We study the conditions under which a generic supergravity model involving chiral and vector multiplets can admit vacua with spontaneously broken supersymmetry and realistic cosmological constant. We find that the existence of such viable vacua implies some constraints involving the curvature tensor of the scalar geometry and the charge and mass matrices of the vector fields, and also that the vector of F and D auxiliary fields defining the Goldstino direction is constrained to lie within a certain domain. We illustrate the relevance of these results through some examples and also discuss the implications of our general results on the dynamics of moduli fields in string models. This contribution is based on [1-3]. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.