
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. J.-Y. Le Boudec, président du jury
Prof. M. Hasler, Prof. H. Köppl, directeurs de thèse

Prof. F. Naef, rapporteur 
Prof. A. Wagner, rapporteur 
Prof. R. Weiss, rapporteur 

Quantitative Analysis of Robustness in Systems Biology: 
Combining Global and Local Approaches

THÈSE NO 4907 (2010)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 10 DéCEMBRE 2010

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE SYSTÈMES NON LINÉAIRES

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2010

PAR

Marc Hafner





ii

Abstract

To characterize the behavior and robustness of cellular circuits is a major

challenge for Systems Biology. Many of the published methods that address

this question quantify the local robustness of the models. In this thesis, I

tried to underpin the inappropriateness of such local measures and proposed

an alternative solution: a glocal measure for robustness that combines both

global and local aspects. It comprises a broad exploration of the parameter

space and a further refinement based on different local measures. The method

is general and such glocal analysis could be applied to many problems.

Along with the theoretical and formal aspects of this new analysis method,

I developed sampling algorithms that efficiently investigate the generally high-

dimensional parameter space of models. To show the usefulness of my method,

I applied it on different models of cyclic systems such as the circadian clock and

the mitotic cycle. I first considered two models of the cyanobacterial circadian

clock and compared their robustness properties. Also in the context of circadian

rhythms, I studied the effect of additional feedback loops on the robustness

properties in relation with entrainment. Models of the mitotic cycle are also

used to assess the effect of an additional positive feedback loop on circuit

robustness to parameter changes and molecular noise. Finally, I established

some principles for the design of a synthetic circuit based on robustness.

The thesis carries on with a discussion that emphasizes the advantages of

the glocal method for robustness analysis: in all works, correlations between

parameter values and local robustness can be found. Such results facilitate our

understanding of the biochemical systems and can be a guide for new experi-

ments to discriminate models or give directions for altering the robustness of

the systems. I conclude by discussing potential applications for my method

and possible improvements.

Keywords: robustness, systems biology, sampling methods, biological

oscillators, feedback loops.
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Résumé

La caractérisation de la robustesse des réseaux biochimiques est actuelle-

ment un des défis majeurs en biologie des systèmes. La plupart des méthodes

couramment utilisées pour étudier cette question sont basées sur des analyses

locales. Ce travail tente de démontrer que cette approche est inappropriée et

que des méthodes alternatives doivent être développées. J’ai donc proposé une

méthode glocale pour la quantification de la robustesse qui combine des mesures

globales et locales. Cette méthode comprend une large exploration de l’espace

des paramètres, complétée par une caractérisation locale de la robustesse grâce

à différentes mesures. Les principes de cette méthode sont généraux et de telles

analyses glocales peuvent être utilisées pour une multitude de problèmes.

En parallèle avec l’élaboration des concepts et du formalisme de cette nou-

velle méthode, j’ai développé des algorithmes pour l’échantillionnage de l’espace

des paramètres. Afin de démontrer l’utilité de ma méthode, je l’ai appliquée

sur différents modèles de cycles biologiques. Premièrement, j’ai comparé la

robustesse de deux modèles de cycles circadiens de la cyanobactérie. Dans le

même contexte, j’ai étudié l’effet d’une boucle de feedback additionnelle sur

la robustesse à l’entrâınement des cycles circadiens. Pour continuer la com-

paraison de différentes topologies, j’ai utilisé un modèle du cycle mitotique

et j’ai caractérisé la robustesse aux changements des paramètres et au bruit

moléculaire lorsque qu’un feedback positif est ajouté. Finalement, j’ai dérivé

des principes basés sur la robustesse pour le design de circuits en biologie

synthétique .

Dans les différents travaux, l’analyse glocale met en valeur des corrélations

entre les paramèteres et la robustesse locale. Ces résultats, qui ne peuvent pas

être obtenus avec des méthodes classiques, aident à comprendre les systèmes

étudiés et peuvent servir de guide pour établir des nouvelles expériences ou

donner des directions pour altérer la robutesse des systèmes. Pour conclure,

d’autres applications pour ma méthode et de possibles améliorations sont pro-

posées.

Mots-clés: robustesse, biologie des systèmes, méthodes d’échantillionnage,

oscillateurs biologiques, boucles de feedback.
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Chapter 1

Introduction

In this chapter, I first define Computational Systems Biology and bio-

chemical modeling in general terms. Then, in Section 1.2, I introduce some

formalism for the modeling of biochemical systems and expand on the state

of the art of algorithms used for stochastic simulations. In Section 1.3, the

recent literature on robustness analysis is reviewed. Section 1.4 is dedicated to

biological oscillators, more specifically circadian clocks. The Section 1.5 briefly

introduces synthetic biology and the last section of this chapter discusses the

different contributions of this thesis.

1.1 Introduction to Computational Systems Biology

Systems Biology is a field that emerged in the last fifteen years. It has risen

as an inter-disciplinary science where mathematical analysis came to comple-

ment biological experiments. Systems Biology can be described as the study of

the interactions between various components involved in biological processes.

The scale can go from atomic interactions to ecosystems. The birth of Systems

Biology was induced by the advances in molecular biology in 1980s and the

rise of functional genomics in 1990s. With an understanding of the cellular

processes at the genetic and molecular levels, rigorous mathematical models

based on experimental data started to emerge. At the beginning of the 2000s,

the completion of various genome projects, the large increase in data from the

1



2 Chapter 1: Introduction

high-throughput experiments in the omics technologies (e.g. genomics and pro-

teomics), and the increased computational power are the factors that may have

triggered the emergence of Systems Biology [1].

One branch of Systems Biology is Computational Systems Biology which

could be defined as the quantitative modeling of the biochemical process occur-

ring in living cells. It aims to characterize the interactions between proteins,

genes and other cellular components. The size of the studied systems can range

from small gene network with several interactions to metabolic networks where

thousands of species are found. The most important aspect of Computational

Systems Biology may be the use of quantitative models to understand these

systems.

1.1.1 Models in Computational Systems Biology

A model is a conceptual representation, therefore a simplification, of a sys-

tem. The loss of detail is compensated by the gain in clarity and the possibility

to implement the system in a computer. A model being an abstraction of a

system, each system can be modeled in different ways depending on the desired

results. In this sense, the scope of any model is limited and this limitation has

to always be considered when analyzing any computational results.

In Computational Systems Biology, the variables of the mathematical mod-

els usually correspond to mRNA molecules and proteins [1, 2, 3, 4]. These

different molecular species influence each other through, for example, tran-

scriptional regulation (some proteins control the transcription of mRNAs),

translation (mRNA is necessary to form proteins) or enzymatic activity (some

reactions require a specific protein). When modeling one of these systems, the

natural state variables are the concentrations of these species and the com-

plexes that they may form. The dynamic interactions between the different

molecules are encapsulated in equations that determine the fluxes at which

they are synthesized or degraded, at which they associate, dissociate, or are

transformed into other molecules. To each flux is associated a rate function

that depends on the species concentrations and some biochemical parameters.

Any complex reaction or process can be decomposed in a sequence of sim-

ple, unimolecular or bimolecular reactions following mass-action kinetics where

the rate function is a polynomial expression of the concentrations of the reac-

tants. Each intermediate stage or molecular complex represents a new species

and this decomposition may result in a large number of variables. The strength
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of a model is to prevent this combinatorial explosion by simplifying some reac-

tions in a single step. This is done in general using non-polynomial expressions

for the rate functions [1, 3, 4]. Such rate function includes more parameters

and mimics the actual dynamics. The Hill function is a well-known example

of such simplification: a nonlinear term is used to approximate cooperativity

effects in gene expression. The use of such simplifications should be cautious

and in general, “The modeler should always choose the correct level of detail to

answer the question” [5]. For example, if one wants to understand the effect

on gene expression of changing the binding affinity of proteins to promoters,

the use of Hill functions is not appropriate as this step is highly simplified.

But on the contrary in the context of gene networks, strong simplifications

can be made to keep a reasonable number of variables in the system without

significantly altering the results.

When the topology of the model is fixed, i.e. the interactions between the

different species are established, and when the rate functions are determined,

the dynamics depends only on the rate constants [2, 1]. These rate constants,

or model parameters, reflect different external factors such as temperature

or ATP concentration. An important challenge in Computational Systems

Biology is to find the parameters that best fit the data. Indeed, the values of

these parameters can drastically change the qualitative behavior of the system.

For example, a model may show oscillations only for specific parameter values.

A central part of my work is to analyze the effect of changing the parameters

on the robustness properties of a system.

1.2 Stochastic Simulations in Systems Biology

All the interactions and their corresponding rate constants give rise to a

system of ordinary differential equations (ODE) [6], whose state variables are

the concentrations of each molecular species as in classical chemical kinetics

[7]. There is an extensive theory for ODE integration and many tools from

control theory and dynamical system theory are available [3]. I will not discuss

the details of the theory behind ODE integration as I only used algorithms

from standard libraries in this thesis. On the other hand, I will spend some

time on the different stochastic simulation algorithms used for the integration

of biochemical systems.

When comparing biochemical processes to the ones encountered in chemi-

cal engineering, some cellular species such as transcription factors or mRNA are
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present in very few copies. Under these circumstances, the continuous approach

of ODEs falls short and only a discrete approach capturing the stochastic na-

ture of chemical events can properly describe such dynamics [8, 9]. In this

section, I will explain the formalism and the main algorithms used to perform

stochastic simulations of such continuous-time Markov jump processes.

This section is organized as follows. First, I will formally introduce the tra-

ditional law of mass action, the corresponding rate equations and a formalism

that will be used later. Then I will discuss the Markov jump process associated

with stochastic chemical kinetics. Based on that, a Monte Carlo sampling al-

gorithm developed by Gillespie [10] along with its many variants is explained.

Subsequently, the first approximate algorithm, the τ -leaping method is derived

and some algorithmic aspects of it are highlighted. Later, further assumptions

are made to obtain the chemical Langevin equation and its simulation is briefly

discussed.

1.2.1 The Law of Mass Action

Chemical reactions, and as a consequence most events occurring in cellular

processes, can be represented as transformations of molecular species Si ∈
{S1, . . . , Sn}. A reaction Rj , j ∈ {1, . . . ,m} with a rate constant kj ∈ R+, is

written in a general form as

R1jS1 + · · ·+RnjSn
kj−→ P1jS1 + · · ·+ PnjSn (1.1)

where Rij ∈ N0 is the stoichiometric coefficient for the species Si as a reactant

and Pij ∈ N0 its coefficient as a product [11].

In the most simplified approach, all reactions of a process follow the law of

mass action, originally proposed by Waage and Guldberg (1864): the rate of

a reaction is the product of the concentration of the reactants and a constant.

Thus the mass-action rate function vj : Rn+×Rm+ → R+ of reaction Rj is given

by

vj(z,k) = kj

n∏
i=1

z
Rij
i , (1.2)

with k ≡ (k1, . . . , km)T and where the concentration of each species Si is de-

noted as zi(t), i ∈ {1, . . . , n}. The state of the system is thus the time function

z : R+ → Rn+.

With the stoichiometric matrix N ∈ Zn×m, the elements of which are

Nij = Pij −Rij , that represents the net effect of reaction Ri on the species Sj ,
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the general ODE system can be written in vectorial form as

dz

dt
= Nv(z,k). (1.3)

In the case of reaction that do not follow mass action kinetics such as

Michaelis-Menten simplifications, equation (1.3) remains valid, but the reaction

rates cannot be expressed as equation (1.2).

1.2.2 The Chemical Master Equation

The formalism introduced above assumes a continuous number of molecules

for each species type. The molecules being integer, such equations are a good

approximation only for large copy numbers. In chemical engineering, for in-

stance, where the number of molecules is in the order of the Avogadro’s number,

the simulations made with ODEs are perfectly consistent with the experimen-

tal setting. But for biomolecular systems, the number of molecules in a cell

could be in the order of a few hundred (for example transcription factors or

messenger-RNA or micro-RNA) to a handful for gene copies. With so few

molecules, the continuous approximation is not valid anymore and major dif-

ferences are observed when the deterministic results are compared to experi-

mental data in specific cases [12, 13, 14].

To capture the discrete nature of molecules and the stochasticity of reac-

tions, a formalism based on continuous-time Markov jump processes can be

adopted. The Markov property, i.e. the probability that a reaction occurs de-

pends only on the current state and not on the history of the system, is a

consequence of the physics of the chemical reactions [15]. To link the species’

multiplicity with its concentration we introduce the reaction volume Ω. The

state variables can now assume positive integer values, i.e., the system is in

the state X(t) = x, if, for all species Si, Xi = xi at time t with x ⊆ Nn. The

t-indexed random variable Xi is related to the concentrations used in the ODEs

as Xi = Ωzi. The probability for a system to be in such a state is Pr(X(t) = x).

Finally, the central definition for the Markovian formulation can be introduced.

The likelihood to switch from a state x0 at time t0 to the state x at time t is

the conditional probability Pr(X(t) = x|X(t0) = x0) ≡ Pr(x, t|x0, t0). In the

following, an expression for this transition probability is derived.

To switch from one state to another, reactions have to occur. But a reaction

Rj can only change the system in a specific way. If the state prior to the reaction

is x0, then the next state will be x = x0 + νj where νj is the stoichiometric
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Reaction type (with Corresponding stochastic Corresponding
rate constant kj) rate constant cj propensity aj
∅ → products kjΩ kjΩ

S1 → products kj kj x1

S1 + S2 → products kj/Ω kj/Ω x1x2

S1 + S1 → products 2kj/Ω kj/Ω x1(x1 − 1)

S1 + S2 + S3 → products kj/Ω
2 kj/Ω

2 x1x2x3

Table 1.1: Elementary reactions of different arity (left) and the corresponding
propensities (right); rescaling of reaction rate constants kj to the stochastic
rate constants cj (middle).

vector corresponding to the j-th column of the stoichiometric matrix. That

is, νj = Nej , whereas ej is the j-th basis vector of an m-dimensional vector

space. With this, the evolution of the conditional probability can be expressed

by the balance equation

Pr(x, t+ dt|x0, t0) = Pr(x, t|x0, t0)Pr (no reaction in [t, t+ dt]) (1.4)

+
m∑
j=1

Pr(x− νj , t|x0, t0)Pr (one reaction Rj in [t, t+ dt]) .

The probability for Rj to occur in the state x within a time interval dt is

aj(x)dt+O(dt≥2), where the function aj : Nn0 → R+ is referred to as propensity

or hazard of reaction Rj . According to the law of mass action the propensity

of reaction Rj is the combinatorial number of ways the product can be formed.

That is,

aj(x) = cj

n∏
i=1

(
xi
Rij

)
,

with cj , the stochastic rate constant. How that rate is related to the rate

constant kj is exemplified in the Table 1.1 for a few elementary reactions. The

correspondence is obtained by noting that(
xi
Rij

)
≈
x
Rij
i

Rij !
for xi � Rij .

With this, the terms of equation 1.4 can be expressed for sufficiently small δt

as

Pr (no reaction in [t, t+ δt]atstatex) = 1−
m∑
j=1

aj(x)δt (1.5)

and

Pr (one reaction Rj in [t, t+ δt]atstatex) = aj(x− νj)δt (1.6)
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With equations 1.4 to 1.6 and δt taken to the limit, we obtain the chemical

master equation (CME) [15, 16, 17]

∂Pr(x, t|x0, t0)

∂t
= lim

δt→0

Pr(x, t+ δt|x0, t0)− Pr(x, t|x0, t0)

δt

=
m∑
j=1

[aj(x− νj)Pr(x− νj , t|x0, t0) (1.7)

− aj(x)Pr(x, t|x0, t0)] .

1.2.3 Stochastic Simulation Algorithms

The CME completely determines the conditional probability Pr(x, t|x0, t0),

therefore, given an initial probability distribution Pr(x0, t0) the evolution of

this probability can be solved. However, except for very simple cases, the

CME is a set of ODEs that is exponentially large with respect to n and nei-

ther analytical nor efficient computational solutions are available. One way to

extend the applicability of the direct solution of (1.8) is to approximate the

solution by restricting the state space of the CME to those states that carry

significant probability mass [18, 19].

An approach that is much more scalable is to perform Monte Carlo sim-

ulations of the reaction system. In this case, we draw a random sample path

of the Markov jump process that represents a succession of reactions occurring

randomly according to their propensities. The theory and algorithm for exact

stochastic simulations were introduced by Gillespie in 1976 [20] and was further

detailed in [15]. The probability p(τ, j|x, t)δτ is defined as the probability that

the next reaction in the system will be the j-th one and that it will occur in

the time interval [t+ τ, t + τ + δτ ], τ ∈ [0,∞) given that the system is in the

state X(t) = x at time t. This joint probability can be decomposed. That is,

the probability p0(τ,x) that no reaction occurs in the interval [t, t + τ ] mul-

tiplied by the probability aj(x)δτ that the reaction Rj occurs in the interval

[t+ τ, t+ τ + δτ ].

p(τ, j|x, t)δτ = p0(τ,x)aj(x)δτ. (1.8)

To obtain an expression for the density p0(τ,x), the distribution of the time

intervals between two reactions has to be evaluated. Focusing on a system with

a single reaction R1, the probability that this reaction does not occur in the

interval [t + τ, t + τ + δτ ] is p0(τ + δτ,x) = p0(τ,x)(1 − a1(x)δτ). Therefore,
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the evolution of p0(τ,x) is

dp0(τ,x)

dτ
= lim

δτ→0

p0(τ + δτ,x)− p0(τ,x)

δτ
= −a1(x)p0(τ,x), (1.9)

which implies, with the condition p0(0,x) = 1 and equation (1.8), that the

probability density for the next reaction to occur at time τ is

p(τ,x) = a1(x)e−a1(x)τ . (1.10)

This distribution of the next event follows the Poisson law with a mean

equal to a1(x)τ . Such a distribution is found in many physical systems with

random events such as radioactive degradation and its properties will be used

later in this chapter [16]. Going back to the whole reaction system with this

result, the distribution for the probability that no reaction occurs during the

time interval τ , p0(τ,x), is the product of the probabilities that no single

reactions occurs in this interval,

p0(τ,x) = e−a0(x)τ ,

with a0(x) =
∑m

j=1 aj(x). The desired density probability that the j-th reac-

tion occurs at time τ can then be expressed as

p(τ, j|x, t) = aj(x)e−a0(x)τ . (1.11)

Using the definition of conditional probability, the joint probability density

function can be factorized into p(τ, j|x, t) = p1(τ |x, t)p2(j|τ,x, t) where the

term p1(τ |x, t)dτ is the probability that the next reaction will occur in the

interval [t + τ, t + τ + δτ ], regardless of which reaction it might be, and the

term p2(j|τ,x, t) is the probability that this next reaction is the j-th one. It

can be seen in

p1(τ |x, t) =

m∑
j=1

p(τ, j|x, t)

= a0(x)e−a0(x)τ with τ ∈ [0,∞) (1.12)

and

p2(j|τ,x, t) =
p(τ, j|x, t)∑m
j′=1 p(τ, j

′|x, t)

=
aj(x)

a0(x)
= p2(j|x, t) with j ∈ {1, . . . ,m} (1.13)

that p1 depends only on τ and p2 depends only on j. Therefore, the two random

variables τ and j, that follow the distributions 1.12 and 1.13, respectively, can

be drawn independently.



1.2 Stochastic Simulations in Systems Biology 9

1.2.4 Implementation of Gillespie’s Algorithm

In this part, different implementations of Gillespie’s stochastic simulation

algorithm will be discussed. All these methods are called exact as the simula-

tions are made without any approximation. As a consequence, the results of

those variants are equivalent.

The First Reaction Method

The straightforward way to implement Gillespie’s algorithm is called the

first reaction method. For each reaction Rj , a value τj for the next occurrence is

chosen according to the exponential distribution τj ∼ e−aj . Then, the smallest

τj is chosen and the corresponding reaction is executed. After the update of

the state and the advance in time, all propensities must be evaluated again

and a whole set of τj has to be drawn again. For each reaction, m new random

numbers need to be drawn, which is computationally demanding. Due to its

computational cost, this implementation of the algorithm is practically never

used.

The Direct Method

The original implementation proposed by Gillespie is called the direct

method [15] and takes advantage of the two independent probability distri-

bution discussed above (Eq. 1.12 and 1.13). By drawing two uniform random

numbers r1, r2, the time to the next reaction τ is given by

τ =
1

a0(x)
ln

(
1

r1

)
, (1.14)

and the next occurring reaction RJ is determined by the following condition

J∑
j=1

aj(x) > r2a0(x). (1.15)

The system is then updated to t ← t + τ and x ← x + νj . Algorithm 1 is a

pseudo-code of this implementation. For each reaction, only two random num-

bers are drawn, which is much more efficient than the first reaction method.

However, all propensities are evaluated at each time step and further improve-

ments have been made to limit the number of those operations.
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// Initialization

t← 0;
X← Initial conditions ;

// Main loop

while t < T do

a0 ← 0 ; // Evaluation of the propensities

for j ← 1 to m do
aj ← propensity for Rj with X(t) ; // According to Table 1.1

a0 ← a0 + aj ;

end

// next reaction time (Eq. 1.12)

Draw a random number r1 ∼ U [0, 1], τ ← − ln(r1)/a0 ;

// Reaction selection (Eq. 1.13)

Draw a random number r2 ∼ U [0, 1], R← a0r2 ;
for j ← 1 to m do

R← R− aj ;
if R ≤ 0 then

J ← j ; // J is the chosen reaction

Break ;

end

end

X← X + νJ ; // Reaction execution

t← t + τ ;

end
Algorithm 1: Pseudo-code for simulation of the Gillespie algorithm with
the direct method. The time is t, the state variable X. The simulation is
performed until time T .

The Next Reaction Method

One direction to improve efficiency was proposed by Gibson and Bruck [21].

It is based on the first reaction method, but a minimal number of propensities

(and therefore τj) are evaluated at each time step. Knowing the expression for

the propensities, a dependency graph D can be created to describe which state

variables are updated when a particular reaction fires and consequently, which

propensities must be recalculated. For example, let Rj be the next reaction

to occur after time τj . If the state variables involved in the expression for

ak were not changed by Rj , τk can be retained. Else, if some components

Xi, on which the propensity Rk depends on, are changed by Rj , ak has to

be re-evaluated. The random number for the next occurrence of this reaction
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τk can be updated as τk ← (aj,old/aj,new)(τk − τj) + τj . In general, Monte

Carlo method simulations assume statistically independent random numbers

and such a re-use of τk seems not legitimate. However, in this particular case

[21], it has been proved to be valid with the change from relative to absolute

time. For this method, τj is the absolute time of the next occurrence instead

of the time interval until the next occurrence. In summary, only one random

number is drawn and a minimal number of propensities are evaluated at each

time step, reducing drastically the computational cost of the simulation.

A further enhancement has been implemented in the next reaction method.

The different τj are sorted such that the search for the next reaction is fast.

An efficient way to do this is to place all reaction times in a binary tree such

that all children have a larger τj than its parent. For large systems, the cost

of updating the tree is advantageously balanced by the gain in finding the

minimal τj .

The Sorting Direct Method

The idea of avoiding the computation of all propensities at each step has

been applied also to the direct method. An additional optimization to limit

the number of operations on the summation occurring in the reaction choice

(Eq. 1.15) has been proposed by Cao et al. [22]. Therein, the summation starts

with the reaction with the largest propensities such that the random value

r2a0 is reached earlier. This requires a priori knowledge of the most frequent

reaction. This aspect has been further enhanced in the sorting direct method by

McCollum et al. in [23] that includes a simple dynamic sorting of the reactions.

The pseudo-code of the method is presented in Algorithm 2. This method needs

two random numbers per step, but with the most efficient random number

generators such as the Mersenne Twister algorithm, also known as mt19937

[24], it proves to be at least as efficient as the next reaction method [23].

1.2.5 Approximate Simulation Methods – τ -leaping

Even when optimized, exact simulation algorithms scale badly with the

number of molecules in the reaction system. With a high copy number, the

propensities are large and the time for the next reaction τ is small. It results

in a large number of steps for a small advance in physical simulation time.

Approximation methods have been proposed to counteract this problem [25,

10]. With a large number of molecules, the propensities can be considered
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// Initialization

t← 0;
X← Initial conditions ;
O← [1 . . .m] ; // Reaction search order

D ← dependency matrix;
a0 ← 0 ; // Initialization of the propensities

for j ← 1 to m do
aj ← propensity for Rj with X(0) ; // According to Table 1.1

a0 ← a0 + aj ;

end

// Main loop

while t < T do
// next reaction time (Eq. 1.12)

Draw a random number r1 ∼ U [0, 1], τ ← − ln(r1)/a0 ;

// Reaction selection (Eq. 1.13)

Draw a random number r2 ∼ U [0, 1], R← a0r2 ;
for j ← 1 to m do // Loop according to the ordering

R← R− aO(j) if R ≤ 0 then

RO ← j ; // The j-th ordered reaction is chosen

Break ;

end

end
J ← O(j) ; // J is the chosen reaction

X← X + νJ ; // Reaction execution

t← t + τ ;

if RO 6= 1 then // Dynamic ordering of the reactions
swap O(RO − 1) and O(RO)

end

foreach j ∈ D(J) do // Update necessary propensities

a0 ← a0 − aj ;
aj ← propensity for Rj with X(t) ; // According to Table 1.1

a0 ← a0 + aj ;

end

end
Algorithm 2: Pseudo-code for Gillespie’s algorithm with the sorting direct
method. The time is t, the state variable X. The simulation is performed
until time T .
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constant over a small time step. This is the main idea of the tau-leaping

methods. For a defined time step τ , the number of reactions σj occurring is

chosen according to a Poisson distribution P with a mean equal to the ajτ . The

different σj are assumed to be independent for all reactions. As for first order

methods to integrate ODEs, the update of the system state from X(t) = x is

then made with finite time leap

X(t+ τ) = x +
m∑
j=1

σjνj with σj ∼ P(aj(x)τ). (1.16)

The τ -leaping method is a valid approximation if the following two condi-

tions hold. If (1) the time step τ is small enough such that the propensities

change marginally for the number of reactions that occurs during τ and (2)

that no state variable can reach negative values due to a too large jump. How-

ever, choosing a small τ will result in very few reactions occurring during each

time step and therefore reproducing Gillespie’s algorithm. The efficiency and

accuracy of τ -leaping algorithms depend crucially on the choice of τ . Most

algorithms have a dynamic assignment of τ as a function of the propensities.

For instance, they ensure that the relative variation of aj during the time step

τ , i.e.
∆τaj
aj

, remains below a threshold ε with 0 < ε� 1. The basic algorithm

is given as pseudo-code in Algorithm 3.

