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ABSTRACT

In this paper, we extend a graph-based approach for omnidi-
rectional object duplicate detection in still images. Objects
are detected from several points of view with different dis-
tances. The goal of this work is to determine how many train-
ing images have to be taken and from which points of view
in order to achieve a certain efficiency. Moreover, the perfor-
mance of the algorithm is improved by automatically gener-
ated images, where the original training images are scaled and
rotated in 3D space. Our experiments show that four training
images are enough for 3D object duplicate detection from a
planar view point and ten training images for omnidirectional
detection.

Index Terms— object duplicate detection, graph match-
ing, SIFT, omnidirectional detection, visual search

1. INTRODUCTION

With the technological evolution of digital acquisition and
content analysis, millions of images and video sequences are
captured every day and used in a large variety of applications.
As keyword-based indexing is very time consuming and in-
efficient due to linguistic and semantic ambiguities, content-
based image and video retrieval systems have been proposed,
which search and retrieve documents based on the content it-
self rather than its associated tags or keywords. Within such
systems, a query document is usually compared to all the doc-
uments in a database through visual features extracted from it.
However, since the features are extracted from images which
contain two-dimensional projections of three-dimensional ob-
jects, the features may change significantly depending on the
view point. Thus, systems could fail to retrieve relevant con-
tent in response to some queries.

In general, content-based image retrieval can utilize dif-
ferent low-level representations for describing the image con-
tent, such as global descriptors, regions or feature points. Re-
cently, interest has turned towards higher-level representa-
tions such as object-based. Given a query image containing
an object, an image retrieval task can be reformulated as an

object duplicate detection task. The goal of the object dupli-
cate detection is to detect the presence of a target object in
an image based on an object model created from training im-
ages. Duplicate objects may vary in their perspective, have
different sizes, or could be modified versions of the original
object after minor manipulations, which do not change their
identity. Therefore, object duplicate detection should be ro-
bust to changes in position, size, view point, illumination, and
partial occlusions.

A large number of applications can benefit from a precise
object duplicate detection. For example, when a user takes
a picture of an object with his/her mobile phone, additional
information about the object can be retrieved from the web,
such as the price of a product, or the name and location of a
monument. Moreover object duplicate detection may be used
to search a specific object in a large collection, such as a sus-
pect car in a video surveillance database. In this case, objects
should be detected from any view point and at any size with a
certain efficiency. Therefore it is important to understand the
limits of omnidirectional object duplicate detection which is
the focus of this paper.

We analyze an earlier proposed graph-based approach [1]
for 3D object duplicate detection in still images, considering
detections from any view point and with any scaling factor. A
graph model is used to represent the 3D spatial information
of the object based on features extracted from the training
images so that a complex 3D object processing is avoided.
Therefore, improved performance can be achieved in com-
parison to existing methods in terms of robustness and com-
putational complexity. The main goal is to determine how
many images of the object of interest should be captured in
order to detect it with a certain precision. We also analyze
the positions of the cameras from which the images should be
captured in order to reach the optimal (minimal) number of
training images. Furthermore, we show how synthetic train-
ing images can be created through an affine transformation in
order to decrease the number of captured training images. A
database is created and used for an in-depth analysis of omni-
directional object duplicate detection. The database contains
images of several object classes taken from different points of



view and different distances.

The remaining sections of this paper are organized as fol-
lows. We introduce related work in the next section. Then, we
describe our approach for object duplicate detection in more
details. Next, experiments and results are shown. Finally, we
conclude the paper with a summary and perspectives for fu-
ture work.

2. RELATED WORK

Typically, most object duplicate detection methods contain
the following steps: feature extraction, object representation,
and matching. In this section we review representative object
duplicate detection methods based on these steps.

Local features are used for object duplicate detection in
[2]. The General Hough transform is then applied for object
localization. Furthermore, posture of the object with respect
to the camera is estimated using the RANSAC algorithm. Our
object duplicate detection method is based on this algorithm
and the detection accuracy is improved by using a spatial
graph matching method. This method is also extended by
considering more training images. Therefore, 3D objects can
be detected with higher accuracy. In [3], descriptors are ex-
tracted from local affine-invariant regions and quantized into
visual words, reducing the noise sensitivity of the matching
operation. Inverted files are used to match the video frames
to a query object and retrieve those which are likely to con-
tain the same object. However, this work considers only 2D
objects, such as posters, signs, ties, and does not take into ac-
count real 3D objects. In this paper, an analysis of this method
for real 3D objects is provided. An extension [4] of this ap-
proach uses key-point tracking to retrieve different views of
the same object and to group video shots based on the object’s
appearance. The tracked object is then used as an implicit
representation of the 3D structure of the object to improve
the reliability of object duplicate detection. This method has
proven to be more effective when compared to a query with
a single image, but it requires that all the relevant aspects of
the desired object are present in the query shot, which limits
its applicability.

