presented for analyzing and understanding MapReduce code.

e This understanding is shown to enhance MapReduce performance by using the
database features of advanced storage engines.

e These algorithms have been implemented and evaluated to demonstrate the perfor-
mance benefits of this approach.

5.1 Background and Motivation

MapReduce is a data processing model designed primarily for large clusters of machines. In
a MapReduce cluster, all data is stored as (key, value) pairs. There may be multiple values

5.1. BACKGROUND AND MOTIVATION 75

function map(keyl, valuel) : (key2, value2)x
function reduce(key2, value2+*) : (key3, valued)x*

foreach (keyl, valuel) in dataset
temp.addAll (map(keyl, valuel))

temp.sort ()

foreach (key2) in temp.keys()
result.addAll (reduce(key2, templ[key2]))

Figure 5.3: A conceptual view of how a MapReduce query is executed.

per key. To perform a query across this data, programmers must define two functions:
map and reduce. In Hadoop, map functions take a (key, value) pair as input and output
zero or more new (key, value) pairs. Then, the system sorts these new (key, value) pairs.
For each key, all the values that correspond to that key are passed as input to the reduce
function, which then generates zero or more new (key, value) pairs as output. The final
set of (key, value) pairs is saved as the result of the query. Figure 5.3 shows a conceptual
view of how a MapReduce query is executed. Typically, programmers write the code for
these two functions using a conventional imperative programming language.

MapReduce is popular because it provides a powerful yet simple-to-understand abstrac-
tion that hides many of the difficulties of performing queries on large computer clusters
such as dealing with inter-machine communication bottlenecks and machine failure. In
practice, MapReduce queries scale well to giant datasets stored across large machine clus-
ters. Since MapReduce is designed to handle failure-prone hardware, it works well with
clusters built using commodity hardware, hence providing excellent scalability to large
datasets at a reasonable cost.

It is possible to use a traditional declarative query language like SQL or Hive for the
same domain [PPR109, SAD"10]. However, queries that need to perform complex compu-
tation are ill-suited for declarative query languages but are easily expressed in MapReduce.
MapReduce programs are written in conventional imperative programming languages such
as Java. Therefore, it is easy to include arbitrary computation such as a complicated Al
classifier or mathematical computation. Such computation cannot be expressed directly
in declarative query languages but must be programmed externally and then imported
into the query language using user-defined functions and stored procedures.

In the research literature, MapReduce has traditionally been used within the context of
log-processing workloads [PDGQO05, ORS™08]. For example, a MapReduce query needs to
examine all the log entries of visits to a website to find the most popular web pages on that
site. Since these workloads typically require that every record in a dataset be examined,
MapReduce is usually paired with a basic cluster file system as a storage engine. All
record entries can then easily be streamed off the file system and into the map function.

There are workloads, though, that access only subsets of a dataset. For example, a
business might want to analyze their sales in a certain region within a specific date range.
For these workloads, streaming through every record in a dataset is extremely inefficient.

76 CHAPTER 5. HADOOPTOSQL: MAPREDUCE-STYLE QUERIES

Indexing the dataset in advance and then using the index to restrict which records are
examined is potentially much faster and more efficient. In order to support this possibility,
MapReduce needs to be run using an advanced storage engine that supports indexing, and
MapReduce queries must be rewritten to take advantage of these storage engine features.
Instead, MapReduce code can be analyzed in order to automatically extract information
about the subset being accessed.

This analysis is not straight-forward because MapReduce supports arbitrary computa-
tion in its map and reduce functions. As a result, any MapReduce query optimizer must be
able to analyze arbitrary code in order to extract possible optimizations. HadoopToSQL
is designed to optimize Hadoop MapReduce code, in which map and reduce functions are
expressed using Java. Since there are at present no advanced storage engines purpose-built
for MapReduce, the optimizations have been targeted towards an SQL storage engine.

There already exist possible scenarios where programmers may want to run MapReduce
on top of SQL databases. For example, some firms horizontally partition large SQL
datasets across many small commodity machines [Per|. In such a configuration, queries
that access data on only a single machine are fast, but more complex queries that aggregate
data across the machines require the use of a distributed SQL database [DGS88, PPR™09]
or distributed middleware layer [ST , Spo]. These firms may choose to use MapReduce for
this purpose. Even if a company has an SQL database that fits entirely on a single server,
it might decide to write its queries using MapReduce if it believes it will eventually build
a MapReduce cluster for data warehousing.

Ultimately, though, HadoopToSQL targets SQL storage engines because they are read-
ily available. The main purpose of HadoopToSQL is to demonstrate that static analysis
can be used to better understand MapReduce queries. This understanding can be used to
adapt MapReduce code automatically to take advantage of advanced storage engines.

5.2 Transformations

The key innovation in HadoopToSQL is a static analysis component that uses symbolic
execution to analyze the Java code of a MapReduce query. It transforms queries to
make use of SQL’s indexing, aggregation, and grouping features. HadoopToSQL offers
two algorithms that generate SQL code from MapReduce queries. One algorithm can
extract input set restrictions from MapReduce queries, and the other can translate entire
MapReduce queries into equivalent SQL queries. Both are intra-procedural algorithms.
They function by finding all control flow paths through map and reduce functions, using
symbolic execution to determine the behavior of each path, and then mapping this behavior
onto possible SQL queries. HadoopToSQL analyzes all MapReduce queries using both
techniques. Since translating entire queries into SQL offers more performance benefits
than simply finding input set restrictions, that optimization is preferred if both can be
applied to a particular query. If none are applicable, then the query is run without
optimization.

5.2. TRANSFORMATIONS 7

5.2.1 Input Set Restrictions in the Map Function

Since database queries tend to be very data-intensive, one of the most important optimiza-
tions that can be performed is to reduce the amount of data that needs to be processed.
MapReduce queries that operate on only a subset of a dataset can be greatly optimized if
HadoopToSQL is able to extract the shape of this subset from the query code and apply
this shape as a constraint on the input set of the queries. For example, given a database
of a company’s sales, a query that analyzes the sales of a certain region only needs to be
supplied with data from that region.

Conceptually, HadoopToSQL’s algorithm for finding input set restrictions works by
tracing through different possible execution paths of the map function. As HadoopToSQL
follows the paths of these traces, it records the constraints on variables that need to
hold for each trace to occur. If a trace does not result in output being generated, then
the trace is ignored. If a trace does result in output being generated, then the input
constraints that trigger the trace are included in the input set. There can also be traces
that HadoopToSQL cannot fully analyze such as traces with calls to unknown methods.
When faced with such imprecise knowledge, HadoopToSQL must make the conservative
assumption that this trace generates output. As such, the input constraints that trigger
the trace are also included in the input set. The resulting restrictions are not “tight” but
do not exclude any data unintentionally.

HadoopToSQL generates these traces by performing a depth-first walk of all paths
through the control flow graph of the map function, starting at the entry point and ending
at the function exit. It stops traversing along a path upon encountering a loop (which can
lead to infinitely long paths) or a statement with unknown side-effects. It then labels that
path as not fully analyzable. Statements with unknown side-effects include essentially all
method calls, but HadoopToSQL knows about common methods with no side-effects like
String.equals (), methods of automatically generated entity objects, and methods that
are necessary for MapReduce such as Output.collect (). This approach to path traversal
leads to HadoopToSQL being most effective at finding input constraints in programs that
filter their input as early as possible.

To calculate the constraints on variables that need to hold for a trace to occur, Hadoop-
ToSQL uses symbolic execution to calculate the preconditions and postconditions of exe-
cuting the statements of a path. Essentially, each branch on a path becomes a precondition
of the path, and each method call and variable assignment to a non-local variable becomes
a postcondition. For each path that might generate output, HadoopToSQL takes the var-
ious preconditions of the path and creates a single precondition expression for the path by
ANDing them together. This expression describes the input that triggers the execution
of the path. HadoopToSQL then takes these expressions for each path and ORs them all
together. This results in a boolean expression that can be used to restrict the input set
to the query.