Determination of the Leap Size

The condition proposed by Cao et al. [26] sets the threshold on the species

instead of the propensities. That is, ∆τXi ≤ max{εixi, 1}, where εi = ε/gi

and gi is equal to the order of the reaction in which Si is participating (see

[26] for details). As ∆τXi =
∑m

j=1 σjνij with σj ∼ P(aj(x), τ), we can esti-

mate the average and the variance of ∆τXi using the properties of the Poisson

distribution

〈∆τXi〉 =
m∑
j=1

νij [aj(x), τ ]

var{∆τXi} =

m∑
j=1

ν2
ij [aj(x), τ ]. (1.17)

The above bound on ∆τXi can be considered satisfied if it is simultaneously

satisfied by the absolute mean and the standard deviation of ∆τXi

|〈∆τXi〉| ≤ max{εixi, 1},
√

var{∆τXi} ≤ max{εixi, 1}. (1.18)
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// Initialization

t← 0;
X← Initial conditions ;
ε← precision ;

// Main loop

while t < T do

// Evaluation of the propensities

for j ← 1 to m do
aj ← propensity for Rj with X(t) ; // According to Table 1.1

end

τ ← time leap according to Eq. 1.19

for j ← 1 to m do
Draw a random number σj ∼ P(ajτ);
for i← 1 to n do

Xi ← Xi + σjνij ; // Reaction execution

end

end

t← t + τ ;

end
Algorithm 3: Pseudo-code for the τ -leaping simulation. The time is t, the
state variable X. The simulation is performed until time T .

This gives two inequalities for τ that need to hold for all i ∈ {1, . . . , n}

τ ≤ max{εixi, 1}∑m
j=1 νijaj(x)

, τ ≤ max{εixi, 1}2∑m
j=1 ν

2
ijaj(x)

. (1.19)

As for ODE integrators, more sophisticated algorithms have been proposed

to better simulate stiff reaction systems. An improvement is to replace the

explicit update rule Eq. 1.16 with an implicit one [27]

X(t+ τ) = x +
m∑
j=1

[σj − aj(x)τ + aj(X(t+ τ))τ ]νj with σj ∼ P(aj(x)τ).

(1.20)

In this expression, the mean of the Poisson distribution 〈P(aj(x)τ)〉 = aj(x)τ

is subtracted out and replaced by its values at the later time point t + τ , but

the variance has been left unchanged. Once the Poisson random numbers σj

have been drawn, the equation is solved for X(t+ τ) using standard numerical

techniques, such as Newton methods. This implicit update rule allows larger

time steps for a stiff system without affecting accuracy.
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1.2.6 Modified τ -leaping Procedure

Even if the conditions Eq. (1.19) for the leap size τ are satisfied, a Poisson

random variable can realize arbitrarily large values and the update rule can

thus lead to unphysical, negative copy numbers. A simple method is to reject

any proposal leap that results in negative copy numbers. However, if rejections

are too frequent, the method loses its efficiency. As a variation of the initial

algorithm, the binomial τ -leaping method has been proposed to avoid negative

molecular populations [28]. This method draws random numbers from a bino-

mial distribution instead of a Poisson one. To obtain a valid approximation,

some restrictions need to be applied. In particular, in situations where multiple

reactions share common reactants, the leap conditions that need to be checked

turn out be rather complex.

Another approach, that establishes a link to exact Monte Carlo methods,

was proposed by Cao et al. [29]. The first step is to recognize that negative

values of a consumed reactant are likely to arise when the population is already

small. The second step is to determine the reactions, called critical ones, in

which reactants may be depleted. That classification can be made by setting a

threshold nc (typically between 2 and 20) on the number of times the reaction

Rj can occur. That is, reaction Rj is critical if

Lj = min
i ∈ {1, . . . , n}

νij < 0

[
xi
|νij |

]
< nc and aj > 0. (1.21)

In this context, the critical reactions Rj are likely to generate negative copy

numbers and should therefore be simulated with the exact Gillespie algorithm.

Practically, the system is decoupled. That is, according to equation (1.19), a

value τ ′ is chosen for the noncritical reaction and in parallel, a value τ ′′ is chosen

for the critical reactions in the same way as the direct method of the Gillespie

algorithm (Eq. (1.14)). Then, the smallest of τ ′ and τ ′′ is used to advance the

system and the noncritical reaction are executed with random Poisson occur-

rence and, only in the case τ ′′ < τ ′, one critical reaction is executed (chosen

according to equation (1.15) restricted to the critical reactions). Algorithm 4

is a pseudo-code of this method. With this distinction, the critical reactions

can only occur once during a time step and therefore reactants can never reach

negative values. For large values of nc, all reactions eventually become critical

and this method converges to the Gillespie algorithm using the direct method.
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// Initialization

t← 0 ;
X← Initial conditions ;
ε← precision ;
nc ← threshold for critical reactions ;

// Main loop

while t < T do

a0 ← 0 ; // Evaluation of the propensities

for j ← 1 to m do
aj ← propensity for Rj with X(t) ; // According to Table 1.1

a0 ← a0 + aj ;

end

Rc ← critical reactions according to Eq. (1.21) τ ′ ← time leap according to
Eq. (1.19) for Rj /∈ Rc a

c
0 ← sum of ajc for critical reactions ;

Draw a random number r1 ∼ U [0, 1], τ ′′ ← -ln(r1)/ac0 ;

if τ ′ < τ ′′ then // Case where no critical reaction occurs during

τ ′

τ ← τ ′ ;

for j s.t. Rj /∈ Rc do
Draw a random number σj ∼ P(ajτ);
for i← 1 to n do

Xi ← Xi + σjνij ; // Noncritical reaction execution

end

end
t← t + τ ;

else // Case where a critical reaction occurs before τ ′

τ ← τ ′′ ;

for j s.t. Rj /∈ Rc do
Draw a random number σj ∼ P(ajτ);
for i← 1 to n do

Xi ← Xi + σjνij ; // Noncritical reaction execution

end

end

// Critical reaction selection (Eq. 1.13)

Draw a random number r2 ∼ U [0, 1], R← ac0r2 ;
for j s.t. Rj ∈ Rc do

R← R− aj ;
if R ≤ 0 then

J ← j ; // J is the chosen reaction

Break ;

end

end

X← X + νJ ; // Critical reaction execution

t← t + τ ;

end

end
Algorithm 4: Pseudo-code for the modified τ -leaping procedure. The time
is t, the state variable X. The simulation is performed until time T .
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1.2.7 Hybrid Simulation Algorithms

For reaction systems with species fluctuating at different orders of magni-

tude, the difference of time scales between the reactions is so large that one

encounters the problem of stiffness. In deterministic simulations this problem

has been circumvented with, for instance, the Michaelis-Menten approximation

in the case of enzymatic reactions. There, the fast reactions are approximated

by their steady-state value. In stochastic simulations such stiffness implies

that most computational time is dedicated to these fast reactions – dramati-

cally slowing down the simulations.

The approach similar to the Michaelis-Menten approximation has also been

proposed for stochastic simulations. Such hybrid simulations was first intro-

duced by Haseltine et al. [30] and in parallel by Rao et al. [31]. The reaction

system is partitioned into fast reactions and slow ones under the condition that

species involved in fast reactions should have large copy numbers. The parti-

tion can be dynamically adjusted, depending on the evolution of the species,

but a significant difference between the reaction rates of the two classes should

exist otherwise the system may not be appropriate for hybrid simulations.

Even if the details differ from a method to another, the slow reactions are

usually simulated using Gillespie’s direct method. The way of calculating the

propensities depends on the assumptions for the fast reactions. In particu-

lar, Haseltine et al. [30] propose a Langevin approximation (see below), or an

approximation based on the ODE-based reaction rate equation. The quasi-

steady-state approach in [31] generates the values for the species through the

probability distribution at the steady state. Even though the fluctuations of the

fast species are not exactly reproduced, the accuracy of this hybrid algorithm

has been demonstrated to be high for a proper partitioning [30, 31].

The main drawback of both methods above lies in the fact that fast reac-

tions including species with low copy numbers cannot be in the fast partition.

Cao et al. [32] overcame that problem by partitioning the species along with

the reactions. Their work led to the slow-scale stochastic simulation algorithm

(ssSSA) [33] that is currently the most rigorous framework for the hybrid sim-

ulation of stochastic reaction systems. As the implementation of the ssSSA is

rather involved, the reader is referred to the original article for implementation

details. For the discussed case studies, Cao et al. [34] report an increase in

simulation speed over exact methods of almost three orders of magnitude with

no perceptible loss of accuracy.



18 Chapter 1: Introduction

1.2.8 Langevin Approximation

In the light of τ -leaping, often an additional assumption can be made

for reaction systems. More specifically, for systems with a large quantity of

molecules a significant number of reactions occur during a single time step.

For the following Langevin approximation, not only the time step τ needs to

be small enough to satisfy the above τ -leaping conditions, but the expected

number of firings for each reaction Rj during τ should also be large. That is

to say aj(x)τ � 1 for all j ∈ {1, . . . ,m}. Under this condition, the Poisson

random variable in equation (1.16) can well be approximated by a Gaussian

random variable with both the mean and the variance equal to aj(x)τ . Equa-

tion (1.16) then reads

X(t+ τ) = x +
m∑
j=1

σjνj with σj ∼ N (aj(x)τ, aj(x)τ). (1.22)

Notice that the integer random variable is now replaced by a real normal ran-

dom variable and therefore the state variables Xi are now real numbers, which

is only appropriate for large copy numbers.

Using the property of the Gaussian distribution N (m,σ2) = m+σN (0, 1),

the equation can be further simplified to obtain the chemical Langevin equation

(CLE)

X(t+ τ) = x +
m∑
j=1

νjaj(x)τ +
m∑
j=1

νj

√
aj(x)τ ∆Nj , (1.23)

with ∆Nj ∼ N (0, 1). This equation is valid under the two assumptions that (1)

no propensities function changes its value significantly during τ , yet (2) every

reaction occurs multiple times during one time step τ . It is usually possible to

find a τ that fulfills these criteria if the populations of all species are large. If

not, the chemical Langevin equation cannot be used to simulate the system.

The CLE can also be written as a stochastic differential equation (SDE) when

the increment τ is taken to be infinitesimal

dX =
m∑
j=1

νjaj(X(t))dt+
m∑
j=1

νj

√
aj(X(t))dWj , (1.24)

with dW ∼ N(0,dt), the increments of a Wiener process W(t). Different

algorithms can be found to integrate SDEs [35], the simplest thereof is the

Euler-Maruyama scheme that is equivalent to (1.23) for a fixed step size τ .
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1.3 Robustness in Systems Biology

In general terms, robustness is the ability of a system to maintain its func-

tion or structure despite external or internal perturbations [36]. Robustness

has to be understood as a relative word: when one talks about a robust sys-

tem, one has to state which function of the organism is robust and also to refer

to which type of perturbations the function is insensitive. In the context of

Systems Biology, a system function can be associated with a particular mode

of operation of a system. A system function for a circadian oscillator for in-

stance, can be that it exhibits stable oscillations with a period around 24h

and amplitude within a predetermined range. This example already indicates

that, in general, a system’s function requires multiple system characteristics

to be left invariant, e.g., amplitude and period of oscillations. The pertur-

bations a system can face are perturbations in parameters, network structure

that comprises mutations [37, 38], molecule copy number (i.e. molecular noise

[39, 40, 41, 42]), external concentrations, etc. One should note that variations

in parameters could also account for fluctuations of environmental factors such

as temperature [43], pH-value or ionic strength [44].

Robustness has been put forward in engineering as an important design

criterion for any system and has also been widely observed in Biology as an

intrinsic property of many systems. This feature is probably more important in

biological systems than in engineered ones as the environment can be controlled

to a lesser extent. Indeed, there is strong evidence that natural selection is

favoring robust biological systems [45]. Many properties of biochemical systems

show some robustness to the different types of perturbations described above

[46, 47, 48, 49, 50, 51, 52]. If robustness has be observed and described, the

quantification and analysis of robustness in biochemical systems is still in its

infancy.

In the field of complex systems, first attempts have been made to formalize

the notion of robustness of a complex system [53, 54, 47, 49]. Although the

notion of robustness already exists in control engineering, its definition is too

restrictive for biological systems. The function to be maintained in robust

control is normally stability, while for biology this may also be the case but

higher-level system functions could be involved. For instance, a particular

system function for a metabolic network might be a predetermined biomass

yield. While changing nutrient supply it might be necessary to control the

metabolic network from one stable operating point to another. This could be
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achieved by destabilizing the original operating point. Thus, stability is not

always equivalent to robustness but is only an instance of the latter.

In this thesis, I will mainly focus on the robustness of small biochemical

models to parameter variation and molecular noise. As discussed above, the

behavior of a model depends on its parameters. The study of robustness in

this context is to answer the question “How changes of parameter values affect

the behavior of the systems?”. I will now review the two analysis trends at

this level: global methods, which assess the volume in parameter space that is

compliant with the proper functioning of the system, and local methods, which

in contrast determine robustness for a given parameter vector of the studied

model.

1.3.1 Global Methods for Robustness Analysis

When focusing on robustness to changes in biochemical parameters that

define system behavior, a biological system’s robustness is a reflection of the

topology and size of its viable space, i.e. the volume, using the proper nor-

malization, where parameters generate a behavior of interest [55, 56]. Global

methods try to characterize this volume and therefore the first question we ask,

is “How many parameter combinations allow a system’s desired behavior?”. A

small viable volume forces a precise tuning of biochemical parameters. On the

contrary, a large viable volume allows the system to successfully face changes

in environmental conditions, because its parameters can adapt, sometimes by

orders of magnitude, without impairing its function. Hence, robustness is as-

sociated with larger viable volumes.

The second question is the geometry of the viable space which plays an-

other important role in a system’s robustness. It has been widely observed

that the possible range of values in the viable space is very different for each

parameter, a property called sloppiness [57]. Viable volumes with irregular ge-

ometries are more prone to be left with a little variation in the stiff direction.

Therefore, geometries which permit moderate fluctuations in any parameter

direction without leaving the viable volume are more robustness.

In evolutionary terms, different ways of performing the same function –

for instance, by conserved pathways with homologous yet different proteins

[46] – can be traced back to a common ancestor and are thus reachable from

each other in an evolutionary tree [45]. A connected viable volume improves

the system’s evolvability and allows neutral evolutionary trajectories that may
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drive the system towards viable parameter points with high local robustness.

Therefore, the robustness of a biological system is reflected in the geometry

and size of its viable space.

Another approach that is at the edge of local methods is bifurcation anal-

ysis [58, 59, 60]. This type of methods characterizes how qualitative model

properties, such as stability of steady-states, change as one of the model pa-

rameter is varied while others are kept constant.

1.3.2 Local Methods for Robustness Analysis

Most robustness analyses in literature are based on local methods [47, 48,

61, 62, 41, 42]. Local methods can be split in different classes, but they are all

based on the same principle: their ‘local’ denomination meaning that they all

analyze a specific model with a single parameter vector.

The first class of local methods comprises analyses used in control the-

ory. These methods mainly use sensitivity analysis of a system function to

infinitesimal parameter variations. The function can be a given component

concentration at steady state [51, 63] or the period and phase of an oscillator

[62, 61, 50]. The frequency response has also been analyzed with this method.

[64]. Temperature compensation analyses can be comprised in this category

as they use infinitesimal derivatives [43, 65, 66]. Usually, the specific proper-

ties are written as a function of the equations of the model and differentiated

by the parameters and the absolute or relative value is taken as a robustness

measure. The second class of local methods uses small finite variation [48]

or random perturbations around the given parameter vector [67] to assess ro-

bustness. In this case, a sufficient number of random perturbations must be

analyzed to obtain a statistically significant measure. Another class comprises

methods that evaluate the effect of the molecular noise on either a steady state

value [68, 69] or on the period of an oscillator [41, 42]. These methods rely

on stochastic simulations of the system using either Gillespie’s algorithm [15]

or approximate method such as τ -leaping or Langevin simulations [10]. Other

methods can be considered as local, but I will halt the list to discuss other

properties linked to robustness.

1.3.3 Robustness and Parameter Identifiability

Besides its long-term scientific relevance as a design principle, the study of

robustness is linked to the issues of quantitative biology with parameter identi-
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fiability and model discrimination. The link between robustness and parameter

fitting in Systems Biology becomes clear when instantiating the corresponding

questions they want to answer: global robustness analyses answer the question

“How much variation in the parameters can the system accept while main-

taining its output value?”, whereas parameter fitting answers “What is the

parameter vector that can fit the measured output value?”. The main prob-

lem of parameter fitting is identifiability: it is widely observed that measures

cannot constrain the parameter space in some directions [57]. Today’s com-

mon practice is to ignore this uncertainty and for instance publish models with

single point estimates for their parameters. In this regard robustness analysis

offers a possible solution for this controversial fine-tuning of biological mod-

els toward interval computation yielding parameter regions that are consistent

with experimental data.

Such observations about identifiability (or lack of) raise the possibility that

local robustness itself could be used to discriminate between models [46, 47].

On one hand, difference in robustness could be used to design new experiments

that test specifically this criterion. Such back and forth interactions between

model analysis and experiments are a key element to improve models. On

the other hand, in the absence of other experimental criteria, a model (or a

specific parameter vector) would be judged superior if it is more robust than

other models to some class of perturbations [50].

1.4 Biological Oscillations and Circadian Clocks

When studying robustness in biology, several case studies are recurrently

seen in the literature. In the context of adaptation and maintenance of a

steady state, the chemotaxis capacity of Escherichia coli [70] or the heat shock

response to prevent protein denaturation [51, 71] have been extensively modeled

and analyzed. For the study of biological oscillations [72], two types of systems

have been mainly investigated: first, the mitotic cycle [73] which leads to

the study of the cell cycle [74]. The second type comprises circadian clocks

in different organisms ranging from the cyanobacteria to the Drosophila and

mammals [75]. I will now focus on the later and explain its role with an

emphasis on the mechanisms of the cyanobacterial clock.
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1.4.1 Role of the Circadian Clock

Most living organisms exhibit a circadian rhythm with a 24-hour period-

icity, synchronized with the alternation of day and night. It is ubiquitous and

governs many physiological functions of the organism. Circadian rhythms are

of special interest because everybody feels the effect of its internal clock ev-

ery day, and even more when suffering of jet-lag. The circadian clock is also

linked to the cell cycle and drugs, especially in cancer treatment, have differ-

ent effect depending on the hour of intake [76]. Moreover, circadian rhythms

have been found in almost all eukaryotic organisms and even in some bacteria.

This prevalence is even more striking as the topology of the systems and some

proteins and genes have been evolutionary conserved.

Three major properties are used to define a circadian clock. First, like

other biological oscillations, circadian rhythms have an endogenous nature and

thus persist under constant environmental conditions: the free-running period

in continuous darkness is close to 24 hours. The second property of the circa-

dian clocks is its ability to be entrained by light. Two different theories explain

the effect of light: either the transition from dark to light triggers some mech-

anism that shifts the cycle to maintain it in phase with light, or the effect is

over the entire exposure to light. For the latter, the system is working in a

different regime during the day than in darkness. But the important aspect

is that the circadian clock is able to adapt to the daylight phase within a few

cycles. The third characteristic of circadian clocks is their relative insensitivity

to temperature changes. Normally, the rate of an isolated chemical reaction

doubles when the temperature increases by ten degrees. On the contrary, the

circadian rhythms are temperature compensated, meaning that the period re-

mains constant even with temperature changes. This property is nearly unique

among biological rhythms and therefore focuses interest in the modeling com-

munity [43]. These properties are useful for modeling and robustness analysis

as they provide well-defined criteria.

1.4.2 The Cyanobacterial Circadian Clock

Cyanobacteria, from Greek cyano which means blue, are a type of bacte-

ria that obtain their energy through photosynthesis. They account for about a

quarter of Earth’s photosynthetic productivity and are critical in the food chain

of many ecosystems. For example, the tiny marine cyanobacterium Prochloro-

coccus was discovered in 1986 and accounts for more than half of the photosyn-

thesis of the open ocean [77]. Being a major component of phytoplankton, it
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forms the basis of the ecological pyramid of the aquatic ecosystems. Ancestors

of cyanobacteria had probably played a critical role in the oxygenation of the

Earth’s atmosphere about two and a half billion years ago.

Besides their photosynthesis activities, cyanobacteria are the only group

of organisms able to reduce nitrogen and carbon in aerobic conditions. This

activity is vital for many higher organisms, such as plants, that are not able

to use atmospheric nitrogen. For example, they serve as natural rice paddy

fertilizer and are essential in many other crop cultures. Photosynthesis and

nitrogen fixation, but also other primary metabolic activities such as vitamin

and cofactor biosynthesis, allowed cyanobacteria to inhabit practically every

environment and also made them common participants in symbiotic associa-

tions.

Knowing that photosynthesis and nitrogen fixation are two incompatible

mechanisms raises the question of how cyanobacteria can balance both activ-

ities without compartmentalization. Circadian rhythm was not proposed as a

control mechanism as it was expected that an organism that could grow and

divide at a rate faster than 24 hours would not be able to maintain a circadian

regulatory regime. This conviction came from the fact that eukaryotic models

for circadian cycles are based upon intercellular communication and nuclear

sequestration of key clock components. But physiological studies regarding the

temporal separation of cyanobacterial nitrogen fixation and oxygenic photo-

synthesis suggested that cyanobacteria have endogenous timing mechanisms

[78].

In 1990, Huang et al. experimentally showed that the cyanobacterial strain

Synechococcus sp. RF-1 has an internal clock that fulfills all three properties for

a circadian clock (sustained oscillations with a period near 24 hours in constant

conditions, entrainment by light and temperature compensation). Cyanobac-

teria are the simplest organisms that display circadian rhythms and therefore

provide a model system for the circadian clock. To determine the underlying

genetic and molecular basis for cyanobacterial circadian rhythms, experimen-

talists used the cyanobacterial Synechococcus elongatus PCC 7942 as this strain

was more suitable for high throughput experiments [78].

Note that S. elongatus does not fix nitrogen (and may not require a tem-

poral separation), but it still has a circadian clock which provides a selective

growth advantage [79]: mutant strains with circadian oscillators of different

period lengths were put into direct competition with one another under dif-

fering light-dark (LD) cycles. The strains with endogenous circadian period
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lengths best matching the period of the LD cycle prevailed in the competition.

For example, when two strains were mixed in nearly equal proportions and

grown together, the period matching strain completely overtook its competitor

in about seven generations [79]. These experiments show that the circadian

clock is advantageous for cyanobacteria beyond the temporal separation of the

photosynthesis and nitrogen fixation processes.

The Kai Proteins

The molecular mechanism of a cyanobacterial circadian clock was first re-

ported in Synechococcus elongatus PCC 7942 in 1998 by Ishiura et al. [80].

The S. elongatus clock comprises the products of at least three genes, kaiA,

kaiB, and kaiC, named after the Japanese word kaiten for cycle. The three

corresponding proteins, KaiA, KaiB and KaiC, form the core of the machinery

for generating and maintaining rhythms with a free-running period of approx-

imately 24-25 hours. Mutations in any kai gene can result in strains with

different period lengths and deletion of any kai gene results in arrhythmic

strains.

Other genes may be involved in the control of the clock and its capacity

to be entrained by external factors. However, the Kai proteins are sufficient

to maintain the cyclic activity without any gene expression as it was first

shown by Nakajima et al. in 2005. For this experiment, three Kai proteins

were purified and mixed them in vitro with ATP and Mg2+ to reconstitute

the cyanobacterial clock [81]. The in vitro oscillator showed the two main

features of a circadian clock, i.e., stable oscillation with a free-running period

around 24h and temperature compensation. After this experiment, a large

community showed interest in understanding [82, 83, 84, 85, 86] and modeling

the cyanobacterial circadian clock [87, 88, 89, 90, 91, 92].

The central protein of the clock, and the most intriguing one, is KaiC.

It forms hexamer in presence of ATP and its monomeric form is a duplicate

version of a recA/dnaB-like gene [93]. RecA is a DNA recombinase and DnaB is

a DNA helicase and the similarity with KaiC could imply that KaiC might also

act upon DNA, which was indeed shown in [94]. The two domains of KaiC (CI

for N-terminal and CII for the C-terminal) contain shared regions that include

Walker A and B motifs involved in ATP binding and hydrolysis [93]. The CII

domain of each KaiC monomer is believed to have at least two phosphorylation

sites (Serine 431, S) and (Threonine 432, T). The phosphorylation pattern
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seems to be a key factor for the Kai cyclic activity. This will be discussed in

more details after introducing the two other components KaiA and KaiB.

KaiA is present as a dimer (and can be always considered as such) and

binds to the KaiC hexamer [82]. KaiA binds to KaiC at the C-terminal (CII

domain) with a supposed stochiometry of one KaiA dimer to one KaiC hex-

amer. KaiB is reported to act most probably as a tetramer. Detailed studies in

[83] showed that KaiB most likely associated with KaiC in form of two dimers

in a ring shape that attaches on top of the KaiC hexameric barrel in CII side.

A

BC

D
E

KaiA

KaiB

KaiC

Pi

Figure 1.1: Schematic representation of the Kai system. (A) KaiA attach to
the unphposphorylated KaiC hexamer and subunits start to be phosphorylated.
(B) KaiA enhances phosphorylation until most of the subunits are doubly-
phosphorylated. (C) When the hexamer is highly phosphorylated, KaiB binds
to it. (D) With KaiB inhibiting KaiA effect, the subunits dephosphorylate.
(E) While KaiB is bound, some of the subunits can detach and be exchanged
between hexamers.

The output of the in vitro system is the phosphorylation state of the KaiC

hexamers that oscillates between a low and a high phosphorylation states. The

two T and S sites are phosphorylated in a sequence: for each monomer, starting

with the unphosphorylated state, first the T site is phosphorylated, which then

allows phosphorylation of the S site. Similarly, the dephosphorylation of the

S site occurs only after T is dephosphorylated [91]. A substitution of one of

those two sites with Alanine (equivalent of an unphosphorylated amino acid)

results in a complete loss of rhythmic activity.
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These reactions are modulated by the binding of KaiA and KaiB. The bind-

ing of KaiA is required for the phosphorylation of the T and S sites on KaiC

(Fig. 1.1B): fully phosphorylated KaiC completely dephosphorylates within

24h in the absence of KaiA. KaiB alone does not have a effect on this activ-

ity [95]. The effect of KaiB is only seen in the presence of KaiA: when the

S sites of the subunits of the hexamer are phosphorylated, KaiB binds and

inhibits KaiA action, allowing the hexamer to dephosphorylate [91] (Fig. 1.1C-

D). Moreover, KaiB being bound, KaiA is trapped on KaiC and can hardly

unbind the complex before KaiB does.

This sequential mechanism seems to be the key of the circadian oscillations.

Yet other phenomena have been observed and postulated to enhance oscilla-

tions. First, during the dephosphorylation phase, when KaiB is bound to the

hexamer, KaiC subunits detach and can be exchanged between two hexamers

[95, 92] (Fig. 1.1C). Second, configurational change due to the binding of KaiB

has also been hypothesized because molecular dynamics simulations showed

that the association of KaiB to KaiC causes the inner channel of the hexamer

to increase in diameter. This physical change may weaken the bond between

the KaiC monomers which could allow monomer exchange [83]. Third, the

close location of the two phosphorylation sites at the interface between the CII

lobes of adjacent subunits [96, 97] can be a sign of cooperativity in the phospho-

rylation activity. Moreover, a third phosphorylation site spatially close to the

S site may be interfering [96, 98]. Fourth, the installation of both the kinase

and phosphatase activities within the same protein may aid in temperature

compensation [86, 85].