Most of the object representations consider the objects in
the 2D image space only. But, since real-world objects are
inherently 3D, a higher performance can be achieved using
3D models. However, the creation of complete 3D models
requires a large number of images from all possible angles,
which may not be feasible in real applications. Despite this
difficulty, interesting solutions have been proposed for multi-
view retrieval of objects from a set of images or video. In [5] a
full 3D model of the object is used for the detection of objects
in video sequences. Our approach makes an attempt towards
3D modeling, while keeping the efficiency of 2D processing,
using a graph model to represent the 3D spatial information.

Different scale and orientations of the objects can be eval-
uated for better performance of the feature extraction and the

salient region detection tools. Mikolajczyk analyzed different
affine region detectors in [6] considering different angles and
distances. However region detectors are just one small part
of an object duplicate detection method, feature descriptors
are also necessary for local feature matching. In the original
papers of SIFT [2] and SURF [7] feature descriptors, their ef-
fectiveness is analyzed for different view points and scales.
However, the performance of the algorithms is evaluated for
a very limited number of planar objects. In [8], the author
goes a step further and creates new features which include
several affine transformed generated images as input. This
paper shows significant improvement over the original SIFT
description. As we will show later, the number of generated
images can be decreased, using optimal camera positioning.
We also use a significantly larger database with more than 80
different objects. Moreover, we describe an optimal strategy
for training image creation for full omnidirectional detection.

3. OBJECT DUPLICATE DETECTION

The goal of object duplicate detection is to detect the pres-
ence of a target object in an image, based on an object model
created from training images. We make an attempt towards
3D modeling, while keeping the efficiency of 2D processing.
A graph model is used to represent the 3D spatial informa-
tion of the object based on the features extracted from train-
ing images so that we can avoid explicitly building a complex
3D object model. Therefore, improved performance can be
achieved in comparison to existing methods in terms of ro-
bustness and computational complexity.

3.1. Training phase

Training is performed as follows: given a set of images, lo-
cal features are extracted and a spatial graph model describ-
ing the object is created. First, regions of interest (ROIs) in
an image are detected using the Hessian affine detector [9]
and SIFT features [2] are extracted from each region. These
features are robust to arbitrary changes in viewpoints. Then,
hierarchical k-means clustering [10] is applied to the features,
to group them based on their similarity. The result of the hi-
erarchical clustering is used for a fast approximation of the
nearest neighbor search, in order to speed up the local feature
matching. Finally, a spatial graph model is constructed to im-
prove the accuracy of the feature matching, which considers
scale, orientation, position and neighborhood of features. The
nodes of the graph are the features of training images. The
edges of the graph connect features with their spatial nearest
neighbors. The attributes of edges are the distance and orien-
tation of the neighbors. These attributes are important for the
matching step in the test phase.



3.2. Testing phase

To detect the presence of a specific object in a test image,
features are extracted from the image in the same way as de-
scribed before. These features are matched to those in the
graph model derived from training images using a one-to-one
nearest neighbor matching. Considering only matched fea-
tures and their positions, a spatial graph model of the query
image is constructed in the same way as described in the train-
ing phase. Then, graph matching is applied between the two
graph models to identify the local correspondences between
the local features in the training and the test image. Finally,
for the global object matching and matching score computa-
tion, the general Hough transform is applied on the nodes of
the matched graph. The matching scores represent the pair-
wise comparison of training and test images.

More details about the proposed object duplicate detec-
tion approach are provided in [1].

4. EXPERIMENTS

Imagine a scenario in which object duplicate detection is used
to search for a specific object, such as a suspect car, in a video
surveillance database. In this case, objects should be detected
from any view point and any size with a certain efficiency.
Then an interesting question is how many training images
of the object are necessary to detect it with a certain accu-
racy. And moreover, is it possible to decrease the number of
captured images by generating synthetic images using affine
transformations?