Figure 5.4 shows an example map function, which will be used to illustrate how the in-
put set restriction algorithm works. The function includes a call to a classify() method
that potentially contains a complicated algorithm for classifying sales into different cate-
gories and sizes. HadoopToSQL first enumerates all paths through the method, truncating

78 CHAPTER 5. HADOOPTOSQL: MAPREDUCE-STYLE QUERIES

function map(Sale, Output):

if Sale.Region() == "East" goto end

if Sale.Region() != "North" goto output

Classification = classify(Sale)

if Classification.Size() <= 5 goto end
output:

Output.collect(

Classification.SalesCategory(), Sale)

end:

return

Figure 5.4: Pseudocode of a map function that analyzes the sales in a certain region.

paths that include the classify() method since the method has unknown side-effects
(Figure 5.5).

HadoopToSQL then uses symbolic execution on each path to determine the precondi-
tions and postconditions of each path. Figure 5.6 shows the preconditions and postcondi-
tions of the two paths from Figure 5.5.

HadoopToSQL knows that the method Sale.Region() has no side-effects because it
is an accessor method of an automatically generated entity object. It can thus determine
that path 3 does not generate output, that path 2 obviously does generate output, and
that path 1 is not fully analyzable. As a result, it uses the input constraints of path 1 and
path 2 to generate input set restrictions for the query. The individual preconditions of
each path are ANDed together to form input constraints for the path. These expressions
are then ORed together, resulting in the final input set restrictions, which may contain
redundant terms (Figure 5.7). The code for reading data into the map function can then
be modified to include a WHERE clause with these input set constraints (Figure 5.8).
Although the final WHERE clause may be amenable to further simplification, this task is
left to the SQL query engine.

5.2.2 Complete Translation to SQL

HadoopToSQL’s second transformation algorithm can translate entire MapReduce queries
into a single SQL query. Such a query can be more efficient than a normal MapReduce
query by reading only the fields of a record that are used by the query. It can also make
use of aggregation optimizations in SQL databases. For example, a query might divide
its data into a large number of categories based on whether the value of a field fits within
certain ranges. It might then calculate aggregates for each category. If a database has
sorted its dataset by the same field, it can calculate these aggregates with a single pass
through the data. Finally, a query that is fully translated to SQL can also make use of
input constraints.

Unfortunately, since the query model supported by MapReduce cannot be mapped
directly onto the SQL query model, this transformation is only feasible for certain classes

5.2. TRANSFORMATIONS 79

Path 1:

if Sale.Region()
if Sale.Region()
Classification =

Path 2:
if Sale.Region()
if Sale.Region()
goto output
Output.collect(
Classification.
Sale)

Path 3:

if Sale.Region()
goto end

Figure 5.5:

== "East" (branch not taken)

I= "North" (branch not taken)

classify(Sale) (path traversal
aborted)

== "East" (branch not taken)

I= "North" (branch is taken)

SalesCategory(),

== "East" (branch is taken)

HadoopToSQL finds three paths through the map function.

of MapReduce queries. HadoopToSQL can only translate MapReduce queries fulfilling
these general properties into SQL queries:

For the map function:

e Any execution

of the map function can emit at most one (key, value) pair.

e The function can make arbitrary use of if statements but it cannot contain any

loops.

e The function can only use operators and functions that exist in SQL.

e The function can create and modify only local variables. These variables must have

types that are

compatible with SQL.

For the reduce function:

e The reduce function must emit exactly one (key, value) pair.

e The (key, value) pair output by the function must use same key that is used for its
input (key, value) pairs.

e The function can only use operators and functions that exist in SQL.

e The function can create and modify only local variables. These variables must have

types that are

compatible with SQL.

80 CHAPTER 5. HADOOPTOSQL: MAPREDUCE-STYLE QUERIES

Path 1 Preconditions:
Sale.Region() != "East"
Sale.Region() == "North"

Path 1 Postconditions:
Sale.Region()
(traversal aborted)

Path 2 Preconditions:
Sale.Region() != "East"
Sale.Region() !'= "North"

Path 2 Postconditions:
Sale.Region()
Output.collect(
Classification.SalesCategory(), Sale)

Path 3 Preconditions:
Sale.Region() == "East"

Path 3 Postconditions:
Sale.Region()
(exit function)

Figure 5.6: By using symbolic execution, HadoopToSQL is able to determine the precon-
ditions and postconditions of executing each path through the code.

Path 1 Precondition Expression:
Sale.Region() != "East"
AND Sale.Region() == "North"

Path 2 Precondition Expression:
Sale.Region() != "East"
AND Sale.Region() != "North"

Final Boolean Expression:

(Sale.Region() != "East"
AND Sale.Region() == "North")

OR (Sale.Region() != "East"
AND Sale.Region() != "North")

Figure 5.7: From the preconditions of each path, HadoopToSQL is able to derive a boolean
expression describing the input set restrictions.

5.2. TRANSFORMATIONS 81

ResultSet rs = execute(
"SELECT * FROM Sale A"
+ " WHERE (A.Region <> ’East’ "

+ " AND A.Region = ’North’)"
+ " OR (A.Region <> ’East’ "
+ " AND A.Region <> ’North’)";

while (rs.next())
Sale s = new Sale(rs);
apply map to s

Figure 5.8: Pseudocode for how the input set constraint appears in the WHERE clause
of an SQL query for feeding data into a map function.

e The reduce function should either be the identity function, or it should iterate over
its input values and compute some sort of aggregation that is compatible with SQL.

Most of these properties are the result of the inherent restrictions of the SQL query
syntax and are not due to inflexibility in the transformation algorithm. For example, an
SQL query can output at most one output row for each input row processed, so for a map
function to be translated into an SQL query, it too can only output at most one (key,
value) pair for each input (key, value) pair.

Conceptually, the transformation that HadoopToSQL performs is that it tries to fill in
a stencil of a SELECT...FROM... WHERE. .. GROUP BY query based on the behavior
of the map and reduce functions. HadoopToSQL extracts an input restriction from the
map function, and uses it as the WHERE clause of the SQL query. The (key, value) pair
generated by the map function is used as the SELECT clause of the SQL query. If the
reduce function calculates an aggregation, then a GROUP BY clause is added to the query
with a grouping based on the key, and the SELECT clause is modified to aggregate the
values computed in the map.

The analysis of the map function is performed using the same method as described
in Section 5.2.1, but HadoopToSQL needs to fully understand the behavior of the code
instead of merely calculating a conservative approximation. Once the map code is bro-
ken up into paths and after the preconditions and postconditions have been calculated
through symbolic execution, HadoopToSQL can use the path preconditions to compute
an expression for the WHERE clause. There should be no ambiguous operations in the
preconditions, so the resulting input set restrictions are exact. Since the data being output
by the map function are encoded in the path postconditions, HadoopToSQL can simply
extract the expressions being output and use them in the SELECT clause.

For example, consider the map and reduce functions in Figure 5.9. The program
divides sales into two categories—one category for the “North” region and one category
for the others—and calculates the total commission on sales for each category. There are
two paths through the map function, both of which generate output. Figure 5.10 shows
the preconditions and postconditions for the two paths, and it shows how to derive a single

82 CHAPTER 5. HADOOPTOSQL: MAPREDUCE-STYLE QUERIES

function map(Sale, Output):

if Sale.Region() != "North" goto L1
Output.collect("North", Sale.Commission())
goto mapend

L1:
Output.collect("NotNorth", Sale.Commission) ;

mapend:
return

function reduce(key, Iterator, Output):

sum = O

loop:
if !Iterator.hasNext() goto reduceend
sum = sum + Iterator.next()
goto loop

reduceend:
Output.collect(key, sum)
return

Figure 5.9: Pseudocode for a MapReduce program that can be translated completely into

SQL.

SELECT clause that is equivalent to the two paths.