Modeling the Cyanobacterial Circadian Clock

Different models have tried to capture the complex mechanism of this sys-

tem. The first class of models do not distinguish between the two T and S

sites and there sequential phosphorylation. In order to generate a cycle, par-

ticular mechanisms have to be included in these models. For example, Mehra

et al. [87] proposed a positive feedback (autophosphorylation activity) along

with different stages of dephosphorylation to generate a delay that results in

oscillations. An allosteric model was proposed in [88] to recreate a sequence of

reactions that results in a cycle. In this first class of models, different hypoth-

esis were tested using robustness as a discrimination criterion [89]. However

these models may not be coherent with the experimental rates of binding and

unbinding reactions of KaiA and KaiB [86].
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The models of the second class make a distinction between the two T and

S sites. If the phosphorylation sequence ensures a cycle for the phosphoryla-

tion of each KaiC subunits, the issue that these models need to solve is the

synchronization of the different subunits. Rust et al. [90] proposed that KaiA

sequestration by the KaiB-KaiC complex acts as a feedback. Mori et al. [92]

used a stochastic model to show that monomer exchange is a necessity to main-

tain oscillations. Similarly, Emberly and Wingreen proposed a model where

the hexamers form clusters when highly phosphorylated [99]. Finally, Eguchi

et al. based the synchronization mechanism of their model on a conformational

change in addition of monomer exchange [100, 101].

These models try to properly capture the complexity of the interactions

between these three proteins, but for the moment, none of the above hypothe-

ses have been validated and the following questions are still open. First, the

role of the hexamer and the possible cooperativity between the subunits is not

clear. Second, the slow reactions that set the pace of the 24-hour clock are not

always consistent with experimental rates. Third, the synchronization could be

dependent on different mechanisms or their combination. To test and discrim-

inate these models, atop of the experimental data, a few robustness criteria

could be used. For example, the temperature compensation is a key property.

Moreover, the system is rather insensitive to variations of the concentration of

the different Kai proteins.

1.4.3 The Circadian Clocks in Eukaryotes

The circadian clocks in eukaryotes differ fundamentally from the cyanobac-

terial one as they include a transcription step. In all eukaryotic clocks, the

central mechanism to produce oscillations is a negative feedback that occurs

through a protein that inhibits its own expression directly, or indirectly [102,

103, 75].

In the first model of the circadian clock in Drosophila, Goldbeter proposed

that the protein Period (PER) inhibits its own expression [104]. The necessary

delay to generate oscillations is induced by two stages of phosphorylation of

PER that are required for the protein to enter the nucleus. Even if this simple

model is enough to explain the periodicity of PER expression, more complex

models have been published to include newly discovered proteins [105, 106, 107].

PER associates with protein Timeless (TIM) to act as a complex inhibiting

their own expression. In contrast to PER, TIM degradation is enhanced by

light, allowing the clock to be entrained by the day and night alternation [105].
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Further studies showed that other proteins Cycle (CYC) and Clock (CLK)

are also interacting with PER and TIM. In fact, the CYC-CLK complex is

promoting PER and TIM expressions and is at the same time degraded by the

PER-TIM complex forming the negative feedback [106, 107].

The presence of multiple and interlocked feedback loops is a common fea-

ture in eukaryotic circadian clocks [102]. In Neurospora, the White Collar pro-

teins are also phosphorylated and form complexes with the protein Frequency

which controls the expression of the formers [75, 108]. In Arabidopsis, similar

pattern are observed with the proteins CCA1 (Circadian Clock Associated 1)

which is phosphorylated before inhibiting its own expression and regulating

TOC (Timing Of CAB expression) [109]. Finally, in mammals, a multitude

of parallel loops exist: the PER protein is found in three different copies that

have slightly different regulation [103, 75]. In parallel to the PER/CRY loop, a

loop with BMAL1/CLOCK is formed and interferes with PER/CRY expression

[60, 110, 103]. If such profusion of loops has been argued to enhance robustness

[102], it has never been properly shown.

1.4.4 Other Biological Cycles

Although feedbacks have been widely studied in the context of circadian

clocks, they are also present in many other systems [111, 2]. Even before the

protein regulation was known, Goodwin proposed a model for oscillators based

on a unique negative feedback that revealed to be a good generic model for

circadian clocks [112].

Feedbacks are also key elements for oscillations of the mitotic cycle [113, 73,

114]. The core of the mitotic oscillator is the Cdc2-Cyclin B complex. Cdc2

activates the anaphase-promoting complex (APC); the APC then promotes

Cyclin degradation and resets Cdc2 to its inactive state. The positive feedback,

critical to form a relaxation oscillator, generates much sharper peaks. This

mechanism is actually based on two positive feedback loops: active Cdc2-cyclin

B is stimulating its activator Cdc25 and at the same time inactivating its

inhibitors Wee1 and Myt1.

Other examples of biological cycles include the p53/Mdm2 oscillator which

induces oscillations of p53 in response to stress [115] or the Delta/Notch oscil-

lator involved in somitogenesis [116]. All these different ways to obtain oscil-

lations influence the properties and robustness of the system [50, 117].
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1.5 Brief Introduction to Synthetic Biology

In this section, I will give a small review of Synthetic Biology, a new field

that developed in parallel to Systems Biology over the last decade. The ideas

about altering the genome were already present in the 90s where genetically

modified organisms were produced. At this time, the goal was to make an

organism produce something that it was not supposed to produce: insulin for

a bacteria or pesticides for crops. These manipulations were not well controlled

as the incorporated genes were constantly expressed.

The better understanding of the genome that came with gene sequencing

allowed more subtle manipulations. The discovery of some promoters and in-

hibitors permitted to implement regulations between the artificial genes. With

such tools, ideas about synthetic circuits, a biological equivalence of logical cir-

cuits found in electronics, rose. In 2000, two papers were published and can be

considered as milestones in the recognition of Synthetic Biology. First, Elowitz

and Leibler build a synthetic oscillator in bacteria made of three genes forming

a repression loop [118]. Second, the group from J. Collins constructed a toggle

switch that comprises two self-repressing genes [119].

Since then many promoters and inhibitors were identified or engineered in

several model organisms (bacteria, yeast, C. elegans and mammalian cells). A

variety of relatively small synthetic gene networks [120] have been successfully

implemented and characterized. These include oscillators [118, 121, 122, 123],

toggle switches [119, 124], and intercellular sender/receiver or quorum sensing

communication systems [125, 126, 127]. Some recent projects have successfully

integrated a few of these ‘standard’ modules and have also interfaced them

with endogenous pathways to program more sophisticated behaviors [128, 129,

130, 131, 132, 133].

However, understanding how to integrate a significant number of modules

to perform complex tasks remains one of the most important challenges facing

synthetic biology [120]. In this sense, the results in Systems Biology, using a

backwards engineering approach, can be also applied to the Synthetic Biology

as forward engineering. For example, currently, Synthetic Biology is mainly

based on trial and error, but the building of large systems will necessitate

design principles such as modularity that are present in biological systems.

Along with the principles, in silico analyses such as the ones developed in

Systems Biology will be essential tools for the realization of large and realizable

circuits. Specifically, the aspect of robustness as discussed in this thesis could

be a critical design criterion [123].
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1.6 Thesis Outline

Most of the current works on quantification of robustness use local analysis.

In the next chapter, I will explain the shortcomings of the current state of the

art methods for such analysis. To overcome these limitations, I developed new

notions for a glocal measure of robustness. This novel method explores both

global and local aspects: it comprises a broad exploration of the parameter

space comparable to some global approaches, but goes beyond current analyses

as it comprises a further refinement based on different local measures. The

concepts of the method are general and the glocal analysis could be applied to

many problems in Systems Biology as shown in the following publication [134]:

• M. Hafner, H. Koeppl, M. Hasler and A. Wagner, ‘Glocal’ robustness

analysis and model discrimination for circadian oscillators, in PLoS

Computational Biology (2009), vol. 5(10), e1000534.

In Chapter 3, I will describe the algorithms developed for my glocal anal-

ysis. Different algorithms for parameter fitting can be found in the current

literature, but few of them, besides brute force sampling, can cope with in-

terval constraints and provide a region of the parameter space instead of a

single result. The first section of this chapter is dedicated to two sampling

algorithms that provide a uniform distribution of parameter vectors that ful-

filled some systemic properties used for the glocal analysis. A first sampling

algorithm was published in [134]. It allows a more efficient sampling than brute

force sampling without many adjustments. The next iteration of the sampling

algorithm was developed with E. Zamora to overcome shortcomings of the first

method and published in [135]:

• E. Zamora-Sillero, M. Hafner, A. Ibig, J. Stelling and A. Wagner, Eff-

cient characterization of high-dimensional parameter spaces for systems

biology, in BMC Systems Biology (2010), submitted.

This chapter also contains a section dedicated to algorithms for the differ-

ent local robustness quantifiers used for circadian clock analyses [134]. Each

quantifier measures the robustness of a model with respect to perturbations in

either the parameters, the concentrations or the molecule copy numbers.

Chapter 4 contains the results of the application of the glocal method. In

the first section, I consider two models of the cyanobacterial circadian clock and

compare their robustness properties [134]. The results show the importance of

a glocal approach for robustness assessment and model comparison: if a single
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parameter vector shows good local robustness, this result is not representative

of the possible parameter space and alteration of some parameters can strongly

decrease the robustness. With these results, a model can be discriminated in

favor of the other one.

The second part of the results (Section 4.2) is also devoted to circadian

rhythms with a study of the robustness of two models of the Drosophila circa-

dian clock with respect to entrainment. Using the glocal approach, this work

shows that an additional feedback loop enhances the robustness of the sys-

tem to parameter variations. The local analysis, based on the phase response

curve, gives further insights on the regulations of the different clock compo-

nents. This work was published as a proceeding paper of the WCSB conference

in 2010 [136]:

• M. Hafner, P. Sacré, L. Symul, R. Sepulchre and H. Koeppl, Multiple

feedback loops in circadian cycles: Robustness and entrainment as se-

lection criteria, in Proceedings of the Seventh International Workshop

on Computational Systems Biology (2010), edited by M. Nykter, P.

Ruusuvuori, C. Carlberg and O. Yli-Harja, pp. 43-46.

Section 4.3 follows-up on the study of multiple feedbacks in oscillatory sys-

tems. I will present the results of an algorithm designed to study the evolution

of new structures in biochemical systems. The idea behind this work is to show

that evolution of motifs is possible without disturbing the systemic properties

of the system. This algorithm was applied to a generic model of the mitotic

cycle containing one positive and one negative feedback loop and was published

in the proceeding of the FOSBE conference in 2009 [137]:

• M. Hafner, H. Koeppl and A. Wagner, Evolution of feedback loops in os-

cillatory systems in Proceedings of the Third International Conference

on Fundations of Systems Biology in Enginnering (2009), pp. 157-160,

http://arxiv.org/abs/1003.1231.

In the next part of Chapter 4 (Section 4.4), the second sampling algorithm

[135] was applied to the generic model of the mitotic cycle. In this work, we

showed that the sampling procedure is able to efficiently find the non-convex

parameter space formed by the two feedbacks loops. The results provide an

additional answer for the presence of multiple feedback loops in oscillatory

systems: the combination of a positive and a negative feedback improves the

robustness of the system to parameter changes.

The fifth section of the results (Section 4.5) brings another argument for
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the robustness advantage of multiple feedback loops. In collaboration with

D. Gonze, we study the effect of molecular noise on a mitotic cycle model.

This model, based on a negative feedback loop, shows a strong increase in

robustness when a positive feedback loop is included. In order to obtain results

that are parameter-independent, we used the glocal method and confirmed the

advantage of the positive feedback loop. This work was published in [138]:

• D. Gonze, M. Hafner, Positive feedbacks contribute to the robustness of

the cell cycle with respect to molecular noise, in Advances in the The-

ory of Control, Signals and Systems, with Physical Modelling, Lecture

Notes in Control and Information Sciences, Vol. 407, (2011) pp. 283-295,

Edited by J. Lévine, P. Müllhaupt, Springer, Berlin.

Finally, Section 4.6 is dedicated to Synthetic Biology. In collaboration

with M. Miller, we design a large synthetic circuit using robustness analyses

from Systems Biology. We found general principles for building a system that

can robustly maintain homeostasis regulation. An adaptation of the glocal

approach was also used to provide directions for parameter optimization. Some

experimental results of the of Ron Weiss’ group have also been included in the

article [139]:

• M. Milles∗, M. Hafner∗, E. Sontag, S. Subramanian, P. Purnick, N.

Davidsohn and R. Weiss, Design of a large scale synthetic biological

circuit to maintain artificial tissue homeostasis, in preparation. ∗equal

contribution.

The thesis concludes with a discussion that links the different results under

the aspect of evolution and network design. Some perspective and possible

follow-up works are also discussed. Finally, in the appendix, some technical

details which are not essential for the general understanding are presented to

complete some parts of the thesis.





Chapter 2

The Glocal Analysis

In this chapter, I will present my main theoretical contribution: a new

method for the study of robustness based on a ‘glocal’ analysis of the pa-

rameter space. As discussed in section 1.3 of the previous chapter, current

robustness analyses can be subdivided into global and local methods, both

having their limitations. In my glocal analysis, I combine the two complemen-

tary approaches and provide a more objective measure of the robustness of

a system. My method identifies the region of a high-dimensional parameter

space where a circuit displays a specific behavior (either observed or desired).

It does so via a Monte Carlo approach that will be discussed in the chapter 3.

This global analysis is then supplemented by local analyses, in which circuit

robustness to specific perturbations is determined for each of the thousands of

parameter vectors sampled in the global analysis.

2.1 Current Methods for Robustness Analysis

In the literature, the methods assessing robustness are either based on

the global or the local scale. Global methods characterize the size or volume

of a model’s parameter space that generates a behavior of interest [55, 56].

In these works, only general criteria for the behavior are taken into account

and a boolean function is applied to the parameter space (criteria are fulfilled

or not). Another approach is bifurcation analysis [58, 59, 60]. This type of

analysis characterizes how qualitative model properties, such as stability of

35
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steady-states, change as model parameters are varied [140]. The structure of

a bifurcation diagram can be influenced by variation in parameters that are

not considered, which limits this approach. Moreover, if, at certain bifurcation

points, the qualitative behavior changes radically, the quantitative behavior

and the biological effect may not be very relevant: for example, at certain types

of Hopf bifurcations, oscillations appears but may be of very small amplitude

carrying no information for cellular processes.

In contrast to global methods, local methods analyze how perturbations

affect model behavior for one specific parameter vector. Their main limitation

is precisely this: they may not reflect model behavior under all possible pa-

rameter vectors. Most robustness analyses in literature are local as models are

usually published with a single parameter vector. Examples include sensitivity

analysis [62], which studies the effect of perturbations for a given parameter set

on the model behavior, and its application to circadian oscillators [48, 49, 62].

These methods are usually based on the linearization of a system and therefore

hold for variations of only a few percent of the parameter values. Compara-

tive study showed that infinitesimal sensitivity may be insufficient to capture

the behaviors of the models [141]. Other works use stochastic simulations to

estimate the robustness of a system to molecular noise [41, 42] and results also

remain bound to the choice of the parameter vector and can lead to contra-

dictory conclusions [41, 142]. Efforts to extend a local analysis to systematic

parameter variations in more than one or two dimensions [59, 60] are often

limited by computational cost.

To summarize, global methods assess the volume in parameter space that is

compliant with the proper functioning of the system. As all parameter sets are

considered as equivalent, the only information that these methods provide is

the geometry of the volume in the parameter space for which some criteria are

fulfilled. Local methods, in contrast, study the model for a given parameter set

and determine its robustness. Local methods are fundamentally biased due to

the a priori choice of a particular parameter set. As biological constants, such

as kinetic rates, are hard to measure precisely and, moreover, may fluctuate

in vivo, local robustness analyses are not representative and could even be

irrelevant.

2.2 ‘Glocal’ Concept

To overcome the limitations of current analyses, I propose a novel ‘glocal’

(contraction of global and local) method for the quantification of robustness.
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Figure 2.1: Glocal robustness analysis flow for a hypothetical two dimensional
parameter space. (A) A model and systemic properties serve as inputs for the
global step of the analysis. This global analysis is composed of (B) and (C) and
yields viable parameter vectors k for the model in addition to the size V of the
viable space V. Different local perturbations are applied to these parameter
vectors (D) in order to quantify their local robustness ρ(k). (B) A sampling
algorithm (see Methods) is used to find the viable region (enclosed by the red
dashed line) in the parameter space. It yields viable parameter vectors (blue
circles). (C) A Monte Carlo integration is performed to estimate the volume
of the viable region. It yields uniformly parameter vectors (blue points) that
can be used for principal component analysis or high-order correlation function
(right). (D) Local analyses are performed on all viable parameter vectors and
help identify correlations between parameters and local robustness values (color
intensity for two different quantifiers: left-blue, and right-red) to provide regions
of high robustness in the parameters space.

Conceptually, my method goes beyond global analysis as the region in the

parameter space is further quantitatively assessed in terms of local robustness

(Figure 2.1A). It is also much more representative than the local methods as

the analysis is performed over a region of the parameter space instead of a

specific point.
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The first stage of the glocal analysis is similar to global methods as it

aims to estimate the volume occupied by parameters for which a model yields

a specific biological behavior. This behavior could either be based on exper-

imental evidences if one wants to match a model to a biological system or it

could be other criteria that fulfill design requirements of a synthetic system.

Because such a search becomes very challenging in high-dimensional parame-

ter spaces, the Monte Carlo integration is preceded by an iterative procedure

that allows efficient sampling (see Section 3.1). This algorithm differs from

parameter fitting in the sense that it provides an ensemble of parameter sets

uniformly distributed in the region where the model is consistent with the

specified features instead of a single parameter set (Figure 2.1B-C).

The second stage evaluates the robustness of the model behaviors for each

of the previously generated parameter sets to different kinds of perturbations

(Figure 2.1D). The perturbations depend on the system studied and could, for

example, include concentration perturbations or molecular noise. In general,

any property of the system that depends on the parameters can be used for

the local analysis. As a consequence, this method allows quantification of the

robustness properties over a large region of the parameter space. An advantage

in term of computational cost comes from the efficiency of the Monte Carlo

integration compared to a grid sampling of the parameter space.

The strength of the glocal method arises from the quantification of the local

robustness on the global scale. With these results, correlations between the

local robustness and the different parameters can be calculated. Such analyses

can answer questions like “does some regions of the viable parameter space

show higher robustness?” which could be complemented by “can two different

robustness properties be optimized at the same time by changing parameters?”.

The relevance of this two-scale analysis of the robustness is two-fold. On

the one hand, understanding the origin of robustness and fragility provides

information for the design of new experiments which may allow discrimination

between competing hypothetical mechanisms or models. It may as well lead

to new targets for disrupting a system in the context of multidrug therapies.

On the other hand, the knowledge on how parameters influence the robustness

properties without altering the system is a guide for the design and optimiza-

tion of synthetic circuits.
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2.3 Formalism for Glocal Analysis

A model’s behavior is determined by a certain number p of parameters, i.e.,

the parameter vector k ≡ (k1, . . . , kp)
T ∈ K ⊂ Rp. Note that the parameter

values may be restricted to a subspace K of Rp where the boundaries depend

on biophysical constraints or the scope of the model. Any robustness analysis

needs to quantitatively characterize the system’s function that is maintained

under perturbations. We do this through a collection of systemic properties

π(k) that are required to have values within predetermined intervals. Proper-

ties can take various forms. In calibrating a model to experimental time course

data for instance, one may want to determine parameter regions exhibiting tra-

jectories that stay within a predefined interval around the experimental time

series reflecting the uncertainty of data acquisition. Later in this thesis, in the

application of the robustness analysis to circadian models for the cyanobacte-

ria, π will comprise the period πT and amplitude πA of the circadian oscillation

of phosphorylated KaiC. Here, to emphasize the generality of the approach, I

refer to some general and hypothetical vector of properties π. I say the model

with parameter vector k maintains its function and preserves π if π(k) ∈ [π,π].

Any interval constraint of this kind on a systemic property partitions the

parameter space into regions that are viable and those that are not. Augment-

ing the collection π with a new property and its constraint generally causes

the viable region to shrink (see Figure 2.2). This semi-quantitative approach

is particularly suitable to deal with the ubiquitous uncertainty of biological

information as it uses interval constraints rather than optimality criteria as

found in optimization techniques such as model calibration. It can leverage

principles from interval analysis [143], semi-quantitative reasoning [144] and

robust control theory [145]. Moreover, specification languages based on linear

temporal logic could be used to define more complex constraints [146, 147].

After defining the properties and their viable intervals, the first step of

this method involves the sampling of a large set S of vectors k. The sampling

can span several orders of magnitude for each component depending on the

biologically possible values, K (calculations are made in the decadic logarith-

mic domain to account for relative variations). Only some viable parameter

vectors forming a subset V ⊂ S will generally preserve π. We sample according

to an iterative scheme (Figure 2.1B), where in each step the sampling distri-

bution is adjusted based on the viable set of the previous step (see chapter

3). After the iterative search, a Monte Carlo integration (Figure 2.1C) yields

a quantitative measure, V , of the size of the region in the parameter space in
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Figure 2.2: Illustration of the global approach based on interval constraints.
The a priori sampling range K (light-gray) and two systemic properties π1 and
π2 allowed to assume values in predetermined intervals induce constraints in
parameter space and partition it into regions that fulfill some of the criteria
and those that do not. The viable region V where all criteria are fulfilled is
the intersection of the different regions. The parameter region preserving π2 is
unbounded, accounting for the situation of unidentifiability and indicates the
necessity for an a priori sampling range K.

which the systemic properties of the model are within the specified interval.

The volume occupied by the set V provides a first, crude characterization of a

model’s robustness: the larger this volume is, the more parameters can fluc-

tuate without disrupting the system’s functions. With a normalization by the

pth-root to account for different numbers of parameters, the normalized viable

volume R = p
√
V can aid in model comparison and discrimination. A second

measure of the robustness is the shape of this viable region: correlations be-

tween different parameters can strongly reduce the robustness of the system

to perturbations perpendicular to these correlations. The principal component

analysis (PCA) [148] or higher order statistical tools [149] could be used to

estimate constraints in the viable parameter space.

The next step of the glocal approach takes advantage of all previously

identified viable parameter vectors in order to carry out local robustness anal-
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yses (Figure 2.1D). This is done by defining a vector of robustness quantifiers

ρ(k) for each k ∈ V. This vector includes different assessment ρi(k) of the

robustness of model properties π to particular kinds of perturbations. In order

to have an easy and visual comparison, the local robustness quantifiers are

normalized to range from zero (minimal robustness) to one (maximal robust-

ness). Concretely, in the study of the cyanobacterial circadian cycle, I will use

complementary quantifiers ρi(k) that measure the resilience of the models to

parameter variations, perturbations of the total number of molecules, and to

the effect of the molecular noise.

This mathematical formalism is helpful for further statistical analyses.

First order correlations between local robustness values and parameter compo-

nents can be easily calculated [148]. It gives an insight on how local robustness

properties are influenced by parameter values. On one hand it can help further

discrimination of parameters or models as it may restrict the viable space: the

size of the region with high robustness can also be evaluated as

V (ρ0) =
|{k ∈ V|ρ(k) > ρ0}|

|V|
V (2.1)

where |.| is the number of elements in the set. On the other hand, it gives new

directions either for experimental discrimination or system optimization such

as how to improve the robustness of a system while maintaining its systemic

properties. Finally, by performing different local analyses, the region with high

overall robustness (average of all local quantifiers) can be found or, alterna-

tively, it can show that the system may not be able to be highly robust against

different perturbations at the same time. Such conclusions can only be drawn

with a glocal analysis as described here.





Chapter 3

Methods

3.1 Algorithms for Efficient Sampling of the Parameter

Space

The glocal analysis relies on a sampling of the parameter space yielding a

large number of uniformly distributed parameter vectors in the viable region.

Such search is computationally challenging due to the high dimensional pa-

rameter spaces, and the lack of prior knowledge about the size or geometry of

viable regions. To characterize a viable space, some authors perform a uniform

sampling of the whole space to identify regions where a model displays the

desired systemic properties [46, 67, 150, 151].

Determining these systemic properties typically involves integration of the

model equations, which can become very expensive when done for a high num-

ber of samples. Even more fundamentally, the “curse of dimensionality” [152]

makes the fraction of the whole parameter space occupied by viable parameters

decrease exponentially with increasing dimension, i.e., number of parameters.

Therefore, brute force uniform sampling becomes quickly infeasible as model

complexity increases. To avoid this problem, following the ideas of Monte Carlo

integration [153] with importance sampling, dense sampling should be done in

a subset S of the parameter space much smaller than the possible space K. The

construction of a region enclosing the viable space as tightly as possible prior

to the Monte Carlo integration is the critical point for the algorithm efficiency

and, as a consequence, precision.

43
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I first present an algorithm that explores the parameter space by iterative

Gaussian sampling and use principal component analysis (PCA) to optimize

the search. Briefly, at every iteration, this method determines the mean value

and the covariance matrix of the identified viable points in parameter space to

guide further sampling. Although the algorithm is easy to implement and tune,

its efficiency depends on the convexity of the viable region and the number of

viable vectors obtained at each iteration.

In collaboration with Elias Zamora from University of Zurich, we devel-

oped an algorithm that overcomes these limitations. Specifically, it can more

efficiently characterize non-convex and poorly connected viable spaces. The al-

gorithm consists of two stages, namely a coarse-grained sampling of the viable

space, which in turn delivers starting points for more detailed subsequent local

exploration and approximation of the space’s geometry. The sampled points

also define a domain for subsequent Monte Carlo integration for volume com-

putations. In this algorithm, to optimize the sampling of non-convex viable

space, we implemented a stratified sampling [153, p. 412] where the integration

is performed on different regions that cover the sampling region.

The proposed sampling approaches are complementary to traditional ap-

proaches such as model calibration, but are conceptually different as follow.

The structure and parameters of most reported models are underdetermined

with respect to the available experimental observations [154]. Moreover, some

biochemical models are structurally unidentifiable [155]. That is, even in the

presence of arbitrarily abundant and error free data, model parameters that

yield the observed behavior cannot be uniquely identified. However, model

calibration is designed to find the unique parameter vector that renders the

model behavior the closest to the experimentally observed behavior. Conse-

quently, often the single point-estimate for a model parameter, returned by

a calibration procedure, may contain little information about the underlying

biophysical process. The sampling approach alleviates this implicit degeneracy

by making it explicit and instead returns a large number of parameter vectors

spread over the whole region consistent with the observed behavior.

