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ABSTRACT

A building’s facade design has significant impact on
the daylighting performance of interior spaces. This
paper presents a tool based on a genetic algorithm
(GA) which facilitates exploration of facade designs
generated based on illuminance and/or glare objectives.
The method allows a user to input an original 3d
massing model and performance goals. The method
assumes that the overall building form remains the
same while the facade eclements may change. Ten
facade parameters are considered, including glazing
materials and geometric characteristics of apertures and
shading devices. A simple building information model
(BIM) is used to automatically generate a 3d model of
each individual. Results from single and multi-
objective case studies are presented to demonstrate a
successful goal-driven design exploration process.

INTRODUCTION

The facade design of a building is possibly the most
critical element in creating a successful daylighting
scheme on the interior. Numerous studies have already
demonstrated the potential for genetic algorithms
(GAs) to facilitate performance-based facade design
exploration (for example, Caldas and Norford 2002;
Torres and Sakamoto 2007; Wright and Mourshed
2009). However, previous studies have restricted the
scope of the problem by fixing the initial geometry of
the space and the main optimization objective
(typically minimizing energy consumption). Such
restrictions are limiting in an actual design scenario, as
users may not be able to model a problem that is
relevant to their specific design goals and aesthetics.

This paper presents a GA-based method for facade
design exploration which can be integrated into the
design process. The proposed method allows an
unprecedented number of user inputs, including an
original 3d massing model. A simple building
information model (BIM) has been created to allow the
user-defined massing model to be understood by the

system. The BIM enables the system to recognize the
geometrical characteristics of the user’s initial model
and to automatically generate new 3d models as
specified during the GA process. BIMs have also been
proposed in the past as a way to integrate optimization
into the design process by allowing designers to use
optimization in familiar CAD-based settings (Geyer
2009).

The proposed method also allows the user to define his
or her own performance objectives. The method uses
two daylighting metrics, one for illuminance and one
for daylighting-based glare, to enable a comprehensive
understanding of daylighting performance in a space.
The wuser defines the number and location of
illuminance and glare sensors within his original
model, and he or she also inputs a desired illuminance
goal range for each illuminance sensor plane.

GA studies, due to the large number of iterations
involved, are typically time-consuming processes. The
proposed method attempts to create a more efficient
GA-based tool in two ways: it uses an efficient
simulation and rendering engine which has been
validated against Radiance, and it uses micro-GA
algorithms, which use a very small population size to
greatly reduce the total number of necessary
simulations.

This paper presents two case studies for which the
proposed GA-based approach has been used. The first
case study is a single-objective problem (illuminance
only) while the second case study is a multi-objective
problem (illuminance and glare). In both situations, the
proposed method was able to successfully explore the
design space and present the user with a design solution
or set of solutions which approach the user-defined
performance objectives.

PROPOSED APPROACH

Efficient Simulation Engine

Due to the nature of GAs, in which many populations
must be simulated before a solution has been reached,


Marilyne
Sticky Note
In Proceedings of the 4th National Conference of IBPSA-USA SimBuild 2010, New York, August 11-13, 2010.


an efficient simulation engine is a necessity. The engine
used in the proposed approach, the Lightsolve Viewer
(LSV), is a hybrid global rendering method which
combines forward ray tracing with radiosity and
shadow volumes rendering (Cutler et al. 2008). This
engine was chosen because it allows for rapid
calculation of the daylighting metrics described in the
previous section. Cutler et al. found that a rendered
scene in LSV took approximately 10 seconds while an
analogous “fast rendering” in Radiance was completed
in approximately 5 minutes. Early validation results
indicated that rendered images by LSV displayed a
pixel difference of less than 10% from Radiance for a
variety of scenes, camera positions, and daylighting
conditions (Cutler et al. 2008).

To make the whole-year simulation more efficient, the
LSV engine divides the year into 56 periods and
calculates the illuminance during each time period
under four different sky types ranging from overcast to
clear using the method described in Kleindienst et al’s
paper (2008). The climate-based illuminance is then
calculated for each time period as a weighted average
of illuminances from each sky type. In this study, the
total computation time for a full-year simulation with
illuminance and glare results ranged from less than 1
minute for a simple model to about 5 minutes for a

more complex model. An analysis comparing
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Figure 1 Diagrams indicating system of full and
partial credit for (a) illuminance and (b) glare

illuminance data calculated on point sensors in
Radiance with area-based patch sensors in LSV
indicated similar values (5% median, 7% mean, and
28% maximum relative difference) for a model similar
to those considered in the present study (Lee et al.
2009).