4.1. Synthetic training images

One way to improve the accuracy of the object duplicate de-
tection algorithm is to generate synthetic images using affine
transformations on the original training images. To generate
synthetic images we scaled the original images by s™, where
n € [0...10] and s is a parameter that was set to 0.85 in our
experiments. Rotation does not distort the image linearly with
the angle, therefore synthetic rotated images are generated by
scaling the training image in the horizontal direction by s™.
In object detection we consider only one direction of rotation,
assuming that the results for other directions do not change
much. All generated images are used as training images for
object duplicate detection in the experiments.

4.2. Database

The experiments were based on an object database which con-
tains 850 images. This database was created in order to evalu-
ate the object duplicate detection method from different view
points and distances. It consists of ten 3D and five 2D object
classes as shown in Figure 1: bag, bicycle, body, face, shoes,
stone, can, car, building, motor, poster, logo, newspaper, book
and workbook. Each of the 15 classes contains at least three

different objects, and together 85 objects are contained in the
database with ten sample photos per object.

Figure 2 shows three images for two selected classes:
building and shoes. As it can be seen from these samples,
images with a large variety of view points (0° — 90° spread
equally) and sizes (1 — 0.15 relative size spread equally) are
considered for each class. The angles and relative sizes of
each object are calculated for each image in the dataset to fa-
cilitate the analysis of the omnidirectional duplicate detection
as shown in Section 4.4.

Fig. 1. Samples of the different 2D and 3D objects classes in
the database used.
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Fig. 2. Image samples for two objects under diverse viewing
conditions in the database used.

4.3. Evaluation

Object duplicate detection can be evaluated as a typical de-
tection task [11] using correspondences between a set of pre-
dicted objects, and a set of ground truth objects. Each image
of our database contains just an object, therefore we are not
evaluating the locations of the objects, but just their presence.
A pair-wise comparison of ground truth and predicted objects
is then performed. The results are used to obtain the values
of true positives (1'P), true negatives (1T'N), false positives
(F P) and false negatives (F'IV). The resulting confusion ma-
trix serves as a basis on which different curves can be derived.



The precision recall (PR) curve plots the precision (P)
versus the recall (R) with:

TP
Po= TP+ FP M
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This curve does not consider T'N which is not uniquely de-
fined for detection problems.

In order to determine the optimum thresholds for object
detection, the F-measure is calculated as the harmonic mean
of P and R values, given by:

_2.P-R
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which considers P and R equally weighted. Optimizing this
value can resolve the threshold selection problem. However
in the case of the surveillance scenario, recall is more impor-
tant when compared to precision.

4.4. Results and analysis

Imagine a scenario where a surveillance system should detect
a knife, a gun, a stolen bag or any other suspicious object.
For a reliable system, the object duplicate detection should
achieve a certain F-measure, even if these objects are shown
from an arbitrary direction. In the following, examples of
0.7 and 0.8 F-measures are selected arbitrarily for illustration
purpose.

It is very difficult to create a system which can detect ev-
ery object with a precision higher than a certain level. For ex-
ample it is impossible to detect a paper if the training image
was taken from its edge. Therefore we cannot guarantee this
for every object. Our database contains 15 classes of objects
with high diversity. Therefore, we assume that a particular
object in a given scenario can be detected with high enough
accuracy, for some angle and scale factors.

In this section, we evaluate the performance of the pro-
posed object duplicate detection algorithm with respect to an-
gle and size deviations between training and test images in
order to derive requirements for omnidirectional object dupli-
cate detection. Furthermore, we explore the benefit of syn-
thetic training images generated through affine transforma-
tions.

The results of the analysis are shown in Figures 3 and 4.
Using only the original training images, the F-measure starts
to decrease considerably when the object size in the test im-
age is less than 60% of the original size, or when the viewing
angle differs by more than 40° from the training image. When
the viewing angle differs by 90°, the F-measure drops to 0.45.
In contrast to previous research, this shows that real objects
have to be considered as convex 3D objects rather than pla-
nar 2D objects which could lead to an increased tolerance to
angle deviations. Small and distorted objects on the query
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Fig. 3. F-measure vs. relative size of the object in the test
image.
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Fig. 4. F-measure vs. viewing angle difference between the
training and test images.