The extraction of aggregation information from the reduce function is more involved
because the reduce function must use a loop to iterate over its input. The loop in the func-
tion is found by using a strongly-connected components algorithm. All the paths through
this loop are enumerated and the preconditions and postconditions for each path are cal-
culated using symbolic execution (Figure 5.11). HadoopToSQL has a series of template
patterns that describe how various SQL aggregation operations are expressed as a loop’s
preconditions and postconditions (Figure 5.12). By matching these templates against the
loop, it is able to identify which SQL aggregation is being used. HadoopToSQL currently
has templates for recognizing SQL’s SUM, MIN, and MAX aggregation operations. The
templates look for loops that iterate over a collection and that collect a result in a single
variable.

HadoopToSQL can then analyze the non-loop code of the reduce function by again
using symbolic execution to calculate path preconditions and postconditions. The symbolic
execution engine treats the loop as a single statement that calculates an aggregation. If
the rest of the reduce code satisfies all the reduce function properties described earlier
in this section, then the key is added as a GROUP BY to the query, and aggregation
operations are applied to the values in the SELECT clause. Since MapReduce results
appear in sorted order, HadoopToSQL also adds an ORDER BY clause to the final query.

So in the example, if the loop is found to match a template for a SUM aggregation, then
the loop of the reduce function is replaced by a single statement summarizing the effect of

5.2. TRANSFORMATIONS 83

Path 1 Preconditions:
Sale.Region() == "North"
Path 1 Postconditions:
Output.collect("North", Sale.Commission())

Path 2 Preconditions:
Sale.Region() != "North"
Path 2 Postconditions:
Output.collect ("NotNorth", Sale.Commission())

SELECT CASE WHEN A.Region = "North" THEN "North"
ELSE "NotNorth" END,
A.Commission
FROM Sale A

Figure 5.10: The SELECT clause of an SQL query can be computed based on the precon-
ditions and postconditions of the paths through the map function. This SELECT clause
calculates only two fields: one for the map function’s key and one for the map function’s
value. Because the key differs based on the input, a CASE statement is required.

Path 1 Preconditions:
ITterator.hasNext ()

Path 1 Postconditions:
exit loop

Path 2 Preconditions:
Iterator.hasNext ()

Path 2 Postconditions:
Iterator.next ()
sum = sum + Iterator.next()

Figure 5.11: The loop of the reduce function in Figure 5.9 has these preconditions and
postconditions, which indicate that it calculates a SUM() aggregation.

84 CHAPTER 5. HADOOPTOSQL: MAPREDUCE-STYLE QUERIES

Path i Preconditions:
!Tterator.hasNext ()

Path i Postconditions:
exit loop

Path n Preconditions:
Iterator.hasNext ()

Path n Postconditions:
Iterator.next()
sum = sum + expression

Figure 5.12: Template pattern for identifying a loop as a SUM aggregation. In the template
patterns for MAX and MIN aggregation, the addition operation is replaced by a max and
min operation respectively.

function reduce(key, Iterator, Output):
sum = O
loop:
sum += SUM(Iterator values)
reduceend:
Output.collect(key, sum)
return

Figure 5.13: The loop inside the reduce function is replaced by a statement summarizing
the effect of the loop.

the loop (Figure 5.13). Symbolic execution is then applied to the entire reduce function
to calculate postconditions, which reveals that the reduce function encodes a GROUP BY
query (Figure 5.14). The SELECT clause used to calculate the outputted key and value
of the map function can then be merged into a GROUP BY stencil to produce a final SQL
query for the combined map and reduce functions (Figure 5.15). The final query may
contain expressions that can be further simplified, but this task is left to the SQL query
engine.

5.3 Implementation Details

The HadoopToSQL system consists of a static analysis component and a runtime com-
ponent. The static analysis component is applied to the Java bytecode of a MapReduce
query. It attempts to apply different transformations to the code to try to find an efficient
way to execute the code on an SQL database. The runtime component provides a simple

5.3. IMPLEMENTATION DETAILS 85

Path Postconditions:
Output.collect(key, O + SUM(value))

Matching GROUP BY stencil:
SELECT key, SUM(value)
FROM ...
GROUP BY key
ORDER BY key

Figure 5.14: If the postconditions for the non-loop portions of the reduce function show
that the function satisfies the needed properties, the SQL query can be converted to use
a GROUP BY and aggregation.

object-relational mapping tool to simplify access to database entities. It includes runtime
libraries for mapping the SQL data model to fit the MapReduce data model.

5.3.1 Static Analysis Component

The static analysis component of HadoopToSQL is implemented as a bytecode rewriter.
It is able to take a compiled MapReduce program generated by the Java compiler and
analyze it to find ways to run it efficiently on an SQL database.

Although the HadoopToSQL bytecode rewriter accepts Java bytecode as input, its
internal processing is actually based on a representation called Jimple, a three-address
code version of Java bytecode. It uses the SOOT framework [VRCGT99] from Sable to
transform Java bytecode to this representation. Raw Java bytecode is difficult to process
because of its large instruction set and the need to keep track of the state of the operand
stack. In Jimple, there is no operand stack. There are only local variables, meaning that
HadoopToSQL can use one consistent abstraction for working with values.

The static analysis component outputs a data structure that contains descriptions of
how various map and reduce functions can be translated to SQL. The HadoopToSQL
runtime component can then query this data structure when deciding on a procedure for
executing MapReduce queries. Because of HadoopToSQL’s design as a bytecode rewriter,
it can be added to the toolchain as an independent module, with no changes needed to
existing IDEs, compilers, virtual machines, or other such tools.

5.3.2 Runtime Component

HadoopToSQL contains various runtime libraries for allowing an SQL storage model to
mix with a MapReduce approach to data.

For example, with MapReduce, data records are typically stored as text in files, whereas
in SQL, data records are stored as relations in tables. Neither storage representation is
particularly convenient for programmers, who prefer mapping these representations to
an object representation inside their programs. HadoopToSQL includes a simple object-
relational mapping (ORM) tool that can perform this mapping of either text or relations

86 CHAPTER 5. HADOOPTOSQL: MAPREDUCE-STYLE QUERIES

Output of the map function:
SELECT
/* Key */
CASE
WHEN A.Region = "North" THEN "North"
ELSE "NotNorth" END,
/* Value */
A.Commission
FROM Sale A
WHERE /* Input restriction */
A.Region = "North"
OR A.Region <> "North"

Stencil for the reduce function’s GROUP BY:
SELECT key, SUM(value)
FROM ...
WHERE input restriction
GROUP BY key
ORDER BY key

Final SQL query:
SELECT CASE
WHEN A.Region = "North" THEN "North"
ELSE "NotNorth" END,
SUM(A.Commission)
FROM Sale A
WHERE A.Region = "North"
OR A.Region <> "North"
GROUP BY CASE
WHEN A.Region = "North" THEN "North"
ELSE "NotNorth" END
ORDER BY CASE
WHEN A.Region = "North" THEN "North"
ELSE "NotNorth" END

Figure 5.15: Merging the SELECT clause of the map function with the GROUP BY stencil
of the reduce function results in the final SQL query.

5.4. EXPERIMENTAL EVALUATION 87

to entity objects. This hides the differences between the two storage models and provides a
more convenient interface for programmers. Programmers provide an XML description of
a schema, and the ORM tool creates corresponding entity object classes as well as code for
reading these objects from either a text file or from an SQL database. Programmers can
then express their MapReduce programs in terms of manipulating these objects instead
of needing to write code for parsing text input or for querying databases.

The Hadoop implementation of MapReduce provides a FileInputFormat object for
reading lines of text from files. The HadoopToSQL library provides alternate objects that
can read their data from either databases or files and that can return ORM entity objects
instead of lines of text. To switch between using an SQL database as storage engine as
opposed to a MapReduce distributed file system, programmers merely have to change the
configuration information of their MapReduce queries to use the HadoopToSQL libraries
for managing their input.