3.1.1 PCA Sampling Method

The formalism defined in the previous chapter will be used: a model that

involves p parameters has a parameter vector k ≡ (k1, . . . , kp)
T ∈ Rp. I choose

to work in the decadic logarithmic domain to account for the large range of

parameter values in biology and obtain a scale invariant measure. Therefore, in
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this chapter, the expression k should be understood as log10(k) unless specified.

It also means that ki can take negative values which also generalize the sampling

procedures to any parametric models having a Boolean classification criterion.

In practice, I will usually restrict k to the subspace K of possible values for the

studied model. As the scope of a model is limited, it is natural to put some

restriction on certain parameters depending on their biophysical significance or

a priori knowledge. This is also a way to avoid artifacts due to unidentifiability

[155].

The PCA sampling method involves an iterative procedure, which I now

describe. In each iterative step j, it generates a set S(j), and identifies the

viable subset V(j). The first set S(1) is a Monte Carlo sample of the parameter

space obtained via a large (nPC > 104) number of p-dimensional Gaussian ran-

dom variates, centered on a known viable parameter vector (Figure 3.1A-B).

We then determine the viable subset V(1) of S(1), which should comprise of

the order of 100 to 1000 elements, depending on the dimension of the param-

eter space. The next step of the procedure consists of a PCA of the viable

parameter set V(1). PCA is a technique to identify dominant linear statistical

structure in high-dimensional data sets [148]. We use it here to identify asso-

ciations among viable parameters that can guide our sampling in subsequent

iterations. Specifically, the set S(2) and subsequent sets are generated from

previous parameter sets as follows

S(j) =
{

ki = 〈V(j−1)〉+ λ(j−1) ξi | i = 1, . . . , nPC

}
, (3.1)

for all j > 1, where 〈V(j−1)〉 stands for the element-wise mean of parame-

ter vectors in the set V(j−1) and ξi is the i-th realization of a p-dimensional

Gaussian process with zero mean and covariance matrix Σ(j−1). The size of

S(j), nPC could be adjusted such that the number of viable vectors found at

each iteration is in the order of 100 to 1000. The entries Σ
(j−1)
nm are the pair-

wise covariances of parameters kn and km in the set V(j−1). We compute this

matrix, whose eigenvectors are the principal axes of the set V(j−1). The real

valued factor λ(j−1) determines the variance of the j-th Gaussian process by

scaling the standard deviations of the distribution along the PCA directions of

the (j − 1)-th iteration (Figure 3.1C-D). In this approach PCA avoids wasting

sampling effort on parameter regions where viable parameter vectors are not

likely to be found. The procedure is iterated until convergence or until a pre-

defined number of iterations is reached. As described thus far, our procedure

serves to identify major axes of viable parameter variation for sampling and

the dispersion of the viable parameters along them.
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Figure 3.1: PCA sampling method flow for an hypothetical two-dimensional
parameter space. (A-E) The iterative Monte Carlo sampling defines the range
of the viable parameter space. (A-B) The first sampling iteration uses Gaus-
sian random sampling with independently and identically distributed random
variables around a givenparameter vector. The tested parameter vectors are
viable (blue points) or not (gray points). (C-D) For subsequent iterative steps,
sampling occurs according to the covariance matrix of viable parameters es-
timated in previous steps (light blue points). The procedure is iterated until
convergence or until a predefined number of iterations is reached (E). (F-G)
Monte Carlo integration. To estimate the volume in which viable parameter
sets occur, we define a hyperbox B (rectangle in F) that contains all the viable
parameters of the last iteration. The region is then uniformly sampled (G).

To establish global measures of robustness, we then perform a Monte Carlo

integration (Figure 3.1F). Specifically, we construct a hyperbox B in parameter

space whose axes are parallel to the PCA axes of the last iteration. In each

dimension, the limits of this box are defined by the most extreme components of

the viable parameters found in the last iteration of sampling along these axes.

We then generate a set S of at least 105 parameter vectors sampled uniformly

within B. We then define the set of uniformly distributed viable points Vuni =

{k ∈ S|π(k) ∈ [π,π]}. This Monte Carlo integration yields a global measure

of robustness for any one model: the viable volume, V = (|Vuni|/|S|)(Vol(B)),

where |.| denotes the number of elements in a set and Vol(B) the volume of

B. The rationale behind this measure is that with increasing robustness V ,

a perturbation of a parameter or parameter vector is increasingly likely to

generate another viable parameter vector.
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To compare models with different number of parameters, we define the

normalized viable volume as robustness R = p
√
V . The value R represents

the average variation in the viable space per parameter axis. Although it is

almost certain that the viable range varies among the different axes, R can

still be thought of as a parameter robustness of a model. For example, in

the log-domain, a value of R = 0.5 (V = 0.5p) means that on average we can

change every parameter over half an order of magnitude (by around 32%) while

preserving π ∈ [π,π].

3.1.2 Two-stage Sampling Method

The implementation of the previous algorithm is relatively easy, however

it assumes that the viable region is roughly ellipsoidal. The existence of a non-

convex viable region reduces the efficiency of the sampling which is critical

for high-dimensional space. Moreover, this algorithm may not be able to fully

sample disconnected regions. To improve the sampling procedure, in collabo-

ration with Elias Zamora from University of Zurich, we developed a method

based on two stages of sampling. First a coarse-grained sampling evaluates the

extent of the viable region. Second, multiple expansions of ellipsoids, as in the

previous method, are used to cover the viable region.

Adaptive Metropolis Sampling

We next describe the coarse-grained, global exploration of the viable space

via an Adaptive Metropolis Monte Carlo sampling (AMC) (Figure 3.2). For

this procedure, we have first to introduce a cost function E in addition to the

previous formalism. The systemic properties π(k) for each parameter vector

k have an associated value

E(π(k)) = E(k) : Rp −→ R+ (3.2)

that reflects how well the systemic properties of a model match the desired

behavior. For a given k, the lower the value of E(k), the better the model be-

haves. We call a parameter vector k viable if it fulfills the condition E(k) < E0

(E0 > 0) that is, if the cost function does not exceed some positive threshold E0.

It should be consistent with the viability criterion: E(k) < E0 iff π(k) ∈
[π,π]. For example, in circadian models, πT (k) could be the period of os-

cillation of the model, given the parameter vector k. If the viable range is
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Figure 3.2: Flowchart representing the basic scheme of the Adaptive Metropo-
lis Monte Carlo (AMC) algorithm. Given an initial parameter point k0, covari-
ance matrix Σ and β, the algorithm carries out nMC iterations in which ev-
ery new parameter point is sampled from a normal distribution N (ki,Σ), and
accepted or rejected based on Metropolis acceptances ratios. Every nMC iter-
ations the viable points (dark blue and gray points correspond to viable and
non-viable sampled parameter points, respectively) found so far are grouped
into clusters and the volume (light blue ellipsoids) of the ellipsoids that enclose
the viable parameter points in each cluster are calculated. If the sum of these
volumes converges the algorithm stops; if not, the covariance matrix Σ and β
are updated, and nMC new iterations are performed. The output of this stage
is the set VMC which includes all the viable parameter points found.

[π,π] = [22h, 26h], the cost function could be E(k) = |πT (k) − 24| with the

viability threshold E0 = 2.

Following the basic concept of the Metropolis algorithm [153, 156], the cost

function (3.2) is associated with the energy of a statistical mechanical system

that is in contact with a thermal bath whose temperature changes with time.

This system never reaches equilibrium, because every time the temperature

changes the system is pushed into states far from equilibrium.

To simulate this system, we use an out-of-equilibrium Monte Carlo method



3.1 Efficient Sampling of the Parameter Space 49

[157] where the new parameter vector k is drawn from the i-th parameter vector

ki according to the probability

p(k) =
1

(2π)p/2det(Σ)
exp

[
−1

2
(k− ki) Σ−1 (k− ki)

′
]
, (3.3)

which is a Gaussian distribution with the mean ki and a covariance matrix Σ.

The acceptance ratio is according to the Metropolis [156] algorithm:

A(ki → k) =

{
exp [−β (E(k)− E(ki))] if E(k)− E(ki) > 0,

1 otherwise,
(3.4)

where β−1 is proportional to the temperature of a statistical mechanical system.

Given β and Σ, the simulation starts from a known viable parameter vec-

tor k0. Then, from k0, a new k is drawn by sampling the distribution (3.3)

centered on k0. If E(k) ≤ E(k0), the new k is automatically accepted and

becomes k1. In contrast, if E(k) > E(k0), k is accepted with a probability

A = exp [−β (E(k)− E(k0))], in which case it becomes k1. If k is rejected,

then k1 = k0. This scheme is repeated for a predefined number of iterations

nMC .

After nMC iterations the algorithm determines whether AMC sampling

must stop. To do so, the viable parameter vectors found so far are divided

into clusters whose number is defined with the procedure explained in the

appendix A.2. Then, AMC calculates the ellipsoids with minimum volume that

enclose the points grouped in each cluster and computes the sum of all ellipsoids

volumes. The algorithm stops when the volume of all ellipsoids converges or a

maximum number of iterations is reached. If either of these criteria are met,

AMC sampling terminates and returns as its result the set VMC of all viable

parameter vectors it found. Otherwise, nMC more iterations are carried out

after updating β and Σ according to

β =


bβ, if fv = 0,

β, if 0 < fv 6 f0,

β/b, if fv > f0,

Σ =


sΣ, if fa > fu

Σ, if fl < fa 6 fu,

Σ/s, if fa < fl,

(3.5)

where fv and fa are the proportions of sampled viable parameter vectors and

accepted transitions, respectively calculated over the last nMC iterations. The

values {b, s} > 1 are parameters of the algorithm to be specified by the user.

Equation (3.5) implies the following update procedure. When Monte Carlo

sampling is mainly confined to a viable region (fv > f0), β decreases and the

frequency of accepted transitions with higher cost increases. If this makes the
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frequency of accepted transitions larger than an upper limit (fa > fu), the

covariance matrix Σ will become larger and the method will sample broader

regions. In contrast, when the method has not found any viable parameter

vector (fv = 0), β increases and less parameters with higher cost are accepted

in order to force the algorithm to sample regions with lower cost function. If

this frequency falls below a lower limit (fa < fl), Σ decreases to maintain

the desired frequency of accepted transitions by reducing the size of the jumps

between two consecutive parameter vectors. The aim of this tuning is to sample

specifically the border of the viable region and not its center, such that the

whole region is quickly covered. Note that these update rules may trap the

random walk in a region without any viable point. In this case, the algorithm

should be reset to the values of the last iteration where viable points were

found.

Ellipsoid-based Sampling

The basic idea the second stage of the parameter search, the ellipsoid-based

sampling (EBS) is the same as the PCA sampling, but with multiple ellipsoids.

To explore the parameter space in detail, multiple sampling regions are used

with different centers and orientations to enclose the viable space in an optimal

way (Figure 3.3).

The algorithm constructs a series of ellipsoids starting from different viable

parameter points. The procedure we now describe is valid for each such ellip-

soid expansions from the j initial viable point. It starts by selecting a viable

parameter point kj ∈ VMC in an adaptive way, as described below. In the first

ellipsoid expansion, this point will typically be a viable point obtained from

AMC. To construct the first ellipsoid from kj , the algorithm uses a bisection

technique [153] to find 2p viable parameter points near the intersection between

the boundary of the viable region and the straight lines parallel to the axes of

the Cartesian coordinate system that pass through kj (see Appendix A.4 for a

technical description). Starting from i = 0, each step of the iterative ellipsoid

construction proceeds as follows. From the 2p initial points if i = 0 or from the

set of viable points V ij (that comprises the viable points found after the itera-

tion i starting from the j-th initial viable point) if i 6= 0, the EBS constructs

an ellipsoid Lij that encloses all the points in this set (see Appendix A.1. From

this ellipsoid, it creates a new ellipsoid Sij that has the same orientation as

Lij , but that has the lengths of its axes multiplied by a scaling parameter λi.

Then, it uniformly samples a predefined number of parameter points nES from
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Seeding with VMC and k1

Finding the boundary
of the viable regions

Computing MVEE

Updating the amplification
factor and sampling

Choosing ki 

Stop?

Finishing EBS?

Output: {VMC, VES,1,
VES,2, ..., VES,f}

...

NO

YES

NO YES

Figure 3.3: Flowchart for the ellipsoid-based sampling (EBS) procedure.
Given VMC , the set of viable parameter points found by AMC, and an initial vi-
able parameter point k1, the method finds viable parameter vectors (dark blue
points, non-viable are in gray) near the boundary of the viable region. Then,
it calculates the minimum volume enclosing ellipsoid (MVEE) that encloses
those viable parameter points (dashed curves) and samples inside an ellipsoid
with the same orientation but smaller axes (the sampling ellipsoid are repre-
sented by solid curves). After that, the method again calculates the MVEE of
the viable points found so far (light blue points), and samples inside a scaled
ellipsoid with the same orientation but larger axes. The exploration started
in k1 finishes when the scaling factor tends to one or after a fixed number of
iterations is reached. If this does not happen the method calculates the MVEE
of the viable parameter points found and performs a new uniform sampling
inside a new scaled ellipsoid. At the end of every new ellipsoid expansion, the
algorithm checks if EBS must stop. It finishes if the algorithm does not find
any new viable points in viable non-explored regions (viable explored regions
are represented by light blue ellipsoids). If EBS does not stop, it carries out
another ellipsoid expansion starting from a different point ki. The result of
the EBS is the set of the viable parameter points found during all the ellipsoid
expansions VMC ∪ VES where VES = VES,1 ∪ VES,2 ∪ · · · ∪ VES,f .
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this ellipsoid Sij . The union of the set of viable points in Sij with V ij then gives

V i+1
j .

Selection of the scaling parameter λi is critical for the performance of the

algorithm. We define it as:

λi =



λ0 < 1, if i = 0

λ1 > 1, if i = 1,

λi−1 +
(λi−1 − 1)

σ
, if

∣∣V ij∣∣− ∣∣∣V i−1
j

∣∣∣ > nESbu, i > 1,

λi−1 −
(λi−1 − 1)

σ
, if

∣∣V ij∣∣− ∣∣∣V i−1
j

∣∣∣ < nESbl, i > 1,

λi−1, otherwise.

(3.6)

where
∣∣∣V ij∣∣∣ indicates the number of elements in the set and bl, bu, and σ < 1

are parameters for lower and upper bounds, and for axis scaling, respectively.

The rationale behind equation (3.6) is as follows: Points in L0
j lie near

the boundary of the viable space. In high dimensional spaces the curse of

dimensionality may cause a large proportion of this ellipsoid volume to be

filled by nonviable points. Setting λ0 < 1 makes S0
j smaller than L0

j , and

makes it more likely that S0
j contains a larger proportion of viable parameter

vectors, which will lead to a larger set V0
j . To explore a larger elliptic region

around kj , the method then performs a second iteration with λ1 > 1. All

subsequent iterations depend on the number of viable points found in the last

iteration
(∣∣∣V ij∣∣∣− ∣∣∣V i−1

j

∣∣∣). Specifically, when this number of points is larger

than some upper limit nESbu, the scaling parameter grows by a factor 1/σ > 1

to explore larger domains of parameter space. When the difference is below

some lower limit nESbl – only few additional viable points have been found in

the last iteration – shrinking the axes allows an efficient exploration of smaller

regions. Thus, viable parameter points found in previous iterations guide and

define the ellipsoid where the next sampling is carried out.

The iterative procedure started at i = 0 from kj finishes when λi converges

to 1 or after a fixed number of iterations is reached. The procedure’s output

is VES,j a set of sampled viable points that contains the 2p viable parameter

points found near the boundary of the viable space, and the set of viable

parameter vectors V ij updated in the last iteration.

If the EBS algorithm had carried out ellipsoids expansions around a single

initial point as the PCA sampling, the method would have only been able to

explore viable spaces whose geometry is well approximated by an ellipsoid.

Therefore, if the viable space is non-convex, EBS starts ellipsoid expansions
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from viable parameter points placed in different regions. To sample inside

different ellipsoids that cover the whole viable space locally, we choose a new

starting viable parameter point kj+1 from the set composed by VMC and the

union of VES,i, i = 1 . . . j, that is, the set of viable points obtained after AMC

exploration and previous ellipsoid expansions, respectively. To explore regions

that have not yet been sampled, we preferentially select a kj+1 that is far away

from the average of all previous starting points ki, i = 1 . . . j (see Annex for

details).

At the end of every new ellipsoid expansion j, the algorithm determines

if EBS should stop. To do so, the viable parameter points found up to then

{VMC , VES,1, VES,2 . . . , VES,j} are divided into a predefined number of clus-

ters. Then, EBS calculates the ellipsoids with minimum volume that enclose

the points grouped in each cluster and computes the sum of all ellipsoids vol-

umes. The algorithm stops when the volume of all ellipsoids converges or

a maximum number of ellipsoid expansions is reached. After stopping, EBS

returns its final result, the set of viable parameter points VMC ∪ VES where

VES = VES,1 ∪ VES,2 ∪ · · · ∪ VES,f .

Monte Carlo Integration

As in the PCA sampling method, the final stage is a Monte Carlo inte-

gration to obtain a uniform sampling over the viable region and its size. We

use the set VMC ∪VES to construct the domain of integration I for the Monte

Carlo integration. The results of the EBS part ensure a better coverage of the

viable region. To optimize the sampling of the domain, we split the region

covered by I in a family of ellipsoids that cover the viable space. To determine

these ellipsoids we group the set of viable parameter points VMC ∪ VES into

nC clusters, and compute the ellipsoid Ii with minimum volume that encloses

the viable points grouped in the i-th cluster (see Appendix A.2 for details).

In this procedure, the subspace I is given by the points of the parameter

space enclosed by the nC ellipsoids I = {k ∈ Rp |k ∈ ∪nCi=1Ii } where Ii is the

region of the parameter space enclosed by the ith ellipsoid. In general, the

ellipsoids may intersect, so the volume of I is smaller than the sum of the

volumes of Ii. To avoid the resulting inaccuracy in volume estimation, we

introduce the following integrand valid for the ellipsoid Ii

fi(k) =


0 if θ ∈ ∪i−1

j=1Ij

0 if π(k) /∈ [π,π]

1 otherwise, i.e. viable

(3.7)
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Seeding with VMC UVES

Monte Carlo integration

Uniform sampling over the
integration domain

Determination of optimal
cluster number

Construction of enclosing
ellipsoids

Integration domain construction

...

Viable volume, V

uniformly distributed
viable points Vuni

Figure 3.4: Flowchart representing the algorithm responsible for the viable
volume estimation, and the acquisition of a set of uniformly distributed viable
parameter vectors. A set of viable parameter points VMC ∪VES (uppermost set
of blue points) cover the whole viable space (area enclosed by the red curve)
seeds the algorithm. Then, the method groups these points into k-clusters (3
clusters in this case), and calculates the ellipsoids with minimum volume that
enclose the points in each cluster (light blue ellipsoids). After that, it performs a
Monte Carlo integration of every ellipsoid (the intersections between ellipsoids
are sampled only once). The output of the algorithm is a set of uniformly
distributed viable parameter vectors Vuni (bottom set of blue points), from
which the viable volume V can be estimated.
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This integrand evaluates the viability of the parameter vectors in the ellipsoid

intersections only once and therefore, by sampling uniformly N parameter

points in I, we can estimate the viable volume V as

V =

nC∑
i=1

∫
Ii

fi(k)dk =

nC∑
i=1

Vol(Ii)

Ni

Ni∑
j=1

fi(kj)

 , with

nC∑
i=1

Ni = N (3.8)

where Ni is the number of uniformly distributed parameter vectors inside Ii.

This algorithm also yields a set of uniformly distributed viable parameter vector

Vuni = ∪nCi=1 {k ∈ Ii|fi(k) = 1} that should cover the whole region of viability.

3.1.3 Error in the Monte Carlo Integration

To estimate the sampling errors in the viable fractions and volumes, we

note that |Vuni| (written as |V| in the following), as estimated by Monte Carlo

integration is a binomially distributed random variable [148, 153]. An estimate

of its standard deviation is ∆(|V|) =
√
|V|(|S|−|V|)

|S| . Of interest is the coefficient

of variation or relative error, defined as the standard deviation divided by the

mean. For |V|, this relative error is given by ∆(|V|)
|V| = ∆V

V =
√
|S|−|V|
|V||S| . For the

normalized quantity R = p
√
V , the relative error needs to be divided by p, i.e.,

it calculates as ∆R
R =

(
1
p

)√
|S|−|V|
|V||S| which scales as

(
1
p

)
1√
|S|

. Furthermore

we estimate the necessary sample size |S| for a given relative accuracy δ and

confidence. Applying Hoeffding’s inequality [158], we obtain

Pr

{∣∣∣∣1− E(|V|)
|V|

∣∣∣∣ ≥ δ} ≤ 2 e
−2δ2

(
|V|
|S|

)2
|S|
,

where E(·) denotes the expectation operator. Thus, estimating the sampling

acceptance ratio |V|/|S| from a sufficiently large ensemble and assuming it to

be constant for the successive sampling, we can compute a lower bound for the

necessary sample size. For example, asking for 10% accuracy with a confidence

of 95% at an acceptance ratio of 1/20, Hoeffding’s bound requires the sample

size to be |S| > 60000.

In the two-stage method the estimation of the error is the composition of

the error on the integration in all individual ellipsoids where each of them gives

a viable volume Vi. It can be approximated by the following equation:

∆V

V
=

∑nC
i=1 ∆Vi∑nC
i=1 Vi

=

∑nC
i=1 Vol(Ii)

√
νi
N3
i

(νi −Ni)

Vol(Ii)
νi
Ni

where νi =

Ni∑
j=1

fi(kj)

(3.9)
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We advice caution that, in practice, one can never be certain that the

whole viable space is contained in the integration domain used by either the

PCA or the two-stage sampling methods. The agreement between the actual

viable volume and the estimated viable volume V , depends on the proportion

of the viable volume that is enclosed in sampling region. Due to the high

dimensionality, we have to balance between a large and conservative sampling

region (high accuracy) and a tight region (higher efficiency) to keep a reasonable

computational time.

We now briefly comment on how estimation errors scale with the number

of dimensions p. The only possible general statement is that the ratio between

the viable volume and the volume of the sampling region scale exponentially

with p. Therefore, |V||S| ∼ α−p with α being dependent on the geometry of the

viable volume. For example, α = 1 if the viable volume is identical to the

sampling region, and only in this trivial case does the error not depend on

p. For example, if the viable parameter volume has an ellipsoidal shape and,

in the case of the PCA method, the sampling region is a hyper-rectangle, α

increases from 1.5 to 2.5 if the dimension increases from p = 5 to p = 22. The

coefficient of variation (relative error) of the viable volume scales as αp/2

p
√
|S|

. The

size and the shape of the sampling hyper-rectangle is crucial for low errors: a

larger hyperbox means that an exponentially greater number of points needs

to be sampled for high dimensional systems to ensure constant error. These

observations underscore the usefulness of the preliminary search to define the

integration region, as it dramatically reduces computational requirements.

3.2 Local Robustness Quantifiers

The second, local part of the glocal method assesses the robustness of

every viable parameter k with different quantifiers. I will here present the five

different local measures that I used in the article using the glocal method [134].

These quantifiers have been developed for their application to the models of the

cyanobacterial circadian clock, but they proved to be useful in other oscillatory

systems [159]. Note that the last two quantifiers requires a stable cycle and

can therefore only be applied to oscillatory systems. The list is not extensive

and other local robustness properties may be studied as I did concerning the

entrainment of the Drosophila circadian clock (section 4.2).
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3.2.1 Robustness to Perturbations of Parameters, ρP

The first local robustness quantifier ρP (k) computes the fraction of local

random perturbations of parameters that preserve π. To estimate ρP (k) for

any specific model, one generates many random perturbations of each viable

parameter vector k, for example with a Gaussian distribution centered on k,

determine the model’s behavior with these parameters, and define ρP as the

fraction of perturbations preserving π ∈ [π,π]. The standard deviation of

the Gaussian distribution is best chosen such that (i) all values of ρP in the

allowed interval [0, 1] are observed, and that (ii) ρP can be distinguished most

significantly for the two considered models.

For my application to the cyanobacterial circadian clock models, I per-

turbed 1000 times each viable parameter vector k. In each of these perturba-

tions, I multiplied each component ki of k with a Gaussian random variate of

mean one and standard deviation σ = 0.2. I chose this value, because it yields

different values of ρP for different parameter vectors, thus allowing me to assess

how robustness varies in different regions of parameter space, and because it

permits discrimination of ρP among the two studied models.

Related to perturbations of the parameters, I address the robustness to

temperature changes. Ideally, the Arrhenius equation has to be used [43, 87],

however this approach requires knowledge of the activation energies of each

reaction in a system, which is usually not available. I thus simply assume that

an increase in temperature corresponds to a random increase of all parameters.

This aspect of robustness is quantified with the same approach used for esti-

mating ρP . Mean and standard deviation are the same, but perturbations are

correlated, such that all parameters are multiplied with variates that are either

above one or below one for a particular perturbation. Besides finite perturba-

tions, the sensitivity of the period to such parameter changes [43, 160, 87] can

be studied. Specifically, the values αi = ∂ log(T )/∂ log(ki) can be calculated

using our derivation for ρS (see section 3.2.5). In general a faster reaction

decreases the period of the cycle (αi < 0) but in order to have temperature

compensation in any cycle, at least one of the values αi should be positive

[43, 160, 87].

3.2.2 Robustness to Perturbations of Total Concentrations, ρC

The second local robustness quantifier ρC(k) regards alterations in the

total amount of key proteins. It is specific for the use with systems having
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mass conservation. In the case of the in vitro experiments of the cyanobacterial

circadian clock [92, 95], a pre-determined number of the Kai molecules is used.

This number may vary in vivo, for example due to changes in cell volume

caused by the cell division cycle and this quantifier evaluates the robustness of

the model to variation of the ratio of proteins. It uses the same approach as the

robustness to total parameter perturbations ρP : one generates a large number

of perturbed concentrations, and numerically integrates the model with these

perturbed concentrations. For a given parameter vector k ∈ V, ρC is defined

as the fraction of these perturbations preserving π.

3.2.3 Robustness to Molecular Noise, ρN

The third robustness quantifier, ρN (k), reflects that chemical reactions are

stochastic events [42, 51, 161]. In systems working at a steady state, coefficient

of variation could be used as a measure or resilience to molecular noise. For

oscillatory systems, I propose to define ρN as the fraction of trajectories that

preserve the oscillator period πT for a given viable k. Yet, when stochasticity

is involved, the definition of a period becomes problematic, because consider-

able amplitude variations from one period to the next may be present. The

Hilbert transform method, which yields information about the phase of a tra-

jectory [162, 163] helps circumvent this problem. It is preferable to the Fourier

transform in situations where period needs to be estimated independently from

amplitude. To quantify ρN (k), I first simulate [15] stochastic trajectories over

a large number of periods using k with a specific cell volume v. The quantifier

ρN is equal to the ratio of the number of completed cycles with the correct

period to the total number of completed cycles in a deterministic simulation

of the same duration. Mathematically, if the desired or empirically observed

period of an oscillatory system is T0 and the period is allowed to vary over

a certain range [πT , πT ], let T (k) be the set of observed period durations in

the stochastic simulation of duration τ , for a circuit with parameter vector k.