Daylighting Fitness Metrics

To allow for a comprehensive understanding of
daylighting performance, the proposed approach
features two different types of fitness metrics, one for
illuminance levels and one for glare. The goal-based
illuminance metric requires the user to input four
illuminance values: acceptable low, desired low,
desired high, and acceptable high; the user must also
specify which time periods of day and seasons he or
she is interested in: morning, mid-day, afternoon, and
winter, spring/autumn, summer. This metric is a
numerical version of the graphical metric presented in
(Kleindienst et al. 2008) and uses the same logic for
climate and temporal simplifications. The metric
assumes a user-defined sensor plane which will be
divided into small patches during the simulation
process. For a single patch, the goal-based illuminance
metric is defined as the percentage of the user’s times
and seasons of interest in which daylight provides an
illuminance within the user’s specified range. The final
goal-based illuminance for a sensor is an average of the
performance over all patches on a sensor plane. For
illuminance levels which fall between the “acceptable”
and “desired” values, partial credit is given (Figure 1a).
A value of 100% indicates that the entire area of the
sensor plane sees an illuminance in the user’s desired
range over all periods of day and seasons of interest.

The glare metric used in the proposed approach is a
model-based approximation of Daylighting Glare
Probability (DGP) developed by Kleindienst and
Andersen (2009). The DGP metric, originally
introduced by Wienold and Christoffersen (2006),
indicates the percent of occupants disturbed by a
daylighting glare situation. The model-based DGP
approximation method (DGPm) is an efficient way of
approximating the DGP which uses the LSV engine,
and when compared to the DGP as calculated using the
evalglare program in Radiance, the DGPm has been
found to perform within a 10% error over 90% of the
time (Kleindienst and Andersen 2009). This method
was tested only on rectangular spaces and one
limitation is that models should not include window
mullions. The metric assumes a user-defined vertical
sensor plane whose normal indicates a direction of
view, and it considers windows as the only sources of
glare. To evaluate glare risks, the present study uses the
most recent glare thresholds described by Wienold



(2009), where any value below 0.33 (imperceptible
glare) is considered a “no glare” situation and given a
glare credit of 0, any value above 0.53 (intolerable
glare) is given a glare credit of 1, and all values in
between are weighted accordingly (Figure 1b). These
glare credits are averaged across all glare sensors
which face the same general direction within the model.
A value of 0% indicates that the specified view is likely
to produce no glare due to daylighting.

Because the daylighting performance metrics are
defined as percentages, the objectives for any user-
defined problem should be the same: maximize the
goal-based illuminance on all illuminance sensors and
minimize the model-approximated DGP on all glare
sensors. This formulation allows for the same search
algorithm to be used for any set of user-specified goals.

User Inputs: Massing Model and Performance
Goals

The proposed method allows a much larger number of
user inputs than a typical GA study. In particular, one
innovation is to allow the user to create a 3d massing
model in Google SketchUp instead of requiring them to
use a default model. This user-defined massing model
should specify all desired opaque material properties.
Those facades which will be generated by the GA must
be labeled with the material name “GA_WALL”.

Within the 3d model, the user must also specify 2d
sensor planes on which either illuminance or glare will
be calculated. The model can accommodate any
number of these sensor planes. The user must also
indicate a desired illuminance goal range in lux (1x).

This set of user inputs allows a designer to customize
both the design and performance goals in a way that
requires only modeling, not programming. This feature
is a significant step towards enabling a GA-based
design approach that can be used by designers with no
programming skills.

Facade Variables

Ten different facade variables are considered, as
indicated in Table 1, along with the minimum and
maximum values they can take and the step sizes.
These parameters were chosen because they are
typically considered early in the design process and
frequently have a large impact on both exterior
aesthetics and on daylighting performance. The full set
of values is encoded into a string of 30 bits for each
separate facade considered.

Table 1 Facade parameters considered

Fagade Parameter Min Max Step
Window-to-Wall
Ratio 0.1 0.8 0.1
Number of Windows 1 3] 1
Aspect Ratio” Thinnest | Widest -

) N Lower Upper
Vertical Location ol Bounds i

- - Right Left
Horizontal Location Hoasls | ‘Bourds i

Windows

-

Window Distribution Touching | Far Apart i

Owverhanag No Yes -
Fins No Yes -
Length of Shading

Devices 0.5ft Aft 0.5ft
Total Glass

Transmissivity 10% B5% 5%
Percent (Specular)

Transmission 0% 100% | 12.5%

* Absolufe values of max and min for these
parameters will depend on user-defined geometry

MICRO-GENETIC ALGORITHMS

Genetic algorithms, or GAs, (Goldberg 1989) have
been applied to many types of architectural problems.
During the GA process, a set of initial feasible
solutions (a population) is chosen or generated at
random. Each member is evaluated and members that
result in good performance are used as “parents” for a
new generation. Since this new generation is based on
the best performing feasible solutions in the previous
solutions, we assume that some members of the new
generation will perform better. Once evaluated, the
good performers are used as parents while the poor
performers are discarded. The cycle is continued until a
suitable solution or set of solutions is found.