5.4 Experimental Evaluation

To evaluate HadoopToSQL, some single-server experiments and one distributed experi-
ment were run. The single server experiments allow the performance of SQL queries gen-
erated by HadoopToSQL to be compared directly with the performance of hand-written
SQL queries run on a standard single-server database. The distributed experiment veri-
fies that the performance benefits of HadoopToSQL still hold on a cluster. For all of the
experiments, data is loaded into databases and indexed before the experiments are run.

5.4.1 Single-Server Experiments

The single-server experiments are run on a dual-processor Pentium IV Xeon machine with
4 GB of RAM running Linux, OpenJDK 1.6, Hadoop 0.20, and PostgreSQL 8.3. Hadoop
is configured for stand-alone operation, with its input and output files stored on the local
disk.

Stock benchmark

To illustrate the behavior of HadoopToSQL, a benchmark was created involving a database
of synthetic stock market prices. The database consists of 10,000 different stocks. For each
stock, the database tracks the daily closing price and trading volume. To examine the effect
of database size, the number of days of historical stock data can be varied between 500 and
3,500 days. When stored in an SQL database, the historical data uses the stock symbol
and date as a primary key. A text dump of a database with 3,500 days of data is 970 MB
in size.

The benchmark executes a query that calculates sums of 15 different stocks over a
period of five months. This query is inspired by the type of computation involved in
calculating stock market indices like the Dow Jones Industrial Average. The performance
of this query is measured in the following configurations:

88 CHAPTER 5. HADOOPTOSQL: MAPREDUCE-STYLE QUERIES

e Hand-written SQL

MapReduce running on a single machine

MapReduce running on SQL without any optimizations by HadoopToSQL

MapReduce running on SQL with input set restrictions calculated by HadoopToSQL
e MapReduce running on SQL with a full translation by HadoopToSQL to SQL

Figure 5.16 shows the query times for each of these variations. Each data point is the
average of 10 query executions with each execution using a random set of 15 stocks. Both
regular MapReduce and MapReduce on SQL without optimizations exhibit increasing
query time as the database size increases. This is caused by the fact that both variations
must scan through the entire database in order to find the stocks and days relevant to
the query. As the database size increases, the queries must examine more data as well.
For example, given 3,500 days of stock data, a full scan of the dataset needs to examine
35 million records. The performance of MapReduce on SQL without optimizations is
approximately 50% worse than that of regular MapReduce. This is due to the fact that it
must perform a table scan of an SQL database instead of reading its data from text files
like regular MapReduce. Although an SQL database can theoretically store its data in a
more compact representation than the textual representation used in MapReduce, SQL
databases are rarely optimized for this sort of access pattern, so they do not necessarily
fill disk blocks to the maximum extent or arrange data sequentially on disk. By contrast,
linear traversals of files is a well-optimized access pattern for operating systems.

The granularity of the y-axis in Figure 5.16 hides significant detail, so Figure 5.17 is
included in this chapter to show an enlarged view of the same data. Hand-written SQL,
the restricted input set configuration, and the full translation configuration are all able
to indicate to the underlying database that they only want a subset of the data. As
such, the SQL database is able to make use of underlying indices to ignore the extra data
in the database, meaning that these queries only need to examine approximately 2,000
records. Although all three configurations process the same number of records, the full
translation configuration spends time creating XML configuration files, starting a Hadoop
MapReduce engine, sending the configuration information to the MapReduce engine, and
other non-query-related overhead. This configuration is thus half a second slower than
hand-written SQL despite the fact that both configurations execute essentially the same
SQL query against the database. Due to the short running time of the query, Figure 5.17
exaggerates the size of this overhead. The restricted input set configuration runs a full
execution of MapReduce, applying the map and reduce functions to its data, so it has the
worst performance of the three.

This benchmark shows the importance of using indices in order to extract the best
performance for MapReduce queries running on an SQL database. The MapReduce query
model has no notion of indices since the information about which data is used by a query
is encoded in the program code itself, which cannot normally be inspected by a MapRe-
duce runtime. The program analysis performed by HadoopToSQL is able to extract this
information and hence take advantage of the indices available in SQL.

5.4. EXPERIMENTAL EVALUATION 89

180

T T T T T
No Optimizations —+— 1
160 MapReduce ---x---
Input Restriction ---*---
Full Translation 8-
140 SQOL - - |

120
100
80

60

Query Time (seconds)

40

20 |

0] PSR WSS "SR “SO—-
500 1,000 1,500 2,000 2,500 3,000 3,500

Days of Stock Data

Figure 5.16: Query time on stock benchmark as database size increases.

TPC-H

TPC-H [Tra08] is a standard SQL database benchmark for decision-support workloads.
This benchmark is included in the experiments because it allows for easy comparison
of MapReduce results with SQL results and because it provides an interesting business-
oriented workload. Nonetheless, the results must be interpreted with caution because
a direct translation of TPC-H queries to MapReduce does not necessarily reflect how
such queries would be written and how the schema would be designed if the benchmark
specifically targeted a MapReduce query model.

This experiment examines queries Q1 and Q3 of TPC-H, which map well to MapReduce
and have non-trivial running times. The benchmark is configured with a TPC-H scale
factor of one, resulting in a dataset of approximately 1,100 MB in size. The experiment
uses random query parameters as specified by TPC-H.

Query Q1 scans a single table of order line items within a certain date range and
calculates aggregates for different categories. Figure 5.18 shows the query results for
query Q1. Similar to the stock benchmark, HadoopToSQL is able to extract an equivalent
SQL query from the MapReduce code. As a result, the translated query is able to make

90 CHAPTER 5. HADOOPTOSQL: MAPREDUCE-STYLE QUERIES

2 | : | | |
Input Restriction ------
Full Translation - B
0 SQL ——m-
L 15]
C
(@]
(&)
[¢D]
@ .
R Momep e ;4
_qg) O ¥oeeooee * «
l_ --------------- E] -------
a - [a B o D R i
3 0
> 05r L |
T _ - B .
O L] | A |

500 1,000 1,500 2,000 2,500 3,000 3,500
Days of Stock Data

Figure 5.17: Query time on stock benchmark as database size increases (with zoomed
y-axis).

use of database indices, resulting in much better performance than regular MapReduce,
which must scan the entire contents of the text file of line order items. The translated
query also exhibits performance that is almost as good as hand-written SQL.

Unlike query Q1, query Q3 involves a database join. Query Q3 examines customer,
order, and order line item information to determine the 10 highest-valued orders with
certain characteristics and that have not been shipped. It needs to join the customer,
order, and line item entities in computing its result. Since MapReduce does not have any
built-in support for joins (joins are fundamentally slow operations when applied to data in
a cluster), programmers normally structure their data differently if they intend to query it
with MapReduce. In particular, programmers denormalize their data in advance to avoid
the poor performance of joins in MapReduce. To reflect this fact, different data layouts
were used for each configuration.

The SQL query is run using separate tables for each of the three entities. Hadoop-
ToSQL also stores the data in three separate tables, but the tables are joined at runtime
and presented to the map function as a single table, much like an SQL view. For regular
MapReduce, the query is run against a file with the three entities joined in advance. The
coding of the MapReduce and HadoopToSQL versions of the queries have one potential in-
efficiency as compared to the SQL query. TPC-H specifies that for query Q3, only the top
10 results are needed. In the MapReduce and HadoopToSQL versions of the queries, the
top 10 results are found by calculating all the results and sorting them—it is potentially

5.4. EXPERIMENTAL EVALUATION 91

160 T T T
140
120
100
80
60
40
20
0

Query Time (seconds)

KRRXXRLRK
02000020 0% %0 % %%
0202022020 % 20 %0 % %%

MapReduce HadoopToSQL SQL

Figure 5.18: Query time for TPC-H query Q1.

more efficient to calculate the top 10 results directly.