With this notation, ρN is equal to t(k)/z(k), where t(k) is the total number

of cycles with a period in the allowable range that occurred in the time τ , and

z is a normalization constant defined as z(k) = max
{
τ
T0
, |T (k)|

}
.

The constant z(k) is chosen such that ρN is smaller than one and that we

avoid misclassification of trajectories having long duration without oscillation,

and bursts of oscillations with the correct period. For example, consider a

hypothetical oscillator with a desired period of T0 = 24h, 10% allowable varia-

tion around this period, and a simulation length τ = 360h. In a deterministic
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(noiseless) simulation, the oscillator would complete exactly τ
T0

= 15 cycles,

but noise could change this number. Typically, it would cause the periods of

the cycles to spread over a range larger than allowable, but the majority of cy-

cles might have the correct period. If, for example, we observe 14 cycles, six of

them with a period of 24.5h, six with a period of 25.5h and two with a period of

28h (outside the allowable range), then ρN would calculate as ρN = 12
15 = 0.8.

The second example concerns the special case where noise speeds up the os-

cillation. If 16 cycles of period 22.5h are observed, then the maximum in the

normalization function above is important to have ρN contained between 0

and 1, because ρN = 16
max(15,16) = 1. Lastly, consider the case where molecular

noise generates pauses in the cycle. Given a trajectory starting with two cycles

having an acceptable duration of 24h, then a long cycle (pause) of 260h and

again 2 cycles with acceptable period, ρN calculates as 4
15 = 0.267 with our

normalization. The much simpler normalization that divides by the number of

completed cycles would yield an artificially inflated value of ρN = 4
5 = 0.8.

3.2.4 Attraction of the Cycle, ρA

The fourth robustness quantifier, ρA(k) (for attraction of the cycle), mea-

sures how fast the oscillator returns to its cycling behavior when its trajectory

is transiently perturbed. In biological systems, most regular oscillations are

limit cycle oscillations [72], where a system returns to its pre-perturbation

nominal oscillatory behavior after a perturbation of its trajectory. Some such

oscillations may be much more robust, in the sense that they would converge

very rapidly to this nominal behavior, whereas others may take a long time to

‘absorb’ the effects of a transient perturbation.

A commonly used analytical approach of estimating this convergence to

oscillatory behavior uses Floquet theory [164]. Briefly, a system’s convergence

to a cycle can be estimated through its largest Floquet multiplier, which can

be thought of the fraction of a small trajectory perturbation that remains after

one cycle. For stable cycle, Floquet multipliers assume values between zero and

one, and the smaller the multiplier, the faster a perturbation is absorbed. To

calculate the largest Floquet multiplier, the variational equations [164] of the

studied models is integrated over one cycle, and µ is the largest eigenvalue. The

quantifier ρA(k) is equal to 1− µ. This measure of robustness corresponds to

the fraction of the perturbation that is ‘absorbed’ by the system after one cycle.

This quantifier is complementary to ρN for the following reasons. First, ρA is

a deterministic measure and thus remains useful for very large molecule copy
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numbers. Second, it characterizes a system’s response to arbitrary transient

state perturbations, not just to fluctuations due to molecular noise.

3.2.5 Sensitivity of the Period, ρS

The fifth quantifier, ρS(k) (for sensitivity analysis of period), assesses the

effect of an infinitesimal change of an individual parameter or parameter vector

on the period T of a system. Specifically, it is related to the gradient-vector

∂T/∂k. A component i of this vector with large absolute value indicates a

parameter ki that affects T to a great extent. The robustness measure ρS(k)

is defined as
(

1 +
∥∥∥ ∂ log(T )
∂ log(|k|)

∥∥∥)−1
. The logarithm in this expression occurs,

because the relative effect of one parameter on the period is of interest. The

expression ‖x‖ denotes the Euclidian norm
√∑

i x
2
i of the vector x. The

quantifier ρS assumes values between zero and one. The larger the value of

ρS , the more robust a model is. A value of ρS = 0.5 means that a one percent

change in a parameter vector results in a one percent change in the period.

In order to estimate ρS , I need to derive the first order approximation

of the quantity ∂T
∂ki

, i.e., the response of a dynamical system’s period T to

an infinitesimal change in one component ki of its parameter vector k. For

simplicity of notation, I first derive the expression for a single parameter k and

then extend it to a parameter vector k.

For an ordinary differential system dx
dt = F(x(t), k) with a parameter k

that has a periodic solution ξ(t, k) = ξ(t+T (k), k) of period T (k), I define the

nominal parameter k0, the corresponding nominal solution ξ0(t) = ξ(t, k0) and

the nominal period T0 = T (k0). The infinitesimal increment of the parameter is

dk. With this notation, I can write dT = T (k0 +dk)−T0 and dξ(t) = ξ(t, k0 +

dk)− ξ0(t). I have a family of solutions φ(t,x0, k) = x(t, k), with x(0) = x0.

Then the sensitivity matrix M(t) can be defined as (M(t))ij = ∂φi
∂xj

(t,x0, k)

and the parameter sensitivity matrix is (V(t))i = ∂φi
∂k (t,x0, k).

M(t) is the solution of the variational equation

dM

dt
=

dF

dx
(ξ0(t), k0)M(t) , M(0) = I

and V(t) the solution of the variational equation

dV

dt
=

dF

dx
(ξ0(t), k0)V(t) +

∂F

∂k
(ξ0(t), k0), V(0) = 0



3.2 Local Robustness Quantifiers 61

Then up to the first order approximation

dξ(t) ∼= M(t)dξ(0) + V(t)dk

For simplicity, choose H the Poincaré section as the hyperplane that goes

through ξ0(0) and is perpendicular to e = dξ0
dt (0)

/∥∥∥dξ0
dt (0)

∥∥∥. Then P = I −
e eT is the orthogonal projection on the hyperplane H.

Note that by definition ξ0(0) = ξ0(T0) ∈ H. I suppose also, without

restriction or loss of generality that ξ(0, k) ∈ H which implies that Pdξ(0, k) =

dξ(0, k). However, in general:

Pdξ(T0, k0 + dk) 6= dξ(T0, k0 + dk)

but I have

ξ(T (k0 + dk), k0 + dk) = ξ(0, k0 + dk) ∈ H

This can be expressed as eT (ξ(T0 + dT, k0 + dk)− ξ0(0)) = 0 and with

the first order approximation

ξ(T0 + dT, k0 + dk)− ξ0(0) ≈ ∂ξ

∂t
(T0, k0)dT +

∂ξ

∂k
(T0, k0)dk

=
∂ξ

∂t
(0, k0)dT + M(T0)

∂ξ

∂k
(0, k0)dk + V(T0)dk

I have

0 ≈ eT
(

e

∥∥∥∥∂ξ∂t (0, k0)

∥∥∥∥dT + M(T0)
∂ξ

∂k
(0, k0)dk + V(T0)dk

)

dT ≈ −
eT
(
M(T0)∂ξ∂k (0, k0)dk + V(T0)dk

)
∥∥∥∂ξ∂t (0, k0)

∥∥∥
therefore

∂ξ

∂t
(T0, k0)dT ≈ −eeT

(
M(T0)

∂ξ

∂k
(0, k0)dk + V(T0)dk

)
ξ(T0 + dT, k0 + dk)− ξ0(0) ≈ (I− eeT )

(
M(T0)

∂ξ

∂k
(0, k0)dk + V(T0)dk

)
= P

(
M(T0)

∂ξ

∂k
(0, k0)dk + V(T0)dk

)
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And because of

ξ(T0 + dT, k0 + dk)− ξ0(0) = ξ(0, k0 + dk)− ξ0(0)

≈ ∂ξ

∂k
(0, k0)dk = P

∂ξ

∂k
(0, k0)dk

I get

P

(
M(T0)

∂ξ

∂k
(0, k0)dk + V(T0)dk

)
≈ P

∂ξ

∂k
(0, k0)dk

∂ξ

∂k
(0, k0)dk = [I−PM(T0)]−1

H PV(T0)dk

Where [A]−1
H is the inverse of the matrix A restricted to the hyperplane H.

If I use the last equation in the derivation of dT , I find

∂T

∂k
≈ −

eT
(
M(T0)[I−PM(T0)]−1

H PV(T0) + V(T0)
)∥∥∥∂ξ∂t (0, k0)

∥∥∥
Which can also be expressed with k being a vector with dx

dt = F(x(t),k) and

V being a matrix as

∂T

∂k
≈ −

eT
(
M(T0)[I−PM(T0)]−1

H PV(T0) + V(T0)
)∥∥∥∂ξ∂t (0,k0)

∥∥∥
With the last equation, the robustness quantifier ρS can be calculated. In

practice, I numerically integrate the variational equations for M(t) and V(t)

over one period using MATLAB, which allows us to estimate ∂T
∂k . To increase

the precision of this estimate, I start the integration at different points of the

cycle and average the results. Finally, I use the following relation to calculate

ρS(k):

∂T

∂k

k

T
=

∂T
T
∂k
k

=
∂ log(T )

∂ log(k)
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Results

In this chapter, different applications of my glocal analysis are presented.

The first five sections have in common that the robustness analyses are applied

to oscillatory systems. In particular, I assessed the effects of the feedback

loops on different properties of the systems. First, I used a combination of

global and local methods to quantify the robustness of two different models

of the cyanobacterial circadian clock. This study led to a comparison of both

models that discriminated them [134]. Second, the glocal approach was used

to study the relation between entrainment robustness on two models of the

Drosophila circadian clock with different architectures [136]. Third, following

the ideas of neutral space [45], a generic model of the mitotic cycle was used to

apply an evolution algorithm to show that the addition of a feedback loop can

occur without disturbance of the oscillatory properties [137]. This analysis was

completed by the application of the two-stage sampling algorithm to study the

robustness of the different architectures [135]. Fifth, I will present the work

done in collaboration with Didier Gonze from the Université Libre de Bruxelles,

where we showed that the addition of a positive feedback loop enhances the

robustness to molecular noise of a negative feedback oscillator [138].

The last section is dedicated to synthetic biology: robustness was used as

a design criterion to build a circuit that allows maintenance of the homeostasis

of two cell populations. In collaboration with Miles Miller and under the su-

pervision of Ron Weiss from MIT, we propose a design procedure for synthetic

circuits and optimization directions for the designed systems [139].

63
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4.1 Robustness Analysis of Two Models of the Cyanobac-

terial Circadian Oscillators

To illustrate the application of the glocal method, I focus on two recent

models of the in vitro cyanobacterial circadian oscillator [87, 90]. I chose this

study system for several reasons. First, it is an area of very active recent model

development, [87, 90, 92, 89, 88], driven by recent insights into the molecular

mechanisms of the oscillator [81]. Second, the behavior or function of circadian

oscillators is well-characterized: it has an ample oscillation with a period of

approximately 24 hours [78], and low sensitivity to non-periodic environmental

perturbations. Third, in vitro and in vivo experiments show that the cyanobac-

terial circadian clock is robust to many perturbations [165, 166]. Fourth, good

estimates for the in vivo abundance of all involved proteins and of the cell

volume for the cyanobacteria are available. Finally, being protein-based, the

clock shares many features with signal transduction pathways, an important

field of application for robustness analysis [167, 36].

4.1.1 Two Oscillator models of the Cyanobacterial Clock

The first model [87] (Figure 4.1A and equations (4.1)) involves complex

formation of KaiC with the other proteins, as well as cyclic phosphorylation

and desphosphorylation of KaiC. In this model, KaiA first binds to KaiC (top

reaction of Figure 4.1A). The resulting complex KaiAC catalyzes the phos-

phorylation of KaiC forming KaiAC*. A central element of this model is that

KaiAC* then exerts a positive feedback on its own formation (red arrow in

Figure 4.1A). In a subsequent step, KaiB binds to the complex KaiAC* and

inhibits this autocatalysis. To complete the cycle, KaiA is released, followed

by KaiB, and finally KaiC* is dephosphorylated. I will refer to this model

as the ‘autocatalytic model’. It contains 8 states variables and 7 reactions

with 7 individual parameters. In the equation system below, square brackets

denote concentrations, and names inscribed in these brackets denote (phos-

pho)proteins or complexes thereof.
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Figure 4.1: Two models of the in vitro cyanobacterial circadian cycle. (A)
Autocatalytic model from Mehra et al. [87]. ‘C*’ stands for phosphorylated
KaiC. The cycle proceeds clockwise, starting from the upper left. The sum of
concentrations of the KaiC*-containing complexes (underlined) form the out-
put of the model. The red arrow denotes the autocatalytic effect of KaiAC*
on its synthesis. (B) Two phosphorylation sites model from Rust et al. [90].
There are three possible phosphorylated states for KaiC: KaiCT , KaiCS and
KaiCST . The sum of concentrations of phosphorylated KaiC molecules (under-
lined) is the output of the system. KaiA catalyzes phosphorylation reactions
(solid blue arrows) and inhibits some dephosphorylation reactions (dashed blue
bars). KaiCS (complexed with KaiB, not explicitly modeled) inhibits the action
of KaiA (red bar).

d[KaiA]

dt
= k5[KaiABC∗]− k1[KaiA][KaiC]− k3[KaiAC∗][KaiA][KaiC]

d[KaiB]

dt
= k6[KaiBC∗]− k4[KaiAC∗][KaiB]

d[KaiC]

dt
= k7[KaiC∗]− k1[KaiA][KaiC]− k3[KaiAC∗][KaiA][KaiC]

d[KaiC∗]

dt
= k6[KaiBC∗]− k7[KaiC∗]

d[KaiAC]

dt
= k1[KaiA][KaiC]− k2[KaiAC]

d[KaiAC∗]

dt
= k2[KaiAC] + k3[KaiAC∗][KaiA][KaiC]− k4[KaiAC∗][KaiB]

d[KaiBC∗]

dt
= k5[KaiABC∗]− k6[KaiBC∗]

d[KaiABC∗]

dt
= k4[KaiAC∗][KaiB]− k5[KaiABC∗] (4.1)

To initialize the iterative exploration of the parameter space, the parameter

vector reported in [87] is used: k = [10−4 mol−1h−1, 0.40 h−1, 0.45 M−2h−1,
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3.65 h−1, 4.00 h−1, 0.90 h−1, 0.18 h−1]. The total concentrations of the relevant

molecules are [ΣKaiA] = 3.0 µM , [ΣKaiB] = 1.0 µM and [ΣKaiC] = 3.5 µM .

The second model [90] (Figure 4.1B and equations (4.2)) makes a distinc-

tion between the two phosphorylation sites S and T of KaiC [91], resulting in

three possible phosphorylated states: KaiCT , KaiCS and KaiCST (see section

1.4.2). KaiA catalyzes the phosphorylation of both S and T sites and inhibits

the dephosphorylation of KaiCST and KaiCS . These actions of KaiA are inhib-

ited by KaiCS (red bar in Figure 4.1B). Although KaiCS exerts its effects on

KaiA jointly with KaiB [83], KaiB does not appear in the equations, because

it is assumed to be at saturation level in this model. I will refer to this model

as the ‘two (phosphorylation) sites model’. It contains 4 states variables and

8 reactions with 12 parameters [90] and [KaiA] is expressed as a function of

[KaiCS ]:

[KaiA]
(
[KaiCS ]

)
= [KaiA] = max

{
0, [ΣKaiA]− 2[KaiCS ]

}
[KaiC] = [ΣKaiC]− [KaiCT ]− [KaiCST ]− [KaiCS ]

d[KaiCT ]

dt
=

k4[KaiA]

k12 + [KaiA]
[KaiC] +

k9[KaiA]

k12 + [KaiA]
[KaiCST ]

−
(

k1 +
k8[KaiA]

k12 + [KaiA]

)
[KaiCT ]− k5[KaiA]

k12 + [KaiA]
[KaiCT ]

d[KaiCST ]

dt
=

k5[KaiA]

k12 + [KaiA]
[KaiCT ] +

k6[KaiA]

k12 + [KaiA]
[KaiCS ]

−
(

k2 +
k10[KaiA]

k12 + [KaiA]

)
[KaiCST ]− k9[KaiA]

k12 + [KaiA]
[KaiCST ]

d[KaiCT ]

dt
=

(
k2 +

k10[KaiA]

k12 + [KaiA]

)
[KaiCST ] +

k7[KaiA]

k12 + [KaiA]
[KaiC]

−
(

k3 +
k11[KaiA]

k12 + [KaiA]

)
[KaiCS ]− k6[KaiA]

k12 + [KaiA]
[KaiCS ]

(4.2)

To initialize the iterative exploration of parameter space, I use the param-

eter vector reported in [90]: k = [0.21 h−1, 0.31 h−1, 0.11 h−1, 0.4791 h−1,

0.2129 h−1, 0.5057 h−1, 0.0532 h−1, 0.7985 h−1, 0.173 h−1, −0.3194 h−1,

−0.1331 h−1, 0.43 M ]. The total concentrations are [ΣKaiA] = 1.3µM and

[ΣKaiC] = 3.4µM .

Both models capture important empirical observations about the cyanobac-

terial circadian cycle: phosphorylation of KaiC with the help of KaiA [91],
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inhibition of this effect by KaiB when bound to phosphorylated KaiC [91, 83],

and finally dephosphorylation to complete the cycle [91]. However, the models

are also fundamentally different in some key assumptions about the underlying

mechanism. Because of these dramatic differences, biochemical data will play

a decisive role in model discrimination. The robustness analysis carried out in

this work is a first step towards such validation.

4.1.2 The Two-Sites Model Shows Greater Global Robustness

In applying my global approach to both models, I sampled parameter vec-

tors covering a range of six orders of magnitude for each parameter, centered

on published parameter values for both models (see above) using the PCA

sampling method (see section 3.1.1). In order to avoid biased estimates the in-

terval bounds should be within biophysical feasibility. Such an a priori range

needs to be established, both for practical reasons, and for models that are

unidentifiable [154, 155, 57]. For the systemic properties π, I chose the period,

the peak value and the amplitude. The bounds of the viable range [π,π] are

chosen [79] to be 10% below and above the respective values of the properties

π of each model with the parameter vector defined above [87, 90]. With these

constraints, I carried out the sampling procedure for ten PCA iterations. For

each iteration, I sampled 105 parameter vectors uniformly, and used the viable

parameters of the last four iterations to define the hyperbox for the Monte

Carlo integration.

Figure 4.2A shows the (normalized) viable volumes R for the two mod-

els. These volumes can be interpreted as the average allowable variation per

parameter that leaves the circadian oscillations intact. The two-sites model

is vastly more robust than the autocatalytic model. Specifically, the value

R = 0.718 for the autocatalytic model means that the parameters can vary

over 0.7 orders of magnitude, or 5.2-fold. For the two-sites model, the value of

R = 1.60 is more than twice that, correspond to a 39-fold allowable variation.

The values shown are based on at least 5 × 104 parameter vectors and have

sampling errors of less than one percent (see section 3.1.3). I also note that

the estimated viable parameter volumes were highly reproducible among five

independent applications of the iterative procedure. For example, the mean

values of R = 1.60 ± 0.01 (two-sites model) and R = 0.718 ± 0.006 (autocat-

alytic model) have a coefficient of variation below one percent over these five

iterations, which shows that the PCA-guided sampling approach gives highly

reproducible results.
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Figure 4.2: Results of the global robustness analyses for both models. (A)
The two-sites model (right) has significantly greater nomalized viable volume
than the autocatalytic model (left). Error bars (< 1%) correspond to standard
deviations over five independent estimates. (B) Standard deviations along the
principal axes of viable parameters for the autocatalytic model and the two-
sites model. Note the logarithmic scale. The autocatalytic model has a strongly
constrained axis (arrow); amounts of variation along the other axes are overall
smaller for the autocatalytic model. (C) Projection of the viable vectors of the
autocatalytic model after the MC integration on the plane (k3, k4). These two
parameters are strongly correlated resulting in the lowest standard deviation
for the autocatalytic model (B).

What is responsible for the lower robustness of the autocatalytic model?

One possibility is that strong associations exist between individual parameters

in viable parameter sets, such that some parameters cannot vary indepen-

dently from others. Such associations, if present, may also provide mechanistic

insights into complex, high-dimensional circuits. Figure 4.2B shows the stan-

dard deviations of viable parameters along the principal axes of both models.

With one exception, the amount of variation along most principal component

axes is similar for both models. The exception (indicated by the arrow in the

Figure 4.2B) is the lowest PCA axis for the autocatalytic model.

The high constraint on variation in this axis is caused by a strong positive

correlation between the rate for the autocatalytic reaction, parameter k3, and
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the rate for the formation of the complex KaiABC*, k4 (Figure 4.2C). This axis

deviates by merely 13 degrees from the vector k = (0, 0, 1,−1, 0, 0, 0) defined by

the model’s parameters. Parameters k3 and k4 are highly correlated (Pearson’s

r = 0.97, significance of all statistical tests are summarized in Table 4.1). This

strong association contributes to the lack of global robustness observed in the

autocatalytic model. It means that a perturbation of parameter k3 that would

not be followed by a corresponding perturbation in parameter k4 would prevent

the model to preserve properties π of interest. Examining the structure of the

equations for the autocatalytic model (Figure 4.2A), I find that the mechanistic

cause for this association lies in the dynamics of KaiAC*: on one hand, if k3 is

too large, the concentration of KaiAC* increases too fast and the autocatalytic

effect is too strong; on the other hand, if k4 is too large, the concentration of

KaiAC* is too low and the autocatalytic effect is too weak. The parameters

k3 and k4 need to be delicately balanced to have the correct concentration of

KaiAC* resulting in the appropriate feedback strength.

To assess whether this strong association is responsible for the smaller

global robustness of the autocatalytic model, I collapsed the highly correlated

parameters k3 and k4 into one. That is, I assumed that k3 and k4 are linearly

dependent and can be considered as one single parameter. The reduced model

with only six parameters yields a global robustness estimate of R = 1.09. This

corresponds to an allowable 12-fold average variation of each parameter, and

accounts partially for the lower robustness of the autocatalytic model.

4.1.3 The Two-Sites Model Shows Greater Local Robustness

Figure 4.3A shows the distribution of ρP , the quantifier of robustness to

local parametric perturbations for both the autocatalytic model and the two-

sites model. The median robustness of the autocatalytic model is lower by 29%

(median ρP = 0.179 and ρP = 0.231 for the autocatalytic and two-sites model,

respectively; see table 4.1 for significance).

My combination of global and local analysis allows us to ask whether in-

dividual chemical reactions (represented through their parameters) are partic-

ularly important for a model’s robustness. To this end, I investigated whether

there exist statistical associations between ρP and any of the model parameters.

One striking such association stands out for the autocatalytic model (Figure

4.4A). Specifically, ρP is highly associated with k7, (Spearman’s r = −0.638),

whereas all other parameters and ρP show only r < 0.11 (Spearman’s partial

correlation given k7). A glance at the model equations (Eq. 4.1) shows that
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Null hypothesis Test type r-value p-value n
Parameters k3 and k4 are correlated

in the autocatalytic model
Pearson’s 0.97 < 10−323 1828

ρP is larger for two-sites model Wilcoxon rank 3.32× 10−91

ρP correlated with k7
for autocatalytic model

Spearman’s -0.638 < 10−323 1828

robustness to temperature changes is
larger than ρP for autocatalytic model

Wilcoxon rank 1.95× 10−246

robustness to temperature changes is
larger than ρP for two-sites model

Wilcoxon rank 0.245

robustness to temperature changes
is larger in the two-sites model

Wilcoxon rank 2.28× 10−4

ρC is larger for two-sites model Wilcoxon rank 9.25× 10−177

ρC correlated with k7
for autocatalytic model

Spearman’s -0.718 2.81× 10−289 1828

ρN is larger for two-sites model Wilcoxon rank 3.09× 10−239

ρN correlated with k1
for autocatalytic model

Spearman’s 0.921 < 10−323 1828

ρN correlated with k2
for two-sites model

Spearman’s 0.629 < 10−323 604

ρN correlated with k3
for two-sites model

Spearman’s 0.414 < 10−323 604

ρA is larger for two-sites model Wilcoxon rank 4.31× 10−10

ρS is larger for two-sites model Wilcoxon rank 1.69× 10−151

ρT is larger for two-sites model Wilcoxon rank 1.48× 10−238

ρT is correlated with the
distance from the parameter with the

highest ρT for autocatalytic model
Spearman’s -0.355 < 10−323 1828

ρT is correlated with the
distance from the parameter with the

highest ρT for two-sites model
Spearman’s -0.196 < 1.15× 10−6 604

Table 4.1: Statistical tests and their significance used to assess model discrim-
ination and correlations.

the reaction associated with k7 dephosphorylates KaiC* and thus triggers the

initialization of a new autocatalytic cycle. If this initialization occurs too fast

(at large k7), synchronization of complex formation and absorption of pertur-

bations is poor.

As an extension of this quantifier, properly correlated parametric pertur-

bations are used to address the robustness to temperature changes (see section

3.2.1). First, I notice that the sensitivity of the period to parameters shows

that for the autocatalytic model, α4 is positive and for the two-sites model

α3, α6, α9, α10 are positive, therefore temperature compensation is possible in

both models. With the finite correlated perturbations, I find that the two-sites

model has a median robustness only 4% greater than the autocatalytic model
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Figure 4.3: The two-sites model (blue) has greater local robustness than the
autocatalytic model (red). Shown are the distributions of (A) robustness to
local parameter perturbations ρP , (B) robustness to total concentration per-
turbations ρC , (C) robustness to molecular noise ρN , (D) attraction of the
cycle ρA, and (E) sensitivity of the period ρS . In (F) median values are shown
with their associated standard deviation (error bars) for both models and all
five quantifiers. Black dots indicate local robustness values for the previously
published parameter vector’s [87, 90].

(Figure 4.5B). Individual analyses of both models show why this difference,

yet significant (p = 2.28 × 10−4), is small compared to the difference in ρP .

On the first hand, the autocatalytic model is more robust to such correlated

perturbations than to uncorrelated perturbations (median of 0.230, and 0.179,

respectively). The large difference between the two cases for the autocatalytic

model (Figure 4.5A and 4.5B, red bars) can be explained by the strong associ-

ation between k3 and k4 discussed above: correlated perturbations cannot be

aligned with the most constrained direction of the viable parameter volume.

On the other hand, the two-sites model, which does not have such highly asso-

ciated parameters, does not show increased robustness to correlated parameter

changes (p = 0.245).