Genetic algorithms typically require large population
sizes and numbers of generations to converge. In order
to improve efficiency of the proposed approach, a
micro-GA was used. A micro-GA is a GA in which
population size is very small, thus reducing the total
number of simulations necessary. Micro-GAs have
been  successfully implemented for  building
performance optimization by Caldas (Caldas and
Norford 2002; Caldas 2008). The proposed approach
allows for both single- and multi-objective problems,
which both utilize a micro-GA algorithm. The single-
objective problem considers illuminance only, while
the multi-objective problem considers both illuminance
and glare.



Single-Objective Micro-GA

The proposed approach uses the original micro-GA
algorithm as described by Krishnakumar (1989) for a
single-objective problem. Encoding is done using
binary strings. The algorithm uses a very small
population size (5 members). For the single-objective
problem, fitness is defined as the goal-based
illuminance for a single sensor plane or the average
goal-based illuminance over multiple sensor planes.
The process is as follows:

1. Generate a random population of 5 binary strings.

2. Evaluate fitness and carry over best string into the
next generation (elitist strategy).

3. Use deterministic tournament selection for adjacent
pairs to select remaining four strings for reproduction,
i.e. the member of each pair with the best fitness is
used to produce the next generation. The current best
string is also allowed to compete.

4. Apply uniform crossover with no mutation. This
strategy creates two child strings from two parent
strings by swapping individual bits with a probability
of 0.5

5. Check for bitwise convergence (which occurs when
all strings differ by 5% or less). If converged, keep best
string and randomly generate 4 new ones.

6. Go to step 2.

Multi-Objective Micro-GA

For a multi-objective problem, it is assumed that the
first objective is to maximize the the goal-based
illuminance on all illuminance sensors and the second
objective is to minimize the model-approximated DGP
on all glare sensors. The micro-GA has been
successfully used for multi-objective problems (Coello
Coello and Pulido 1993) by including external memory
which stores pareto solutions generated over the course
of the process. For this study, the algorithm used is
similar to that described for single-objective problems,
with the addition of an external memory similar to that
described by Coello Coello and Pulido. This external
memory enables the retention of all non-dominated
solutions generated. At each step, the memory is
updated to include new non-dominated solutions, and
any previous solutions which are dominated by new
ones are then removed. An pseudo-pareto front is
approximated as those solutions contained within the
external memory after a certain number of generations.
The multi-objective process is as follows:

1. Generate a random population of 5 binary strings.

2. Evaluate fitness and carry over one non-dominated
into the next generation (elitist strategy).

3. Save all non-dominated solutions into external
pareto memory. Remove all previous solutions in
memory which are dominated by the new solutions.

4. Use deterministic tournament selection for adjacent
pairs based on non-dominance to select four strings for
reproduction.

5. Apply uniform crossover with no mutation.

6. Assume convergence after 4 generations. If
converged, keep one non-dominated string and
randomly generate 4 new ones.

7. Go to step 2.

It is important to note that while this process does
produce a set of non-dominated solutions which may
approximate the pareto front, it does not necessarily
generate a true pareto front with evenly distributed
solutions. However, a true pareto front may not be
required for designers who wish only to see a range of
possible solutions. Additionally, the large number of
random solutions introduced into the population after
convergence should create better distribution of results.

BUILDING DATA MODEL

One of the novel features of the proposed approach is
the ability for the user to provide a 3d model as input
instead of requiring programming or the use of a
default model. To provide this functionality, a building
data model was developed whose values are
automatically assigned once the process is initiated.
The model contains information about each building
element in a 3d model and the relationships between
them. The general structure of the data model is
indicated in Figure 2. Each building element object
contains information about its location, geometry,
orientation, and material.

The building data model allows the algorithms in the
proposed approach to understand which walls are to be
manipulated by the GA and what the boundary
conditions of those walls are. It also allows the system
to automatically create new 3d models of each GA
population member which can then be simulated during
the GA process. These user is thus automatically
provided with a 3d model of any solution found by the
GA process.