images create results with high variance below 30% of rel-
ative size, as depicted in Figure 3. Adding synthetic train-
ing images generated by affine transformations leads to a sig-
nificant improvement of the F-measure (up to 0.2) over the
whole range of size deviations. However, for the angle devi-
ations the F-measure improves significantly (up to 0.15) only
for angles larger than 50°. These results are expected since
the scaling of the training images needed for different sizes
causes much smaller distortions in the synthetic images than
the affine transformations required for the different angles.
Based on these results, it is possible to derive the mini-
mum number of training images and the required angles and
distances of the objects in the images from our database in
order to achieve a certain overall F-measure value. In order to
achieve an F-measure of at least 0.8 by using an object model
trained with only one training image, the test images may dif-



fer from the training image up to an angle of £45° and up to
a size of 59%. Therefore, if we want to detect at least 80%
of the test objects for all possible rotations around a single
axis in the given scenario, four training images are enough
because one image can cover 90° of 360° as shown in Figure
5. Using synthetic training images, the scale factor improves
from 59% to 50% for an F-measure of 0.8, while the angle
difference does not change.

Fig. 5. Figure shows the suggested camera positions for pla-
nar object duplicated detection with 0.8 F-measure, where
each disk represents a camera and its coverage area.

Fig. 6. Figure shows the suggested camera positions for om-
nidirectional object duplicated detection with 0.8 F-measure,
where each disk represents a camera and its coverage area.

If we consider omnidirectional object duplicate detection
in the 3D space, it is necessary to solve the problem of po-
sitioning disks (or, equivalently, cameras) to cover a sphere.
More precisely, the problem is to find the minimum number
of congruent disks that cover a sphere for a given radius of
the disks, or conversely, to find the minimum radius of the
disks to cover a sphere for a given number of disks so that ev-
ery point of the sphere belongs to at least one disk. Although
a general solution of the problem for an arbitrary number of
disks is not available, the solutions for some cases has been

given by Fejes Téth [12]. For different numbers of cameras,
the required coverage radius of the cameras is shown in Table
1[13].

Table 1. Solutions for the problem of covering a sphere with
#cameras congruent, overlapping disks. The second row
shows the radius of the disks in degree. Each disk can repre-
sent a camera and its coverage angle.

#cameras 4 5 6 7 8 9
radius 70.53 63.43 54.74 51.03 48.14 45.88
[degree]
#cameras 10 11 12 13 14 15
radius 42.31 4143 37.38 37.07 34.94 34.04
[degree]

Table 2. Ten 3D coordinates of the centers of the disks which
cover a unit sphere when the radius of the disks are 45°.

Axis/Cam 1 2 3 4 5
X —0.521 0.449 —0.577 —0.526 0.526
y 0.576 0.879 0.684 —0.345 0.345
z —0.630 0.160 0.446 0.778 —0.778
Axis/Cam 6 7 8 9 10
X 0.468 —0.904  0.957 —0.013 0.142
y 0.072 —0.357 —0.290 —0.594 —0.970
z 0.881 —0.236 —0.015 —0.805 0.198

Therefore, to cover a sphere with disks having a radius
of 45°, 10 training images are enough, if the positioning of
the cameras is as shown in Figure 6, where radius of 45° is
assumed to achieve at least 0.8 for F-measure. The positions
of the cameras in this case are shown in Table 2. Figure 7
combines the previous results and shows how many training
images in our scenario are necessary for a certain F-measure
using automatically generated syntectic images. If we would
like to detect at least 70% of the test objects contained in im-
ages taken from any direction, based on the previously dis-
cussed estimations, it is allowed to have angle differences up
to 50° and thus it is sufficient to use 8 images for training.
However if we use synthetic training images, seven images
are enough as shown in Figure 7.

5. CONCLUSION

Image and video retrieval systems are becoming increasingly
important in many applications. Video surveillance and se-
mantic image or video search are among some of the appli-
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Fig. 7. F-measure vs. number of cameras needed for omni-
directional object duplicate detection using only original or
additionally synthetic training images.

cations which require accurate and efficient omnidirectional
object duplicate detection methods. In this work, we have
extended our robust graph-based object duplicate detection
algorithm for 3D objects. A novel methodology of determin-
ing the number of training images is presented in this paper.
Assuming that a specific object is detected with high enough
precision, for some angle and scale factors, the following con-
clusions can be drawn from our experiments:

e Four training images are enough for 3D object dupli-
cate detection from planar view point.

e Fight and ten training images are necessary for full om-
nidirectional detection by keeping F-measure above 0.7
and 0.8 respectively.

e Synthetic training images improve mainly the accuracy
of omnidirectional detection for poor performing cases,
however they improve significantly the detection from
different distances in all case.

As future work, we will explore omnidirectional object du-
plicate detection considering the dependency between angle
difference and relative size.
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