I next turn to total concentration perturbations ρC (distribution shown in

Figure 4.3B. Here, the two-sites model is on average 2.5-fold more robust than

the autocatalytic model, with a median ρC = 0.192 and ρC = 0.439 for the

autocatalytic and two-sites model, respectively. For instance, for 10% of viable

parameter vectors in the two-sites model, more than 80% of perturbations leave
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Figure 4.4: Correlations of the local robustness quantifiers with model param-
eter. (A) Parameter k7 (horizontal axis) negatively affects robustness to pa-
rameter perturbations (vertical axis) in the autocatalytic model (Spearman’s
r = −0.638). (B) Parameter k7 (horizontal axis) negatively affects robust-
ness to concentration perturbations (vertical axis) in the autocatalytic model
(Spearman’s r = −0.718). (C) Score for robustness to molecular noise for the
autocatalytic model plotted against k1 and (D) the two-sites models plotted
against k2. In the autocatalytic model, k1 has a Spearman’s correlation coef-
ficient with ρN of 0.921 and less that 6 percent of the parameter vectors have
a score above 0.5. For the two-sites model, k2 has a correlation coefficient of
0.629 with ρN and more than 80 percent of the parameter vectors have a score
above 0.5.

the circadian oscillation intact. Exactly as for ρP , I find that in the autocat-

alytic model, k7 strongly influences ρC (Figure 4.4B), with a Spearman’s rank

correlation between k7 and ρC of −0.718, which underscores the importance of

this dephosphorylation reaction.

I next assessed robustness ρN to molecular noise. To this end, I used

Gillespie’s algorithm [15] to simulate an oscillator with 2000-6000 molecules in

a reaction volume of 3µl, numbers that are of the correct order of magnitude

for the number of Kai proteins in a cyanobacterial cell [168] (the exact numbers

of molecules for the simulations are 5420 for KaiA, 1807 for KaiB, and 6323

for KaiC for the autocatalytic model and 2349 molecules of KaiA and 6142

molecules of KaiC for the two-sites model). When changing the cellular volume,

the results stay qualitatively the same (results not shown). Here again, the
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Figure 4.5: Robustness to temperature change. (A) distribution of the scores
for the robustness to parameter perturbations (autocatalytic model in red and
two-sites model in blue), similar as Figure 4.3B. (B) distribution of the scores for
the robustness to temperature changes. The results are obtained with the same
algorithm as the one for ρP but the random variates are correlated such that
for a particular perturbation all parameters are either increased or decreased.
In this case, the median robustness for the two-sites model is only 4 percent
larger than the median of the autocatalytic model.

two-sites model is significantly more robust, with a median (mean) value of

ρN that is 45 (6.5) times larger (Figures 4.3C and 4.3F). For example, for the

autocatalytic model, fewer than 6% of viable parameter vectors show ρN > 0.5

(Figure 4.4C), whereas more than 80% of the parameters show ρN > 0.5 in two-

sites model, where noise also affects only a small region of the viable parameter

volume (Figure 4.4D).

Figure 4.4C plots, for the autocatalytic model, ρN against the model pa-

rameter k1 that is most highly correlated with it (Spearman r = 0.921). The

Figure shows that ρN < 0.5 for more than half the range of viable parameters.

All other parameters show a partial Spearman rank correlation with ρN (con-

trolling for k1) lower than r < 0.35. Parameter k1 governs the rate of KaiAC

complex formation. Its importance can be explained by the disproportionate

effect of k1 decrease as it is already low. For example, when k1 is equal to

4×10−5, this complex forms at an average rate of 0.76h−1 with the given copy

numbers. If k1 decreases modestly to 10−5, this rate decreases to 0.19h−1 or

one complex formation every five hours. Because this reaction starts the cycle,

the fluctuations in its rate can spread and strongly affect the period.

In the two-sites model, the parameters most highly correlated with ρN are

k2 and k3 (Spearman r = 0.629, respectively, p < 10−323, n = 604). All other

parameters show a partial Spearman rank correlation with ρN (controlling

for k2 and k3) lower than r < 0.12. Figure 4.4D shows a scatterplot of ρN
against model parameter k2 over the entire range of viable parameters that
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spans four orders of magnitude. With a few exceptions, ρN is smaller than

0.5 only for one quarter of this range. Parameters k2 and k3 represent the

rates of the dephosphorylation reactions KaiCST →KaiCS and KaiCS →KaiC,

respectively. KaiCS is a critical element of the negative feedback loop (red

bar in Figure 4.1B) that inhibits the action of KaiA. This observation explains

the importance of the reactions that form and destroy KaiCS . Low values of

k2 combined with finite numbers of reacting molecules lead to greater noise

in the formation of KaiCS from KaiCST . Its concentration will thus fluctuate

to a greater extent, and these fluctuations can then be further amplified by

feedback.

I next turn to the attraction of the cycle ρA, whose distribution is shown in

Figure 4.3D. The two-sites model has a significantly higher median ρA = 0.891

compared to ρA = 0.846 for the autocatalytic model. An analogous difference

holds for period sensitivity (Figure 4.3E), where ρS is on average 65 percent

greater in the two-sites model.

I had noted previously that k3 and k4 are strongly and negatively asso-

ciated with global robustness. When analyzing their association with period

sensitivity, I find that they also have a strong and opposite impact on the pe-

riod (α3 = ∂ log(T )/∂ log(k3) is negative, whereas α4 is positive). The reason

is the same as discussed in the results for global robustness, namely that the

autocatalytic feature that is so central to this model requires a delicate balance

of two reactions producing and destroying KaiAC*. This feature also explains

the higher robustness to temperature compensation as discussed above.

A remaining question regards the relationship between robustness quan-

tifiers ρ and the center of the set of viable parameters. Naively, one might

assume that robustness might be highest in this center, and that the value

of any robustness quantifier decreases from this center. However, this is not

generally the case (Figure 4.6A-E). Specifically, only 3 and 2 out of the five

robustness quantifiers show this expected distance dependency for the autocat-

alytic and two-sites models, respectively, and none of these associations exceed

r = 0.25.

Average local robustness ρT is also not higher at the center (Figure 4.6F).

The same holds if ρT is calculated through multiplication rather than aver-

aging (not shown). In addition, there exist regions of parameter space that

have higher average robustness ρT (Figure 4.6G) than the center, and there

is a negative association between a parameter vector’s ρT and its distance to

the parameter vector with the highest ρT . This association is higher for the
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Figure 4.6: Distribution of the average local robustness ρT for the two mod-
els. Local robustness is not maximal in the center of the viable parameter
set. Shown are local robustness quantifiers (vertical axes) plotted against the
distance of viable parameter vectors (horizontal axes) from the center of mass
of the entire set of viable parameter vectors, for the autocatalytic model (red)
and the two-sites model (blue): (A) robustness ρP to parameter perturbations,
(B) robustness ρC to total concentration perturbations, (C) robustness ρN to
molecular noise, (D) attraction of the cycle ρA, (E) sensitivity of the period ρS ,
(F) total robustness, ρT , defined as the arithmetic mean over all five robustness
quantifiers. Maxima for all local robustness quantifiers are not found near the
center of mass, and there is only a weak correlation between a parameter vec-
tors distance from this center and local robustness. For each viable parameter
vector k, the figure shows its distance (horizontal axis) from the viable param-
eter vector with the highest average local robustness ρT plotted against the ρT
of k (vertical axis). Large circles correspond to the two parameter vectors with
the highest ρT for each model. The greater the distance of k to the most robust
parameter vector, the lower its ρT . This negative association is stronger for the
autocatalytic model. The two squares in each panel correspond to previously
published parameter vectors for each model [87, 90].
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autocatalytic model (see table 4.1). These observations further underscore the

higher robustness of the two-sites model. To summarize: first, not surprising,

the average ρT of all five quantifiers indicates much greater robustness for the

two-sites model. Second, the spatial distributions of ρT show that in the two-

sites model, robustness decreases more slowly with distance from the points of

highest average local robustness reflecting a larger volume with high average

robustness.

4.1.4 Connectivity in the Parameter Space

Following the study of the spatial distribution of robustness, I address

the question whether the viable region of parameter space forms a connected

set. Such connectedness would facilitate the evolution of oscillators with high

robustness through gradual changes of individual parameters. For any high di-

mensional model whose governing equations cannot be solved analytically, this

is perhaps the most difficult problem in global analysis, for the following reason.

The sample of viable parameters that our approach generates, albeit large, is

finite, and comes from a multidimensional parameter space with uncountably

many elements. In this parameter space, the set of all viable parameters may

be connected, or, alternatively, it may be fragmented into many small islands

of viable subsets. No sampling approach can prove which of these extremes (or

a spectrum of possibilities in between) is the case. However, sampling, along

with the continuous properties of the ODE system, can provide a hint as to

which of these scenarios is closer to the truth. To this end I define a graph

whose nodes are parameter vectors in the viable set, and where an edge con-

nects two nodes if a straight line exists that preserves the oscillatory behavior

for all points along the line. To determine whether two parameter vectors, say

k and k, are neighbors in this graph, I sampled a convex combination k(i) of

M uniformly distributed points in the logarithmic domain of points between k

and k:

log10(k(i)) =

(
1− i

M + 1

)
log10(k) +

i

M + 1
log10(k) (4.3)

I assessed whether all of these M points preserved proper oscillatory behavior,

i.e. π(k(i)) ∈ [π,π] ∀ i = 1, . . . ,M , which suggests that the straight line

connecting k and k lies in its entirety in the viable set. Figure 4.7 shows a

projection of the structure of the entire graph into the two-dimensional space

defined by parameters k5 and k6 for the autocatalytic model, and into the two-

dimensional space defined by parameters k1 and k2 for the two-sites model.
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Figure 4.7: Viable parameter sets form large connected regions in parameter
space. (A) autocatalytic model (projection on k5 and k6), (B) two-sites model.
Pairs of viable parameter vectors (black dots) are connected by blue lines, if
they are likely to be part of the same connected region of parameter space, as
determined by numerical analysis explained in the text. Parameter vectors that
cannot be connected to other parameter vectors are shown as red dots. The
graph is shown as a projection on to the axes formed by k5 and k6 for (A),
and as a projection onto the axes formed by k1 and k2 in (B), because these
projections best illustrate that the viable region is not convex.
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For both models, the graph consists of one giant component comprising the

vast majority of parameter vectors, and few isolated nodes. Specifically, in the

autocatalytic model, only 0.7% (12 of 1828) of parameter vectors are not in this

connected component. In the two-sites model 1.3% (8 out of 604) of parameter

vectors are not in this component. The isolated parameter vectors lie close

to the boundary of the viable parameter volume. For these analyses, I chose

to sample 10 points per order of magnitude change along each straight line

connecting any two parameter vectors (M = 10 · ‖ log10(k)− log10(k)‖), which

corresponds to a 25% difference in parameter values between two successive

sampling points. Increasing the density of the sampling did not affect these

results qualitatively.

To summarize, even if the connectivity question cannot be answered rig-

orously, I show that there probably exists a giant component for both mod-

els. Therefore, the volume formed by these connected parameter vectors likely

forms a ‘neutral volume’ [45] in which circadian oscillations with a given period

and amplitude are preserved.

4.1.5 Conclusion

In my application of the glocal analysis to two circadian oscillator mod-

els, I found that the two-sites model shows greater global robustness than the

autocatalytic model, with 39-fold and 5-fold allowable parameter variation, re-

spectively, along each parameter dimension on average. Similarly, the two-sites

model has higher local quantifier values for robustness to parameter changes,

molecular noise, transient state perturbation, and period sensitivity. Based on

these considerations alone, the architecture of the two-sites model is superior

to the one of the autocatalytic model. If robustness is advantageous, and if

this oscillatory mechanism is realizable biochemically [79, 165], it should be

the preferred architecture. This observation is consistent with recent experi-

ments that provide strong evidence in favor of ordered phosphorylation in the

cyanobacterial clock [91, 169]. In contrast, the autocatalytic mechanism [87],

obtained by interpreting experimental results of [168], whereas phosphorylated

KaiC facilitates KaiA-KaiC association and subsequent KaiC phosphorylation,

was not confirmed by recent experiments [91, 169, 90].

The glocal combination of global and local robustness analysis shows which

chemical reactions in these models are of particular importance for robustness

(or a lack thereof). For example, the rates of two central reactions of the auto-

catalytic loop in the autocatalytic model need to be delicately balanced, a prop-
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erty that partially accounts for its lack of global robustness. Put differently,

the central feature of this model is partly responsible for its low robustness.

In the two-sites model, my local analysis shows that the rates of the reactions

that form and destroy KaiCS are of particular importance for its robustness.

For low values of these parameters, the concentration of KaiCS fluctuates to a

greater extent. The resulting fluctuations are then amplified by the feedback

loop central to this model.



80 Chapter 4: Results

4.2 Entrainment as a Selection Criteria for Circadian

Cycles Robustness Analysis

The results of the previous section were based on in vitro experiments of

the cyanobacterial circadian clock, which is a particular system as it is protein-

based. It also lacks a good understanding of the entrainment mechanism, an

essential feature of circadian clocks. In this section, I will present a research

that complements the previous results. I will use two models of the Drosophila

circadian clock and study their robustness properties using the glocal method

focusing on the entrainment aspect. This work was done in collaboration with

Pierre Sacré from the group of Prof. Rodolphe Sepulchre in the University of

Liège, Belgium.

Identically to the previous section, the global approach identifies the viable

region of the high-dimensional parameter space where both models display the

experimentally observed behavior under entrainment (period of the cycle and

phase of the peaks). In this case, the local analysis will be based on the phase

response curve (PRC) that specifically analyzes the entrainment properties of

the system. PRC analysis has proven to be a useful tool to study the input-

output properties of oscillators [170]. It tabulates the phase shift at steady state

oscillations that results from a particular input perturbation as a function of

the phase at which this input is applied.

As a case study, we investigate two particular models of circadian clocks

in Drosophila that have common features to many eukaryotic circadian clocks

(see section 1.4.3). As described in the introduction (section 1.4.3), the first

published model of the circadian rhythm in Drosophila comprises only the

protein PER that forms a single feedback loop [104]. The protein is going

through two successive phosphorylation steps before entering the nucleus and

inhibiting its own expression. These intermediate stages induce a delay in the

feedback, a necessary condition for oscillations [72]. A second model proposes

an additional feedback loop through the action of the Timeless (TIM) protein.

TIM acts in parallel to PER but its degradation is enhanced by light allowing

the system to be entrained [105]. Further experimental studies have found the

existence of another feedback loop with the Cycle and Clock proteins [171].

Other recently published models propose several new components [107], but

we will focus on the first two systems which are generic models of moderate

complexity for circadian clocks and are composed of either one [104] or two

feedback loops [105] (figure 4.8).
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With this work, we want to address two questions. First, we noticed that

most of the studies on robustness of circadian cycles have been performed on

the autonomous oscillations, i.e. without any external entrainment [48]. They

are therefore based on the properties of the system in a dark environment,

whereas the main feature of circadian clocks is their ability to be entrained

by the daily light/dark rhythm. In this research, we want to overcome this

shortcoming and try to understand how the oscillator architecture influences

the robustness of a system in relation to its entrainment properties. Second,

it is currently believed that the specific structure of the biological network is

responsible for their dynamical behavior and their robust performance [151].

However, the actual relations between structure and robustness are still not

clear. For example the purpose of the multiple feedback loops present in many

circadian networks remains controversial [102]. One tentative explanation for

the emergence of these, often parallel, control mechanisms is redundancy: Udea

et al. [172] showed that adding a feedback loop in a circadian clock enhances

the robustness of the system to point mutations. With this research on two

models with respectively one and two feedback loops, we hope to bring a new

argument for the advantage of additional feedback loops.

4.2.1 Two Models of the Drosophila Clock

For the one-loop model, we use the model and its parameters as published

by Goldbeter [104]. The two-loop model published by Leloup and Goldbeter

[105] was selected as a comparison. As no entrainment was implemented for

the one-loop model, we changed this model by adding a light-modulation of

the degradation of the PER protein as it is the case for the TIM protein in

the two-loop model (see figure 4.8 and equations (B.1) in appendix). The

parameters are the same as the ones used in the original paper. For this latter

model (equations (B.2)), we performed two sampling procedures: one with the

original constraint on the symmetry of the parameters in the two loops and

one where this restriction was released (see appendix, section B). To this end,

we obtain three models: one loop, two symmetric loops and two asymmetric

loops. For all models, we use three different operating conditions that form

a hierarchy: first, the sampling is done (1) under normal entrainment, then

refined (2) by studying three cycles after interruption of the entrainment and

finally (3) in dark conditions (free-run).
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Figure 4.8: The one-loop (a) and the two-loop (b) models of the Drosophila
circadian clock used for this study, adapted from [104] and, respectively, [105].
PER (and TIM) have two successive phosphorylation steps (indicated as ∗).
PER∗∗ or the TIM-PER complex enters the nucleus (dashed circle) and in-
hibits gene expression (nPER and nTIM-PER stands for nuclear PER or nu-
clear complex). The light periodically enhances the degradation of PER∗∗ or,
respectively, TIM∗∗.

4.2.2 Higher Global Robustness of the Two-Loop Model

To sample the parameter space for both models, we use the PCA sampling

method. The criteria chosen for a parameter set to be viable are consistent

with the experimental findings on the Drosophila clock. More specifically, we

select parameter sets for which the models, under entrainment (light acts on

the system from hour 0 to 12, i.e. ZT0 to ZT12), show the following criteria

[173]:
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• the oscillations are stable with a period of 24 hours (with a small margin

of 0.05h to account for numerical errors) with an entrainment of 24 hours

period;

• the relative amplitudes
(

max−min
max

)
of per mRNA and the nuclear complex

(nPER or nTIM-PER) concentrations are above 60%;

• the per mRNA concentration peaks during the early night (between ZT12

and ZT19 hours);

• the nuclear component concentration peaks in the late night (between

ZT18 and ZT3 hours) and is with a delay of 4.5 to 10 hours after the

peak of per mRNA;

• the tim mRNA and per mRNA concentrations peak within less than two

hours difference (for two-loop models).

The sampling procedure is performed over a large range of four orders of

magnitude around the original parameter set. With this broad sampling, we

suggest that the computed characteristics are inherent in the structure and not

in the parameterization of the models. The boundaries are a necessity: as some

reactions are bidirectional, the effective rate at equilibrium is the ratio of both

forward and backwards reactions leaving individual parameters unconstrained.

The results of the global analysis show that the model with two loops is

more resilient to parameter perturbations: the region of the parameter space

where the model is properly entrained by an external signal is larger. The

model with one loop has on average around two and a half orders of magnitude

(2.43± 0.02) of possible variations per parameter to fulfill the defined criteria.

The symmetric and asymmetric two-loop models have respectively 7.4% and

14.0% more freedom (normalized volume of 2.61±0.03 and 2.77±0.01) reflecting

a higher global parameter robustness. The error is the standard deviation of

three different simulations.

We further refine our analysis by checking how the oscillations behave

when the entrainment is released. This is performed in two stages. First we

check if the system is able to maintain proper oscillations for three cycles in

the dark (without entrainment). We use the same criteria as above but with

a range 10% larger for the phase of the peaks and a range of [21.6h, 26.4h]

for the period interval. The hierarchy of results for the three models remains

the same, but interestingly the one-loop model shows a 5.3% decrease (to a

value of 2.30 ± 0.02) whereas both two-loop models have only 2.8% and 2.6%
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less freedom for the symmetric and, respectively, asymmetric models (values

of 2.53± 0.05 and 2.70± 0.01).

We pursue the refinement by selecting the parameter sets that have a

proper free-run behavior as observed experimentally. For this stage the abso-

lute phase criteria are not considered and only the ones for the period (10%

around 24 hours), the relative amplitude of some components (more than 60%)

and the relative phases (between peaks of mRNA and nuclear component con-

centrations) remain. For this last analysis, the difference is even stronger with

the average parameter variation dropping to 2.12±0.03 for the one-loop model

(−12.0% compared to the case with entrainment). On the contrary, the sym-

metric and asymmetric two-loop models show both a decrease of 5.1% to a

value of 2.46± 0.05 and 2.63± 0.02, respectively.

Breaking the symmetry of the parameters of the two loops increases only

slightly the viable parameter space. The little difference could be explained by

the low constraints on the phosphorylation steps. In the asymmetric model,

there are two times more parameters for phosphorylation (for the PER and

the TIM loops) and being the least constrained parameters, they increase the

average viable volume, when changing independently. More significant is the

difference in the decrease of the normalized viable volume due to the refinement

(relaxation and free-run operating conditions). This reduction is two times

larger for the one-loop model than for the model with two loops. As both

two-loop models have the same decrease we can argue that the advantage of

the two-loop models in terms of robustness for an entrained system comes from

the structure and not from an artifact due to the number of parameters.

4.2.3 Local Analysis Based on the PRC

The local analysis is based on the phase response curve. The PRC measures

the positive (or negative) time shift in the phase (usually in hours) that results

from an input perturbation given at a specific phase of the cycle. Experimental

PRCs of Drosophila circadian clock (a diurnal organism) exhibit delay phase

shifts for light pulses in the early subjective night, advanced phase shifts in the

late subjective night and little phase shifts during the subjective day, a region

called the dead zone [174] (figure 4.9). This specific PRC profile allows the

system to be entrained at the correct phase with a periodic light signal. We

use the PRC to define qualitative measures of the entrainment and use it as a

discriminative criterion for model selection. More specifically, we focus on the

following aspects: positions of the extrema and occurrence of a dead zone.
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Figure 4.9: Qualitative classification of PRCs. (A) Experimental data (red
dots) and interpolated PRC curve (blue line) for the Drosophila (adapted from
Hall and Rosbach [174]). (B) PRCs of class 1 exhibits a minimum followed by
a maximum and the dead zone. (C) PRCs of class 2 see their exterma inverted.
(D) PRCs having no dead zone are classified in the third group.

First we sample again the parameter space for sets that fulfill the free-run

criteria. The measure of the viable volume shows an even stronger advantage

for the two-loop models: the symmetric and asymmetric two-loop models have

a normalized viable volume of 2.57±0.03 and, respectively, 2.72±0.01 whereas

the value of the one-loop model is of 2.24± 0.04 only.

According to the analysis of the PRC for the different viable points in

the parameter space, we define three classes of PRCs (Fig. 4.9) based on

the position of the maximum and minimum and the existence of a dead zone

(at least 9.6 circadian hours at a value inside a range 10 times smaller than

[min(PRC),max(PRC)]). In the first class, parameter sets exhibit PRCs with

a minimum followed by a maximum and then a dead zone (in accordance with

experimental PRCs), the second class has PRCs with an inversion in the order

of the minimum and maximum and, finally, the parameter sets of the third

class exhibit PRCs without any dead zone.

With this classification the normalized volume of parameter sets with PRCs

of class 1 is reduced by 15.3% (value of 1.90 ± 0.06) in the case of the one-

loop model. On the contrary, for the two-loop models, the volume where

the parameter sets show a PRC comparable to the experimental ones remains

higher: the viable volume decreases by 9.5% for the symmetric two-loop model

and by 9.2% for the asymmetric one (values of 2.33 ± 0.06 and, respectively,
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2.47 ± 0.04). This local analysis emphasizes the advantage of an additional

feedback loop for the entrainment properties: a higher region in the parameter

space is consistent with the experimental PRC.

A closer look at the distribution of the three classes along the different

parameters shows a clear bias toward low values of the parameters controlling

the concentration of the nuclear component. More specifically, for all three

models, the degradation rate of the component in the nucleus (nPER or nTIM-

PER) is significantly lower for parameters in class 1 (Wilcoxon’s rank sum test

with p < 0.05, see Fig. 4.10). Except for the asymmetric two-loop model,

the translocation rates (in or out of the nucleus) are also significantly lower

in class 1 (p-value < 0.05). These differences are stronger for the one-loop

model. Other parameters show no significant difference with respect to the

three classes.
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Figure 4.10: Boxplot of the nuclear degradation rate for the three classes of
PRCs for the viable parameter sets in the different models. In all models, the
average of the distribution for the class 1 is significantly lower than other classes
however this difference is more important for the one-loop model.
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4.2.4 Conclusion

Taking into account entrainment for the analysis of robustness is a logical

step when studying the circadian cycle. Our work suggests that the additional

loop enhances the robustness of the entrained system. First, the global anal-

ysis gives two advantages of an additional feedback loop: a larger region of

the parameter space shows viable results and a larger fraction of it maintains

regular oscillations after the entrainment is stopped. This is a critical property

for a circadian clock: evolutionary selection pressure acts on this particular

phenotype. We can also see that the asymmetry introduced between the two

loops does not change the results through the refinement: the robustness comes

from the architecture (two-loops) and not the details of the equations.

Second, with the classification based on the PRC, we can investigate what

are the critical parameters that influence the entrainment properties. Our

global sampling helps to understand the interactions between specific rates

and PRC profiles that are consistent with experimental data. The results show

that the rate of the reactions controlling the concentration of the inhibitory

component (nPER or nTIM-PER) in the nucleus (translocation and degrada-

tion) can discriminate between the different PRC classes.

Interestingly, this part of the models, that can be considered as the most

sensitive one, is strongly simplified in comparison to the most recent models

[171, 107]. In fact, the inhibition by the TIM-PER complex is mediated through

another complex, Cycle-Clock, which is also controlled by positive and negative

feedbacks. An interesting perspective would be to study how these additional

feedback loops influence the robustness and the entrainment properties and if

they can overcome the weaknesses found by our research on the simpler models.
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4.3 Evolution of Feedback Loops in Oscillatory Systems

Building on the results of the connected viable space for the two mod-

els of the cyanobacterial clock, and following the work with models including

multiple feedback loops, the logical question that I want to address is: could

different architectures be reached with small steps in the parameter space while

maintaining viability of the systemic properties? Even though feedback loops

are considered key motifs of biochemical systems such as signaling pathways,

homeostatic regulatory circuits and oscillators [2], it is not clear from an evo-

lutionary point of view, how multiple loops evolved in complex systems like

the early embryonic cell cycle [114] or the circadian clocks [75]. In silico ap-

proaches have been used to understand how a system with a transcriptional

repression pattern can evolve oscillations [175, 176], and if such systems can

show oscillations by tuning their kinetic parameters [175, 176, 177]. On the

scale of the network topology (neglecting kinetic parameters), oscillations can

be conserved while modifying the structure of a network [151].

All these studies do not address the question whether new feedback loops

can be created in an oscillatory system without disrupting existing oscillatory

behavior. Even if evolution occurs in discrete steps, it seems a priori very

unlikely that a new loop can be created at random with precisely the correct

parameters to maintain the existing period and sufficiently high amplitude of

oscillation. The emergence of a new feedback loop would more probably occur

in multiple small steps which facilitate adjustment of kinetic parameters to

maintain core oscillatory properties. In this work, I aim to answer this precise

question: “could a system evolve from a simple model to a more complex one

with a continuous transition in the parameter space?” I will show that evolution

of this kind is possible for simple models that have been used to model the

mitotic cell cycle [114]. I propose two models based on early models from the

mitotic cycle in embryogenesis [72, 73]. These models have one feedback loop,

either positive or negative. I evolve these models toward a system with both

positive and negative feedback loops while conserving their systemic properties.