Figure 5.19 shows the execution times for TPC-H Q3. Regular MapReduce is signifi-
cantly slower than both HadoopToSQL and SQL. This is due to the fact that it must scan
through all the records of the dataset without being able to restrict itself to only those
orders that have not yet shipped and that satisfy the expected characteristics. Hadoop-
ToSQL is able to extract useful input constraints from the query and is hence able to
achieve comparable performance to the hand-written SQL version of the query.

For completeness, versions of the MapReduce and HadoopToSQL queries that can
operate on a dataset that has not been denormalized were also created. This requires
that the Customer, Order, and Lineltem records be joined during query execution, which
are emulated using multiple MapReduce steps. The HadoopToSQL version of query Q3
uses six different applications of MapReduce to calculate its result: three stages filter and
reformat input records, two stages join these records together and aggregate the results,
while a final stage is used to sort the results.

Figure 5.20 shows the resulting execution times. The individual times of each of the
six MapReduce stages are shown where applicable. HadoopToSQL is able to improve the
performance of the MapReduce query when it is run on an SQL database, but it is not able
to achieve performance comparable to that of a hand-written SQL query (unlike with the
denormalized version of the query). The problem is that HadoopToSQL only optimizes
within a single application of MapReduce. HadoopToSQL is not able to optimize across
the six MapReduce stages of this version of the query.

The TPC-H benchmark shows that HadoopToSQL can be used to improve the per-
formance of real queries. For a MapReduce query to achieve comparable performance to

92 CHAPTER 5. HADOOPTOSQL: MAPREDUCE-STYLE QUERIES

200 \ T T
\ View Processing ©omn
180 Sort 1 7]

160 .
140 .
120 .
100 .
80 .
60 .
40 .
20 =

’ WO —

MapReduce HadoopToSQL SQL

Query Time (seconds)

Figure 5.19: Query time for TPC-H query Q3 when the Customer, Order, and Lineltem
tables are joined in advance.

SQL on a single server, it is important to extract as many input constraints on the query
as possible so as to reduce the amount of data that needs to be processed. HadoopToSQL
is effective at extracting such constraints from within a single application of MapReduce,
but it is currently not able to extract constraints across multiple MapReduce stages.

5.4.2 Distributed Behavior

To evaluate whether the benefits of HadoopToSQL still hold in the distributed case, where
there is additional communication and coordination overhead, An experiment involving
a small cluster of machines has been created. It uses the Selection Task from the paper
of Pavlo et al. [PPR109]. This task involves scanning a list of PageRanks for the URLs
of different web pages. The task outputs those URLs with a PageRank greater than the
parameter 10.

Configured using the default parameters, the data generation code from the paper
generates 5.6M ranking records per data node in the cluster, for a total size of about
300MB per node. For the SQL and HadoopToSQL configurations, the dataset is divided
into equal-sized partitions. An SQL database is running on each data node, and each data
node stores one of these partitions in its database. The records are stored with indices for
URLs and for PageRank. For the MapReduce configuration, the dataset is stored in the
Hadoop distributed file system, which automatically distributes the data among the data

5.4. EXPERIMENTAL EVALUATION

250

200
150

100

ki

Query Time (seconds)

MapReduce HadoopToSQL

|
Customer processing
Orders processing 2777771
Line item processing &z
Join of customers & orders ===
Final join and aggregation &

Sort C——1

SQL

93

Figure 5.20: Query time for TPC-H query Q3 when the joins of the Customer, Order, and

Lineltem tables are performed by MapReduce.

94 CHAPTER 5. HADOOPTOSQL: MAPREDUCE-STYLE QUERIES

nodes.

The experiment uses 10 data nodes running on Amazon’s Elastic Compute Cloud
(EC2). A “small ” EC2 instance is used for each node, which are configured with a single
virtual core, 1.7GB of RAM, and 160GB of local disk space. Two additional nodes are
needed to run the Name Node and Job Tracker servers needed by Hadoop for tracking
distributed file system metadata and coordinating MapReduce jobs. All the machines run
Fedora 8, Hadoop 0.20, Java 1.6, and PostgreSQL 8.2.

The selection task can be completed by MapReduce in this way:

e During the map phase, each data node scans through ranking records, outputs those
URLSs that satisfy the query, and stores the results into the distributed file system.

e After the map phase has executed, the result of the query has been computed but
is stored in multiple files distributed throughout the cluster.

e The reduce phase transfers these files to a single node, which combines them into a
single sorted file.

Although HadoopToSQL can translate MapReduce programs into SQL queries, it cur-
rently does not contain code for running SQL queries on a cluster of SQL machines. As
a result, for this experiment, HadoopToSQL is only able to use its transformations to
find input set restrictions. To estimate the performance of this task on an SQL database,
the experiment uses a small program that emulates the behavior of a distributed SQL
database, due to the difficulty in gaining access to one. This program launches 10 threads
that each queries one of the databases. The results are then transferred back to this
program and stored to disk in no particular order.

Figure 5.21 shows the results of running the benchmark. Each data point is an average
of three benchmark runs. For MapReduce and HadoopToSQL, two results are shown. The
foreground bar shows the time needed to run the map phase of the MapReduce job only.
The background bar includes the time needed to also run a reduce phase. Depending on
how the user intends to use the data, they may or may not require the extra processing
performed by the reduce phase.

In this experiment, HadoopToSQL is able to find an input set restriction successfully,
resulting in better performance than MapReduce. Both HadoopToSQL and SQL are able
to restrict their processing to only the 300,000 records of data per node that satisfied the
query. HadoopToSQL’s map phase is significantly faster than MapReduce’s map phase,
but the improvement is less when the reduce phase is included. This occurs because input
set restrictions only help the map phase of a query and do not shorten the reduce phase.
Although the total time of the HadoopToSQL query is longer than the estimated time for
the SQL query, the map phase of the HadoopToSQL query takes less time than the SQL
query. This occurs because the SQL program gathers all the query results on a single node,
resulting in a potential communication and disk bottleneck on that one node. Although
the results of the MapReduce and HadoopToSQL queries are known after the map phase,
the query results are stored in multiple files spread out among the data nodes. These
results are only merged together into a single file during the reduce phase. Because the

5.5. EXTENSIONS 95

160 T T T

140 .
120 - .
100
80 |

60 -

Query Time (seconds)

40

20

MapReduce HadoopToSQL "Distributed SQL"

Figure 5.21: In this graph of execution time for the Selection Task, the results for MapRe-
duce and HadoopToSQL are shown using two bars—the foreground bar shows the results
of the map phase only, whereas the background bar includes the time of a reduce phase
for gathering the results into single file.

reduce phase of a MapReduce program starts while the map phase is still running, it is
not possible to determine the actual duration of a reduce phase from the graph. In fact,
the reduce phase of the HadoopToSQL query has a shorter overlap with the map phase
than the MapReduce query due to the shorter runtime of the HadoopToSQL query’s map
phase.

5.5 Extensions

Although HadoopToSQL is already very powerful, there are many ways to extend the work
to increase its usefulness. In particular, the core static analysis algorithms can be made
less restrictive, a traditional distributed database query optimizer can be added, and an
advanced storage engine can be designed specifically for MapReduce.

HadoopToSQL’s symbolic execution currently halts when it encounters loops or out-
side functions while searching for input set restrictions. Although exploring loops and
outside functions can lead to an exponential explosion of paths, sometimes this explosion
is manageable, so HadoopToSQL could undertake limited explorations of loops and out-
side functions. Loops and outside functions can also be separately analyzed in advance
of path traversals. For example, a system can check if a function is free of side-effects

96 CHAPTER 5. HADOOPTOSQL: MAPREDUCE-STYLE QUERIES

by verifying that it neither modifies any non-local variables nor calls any other function
with side-effects. Calls to these functions can then be used in HadoopToSQL’s symbolic
execution. The return value of the function may be ambiguous, but symbolic execution
can handle such ambiguity. Alternately, other researchers have successfully used other
approaches such as attribute grammars for finding input set restrictions [WICO08] .