Automated Building Model Population

In the proposed approach, a building model can be
automatically populated using a 3d model in Google
SketchUp. Identification of each building element
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Figure 2 Simple BIM schematic: (a) relationships
between components and (b) object attributes

occurs using a series of logic statements, and element
attributes are then determined using information
available from SketchUp about each face. The logic
assumes that the model uses a few basic guidelines: any
plane that represents a sensor (for either illuminance or
glare) must have the word “SENSOR?” in its material
name, any plane that represents an external shading
device must have the word “EXTERNAL” in its
material name, any plane that is manipulated by the GA
must have the words “GA_WALL” in its material
name, and the normal vectors of all faces should point
towards the interior of the space.

Assuming these guidelines are met, the logic used to
identify each element is as follows (assume all elements
are faces):

1. If the face is not opaque and not called
“SENSOR?”, it is a window.
2. If the face is opaque and called “EXTERNAL”, it
is a shading device.
a. If the normal points up or down, it is an
overhang.
b. Else, itis a fin.
3. If the face is
“EXTERNAL”:
a. If the normal points up, it is a floor.
b. If the normal points down, it is a ceiling.
c. Else,itis a wall.
4. Ifthe face called “SENSOR?”, it is a sensor plane.

Once the individual building elements have been
identified, a second set of logic is used to determine the
appropriate relationships between elements. This logic

opaque and not called

determines the child-parent relationships between walls
and windows and between windows and shading
devices. The logic for determining these relationships
is as follows:

1. Assigning windows to walls: For each window,
cycle through all walls. If both elements have the
same orientation, and if the window location lies
between the edge boundaries of the wall, assign
that window to that wall.

2. Assigning shading devices to windows: For each
shading device, cycle through all windows. If two
vertices of the overhang is located 2 inches or less
from two vertices of the window (top two vertices
for overhangs, right or left vertices for fins), assign
that shading device to that window.

An initial massing model may or may not include
windows and shading devices. If the model does
include these elements, they will remain the same
through the GA process. Only those walls that have
been labeled “GA WALLS” will have generated
facades.

Automated Model Generation

Another feature of the proposed approach
automatically generates 3d model representations of the
binary strings created during the GA process. These
models are created in Google SketchUp using the
following process:

1. Add a single window of the given window-to-
wall ratio to the facade using the same aspect
ratio as the wall itself to ensure fit.

2. Divide into the given number of windows.

3. Calculate the highest and lowest possible
aspect ratios that the windows can take based
on the window size and wall dimensions.
Change aspect ratio of all windows based on
given value.

4. Calculate the largest distance that can exist
between each window based on window size
and wall dimensions (assume smallest distance
is 2 inches). Change distribution based on
given value.

5. Determine upper, lower, left, and right wall
boundaries. Change window group location
based on given value.

6. Add shading devices of the given length, if
applicable.

7. Change window material given values.

Because the geometrical parameters (window aspect
ratio, location, and distribution) are calculated based on



the boundary conditions of a given facade instead of
being based on absolute values, the proposed approach
can generate models using any type of original massing
geometry that features vertical walls facing cardinal
directions. The user can also choose to rotate the sky so
as to simulate models whose walls are orthogonal but
which are not aligned with the cardinal axes. This
feature provides the user with a great deal of flexibility
when creating the original massing model.

VALIDATION

To ensure that the micro-GA algorithm was behaving
as expected, a set of test studies were performed on a
simple box model with a single illuminance sensor
plane located in the center of the space at workplane
height. For each of these studies, the south and east
facades were generated by the GA while the north and
west facades remained opaque. Two situations were
explored: “no minimum” (200 1x desired max, 400 Ix
acceptable max, no minimum values) and ‘“no
maximum” (400 Ix desired min, 200 Ix acceptable min,
no maximum values). In both cases, one or more
solutions to the problem were known to exist.

For each case study, the GA process was run three
times to determine the general behavior of the
algorithm. For the “no minimum” case, the micro-GA
found a solution that met the goals over 100% of the
time and sensor area considered in all three trials within
10 or fewer generations. For the “no maximum” case,
the micro-GA was run for 10 generations each time and
the three trials yielded solutions that met the goals for
96.7%, 98.8%, and 99.4%.

Both case studies were considered successful, although
some limitations to the GA method were seen in these
initial trials, including inconsistencies in the number of
generations required to find a good solution and the
possibility for the algorithm to get “stuck™ in one part
of the solution space. However, these studies also
demonstrated the potential for the micro-GA to
effectively search a broad design space and to converge
onto successful designs quickly.