4.3.1 Random Walk for Evolution of Models

I first describe an algorithm to study the emergence of new regulatory

motifs in a model. Starting from a model, say M1, with a nominal parameter

vector k(M1), the goal is to evolve through small changes of the parameters

toward a predefined second model, say M2 that is similar to M1, but has
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an additional motif. During evolution, some viable properties of the system

have to be conserved. For example, in a homeostatic mechanism, the target

concentration of a molecule may have to stay in a specific interval; in this

case evolution of a new motif could allow faster or more reactive control [51].

For oscillatory systems, the period and the amplitude have to be conserved

while better robustness can appear through new motifs [102]. In practice, the

parameters of the new motif in model M2 are set to zero in order to mimic the

nominal parameter vector of M1. The aim of the evolution process is to change

progressively these parameters, and if necessary other parameters of the model,

in order to reach their nominal values in model M2. I allow a maximum of

10% variation in the parameter space at each step to mimic the fact that most

mutations may affect biochemical parameters only to a small extent.

The algorithm starts with a random walk in the logarithmic domain [178]

containing a drift term:

log10(k(j+1)) = log10(k(j)) + αε + β
∆(j)

‖∆(j)‖
(4.4)

where the drift ∆(j) = log10(k(M2)) − log10(k(j)) is the difference vector be-

tween the j-th parameter vector and the nominal vector for model M2 in the

logarithmic domain. The random vector ε is normally distributed with inde-

pendent components. The value α = 0.041 is chosen such that the standard

deviation of parameter variation is 10% of the previous parameter value; we

set β to a value of 1/3.

This random walk finds viable points in the parameter space, i.e. param-

eter vectors for which a model shows predefined viable properties. When the

random walk has reached the vicinity of the nominal vector for M2, the second

stage of the algorithm is to shorten the path from M1 to M2 by reducing the

number of points by linear interpolation between distant points along the path.

As I a priori choose the maximal length for the line segments, I do not recover

the shortest possible path. During this process, I check that the viable prop-

erties are conserved along the line connecting the two intermediate points. If

the whole path consists of viable points and the connections between them are

also viable, the properties are considered to be conserved along the evolution

process. I apply this algorithm to a generic model of the mitotic cycle.

4.3.2 Generic Models of the Mitotic Cycle and Constraints

The mitotic cycle has been one of the first biological systems to be modeled

with feedback loops. The first two published models were based either on a
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positive feedback [179] or a negative one [180]. Further models were published

including both kinds of loops (see [73, 114] and ref. therein). The models for

my case study are inspired by models in these papers, because they are simple

yet biologically realistic. Specifically, I propose three models with different

feedback architectures, shown in figure 4.11. All my models are based on the

expression of a protein R, its phosphorylation and its degradation. For the

model with positive feedback (MP, figure 4.11B), the phosphorylated state

of the protein (RP ) acts as a kinase for a secondary protein Z (Z � ZP ).

The positive feedback loop is formed by ZP that increases the rate of the

reaction R → RP . For the model with negative feedback (MN, figure 4.11C),

an intermediate step is needed to introduce more delay: RP acts as a kinase for

an intermediate protein X (X � XP ) and XP phosphorylates a third protein

Y (Y � YP ). The phosphorylated state of this protein, YP , increases the

degradation rate of R, therefore acting as a negative feedback. For the more

complex model (MPN, figure 4.11A), both loops are present: RP influences

the phosphorylation of X and Z. To translate the models into differential

equations, we assume that the reactions involving R and RP follow mass-action

kinetics:

d[R]

dt
= k1 − p([ZP ])[R]

d[RP ]

dt
= p([ZP ])[R]− n([YP ])[RP ] (4.5)

The functions p([ZP ]) and n([YP ]) reflect the positive and negative feed-

backs contained in model MPN :

p([ZP ]) = k2 + k11[ZP ]

n([YP ]) = k3 + k12[YP ] (4.6)

In models MP and MN, k12, resp. k11, are set to zero such that only one

feedback is effective. The phosphorylation of X, Y , and Z are governed by

Michaelis-Menten kinetics:

d[XP ]

dt
= k4[RP ]

([XT ]− [XP ])

k10 + ([XT ]− [XP ])
− k5

[XP ]

k10 + [XP ]

d[YP ]

dt
= k6[XP ]

([YT ]− [YP ])

k10 + ([YT ]− [YP ])
− k7

[YP ]

k10 + [YP ]

d[ZP ]

dt
= k8[RP ]

([ZT ]− [ZP ])

k10 + ([ZT ]− [ZP ])
− k9

[ZP ]

k10 + [ZP ]
(4.7)

The terms [XT ], [YT ] and [ZT ] denote the total concentration of proteins X,

Y and Z, respectively. We choose them to be equal to 1, and note that the



4.3 Evolution of Feedback Loops in Oscillatory Systems 91

absolute value is irrelevant, because a proper scaling of the parameters allows

changing time and concentration independently. In order to simplify the nota-

tion, we will not write the units for time, concentration and parameters.
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Figure 4.11: Reaction diagrams of the three models based on models of the
mitotic cycle [179, 180, 114]. (A) In the complete model, MPN, the protein
R is produced at a constant rate k1 and phosphorylated at a rate k2 forming
Rp. The phosphorylated protein ZP modulates this phosphorylation rate by
means of a positive feedback loop (blue diagram in the figure). In addition, RP

is degraded with a rate k3 that depends on the phosphorylated protein YP by
means of a negative feedback loop (red diagram in the figure). (B) MP model
with only the positive feedback loop. (C) MN model with only the negative
feedback loop.

With the above-defined random walk in the 12-dimensional parameter

space of my models, I can identify new viable parameter vectors. The chosen

viable properties of my models are related to the oscillations of the concentra-

tion of RP . In particular, I want the values of the period, the peak value and

the amplitude of these oscillations to remain within predetermined intervals.

A parameter vector is considered viable if the concentration of RP oscillates

with a period in the (arbitrary) interval [0.9, 1.1], a peak value contained in

the range [0.5, 1.0] and an amplitude that is at least 40% of the peak value.

I chose these criteria to reflect an important feature of biological oscillations,

namely that they avoid very small amplitudes. Period and the peak values

are readily adjusted with a proper scaling of the parameters. For models MP

and MN, the nominal parameter vectors were taken from [73] and rescaled in

order to have a period of 1 and a peak value of 0.66. For the model MPN, the

nominal parameters are chosen to be of the same order of magnitude as for
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models MP and MN (in particular they were obtained as the average of both

vectors and then rescaled to fulfill the same viable properties).

4.3.3 Parameters Adjust Through Evolution

For most of the simulations (> 85%) my algorithm is able to connect one of

the one-loop models to the two-loop model (refer to Figure 4.12A-B). Usually

about a few thousands of points are tested during the random walk, around

half of which are viable. The path is then reduced to about one hundred points

connected with viable segments.

10-2 10-1 100
10-15

10-10

10-5

100

k2

k 12

10-4 10-3 10-2

k10

k 11

10-15

10-10

10-5
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A B

Figure 4.12: Paths for the model evolutions. (A) 15 different paths from
model MN to model MPN projected on the plane (k10, k11). Parameter k11 is
increased during evolution strengthening the positive feedback. (B) 15 different
paths from model MP to model MPN projected on the plane (k2, k12). Pa-
rameter k12 is increased during evolution strengthening the negative feedback.
In both plots, light gray curves correspond to paths, the black line is the aver-
age path, and dashed black lines are the standard deviations along the average
path.

The addition of a positive feedback loop to the model with only a neg-

ative feedback loop is also possible, but the straight line connecting the two

parameter vectors for model MN and MPN is not viable. The line crosses

a Hopf-bifurcation, where the amplitude decreases and then oscillations dis-

appear. Therefore to connect both models, the random walks follow a bent

trajectory. The most significant adaptation is seen for the Michaelis constant,

k10 (Fig. 4.12A). When k10 decreases, the transitions (X � XP ) and (Y � YP )

become switch-like which strengthens the nonlinearity and may support oscil-

latory behavior.

The addition of a new negative feedback loop to the model with only one

positive feedback loop is also possible. In this case also, the straight line in
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the parameter space is not viable because the period increases beyond the

allowed maximal value along the path. The random walks become biased

toward smaller values of the phosphorylation rate of R, k2 (Fig. 4.12B). This

can be explained by the fact that k2 has a positive impact on the period.

Decreasing it also decreases the period.

4.3.4 Conclusion

This work is a first step to understand the emergence of feedback loops

in oscillatory systems. Using a Monte Carlo approach, I have shown that a

simple model can evolve toward a more complex one with small adaptations

of its kinetic parameters. I found evolutionary paths in the parameter space

that conserve the viable properties of the system. In the considered oscillatory

models, such conservation means that period and amplitude of oscillation have

to stay within predetermined intervals. For my two case studies, the addition of

a second loop is possible only if multiple parameters are changed simultaneously

during this process.

In large systems, the high-dimensionality prohibits classical qualitative bi-

furcation analyzes. Moreover, if quantitative constraints on system function

have to be fulfilled, the problem cannot be solved analytically. A random

sampling approach based on brute force is limited by the computational cost,

which is very high for large ranges of parameters in high dimensions. In such

cases, the random walk approach scales better and is a promising tool to under-

stand the evolution of more complex systems, such as the mammalian circadian

clock.
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4.4 Global Analysis of the Generic Mitotic Cycle Model

The results of the previous section showed that the generic model for the

mitotic cycle can oscillate with parameter values in a broad range. In par-

ticular, feedback strength of one or the other loop can be decreased to zero

while oscillations remain. Yet, as both feedback cannot a priori be null at the

same time, the viable parameter space should be strongly non-convex. It is

therefore a ideal case study for the two-stage sampling method (section 3.1.2).

In collaboration with E. Zamora, we characterized the non-convex viable space

of this model. In particular, we are interested in its geometry in relation with

the oscillator’s robustness and the connectivity of the system as described in

the section 4.1.4.

4.4.1 Model and Constraints

Our system has 12 parameters (see equations (4.5) to (4.7)). As usual, we

worked in the logarithmic domain to explore broad ranges of parameters, but

we still constrain the individual parameters as follows

ki ∈
[
10−4, 102

]
, i = 1, 2, . . . , 10,

ki ∈
[
10−7, 102

]
, i = 11, 12. (4.8)

Together, these ranges define the 12-dimensional parameter subspace K used

for the sampling.

For the Adaptive Metropolis sampling, we use the cost function

E(k) =

{
[(πT (k)− 1)/0.1]2 , if RP oscillates,

∞, otherwise,
(4.9)

where πT (k) is the period of the oscillations of RP for a parameter vector k.

The minimum of this cost function is attained by parameter vectors for which

πT (k) = 1.

Finally, we use the viability condition E(k) ≤ 1, meaning that a parameter

vector k is viable if it makes RP oscillate with a period in the interval [0.9, 1.1]

as in the previous section. Note that in this work, we have no explicit restriction

on the amplitude or peak values, yet we consider that the oscillation should

have a least a relative amplitude (max−minmax ) of 10−5.
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4.4.2 Sampling of the Non-Convex Viable Region

First, we carried out the Adaptive Metropolis sampling that roughly sam-

pled the viable space. The Ellipsoid-Based sampling completed the work and

yielded a large amount of points in the viable region of the parameter space. In

a next step, we performed a Monte Carlo integration and obtain 3595 parame-

ter vectors uniformly distributed in the viable region. The detailed results and

the performance of the algorithm was assessed in [135]: our two-stage sam-

pling method carries out a 13 times more accurate estimation of the viable

volume, and obtains 400 times more uniformly distributed viable points than

a brute-force approach using the same number of sampling points randomly

distributed in K.

Now I will focus on the relations between the shape of the parameter re-

gion and the oscillatory function. Specifically, we noted that the viable region

in the (k11, k12) plane (Figure 4.13A) is composed of two approximately rect-

angular or bar-like regions that, together, form a non-convex shape resembling

an inverted L. Parts of these regions define topologies in which the effect of

one of the feedback loops is very weak. More precisely, the left part of the

horizontal bar corresponds to viable parameter points for which k11 is small

and k12 is large. In this region, the effect of the positive feedback loop is weak.

Conversely, the bottom part of the vertical bar consists of viable parameter

points for which k11 is high and k12 low. It corresponds to architectures where

the positive feedback loop is dominant. These regions cover the evolutionary

paths that we found in the previous section. If we project the viable parameter

vectors in the other dimensions, we noticed that some parameters are hardly

constrained. In particular, when k11 is low, i.e. the positive feedback loop inac-

tive, the parameters k8 and k9 of the feedback loop are spread over the whole

admissible region (Figure 4.13C). The reverse is also true with k4 to k7 being

unconstrained when k12 is very low (Figure 4.13D). These observations confirm

that the sampling algorithm has properly covered the viable region, even if it

is non-convex.

4.4.3 Classification Based on the Feedback Loop Importance

This specific geometry clearly leads to a classification of the viable vectors

depending if the negative or the positive feedbacks are predominant. For every

parameter point, we asked whether a feedback loop was essential by removing

the positive (negative) loop. To do so, we set all the parameters involved in



96 Chapter 4: Results

10-6 10-4 10-2 100 102

10-6

10-4

10-2

100

102

k11

k 12

k11

k 12

10-6 10-4 10-2 100 102

10-6

10-4

10-2

100

102

10-4

10-2

100

102

10-4 10-2 100 102

k8

k 9

10-4

10-2

100

102

10-4 10-2 100 102

k6

k 7

0.005

0.01

0.015

0.02

0.025

A B

C D

Figure 4.13: Viable parameter vectors for the generic model of the mitotic cy-
cle (results of the MC integration). (A) Projection in the (k11, k12) plane show
that the viable region is non-convex because at least one of the feedback should
be effective. (B) Density plot of the viable vector projected in the (k11, k12)
plane shows that the density of the viable parameter vectors for which the neg-
ative feedback is effective (top region) is higher with a peak when both feedback
(top right corner) are effective. Warm colors represent a higher density. (C)
Projection in the plane (k8, k9) of the points with essential negative feedback
(in red; black points are other viable vectors) shows that the parameters of
the positive loop are not constrained when the feedback is not essential. (D)
Projection in the plane (k6, k7) of the points with essential positive feedback
(in red; black points are other viable vectors) show the same phenomenon of
unconstrained parameter values for the negative loop.

the positive (negative) loop equal to zero and determined whether the system

lost viability. When the system lost its viability, we checked if, for this specific

parameter point, the role of the positive (negative) loop was just to increase the

activation (degradation) rate of RP without being involved in the creation of

sustained oscillations. To do so, we removed again the positive (negative) loop

and increased the value of k2 (k3) which controls the activation (degradation)

rate. It is a way to assess if the effect of one of the feedback loop is essential or

marginal for oscillations. To summarize, we classified each of the viable vectors

we found into one of the following classes:
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• Essential negative feedback loop: The oscillator remains viable after re-

moving the positive loop, and eventually increasing the activation rate of

RP .

• Essential positive feedback loop: The oscillator remains viable after re-

moving the negative loop, and eventually increasing the degradation rate

of RP .

• Essential positive and negative feedback loops: No loop can be removed

or compensated by a higher activation or degradation rates without de-

stroying the oscillations.

We found that oscillator architectures for which the negative feedback loop is

essential occupy the vast majority (86%) of the viable space we sampled (see

figure 4.15A). In contrast, significantly fewer parameter vectors lead to viable

oscillations based on an essential positive loop (10%), or on a combination

of essential positive and negative feedback loops (4%). Unsurprisingly, both

feedback loops cannot be removed at the same time.

With this classification, we can quantify more rigorously the parameter

space with respect to the importance of the different feedback loops. As already

observed, if a single loop is essential, only the parameters mainly responsible

for this loop will be constrained (see figure 4.13C-D). These are parameters

k8, k9, k11 for the positive loop, and parameters k4, k5, k6, k7, k12 for the neg-

ative loop (Figure 4.11). To illustrate these constraints, we used a boxplot

similar to figure 4.10, in figure 4.14A-B, black coloring indicates to what ex-

tent parameters involved in the negative loop are constrained if this loop is

essential, blue coloring indicates these constraints if only the positive loop is

essential, and green coloring indicates these constraints if both loops are es-

sential. Clearly, parameters involved in the positive loop can vary to a lesser

extent if this loop is essential than when it is not essential (Fig. 4.14A). Anal-

ogous observations can be made for parameters involved in the negative loop

(Fig. 4.14B).

A comparison of Fig. 4.14A-B also shows that parameters involved in the

negative and positive feedback loop are constrained to different extents. Specif-

ically, negative loop parameters can vary over broader intervals when the neg-

ative loop is essential than positive loop parameters can when the positive loop

is essential. Specifically, the five negative loop parameters can vary in an in-

terval of two orders of magnitude when the negative loop is essential, whereas

the three positive loop parameters vary in an interval of just one order of mag-

nitude when the positive loop is essential. In addition, the parameters that are



98 Chapter 4: Results

k4 k5 k6 k7 k12

10-6

10-4

10-2

100

102

Parameters of the negative loop

 

 

Essential negative loop
Essential positive loop
Both loops

k8 k9 k11

Parameters of the positive loop

 

 

Essential negative loop
Essential positive loop
Both loops

10-6

10-4

10-2

100

102

k1 k2 k3 k10

Common parameters

 

 

Essential negative loop
Essential positive loop
Both loops

10-6

10-4

10-2

100

102

A B

C

0

0.02

0.04

0.06

0.08

10-6 10-4 10-2 100 102

k11

Density of para. vect. with
essential negative loopD

Figure 4.14: Distribution of the viable parameter vectors. (A-C) Boxplot of
the different parameters for viable vectors in the three classes: systems with
an essential negative loop (in black), with an essential positive loop (in blue),
and where both loops are essential (in green). (A) Boxplot for the parameters
involved in the positive feedback loops. (B) Boxplot for the parameters involved
in the negative feedback loops. (C) Boxplot for the parameters forming the
core of the system. (D) Distribution of the viable vectors for systems with an
essential negative loop along the parameter k11.

not part of any loop (k1, k2, k3, k10) are again more constrained in oscillators

with essential positive feedback loop than in oscillators with a negative feed-

back loop (Fig. 4.14C). These observations are also confirmed by the principal

component analysis of the parameter vectors of the different classes.

Taken together, these observations imply that oscillator architectures based

on a negative loop fill more of the viable space, and allow individual parameters

to vary more broadly than architectures based on positive feedback loops. In

other words, in our generic model, the oscillator based on an essential negative

feedback loop is more robust to parameter variations than oscillators with

essential positive loops or with both essential positive and negative loops. We

should note that this statement takes into account only the oscillatory period

and other properties such as amplitude may depend on the architecture as
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observed by Tsai et al. [117].

In addition, we found that adding a positive (not necessarily essential) loop

to oscillators based on a negative feedback loop further increases robustness

and the allowable range of parameter variation. Figure 4.13B already showed

a first hint of this observation: the highest density of viable parameter points

occurs in regions of parameter space where both k11 and k12 are high there-

fore both feedback loops are active. With the classification, we can specifically

observe the architectures where only the negative feedback loop is essential.

For this class the mean value of the parameter k11 which controls the strength

of the positive feedback loop, is significantly higher (p-value= 4.5 · 10−18 t-

test) than the center of the interval in which k11 is defined. In other words,

randomly sampled architectures with an essential negative feedback loop pref-

erentially occur in regions of parameter space where a positive loop is also

active. The value of the parameter k11 is also positively correlated (Pearson’s

r = 0.88) with the density of viable parameter points (Fig. 4.14D). Thus, a

higher strength of the positive feedback loop increases the number of kinetic

parameters combinations that gives rise to viable oscillatory behavior. Taken

together, these observations suggest that an added positive (but not necessarily

essential) feedback loop gives a negative-loop-based oscillator access to a larger

set of viable parameter vectors.

4.4.4 Connectivity of the Viable Parameter Space

We next turned to the connectivity of the oscillator’s viable space. We

have already shown (section 4.3) that a positive (or negative) feedback-based

oscillator can evolve to an oscillator with both feedback loops being active.

With the dense sampling obtained in this work, we can now apply to this

system the same approach as in section 4.1.4. To study connectivity, we first

randomly chose 333 parameter points of all the three classes we defined. In this

set of points, all three architectures with essential positive feedback, essential

negative feedback, or both essential, are represented. Two nodes are connected

by an edge if the entire straight line between the nodes does not leave the viable

space, as indicated by a numerical interpolation procedure (Eq. (4.3)). Such an

edge reflects the existence of a straight evolutionary path from one to the other

node (parameter vector) that does not leave the viable space. Based on this

information, we defined a graph whose nodes are the viable parameter points,
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and whose edges are given by the adjacency matrix [181]

Ai,j =

{
1, if i and j are viable points connected by a viable straight line,

0, otherwise,

(4.10)

where i, j = 1, 2, . . . , 333.

We found that the graph thus defined has one giant connected component

that comprises 95% of all nodes, similarly as the cyanobacterial clock models

(section 4.1.4). The connected component contains nodes associated with all

three basic architectures, but these three kinds of nodes are not equally likely

to be connected to each other (Fig. 4.15B). Specifically, we analyzed the graph

topology and found that nodes (viable vectors) corresponding to oscillators

with essential positive feedback loops are only connected to themselves, and

to nodes with essential positive and negative feedback loops. Similarly, nodes

that define topologies with essential negative feedback loops are only connected

to themselves and to nodes with essential positive and negative feedback loops.

This partitioning of the adjacency matrix is well represented in the figure 4.15A.

These properties mean that evolutionary trajectories that connect oscillators

with an essential positive feedback loop to oscillators with essential negative

feedback loop, need to pass through configurations for which both loops are

essential. The different topologies can be connected with evolutionary tra-

jectories that maintain systemic properties but the trajectories have to pass

through a region of the parameter space where both loops are essential. This

observation also confirms previous analyses: most of the viable space forms a

non-convex connected body.

4.4.5 Conclusion

Our two-stage sampling method is able to properly cover this non-convex

region in a 12-dimension space. Detailed analysis of the viable parameter

space for the generic oscillator indicated that the viable region is a non-convex

connected body in which three classes of parameter vectors exist. Based on the

previous work, we defined three classes of parameter vectors that correspond

to oscillators where the negative feedback loop, the positive feedback loop, or

both loops are essential for oscillations.

The dense sampling allows us to assess their difference with statistics of

their parameter ranges. With this method, we found that oscillators with

an essential negative feedback loop provide more robust fixed period oscilla-

tions than those based on an essential positive loop, and that the addition of
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Figure 4.15: Connectivity of the viable parameter space. (A) Representation
of the adjacency matrix for the connectivity of the different viable vectors.
Indexing of the parameter vectors is such that the different classes based on the
essentiality of the feedback loops are grouped together (the first 131 columns are
vectors where the two feedback are essential, the next 101 columns are vectors
where the positive feedback is essential and finally the last columns are vectors
where the negative feedback is essential). Each point represents the existence
a direct viable path between the vectors: green ones are for links between
the group of vectors with positive and negative essential loops, blue ones for
parameter vectors with essential positive feedback, black ones for parameter
vectors with essential negative feedback and, finally, red ones are links between
vectors of different classes. (B) Viable connections (in light blue) between the
viable parameter vectors of the different classes (black dots for the essential
negative, blue ones for the essential positive and green ones for both loops
being essential) cover the viable space in a non-convex way.

a nonessential positive feedback loop to an oscillator with an essential nega-

tive feedback loop increases the robustness of fixed period oscillations (similar

results were found in [117]). These results are consistent with the evidence

from circadian oscillators: they rely on positive and negative feedback loops

[90, 107, 60, 114], even though negative feedback alone is sufficient for fixed

period oscillations [104, 180, 105]. Moreover, we showed that biological oscil-

lators evolve toward more complex systems with multiple feedback loops as it

is the only way to change topology without disrupting oscillations.
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4.5 Robustness to Molecular Noise of Oscillatory Mod-

els with the Different Architectures

This work pursues the previous analysis on the generic mitotic oscillation

with a local robustness assessment. In collaboration with D. Gonze from Uni-

veristé libre de Bruxelles, we used the same model of the mitotic cycle as in

section 4.3 and study its robustness to molecular noise. After an analysis in

the phase space to show the effect of an additional positive feedback loop, we

use the glocal approach to assess the higher robustness of the dual-feedback

model.

Recently, Tsai et al. [117], using several prototypical models, performed a

series of simulations showing that positive feedbacks lead to a greater tunabil-

ity of the frequency and to an increase of the region of the parameter space

which leads to limit-cycle oscillations. Hasty et al. [182] proposed a theoretical

model based on interlocked positive and negative feedback loops and showed

that such design, when coupled to another genetic oscillator, is capable of en-

trainment and of amplified oscillations. Recently, guided by the predictions

of computational models, Stricker et al. [123] designed and constructed ex-

perimentally an artificial oscillator based on interlinked positive and negative

feedback loops. This study confirmed that the positive feedback loop provides

the system with a greater tunability of its frequency and leads to an increase

of the robustness of the oscillations in the sense that it functions over a large

number of conditions (temperature, IPTG, carbon source, etc).

In the present work, our aim is to check if the positive feedback loop may

also lead to a higher robustness of the oscillations with respect to molecular

noise. Several works already showed that oscillators based on positive and

negative regulatory elements make oscillations more resistant to fluctuations

[142, 161], but no comparative study showed how the addition of a positive

feedback to an oscillator affects its robustness. We consider here two minimal

models for the cell cycle. The first one is only based on a negative feedback

similar to the one in figure 4.11C. The second one has the same architecture,

but incorporates an additional positive feedback in the negative loop. We

performed stochastic simulations using the Gillespie algorithm [15] and we

quantify the robustness of the oscillations using the auto-correlation function

and the distribution of the periods. We show that the positive feedback loop

increases the robustness of the oscillations independently of the parameter

values, and we provide a possible explanation for this observation.
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4.5.1 Minimal Models for the Mitotic Cycle

We consider here a minimal model proposed by Goldbeter for the frog

embryonic cell cycle [180] (Fig. 4.16A). The oscillator involves the activation

of a cyclin-dependent kinase (CDK1) by Cyclin B, and the CDK1-induced

degradation of Cyclin B by an ubiquitin ligase which is part of the ubiquitin-

mediated proteolysis system. Once activated, CDK1 triggers the entry into

mitosis.

In an extension of the model, Goldbeter included an additional positive

feedback loop, mediated by the CDC25 phosphatase [183]. In this work, the

positive feedback was modeled with an additional variable, standing for the

active fraction of CDC25. The latter is activated by CDK1 and, once active,

CDC25 activates CDK1. Here we simplify this model by considering a direct

feedback of CDK1 on itself (Fig. 4.16B). This can be seen as an auto-catalytic

process.
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Figure 4.16: Scheme of the models of the mitotic cycle. (A) 3-variable model
[180] with the feedback loop in red. (B) 3-variable model including a positive
feedback loop (auto-catalysis, in blue), adapted from [183]. Variables C, MA,
and XA denote the Cyclin B, the active form of CDK1 kinase, and the active
cyclin protease, respectively. The variables M and X refer to their inactive
form.