HadoopToSQL also currently lacks the ability to optimize across multiple instances
of MapReduce. Complex MapReduce programs sometimes consist of multiple stages or
instances of MapReduce chained together. The static analysis of HadoopToSQL allows
it understand the operations performed by individual instances of MapReduce but is not
useful in analyzing the relationship between instances. To solve this problem, Hadoop-
ToSQL would first need to provide programmers a mechanism to describe the flow of data
between different MapReduce instances. The system could then combine this information
with its analysis of individual MapReduce stages to build a query plan describing the
complete computation. Once a query plan is built, a traditional database query plan opti-
mizer can be used to rearrange elements of the plan to produce a more optimal execution.
HadoopDB [ABPAT09] operates directly on MapReduce query plans generated from the
Hive query language, and it demonstrates some of the possibilities of applying traditional
database query optimization techniques to MapReduce.

Finally, additional performance gains can be achieved by building advanced storage
engines specifically for use with MapReduce instead of relying on SQL databases. As noted
in the experiments, traditional databases arrange their data to allow for random-access
and updates instead of linear table scans. Therefore, on workloads that need to process
their entire dataset, using these databases is slower than using files stored in a MapReduce
distributed file system. A purpose-built storage engine for MapReduce could arrange its
data in compressed flat files to allow for optimal linear table scans but also provide indices
for random-access. An advanced storage engine purpose-built for MapReduce could also
take advantage of the fact that intermediate MapReduce results are always saved on disk
by reusing these intermediate results for other queries that calculate the same values or
subsets of the same values.

5.6 Summary

HadoopToSQL allows MapReduce programmers to take advantage of database features
in advanced storage engines without needing to use a separate database query language.
It uses static analysis algorithms based on symbolic execution to understand MapReduce
queries and optimize them to use database operations. On workloads that access only a
subset of a dataset, the performance of MapReduce queries can be significantly improved
through such optimizations.

The evaluation has shown that HadoopToSQL is indeed able to understand MapReduce
queries and optimize them for an SQL storage engine. Because the resulting queries are
able to take advantage of SQL facilities such as indices, the queries are able to execute
much more efficiently using an SQL database than using traditional MapReduce files.
In many cases, HadoopToSQL is able to generate SQL code from MapReduce programs

5.6. SUMMARY 97

whose performance approximates that of hand-written SQL.

HadoopToSQL currently has difficulty analyzing MapReduce programs with loops and
unknown method calls, and it is also unable to analyze across multiple MapReduce in-
stances. These limitations can be addressed by adding special analysis algorithms specifi-
cally for loops and function calls, and by incorporating a traditional distributed database
query optimizer into HadoopToSQL.

98

CHAPTER 5. HADOOPTOSQL: MAPREDUCE-STYLE QUERIES

Chapter 6

Conclusion

Many applications need to process and manage large datasets, and programmers prefer
to use databases for working with this data. Unfortunately, performing database opera-
tions from within conventional programming languages is often difficult and error-prone.
This thesis examines how to integrate support for database queries into the programming
language Java using a bytecode rewriting approach. With this approach, queries are ex-
pressed using a syntax and style that conform with existing Java conventions. A bytecode
rewriter translates this code into a form that can run efficiently on conventional databases.
This bytecode rewriter exists as a separate component in the programmer toolchain, and
can be maintained and evolved separately from the Java language and compiler. In this
thesis, the practicality of using bytecode rewriting to support database queries in Java was
explored through the design of three different query systems. Each system studied how a
different style for expressing database queries can be supported in Java through bytecode
rewriting.

Queryll

Current imperative object-oriented programming languages are increasingly being aug-
mented with support for functional language features such as anonymous functions and
closures. These features offer a rich syntax for expressing database operations. Program-
mers can write queries using list comprehensions where the contents of a dataset are passed
into a function for processing. Although the resulting code is written in a functional style,
the code is eventually compiled into an imperative form requiring specific algorithms for
recognizing such code and reconstructing its meaning. Queryll demonstrates an algorithm
that is suitable for such an environment. By taking advantage of the lack of loops or
side-effects in functional-style code, the Queryll algorithm is simple and efficient.

JReq

The JReq system studies how database queries could be written using imperative object-
oriented code. In such code, the standard convention for manipulating large datasets is

99

100 CHAPTER 6. CONCLUSION

to iterate over each record in a dataset. As a result, a consistent syntax for database
operations should also involve iterating over records. Such a syntax was designed and
developed to the point where it could support complex queries. JReq is able to translate
code written in this way into database queries that can be efficiently run by databases.
The translation algorithm involves decomposing code into nested loops, using symbolic
execution to transform each loop into a canonical form that summarizes the preconditions
and postconditions for each loop, and then matching this canonical form against templates
of the query types supported by the database. Experiments show that queries written with
JReq can achieve similar performance to hand-written SQL queries in standard database
benchmarks.

HadoopToSQL

MapReduce is a widely used framework for allowing programmers to process large datasets
stored in a computing cluster. Although the processing of large datasets can be signifi-
cantly accelerated by making use of database features such as indices, MapReduce code
rarely takes advantage of such functionality because of the difficulty of interfacing MapRe-
duce and databases. HadoopToSQL shows how MapReduce code can be analyzed and
automatically rewritten to take advantage of database features. MapReduce code is typ-
ically written in conventional imperative programming languages and may contain loops.
As such, HadoopToSQL is able to take advantage of the general algorithm from the JReq
system for decomposing and transforming code. Beyond needing to adapt the algorithm to
support MapReduce syntax, the algorithm is also extended to handle code that it cannot
fully understand. As a result, unlike the JReq system, HadoopToSQL not only translates
entire pieces of code into equivalent database queries, but can accelerate code that is too
complex to be translated into a database query by using optimizations such as input set
restrictions. HadoopToSQL is able to significantly improve the performance of appropriate
MapReduce queries.

Final Remarks

This thesis successfully demonstrates that bytecode rewriting is a practical approach for
supporting database queries in Java. Database operations can be expressed entirely using
syntax from conventional programming languages. This syntax can be analyzed by a
separate bytecode rewriter tool, so that the language and compiler does not need to be
burdened with domain-specific features. Despite the expressiveness and lack of structure in
conventional programming languages, symbolic execution can be used to extract database
operations from the code.

By examining how bytecode rewriting can support three different styles of queries,
the generality, practicality, and usefulness of the bytecode rewriting approach have been
shown. In the future, this approach will hopefully be taken into consideration when people
integrate support for database queries into programming languages.

Appendix A

Visualizing SQL

SQL92 [Ame92] is a large specification, which makes it difficult to understand the scope and
expressiveness of the language. In particular, it is difficult to compare the expressiveness
of SQL with other query languages because it is difficult to find the main expressive
structures in SQL.

To surmount this problem, visualization techniques are used to group related func-
tionality and to expose the main structure of the SQL language. The visualization starts
with the raw BNF grammar for SQL92 since the grammar provides an upper-bound of
the expressiveness of the language. This grammar is transformed into a graph by treat-
ing each non-terminal symbol as a node. If a non-terminal symbol can be expanded into
another non-terminal symbol, a directed edge is placed between the two corresponding
nodes. Terminal symbols are ignored since they are not needed in determining the general
structure of SQL.

The resulting graph is still too large for human comprehension, so redundant nodes
need to be removed from it. This is primarily done by grouping related non-terminal
symbols. The SQL92 specification is divided into a number of chapters, and each chapter
includes a number of grammar rules along with detailed descriptions of when these rules
apply. By machine-parsing a text file of the SQL92 specification, the non-terminal symbols
in the grammar could be annotated with the chapter they appear in. In the resulting graph
of the grammar, nodes representing non-terminal symbols appearing the same chapter are
merged. Self-loops and multi-edges are removed from the merged nodes. As a result,
nodes in the resulting graph represent chapters from the specification, and a directed
edge between chapter nodes means that the corresponding chapter defines a non-terminal
symbol that can be expanded to a non-terminal symbol that is defined in another chapter.
Analysis of the resulting graph reveals that it is primarily DAG-like, though it contains
two large strongly-connected components: one related to queries and another related to
defining literal values.