CASE STUDIES

Single-Objective Case Study (Illuminance Only)

The proposed GA approach was applied to the massing
model shown in Figure 3 in Boston, MA. This model
has a non-rectangular footprint and a slanted roof
condition. The facades of interest in this model are
those facing north and south. It has two illuminance
goals that were not considered conflicting. Both sensor
planes are located at workplane height. The
illuminance goals for the west sensor are 200 Ix

(acceptable) and 400 Ix (desired) lower bounds; no
maximum. The goals for the east sensor are 100 Ix
(acceptable) and 200 Ix (desired) minimum; 800 Ix
(desired) and 1000 Ix (acceptable) maximum.

The micro-GA process was run for a total of 25
generations. The fitness in this case study was
calculated as the mean of the goal-based illuminance
metric for both sensors. Therefore, a value of 100%
would indicate that the entire area of both sensors
would be within the specified illuminance ranges
throughout the whole year. The population average and
best fitness for each generation are shown in Figure 4.
After 25 generations, the best solution was found to
have an average fitness of 90.2% (individual fitnesses
for the two sensors were 96.7% and 83.7%). The final
solution facades both have windows concentrated
towards the west side of the space as expected based on
the specified goals.

Morth Facade
West Sensor

South Facade
East Sensor

Figure 3 Case study #1 original massing model and
sensor locations

100%
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Figure 4 Case study #1 - Population best and average
fitness over 25 generations

South Facade Morth Facade

Figure 5 Case study #1 - Best performing design after
25 generations



Multi-Objective Case Study (Illuminance and
Glare)

The multi-objective approach was applied to the
massing model shown in Figure 6 in Boston, MA. In
this model, the two facades of interest are facing east
and west. An additional constraint is added to this
problem in that the two facades of interest must
maintain a uniform aesthetic. This constraint ensures
that a single optimal solution for both illuminance and
glare would not be found. To enforce this constraint,
the same binary string was used for both facades. Two
illuminance sensors are included, each with the same
illuminance goal ranges (200 Ix acceptable low, 400 1x
desired low, no maximum). Additionally, glare sensors
facing towards the east and west facades are
considered. These sensors are indicated in Figure 6.

A pseudo-pareto front was created after running the
micro-GA process for a total of 20 generations, as
indicated in Figure 7. It is clear from the pareto front
that the two goals are conflicting, although many
designs have been found which come very close to
meeting the illuminance goals while still keeping glare
relatively low. A subset of solutions from the pseudo-
pareto front has been selected to show the variety of
solutions found (Figure 8).

East Facade

West Facade

East Sensors
West Sensors

Figure 6 Case study #2 original massing model and
sensor locations
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Figure 7 Pareto front after 20 generations (with subset
of 7 designs selected)

Hurm: 12%
Glare: 0.0%

Hum: 27%
Glare: 0.2%

Hlum: 53%
Glare: 2%

Hlum: 749
Glare: 7%

Hlum: 87%
Glare: 14%

Hur: 92%
Glare: 22%

MNurm: 99%
Glare: 47%

Figure 8 Seven example designs from the pareto front

CONCLUSION

This paper has presented a GA-based approach which
enables performance-based exploration of facade
designs. This method combines an efficient micro-GA
algorithm with a large number of user inputs, including
an original 3d massing model and user-specific
performance goals. Such an approach is powerful




because it allows an infinite number of possible design
scenarios to be considered without changing any code.
In doing so, it allows users who only have modeling
experience, not programming experience, to use GAs
during the design process.

Two case studies were presented which showed the
performance of the single and multi-objective micro-
GA search processes. The multi-objective case study in
particular demonstrated the range of possible design
solutions that a user can obtain using the pareto front.

GA-based approaches still have several limitations.
One of these is the lack of consistency in the final
solutions found, since the randomly generated initial
design solutions play a large role in determining which
subsequent designs are found. This limitation can be
solved to some degree by running many generations,
but this approach adds additional time to an already
time-consuming process. One other limitation is the
tendency for GAs to get “stuck” in a solution that is
only a local minimum or maximum. However, for the
purposes of performance-based design exploration, it is
not necessary to find a global optimum; rather, it
should be sufficient to present the user with a design or
set of designs which the user will then use as an initial
design rather than a final one.

The approach demonstrated in this paper is a first step
towards integrating GA-based search into the design
process. Future work could focus on the addition of
penalty functions to enforce user-specified constraints,
the creation of a more flexible encoding method to
allow the user to choose which parameters to consider
on each facade, or the inclusion of additional
performance criteria such as solar heat gains or energy
consumption.
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