This thesis is interested in the query language component of the SQL specification
only. Since the chapter graph of the SQL specification is grouped by chapters, it then
becomes easy to prune out those chapters related to schema definition, data manipulation,
or integration with other programming languages. The directed edges allow one to verify

101

102 APPENDIX A. VISUALIZING SQL

that there are no unexpected dependencies on chapters being pruned out. Some chapters
refer to features which are poorly supported or which do not substantially increase the
expressiveness of SQL since they can be expressed using other SQL features. These features
include collations, views, temporary tables, cursors, indicator variables, modules, and
procedures. These chapters are also removed from the graph.

The resultant graph can be visualized using a graph visualization package such as
graphviz. Although there are a manageable number of nodes in the graph, the relationships
between the various nodes are too complex to be visually inspected. Part of the problem
is that some nodes have high in-degree, meaning many parts of the grammar depend on
them, because they act like “libraries.” For example, a chapter of the specification is
devoted to listing various terminal symbols used in the specification, and another chapter
is focused on how to express number constants. These nodes are pruned out of the graph
because they distort the shape of the graph while being trivially supported by other
query languages. Another part of the problem is that some chapter nodes have high-
interdependencies because the chapters referred to areas of the specification with similar
and related functionality. These nodes can be merged together into a single node, thereby
significantly reducing the number of edges.

Figure A.1 shows the nodes that remain after these graph transformations. The re-
maining chapters are essentially those that are reachable from the following two chapters:
20.2 <direct select statement: multiple rows> and 13.5 <select statement: single row>.
Studying the chapters shown in this graph reveals that the key operations that SQL sup-
ports are selection, projection, join, aggregation, duplicate removal, nested queries, set
operations, sorting, and limiting. The main feature of SQL that is not reflected in the
graph is the NULL value and its associated three value logic.

104 APPENDIX A. VISUALIZING SQL

Bibliography

[ABPAT09] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel J. Abadi, Alexander Rasin,

[ACC*02]

[BG97]

[BGGvdA]

[BLCO2]

[BMO7]

[CDG06]

and Avi Silberschatz. HadoopDB: An architectural hybrid of MapReduce and
DBMS technologies for analytical workloads. PVLDB, 2(1):922-933, 2009.

Cristiana Amza, Emmanuel Cecchet, Anupam Chanda, Sameh Elnikety,
Alan Cox, Romer Gil, Julie Marguerite, Karthick Rajamani, and Willy
Zwaenepoel. Bottleneck characterization of dynamic web site benchmarks.
Technical Report TR02-389, Rice University, February 2002.

American National Standards Institute. American National Standard for
Information Systems—Database Language—SQL: ANSI INCITS 135-1992
(R1998). American National Standards Institute, 1992.

Apache Software Foundation. Hadoop. http://hadoop. apache. org/
core/.

Aart J.C. Bik and Dennis B. Gannon. Javab—a prototype bytecode paral-
lelization tool. Technical Report TR489, Indiana University, July 1997.

Gilad Bracha, Neal Gafter, James Gosling, and Peter von der Ahé. Clo-
sures for the Java programming language (v0.5). http://www.javac.info/
closures-v05.html. [accessed 2010-05-24].

Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: a code manip-
ulation tool to implement adaptable systems. In Adaptable and Fxtensible
Component Systems, 2002.

Aaron R. Bradley and Zohar Manna. The Calculus of Computation: Decision
Procedures with Applications to Verification. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2007.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gru-
ber. Bigtable: a distributed storage system for structured data. In OSDI "06:
Proceedings of the Tth symposium on Operating systems design and implemen-
tation, pages 205-218, Berkeley, CA, USA, 2006. USENIX Association.

105

106

[CRO5]

[CS]

[CS08]

[DGO4]

[DG10]

[DGS8S]

[DKO6]

[EMOS]

[FSO1]

(GIS10]

[Goel0]

[GS08]

[GvdA]

BIBLIOGRAPHY

William R. Cook and Siddhartha Rai. Safe query objects: statically typed
objects as remotely executable queries. In ICSE ’05: Proceedings of the 27th
international conference on Software engineering, pages 97-106, 2005.

Stephen Colebourne and Stefan Schultz. First-class methods: Java-style
closures. http://docs.google.com/Doc?id=ddhp95vd_6hg3ghc. [accessed
2010-05-24].

Shimin Chen and Steven W. Schlosser. Map-Reduce meets wider varieties of
applications. Technical Report IRP-TR-08-05, Pittsburgh, USA, 2008.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing
on large clusters. In OSDI’04: Proceedings of the 6th conference on Sympo-
stum on Operating Systems Design € Implementation, pages 10-10, Berkeley,
CA, USA, 2004. USENIX Association.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: a flexible data processing
tool. Commun. ACM, 53(1):72-77, 2010.

D. J. DeWitt, S. Ghanderaizadeh, and D. Schneider. A performance analysis
of the gamma database machine. In SIGMOD ’88: Proceedings of the 1988
ACM SIGMOD international conference on Management of data, pages 350—
360, New York, NY, USA, 1988. ACM.

Linda DeMichiel and Michael Keith. JSR 220: Enterprise JavaBeans 3.0.
http://www.jcp.org/en/jsr/detail?id=220, May 11 2006.

Andrew Eisenberg and Jim Melton. SQLJ part 0, now known as SQL/OLB
(object-language bindings). SIGMOD Rec., 27(4):94-100, 1998.

Cormac Flanagan and James B. Saxe. Avoiding exponential explosion: gen-
erating compact verification conditions. In POPL ’01: Proceedings of the
28th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 193-205, New York, NY, USA, 2001. ACM.

Miguel Garcia, Anastasia Izmaylova, and Sibylle Schupp. Extending Scala
with database query capability. Journal of Object Technology, 9(4):45-68,
July 2010.

Brian Goetz. Translation of lambda expressions in javac. http://
cr.openjdk.java.net/~mcimadamore/lambda_trans.pdf, 2010. [accessed
2010-05-24].

Ravindra Guravannavar and S. Sudarshan. Rewriting procedures for batched
bindings. Proc. VLDB Endow., 1(1):1107-1123, 2008.

Neal Gafter and Peter von der Ahé. Closures for the Java programming
language (v0.6a). http://www.javac.info/closures-v06a.html. [accessed
2010-05-24].

BIBLIOGRAPHY 107

[IBY+07]

[1CZ10]

[1Z06]

1Z10]

[JBo]
[KJH*08]

[KLM*97]

[KW82]

ILDY2]

[LLB]

[MHO02]

Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly.
Dryad: distributed data-parallel programs from sequential building blocks.
In EuroSys '07: Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007, pages 59-72, New York, NY, USA,
2007. ACM.

Ming-Yee Tu, Emmanuel Cecchet, and Willy Zwaenepoel. JReq: Database
queries in imperative languages. In CC ’10: Proceedings of the 19th In-
ternational Conference on Compiler Construction, Berlin, Heidelberg, 2010.
Springer-Verlag.

Ming-Yee Tu and Willy Zwaenepoel. Queryll: Java database queries through
bytecode rewriting. In Maarten van Steen and Michi Henning, editors, Mid-
dleware, volume 4290 of Lecture Notes in Computer Science, pages 201-218.
Springer, 2006.

Ming-Yee Iu and Willy Zwaenepoel. HadoopToSQL: a MapReduce query
optimizer. In FuroSys ’10: Proceedings of the 5th Furopean conference on
Computer systems, pages 251-264, New York, NY, USA, 2010. ACM.

JBoss. Hibernate. http: //www. hibernate. org/.

Kiyoung Kim, Kyungho Jeon, Hyuck Han, Shin gyu Kim, Hyungsoo Jung,
and Heon Y. Yeom. MRBench: A benchmark for MapReduce framework.
Parallel and Distributed Systems, International Conference on, 0:11-18, 2008.

Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.
In Mehmet Aksit and Satoshi Matsuoka, editors, ECOOP’97 - Proceedings
European Conference on Object-Oriented Programming, volume 1241 of Lec-
ture Notes in Computer Science, pages 220-242. Springer-Verlag, Berlin, Hei-
delberg, and New York, 1997.

R. H. Katz and E. Wong. Decompiling CODASYL DML into retional queries.
ACM Trans. Database Syst., 7(1):1-23, 1982.

Daniel F. Lieuwen and David J. DeWitt. Optimizing loops in database pro-
gramming languages. In DBPLS3: Proceedings of the third international work-
shop on Database programming languages : bulk types € persistent data, pages
287-305, San Francisco, CA, USA, 1992. Morgan Kaufmann Publishers Inc.

Bob Lee, Doug Lea, and Josh Bloch. Concise instance creation expressions:
Closures without complexity. http://docs.google.com/Doc.aspx?id=k73_
1ggr36h. [accessed 2010-05-24].

Jerome Miecznikowski and Laurie Hendren. Decompiling Java bytecode:
Problems, traps and pitfalls. In CC 2002, pages 111-127. Springer-Verlag,
2002.

108

[MSOPS6]

[Nec00]

[0de06]

[ORS™08]

[PDGQO5)

[Per]

[Pos]

[PPRT09]

[PSDFO1]

[Rin99)

[SAD*+10]

BIBLIOGRAPHY

David Maier, Jacob Stein, Allen Otis, and Alan Purdy. Development of an
object-oriented DBMS. In OOPLSA ’86: Conference proceedings on Object-
oriented programming systems, languages and applications, pages 472-482,
New York, NY, USA, 1986. ACM Press.

George C. Necula. Translation validation for an optimizing compiler. In PLDI
’00: Proceedings of the ACM SIGPLAN 2000 conference on Programming
language design and implementation, pages 83-94, New York, NY, USA, 2000.
ACM.

Martin Odersky. The Scala experiment: can we provide better language
support for component systems? In POPL ’06: Conference record of the
33rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 166-167, New York, NY, USA, 2006. ACM.

Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and
Andrew Tomkins. Pig Latin: a not-so-foreign language for data process-
ing. In SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 1099-1110, New York, NY, USA,
2008. ACM.

Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. Interpreting
the data: Parallel analysis with Sawzall. Sci. Program., 13(4):277-298, 2005.

Jurriaan Persyn. Database sharding at Netlog, with MySQL and
PHP. http: //www. jurriaanpersyn. com/ archives/ 2009/ 02/ 12/
database-sharding-at-netlog-with-mysql-and-php/.

PostgreSQL Global Development Group. PostgreSQL. http: //wuww.
postgresql. org/.

Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J.
DeWitt, Samuel Madden, and Michael Stonebraker. A comparison of ap-
proaches to large-scale data analysis. In SIGMOD ’09: Proceedings of the
35th SIGMOD international conference on Management of data, pages 165—
178, New York, NY, USA, 2009. ACM.

Renaud Pawlak, Lionel Seinturier, Laurence Duchien, and Gerard Florin.
JAC: A flexible solution for aspect-oriented programming in Java. In RE-
FLECTION °01, volume 2192 of LNCS, pages 1-24, London, UK, 2001.

Springer-Verlag.

Martin C. Rinard. Credible compilation. Technical Report MIT/LCS/TR-
776, Cambridge, MA, USA, 1999.

Michael Stonebraker, Daniel Abadi, David J. DeWitt, Sam Madden, Erik
Paulson, Andrew Pavlo, and Alexander Rasin. MapReduce and parallel
DBMSs: friends or foes? Commun. ACM, 53(1):64-71, 2010.

BIBLIOGRAPHY 109

[Spo]

[ST]

[Sunal

[Sunb]

[SZ09]

[TF76]

[Tor06]

[Tra02]

[Tra0g)]

[TS04]

[TSJ*+09)

[VRCG+99]

Spock Proxy. Spock proxy—a proxy for MySQL horizontal partitioning.
http: // spockprozy. sourceforge. net/.

ST Global. Spider storage engine. http: //spiderformysql. com/.

Sun Microsystems. Enterprise JavaBeans technology. http:// java. sun.
com/products/ejb/.

Sun Microsystems. JDBC technology. http: // java. sun. com/ products/
jdbe/.

Daniel Spiewak and Tian Zhao. ScalaQL: Language-integrated database
queries for Scala. In Mark van den Brand, Dragan Gasevic, and Jeff Gray,
editors, SLE, volume 5969 of Lecture Notes in Computer Science, pages 154—
163. Springer, 2009.

Robert W. Taylor and Randall L. Frank. CODASYL data-base management
systems. ACM Comput. Surv., 8(1):67-103, 1976.

Mads Torgersen. Language INtegrated Query: unified querying across data
sources and programming languages. In OOPSLA ’06: Companion to the
21st ACM SIGPLAN conference on Object-oriented programming systems,
languages, and applications, pages 736—737, New York, NY, USA, 2006. ACM
Press.

Transaction Processing Performance Council (TPC). TPC Benchmark W
(Web Commerce) Specification Version 1.8. Transaction Processing Perfor-
mance Council, 2002.

Transaction Processing Performance Council (TPC). TPC Benchmark H
(Decision Support) Standard Specification Version 2.8.0. Transaction Pro-
cessing Performance Council, 2008.

Eli Tilevich and Yannis Smaragdakis. Portable and efficient dis-
tributed threads for Java. In Middleware ’04: Proceedings of the 5th
ACM/IFIP/USENIX international conference on Middleware, pages 478—
492, New York, NY, USA, 2004. Springer-Verlag New York, Inc.

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad
Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy.
Hive: a warehousing solution over a Map-Reduce framework. Proc. VLDB
Endow., 2(2):1626-1629, 2009.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam,
and Vijay Sundaresan. Soot - a Java bytecode optimization framework. In
CASCON ’99: Proceedings of the 1999 conference of the Centre for Advanced
Studies on Collaborative research, page 13. IBM Press, 1999.

110

[WC07]

[WICO0S]

[Won00]

[WPNOG]

[YIF+08§]

BIBLIOGRAPHY

Ben Wiedermann and William R. Cook. Extracting queries by static analy-
sis of transparent persistence. In POPL ’07: Proceedings of the 34th an-
nual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 199-210, New York, NY, USA, 2007. ACM Press.

Ben Wiedermann, Ali Ibrahim, and William R. Cook. Interprocedural query
extraction for transparent persistence. In OOPSLA ’08: Proceedings of the
23rd ACM SIGPLAN conference on Object oriented programming systems
languages and applications, pages 19-36, New York, NY, USA, 2008. ACM.

Limsoon Wong. Kleisli, a functional query system. J. Funct. Program.,
10(1):19-56, 2000.

Darren Willis, David Pearce, and James Noble. Efficient object querying for
Java. In European Conference on Object-Oriented Programming (ECOOP),
2006.

Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Ulfar Erlingsson,
Pradeep Kumar Gunda, and Jon Currey. DryadLINQ: A system for general-
purpose distributed data-parallel computing using a high-level language.
In Richard Draves and Robbert van Renesse, editors, OSDI, pages 1-14.
USENIX Association, 2008.

Curriculum Vitae

Ming-Yee Iu was born in Ottawa, Canada in 1978. He graduated with a Bachelor of
Mathematics with Honours in Computer Science from the University of Waterloo in 2000.
He later completed a Master of Mathematics in Computer Science from the University
of Waterloo in 2002. He joined EPFL in 2004 and started his PhD studies there in 2005
under the supervision of Professor Willy Zwaenepoel.

111