The time evolution of the three variables is governed by the following

system of kinetic equations for both models [180, 183]:

d[C]

dt
= k1 − k7[XA]

[C]

Kd + [C]
− k2[C]

d[MA]

dt
= k3(a+ b[MA])

[C]

KC + [C]

([MT ]− [MA])

K1 + ([MT ]− [MA])
− k4

[MA]

K2 + [MA]

d[XA]

dt
= k5[MA]

([XT ]− [XA])

K3 + ([XT ]− [XA])
− k6

[XA]

K4 + [XA]
(4.11)
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In these equations, the variables denote the concentration of Cyclin B ([C]),

of active CDK1 kinase ([MA]), and of active cyclin protease ([XA]). Note that

in the original version [180], MA and XA were the fraction of active CDK and

protease but, in order to facilitate the conversion to the stochastic version of

the model, we write here all the variables in terms of concentration (in nM) and

consider that the total amount of M and X are [MT ] = 1nM and [XT ] = 1nM .

The positive feedback is effective when b > 0. In the following we will compare

the case where b = 0 and b = 1. It is interesting to underline that, in this

version of the model, the positive feedback can thus be added continuously

through a progressive increase of one parameter (b). To take into account the

fluctuations arising from the limited number of molecules, we need to resort to

stochastic simulations using the Gillespie algorithm [15] (see section 1.2.2). We

set Ω = 1000, which lead to a number of molecules of few hundreds, a value in

agreement with the estimation of the actual number of cell cycle molecules in

a cell [184].

4.5.2 Phase Space Analysis

To understand the differences of dynamics between the models, it is in-

sightful to examine the dynamics in the phase space. The deterministic and

stochastic limit cycles associated with the oscillations are given in figure 4.17A-

B (red closed curves). To get a deeper understanding of the dynamics, it is

useful to draw the nullclines of the system (thin lines). These curves have been

obtained by bifurcation analysis of the reduced model defined by the second

and third equation in 4.11 with C=constant. The main difference between

the two models is the appearance of an S-shaped curve in the reduced model

with auto-catalysis. This S-shaped curve is associated with bistability which

results in periodical switches between the two plateaus (panel B). Two time

scales thus appear: a slow motion when the system moves along the upper and

lower branches of steady states and a rapid jump from one steady state to the

other. Typical stochastic time series obtained by simulating our models with

the Gillespie algorithm are shown in figures 4.17C (for b = 0) and 4.17D (for

b = 1). In presence of noise, the oscillations still persist but their amplitude

and period show some variability. We can already notice that the model with

auto-catalysis appears more robust than the model without auto-catalysis.

To quantify the effect of noise, we computed the auto-correlation function

[41] and the period distribution (Fig. 4.18). Since the entry into mitosis is

controlled by the active CDK1, we computed these two functions using variable
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Figure 4.17: Deterministic vs. stochastic limit cycles for both models of the
mitotic cycle. (A,C) Model without auto-catalysis (b = 0). (B,D) Model with
auto-catalysis (b = 1). (A,B) The thin line corresponds to the steady state
of MA when C is taken as a parameter. The red curve is the deterministic
limit cycle. (C,D) Stochastic trajectories obtained for Ω = 1000. Parameter
values are: k1 = 0.025 nM/min, k2 = 0.01 min−1, k3 = 3.0 min−1, k4 = 1.5
min−1, k5 = 1.0 min−1, k6 = 0.5 min−1, k7 = 0.25 nM/min, Kd = 0.02 nM,
K1 = K2 = K3 = K4 = 0.005 nM, KC = 0.5 nM, MT = XT = 1 nM, a=1nM.
In panels A and B, the concentrations of C and MA are in nM.

MA. The periods (or, rather, the peak-to-peak intervals) were determined

as the time interval separating two successive upward crossings of the mean

level of variable MA, an arbitrary value which can be seen as the threshold

above which mitosis is triggered. We then use the half-life of the decorrelation

and the standard deviation of the period as quantifiers of the robustness [142,

41]. Comparing the auto-correlation function and the period distribution, it

is now obvious that the model with auto-catalysis (b = 1) is more robust

than the model without auto-catalysis (b = 0). Indeed, for the model without

auto-catalysis (Fig. 4.18A vs. Fig. 4.18B), the auto-correlation decreases more

rapidly and the variability of the period is greater (Fig. 4.18C vs. Fig. 4.18D),

reflecting a higher sensitivity to noise. Note that the two measures used here

rather focus on the robustness of the period of the oscillations. We could

have quantified the variation of the amplitude of the oscillations, but from a
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biological point of view we can hypothesize that mitosis is triggered when a

threshold in the concentration of CDK1 is reached and that small variations of

the amplitude would not affect the dynamics of cell cycle.
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Figure 4.18: Quantification of the robustness of the stochastic oscillations
(obtained for Ω = 1000). (A,C) Model without auto-catalysis (b = 0). (B,D)
Model with auto-catalysis (b = 1). (A,B) Auto-correlation function. (C,D)
Period distribution. These results have been obtained for the time series of M
over a time period of 10000 min. Parameter values are as in Fig. 4.17.

4.5.3 Global Analysis

So far we have compared the two models for one parameter set only. As dis-

cussed in the chapter 2, such analyses could be biased and a global approach

should be used to check if our observations are parameter-independent and

therefore due to the differences in architecture. Thus, with the PCA sampling

method, we generated about 100 parameter vectors for each model fulfilling the

following systemic properties: a limit-cycle oscillations with a period within the

range [30, 40] minutes and a minimum amplitude of 0.6 for [MA]. In order to

avoid extreme and irrealistic values of some parameters, the sampling is re-

stricted to a region of four orders of magnitude along each parameter, centered

on the published parameter vector (see legend of Fig. 4.17).
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Figure 4.19: Robustness of the stochastic oscillations for various parameter
sets. (A) Distribution of the auto-correlation half-time and (B) distribution
of the CV (coefficient of variation) values of the period for the model without
(b = 0) and with (b = 1) the positive feedback loop. For each model about 100
parameter sets have been generated as described in the text. One run has been
performed for each parameter set and for each run the time series analysis has
been done for variable MA over a time period of 10000 min.

For both models, we performed stochastic simulations for each parame-

ter set and systematically calculated the half-life of the autocorrelation and

the standard deviation of the period distribution. The distributions of these

two quantifiers are given in figure 4.19. A Wilcoxon rank sum test returned

p−values of 2.01×10−26 for the auto-correlation and 1.9×10−26 for the period

distribution, ensuring that we have two distinct distributions. This data thus

confirms that the model with auto-catalysis is more robust than the model

without auto-catalysis, regardless of the parameter values.
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4.5.4 Conclusion

While a negative-feedback circuit is necessary and sufficient to have limit-

cycle oscillations, the role of positive feedbacks is not clear. Thus questions such

as understanding the role and advantage of additional positive feedback loops

observed in most natural cellular oscillators arise. Besides frequency tunability

[117] and oscillations amplification [182], another possible role is illustrated

here: positive feedback loops may increase the robustness of oscillator with

respect to molecular noise.

This minimal model of the mitotic cycle can be seen as a prototypical

cascade model and is therefore useful to investigate questions about design.

First, with our phase space analysis, we observed that the positive feedback

induces bistability and hysteresis which affect speed and attraction of the limit

cycle. As already noticed in other works [41, 161], the spreading of stochastic

trajectories along the deterministic cycle is correlated with its attraction prop-

erties. These two observations may explain the increase of robustness observed

in models based on interlocked positive and negative feedback loops. Second,

our glocal approach shows that the increase of robustness due to the addi-

tional loop is general and not an artifact from a specific parameter vector. The

present study suggests that positive feedback loops, also occurring in circadian

clocks [75, 107, 60], may also play a role in the robustness of the oscillations

with respect to molecular noise.
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4.6 Design of a Robust Synthetic Circuit

This work was done in collaboration with M. Miller and R. Weiss from

MIT. It presents the design, optimization and analysis of a large scale synthetic

gene regulatory network that controls the population dynamics of engineered

stem cells and adult cells in a multicellular environment. Robustness was

a major concern while building the circuit as reliability of such a system is

essential for it to be functional when implemented in vivo. We used principles

of the glocal analysis to assess the robustness of the different systems. We

also used the global sampling and correlation analysis to give direction for the

optimization of the parameters.

The general property of balancing growth, death, and differentiation of

multiple cell-types within a multicellular community can be defined as tis-

sue homeostasis. Previous work has demonstrated that population control of

bacteria and yeast [128], mammalian cell proliferation [185], and stem cell dif-

ferentiation [186] can be manipulated artificially using appropriate interactions

with natural control mechanisms. Based on these results and various recent

accomplishments in synthetic biology [118, 182, 121, 122, 119], we designed a

synthetic gene network that copes with natural mechanisms of cell-fate reg-

ulation and independently directs stem cell differentiation, proliferation, or

quiescence. Our engineered circuit may be employed to regulate tissue home-

ostasis both in vitro where the cell culture is removed from natural cues (e.g.

tissue engineering), and in vivo when natural systems fail. An example of

such deficient system is found in Type I diabetes, where natural populations

of insulin-producing β-cells are destroyed due to autoimmune defects. As a

possible therapy for diabetes, stem cell and β-cell transplantations have been

studied, but initial results suggest that the transplanted cells become either tu-

morigenic or depleted within a few months [187, 188]. The system we propose

may be a new treatment as it regulates stem cell proliferation and differentia-

tion into insulin producing β-cells in order to maintain a steady level of β-cells

despite constant destruction of the β-cells by the immune system.

To manage the complexity of the design process, we used a modular ap-

proach: we create the systems iteratively such that each additional module

contributes to the overall system performance. Each module includes transcrip-

tional regulatory elements and fulfills desired input/output (I/O) properties.

Having to face large and complex circuits, we used a wide panel of complemen-

tary models to simulate the systems at a different scale. We start by analyzing

the high level population dynamics with ordinary differential equations (ODE),
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but logic abstraction has limits in biological systems. Stochastic effects, feed-

back control, and module interdependence have significant consequences at

multiple levels: cellular and molecular. To capture many of these effects we

use a Langevin approach [10] with Hill terms for protein expression as an in-

termediate level of abstraction. In this part, we computationally modeled the

time evolution of each cellular component, within a multicellular simulation

environment. This model is a compromise between a realistic simulation of the

molecular noise and computational efficiency, and therefore allows sampling of

the parameter space within a reasonable computational time. For the most

detailed level of modeling, we used a Gillespie simulation [15] where all bind-

ing, transcription, and degradation events are explicit. This last stage allows

making adjustments at finer levels of granularity, tuning the performance of an

individual element. At each level of analysis and optimization, we used global

sampling of the parameter space and correlation analysis to optimize each indi-

vidual part of the system. With our modular approach, the local optimization

results in an increase of performance and robustness of the system as a whole.

4.6.1 System Design

Stem cell differentiation is a multistage process that typically takes up to

several weeks to complete in mammalian cells [189]: for example, differentiation

of human embryonic stem cells into insulin producing cells occurs under admin-

istration of exogenous growth factors and involves first endoderm induction,

followed by pancreatic specialization, and finally expansion and maturation

[190]. We model this process with four populations. The first one are stem

cells (population size S) that grow at a constant birth rate kb. When stem

cells maturate, they go through two intermediate populations of endodermic

and pancreatic cells (E and P respectively) before finally giving rise to β-cells

(B) which are in turn killed at a constant rate kk. We describe the sequential

maturation of S into E, P , and β-cells by first-order reactions with rates kc1,

kc2 and kd. The simplest possible tissue homeostasis system would only need

a mechanism that causes cells to start maturation and eventually differentiate

in β-cells:
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dS

dt
= kbS(t)− kc1S(t)

dE

dt
= kc1S(t)− kc2E(t)

dP

dt
= kc2E(t)− kdP (t)

dB

dt
= kdP (t)− kkB(t) (4.12)

For this trivial system, non-zero equilibrium exists only if kb = kc1, for any

sized equilibrium population S0 > 0. The equilibrium stem cells populations S0

and the equilibrium β-cell population (B0 = S0 · kc1/kk) are sensitive to small

deviations of kc1/kb, which results in uncontrolled proliferation or depletion of

stem cells [187, 188].

System 1 – Two Feedback Control Differentiation

In the following systems, we design feedback control through the imple-

mentation of two artificial cell-cell communication components. The “Stem

Cell Population Control” (SPC) module allows differentiation only when the

population density of self-renewing cells lies above some threshold. We also

designed the SPC to suppress proliferation through the expression of a growth

arrest factor (GAF), currently under development in the lab. The “β-Cell Pop-

ulation” (BCP) module produces high output and inhibits differentiation when

the density of β-cells reaches a threshold (Fig. 4.20A). Consequently, system 1

allows differentiation only when there is a high density of stem cells (the SPC

module output is high) and a low density of β-cells (the BPC module output

is low) as described in the following equations:

dS

dt
= kbS(t) ·

Kn
S

Kn
S + S(t)n

− kc1S(t) · S(t)n

Kn
S + S(t)n

·
Kn
B

Kn
B +B(t)n

dE

dt
= kc1S(t) · S(t)n

Kn
S + S(t)n

Kn
B

Kn
B +B(t)n

− kc2E(t)

dP

dt
= kc2E(t)− kdP (t)

dB

dt
= kdP (t)− kkB(t) (4.13)

For the feedback, we use a highly cooperative Hill functions (n ≥ 4), where

KS and KB represent the SPC and BPC module thresholds, respectively. If the
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Figure 4.20: Implementation of system 1 and results. (A) Circuit diagram:
two Population Control modules sense the density of stem and β-cells. The
AND gate integrates the output of the modules to induce differentiation. Gray
circles represent signaling molecules that diffuses from one cell to another. (B)
Projection in the (kc2, kk) plan of the region of the parameter space where
oscillations of the populations are occurring for the system 1 (Eq. 4.13). Other
parameters are kb = 1.5, kc1 = 5, kd = 0.1 and n = 16. (C) Two examples
of population evolution: (1) shows sustained oscillations (points 1 in figure B,
kc2 = 0.18 and kk = 0.15); (2) shows an asymptotically stable steady state
(point 2 in figure B, kc2 = 1 and kk = 0.04); other parameters are kb = 1.5,
kc1 = 5, kd = 0.1 and n = 16.

differentiation process is long (e.g., 20 days [190]), kc1, kc2 and kd are low and

the system can show undesirable oscillations for a strongly nonlinear feedback

(n > 8) (Fig. 4.20D-E). Even if we engineer feedback within intermediate

maturing populations (e.g. E), there realistically remains at least a two day

delay.
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System 2 – Feedback Based on a Toggle Switch

To minimize delay, we introduce a commitment module that decouples

feedback control from the slow differentiation process. We design commitment

to occur through a one-way toggle switch that in turn activates the differentia-

tion module. We engineer the feedback control to be immediately downstream

of the commitment toggle switch rather than following the full differentiation

process (Fig. 4.21A). The state of the one-way switch defines whether or not

the cell has irreversibly committed to differentiate, and this status feeds back

into what we now term the “Uncommitted Population Control” (UPC) and

“Committed Population Control” (CPC) modules. The output of the CPC

module is based the number of cells at any stage of the differentiation process.

Consequently, we gain a faster feedback response in exchange for assuming that

a relatively constant fraction of cells successfully differentiates upon commit-

ment. In the equations for the committed system, we correct the feedback such

that the rate for the first stage of differentiation (S → E in (4.13)) is

kc1S(t) · S(t)n

Kn
S + S(t)n

·
Kn
C

Kn
C + (E(t) + P (t) +B(t))n

(4.14)

Compared to the previous system, the population sizes stabilize quickly to

an equilibrium point in system 2 (Fig. 4.22). We further tested different initial

conditions and parameter vectors. We found, for a given parameter set, that

all trajectories coming for the different initial conditions converge to a unique

equilibrium point.

In further analysis, we simplified our model to a two-population system:

as E, P and B populations are identical with respect to feedback, we merge

them into the committed population C. The equations of this reduced system

are:

dS

dt
= kbS(t) ·

Kn
S

Kn
S + S(t)n

− kdS(t) · S(t)n

Kn
S + S(t)n

·
Kn
C

Kn
C + C(t)n

dC

dt
= kdS(t) · S(t)n

Kn
S + S(t)n

·
Kn
C

Kn
C + C(t)n

− k′kC(t) (4.15)

In this system of ODEs, the actual β-cell population B is a fraction of this

committed population C (at equilibrium B0 = kdkc2
kc2kd+kc2kk+kdkk

C0) and the

killing rate should be consequently corrected to k′k = kkkdkc2
kc2kd+kc2kk+kdkk

. We

note that a two dimensional system may not fully restore the diversity of a

four dimensional system, as for example chaotic behavior is not possible. In

the working range of our particular system with feedback, this two population
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Figure 4.21: Implementation and results for system 2. (A) Circuit diagram:
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Figure 4.22: Effect of the feedback coming from all committed cells on the
four population system. (A) Projection in the (kc2, kk) plan of the region of
the parameter space where oscillations of the populations are occurring for the
system 1. Other parameters are kb = 1.5, kc1 = 5, kd = 0.1 and n = 16.
(B) Three examples of trajectories with feedback from the β-cells (left column)
and all committed cells, equivalent to system 2 (middle column): (1) show
sustained oscillations (points 1 in panel A, kc2 = 0.18 and kk = 0.15); (2)
shows a asymptotically stable steady state (point 2 in panel A, kc2 = 1 and
kk = 0.04); (3) shows sustained oscillations with a longer period (point panel
A, kc2 = 0.05 and kk = 0.07); other parameters are kb = 1.5, kc1 = 5, kd = 0.1
and n = 16. The last column shows an equivalent two population system with
stem cells (blue line) and committed cells (red lines). The β-cell population
size is extrapolated.
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model shows a qualitatively similar behavior and may be a correct substitute

for the scope of our analysis (Fig. 4.22).

In the following, we focus on maintaining a constant population of com-

mitted rather than differentiated cells. With this simplification, we can prove

that the system has a non-trivial asymptotically stable equilibrium point when

kb > kd (Fig. 4.21). Moreover, at this equilibrium, we have that S ≥ KS and

B ≥ KB, provided that the parameters satisfy kd
k′k
≥ 4KBKS [139].

The combination of the signaling feedback and toggle switch ostensibly

provides a mechanism of measuring overall population density. However, these

systems generally involve low molecular count and small population size, espe-

cially when considering physiologically localized signal diffusion. Consequent

stochastic effects can significantly impact on system performance. To better

understand these issues, we performed simulations that account for limited

population size and molecular noise due to gene expression using stochastic

differential equations [10] (see section C.1 in appendix). These simulations re-

veal that homogeneity within the stem cell population can present a significant

problem. More specifically, if the committed population is low, the signal for

commitment is strong in all stem cells and many simultaneously commit, re-

sulting in a homeostasis failure (Fig. 4.21C,D). We can optimize this system to

have high diffusion rate and a rapid state switch of the toggle. With such fast

feedback, system 2 is able to maintain homeostasis with moderate fluctuations

in some situations, for example, with a high initial committed cell population.

But in practice it may not be possible to implement such a fast response. More-

over, significant perturbations to the system, for example resulting from injury

or elevated autoimmune response, are likely to create situations where system

2 cannot properly control homeostasis.

System 3 – Addition of an Oscillator

Heterogeneity is necessary among individual cells to facilitate a propor-

tionate and homeostatic system response to population-wide cues. Therefore,

we design a mechanism to balance commitment and desynchronize single-cell

responses to feedback signals. For this system, we incorporate an asynchronous

oscillator into the design as a generator of intrinsic heterogeneity (figure 4.23A).

This module interacts with the system such that a cell’s commitment to dif-

ferentiation can only occur when that cell’s oscillator peaks. As oscillations

in individual cells grow out of phase from each other due to stochastic effects,
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Figure 4.23: Implementation and results for system 3. (A) Circuit diagram:
two Population Control modules sense the density of stem and committed cells.
An oscillator is added in comparison to system 2. The AND gate integrates the
output of the population control modules and the oscillator to induce commit-
ment trough the switch state. Gray circles represent signaling molecules that
diffuses from one cell to another. (B) Time trajectories for the system 3 (stem
cells in blue, committed cells in red) for a simulation starting with a small
stem cell population (see table C.5 in appendix for simulation parameters). In
green is plotted the main component of the oscillator (Ao) in some stem cells
(right axis, arbitrary units). A high value allows commitment in individual
cells. (C) Heat map with the concentration of A1, the output component of the
Uncommitted Population Control module. Due to the oscillator, just a fraction
commit when A1 is high.

coupling the asynchronous oscillator to cell-fate decisions prevents all cells in a

population from responding simultaneously to the same commitment signals.

We use the simplest possible oscillator, made of a component Ao that

activates itself and regulates the expression of a repressor Ro that inhibits

Ao. The readout of the module is implemented with a second repressor Ro2,

and cells can only commit when Ro2 peaks. Simulations indicate that with
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the oscillator, our tissue homeostasis system functions as desired despite the

fact that feedback signaling cues to commit remain synchronized even after

homeostasis is established (Fig. 4.23B-C).

System 4 – Addition of a Throttle

To address the problem of population-wide commitment, we also explore

another solution based on quick lateral inhibition acting as a throttle on the

commitment process (Fig. 4.24A). Through this fast lateral feedback, a cell

starting to commit blocks the commitment of adjacent cells. The throttle ap-

proach necessitates a third signaling molecule, AI3, that diffuses like AI1 and

AI2. When the toggle switches, an activator At controls transient AI3 release.

In adjacent cells, AI3, through activation of Rec3, inhibits the production of

the component R5 that induces the switching of the toggle. The rest of the

circuit remains similar to previous systems. Simulations indicate that when

the populations reach their steady state value, the throttle effectively prevents

the simultaneous commitment of too many cells and therefore maintains home-

ostasis (Fig. 4.24B-C).

4.6.2 Analysis and Optimization

Having working modules as the ones we presented, the next stage is to link

them as described in the section 4.6.1. Yet, achieving a large scale functional

network is not trivial and in silico analysis may be necessary. In this section, we

analyze and optimize at four scales of increasing details: multicellular systems,

cellular networks, individual modules and biochemical reactions. At the highest

multicellular level, using the theory of population dynamics, we can find the

necessary conditions for homeostasis. Second, we perform simulations at the

cellular level and integrate a set of logic modules that are embedded within

each cell, where each module exhibits a specific output as a function of input

values. This allows us to optimize the modules independently and find the best

regime for each system. Third, we focus on the specific dynamics of the control

module and determine the critical parameters that need to be adjusted. Our

intent is that the optimization of the module’s function achieves the high-level

system objective. Finally, we optimize the population control module at the

biochemical reaction level, searching for association and dissociation rates that

improve module performance.
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Figure 4.24: Implementation and results for system 4. (A) Circuit diagram:
two Population Control modules sense the density of stem and committed cells.
The AND gate integrates the output of the population control to induce com-
mitment trough the switch state. During the commitment process, the throttle
is activated and feeds in the AND gate of adjacent cells. Gray circles represent
signaling molecules that diffuses from one cell to another. (B) Time trajectories
for the system 4 (stem cells in blue, committed cells in red) for a simulation
starting with a small stem cell population (see table C.5 in appendix for simu-
lation parameters). In green is plotted the throttle signaling component (AI3)
in the external medium (right axis, arbitrary units). A high value prevents
commitment through the population. (C) Heat map with the concentration of
R1, the output component of the Uncommitted Population Control module.
Due to the throttle, just a fraction commit when R1 is low.

Spatial Distribution of the Different Populations

We start the analysis at the highest level by observing how the two pop-

ulations are distributed in space and if the different mechanisms of regulation

induce different patterning of the system. For this analysis, we changed the

simulations to assign a specific position to each cell in a 3D grid (see Appendix,

section C.1.8). For all cells, we calculated the ratio of committed to uncommit-

ted neighbors at various distances. We use normalized Z-scores as indicators of

how biased the distribution of committed/uncommitted neighbors is at a given
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distance for a given reference cell-type (see section C.2.1 in appendix for the

details of the algorithm).

This analysis reveals how competing mechanisms for tissue homeostasis

work. In all systems, committed cells express AI2 in order to inhibit further

commitment in the population. Results indicate that neighbors of commit-

ted cells are biased to be uncommitted at close distances and to be committed

further away (Fig. 4.25). The lateral inhibition of commitment by already com-

mitted cells helps explain this phenomenon. When we incorporate the oscillator

in system 3, the trend of lateral inhibition mostly disappears for immediately

adjacent cells (Fig. 4.25B). In this case, committed cells tend to form small

clusters as neighboring cells are more likely to have spawned from the same

parent cell and are more likely to have in-phase relaxation oscillators. System

4 implements a third QS signal (AI3) that inhibits commitment locally, fur-

ther strengthening lateral inhibition compared to system 2 (Fig. 4.25C). If we

decrease molecular noise in the Langevin simulations by increasing the ‘cell vol-

ume’ which is related to the number of molecules in each cell (see section C.1 in

appendix), the oscillators stay in-phase for longer, and this effect amplifies the

spatial clustering produced in system 3 (Fig. 4.25E). Increased cell volume also

leads to spatial clustering in system 2, mainly due to relatively simultaneous

commitment of large portions of the population in this case (Fig. 4.25D).

Robustness to Variation of the Killing Rate kk

Another analysis at the population level is how the system reacts when

confronted to variation of the average survival time of the committed popu-

lation (1/kk) as this parameter can fluctuate in vivo. Control of growth and

commitment in the undifferentiated population are designed to be robust to

external factors. To test this aspect, we simulate the systems with different

values of the killing rate kk and measure the S/N value (signal to noise ratio

defined as the relative variance of the committed population density, see (C.1)

in Appendix). The results are plotted in figure 4.26A-B as the ratio of division

rate over killing rate (kb/kk). In general, systems 3 and 4 are not affected by

a different lifetime and they both perform significantly better than system 2.

We also analyze the effect of the parameter kk on the population size. When

the ratio of committed cell-death rate to uncommitted cell-growth rate is close

to one, equilibrium populations remain near the desired homeostatic levels

(Fig. 4.26B). At death/growth ratios below one, however, when survival time

is shorter than the division time, the equilibrium committed population levels

drop because population renewal cannot compensate losses (Fig. 4.26B).
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Figure 4.25: Spatial distribution of the cells in the three systems. The bias
toward a higher concentration of committed cell (positive value of the Z-score)
is plotted at a given distance (blue line for the neighborhood of uncommitted
cells, red line for the neighborhood of committed cells). Values outside the
dashed lines are significant. System 2 (A) shows a bias for cell alternation
on short distances: uncommitted cells are close to uncommitted cells. On
the contrary, system 3 (B) has a less bias, especially in the neighborhood of
committed cells. Finally system 4 (C) has the most significant bias. (D-F)
Same simulation results as A-C with lower molecular noise which emphasizes
the differences between the three systems.

The relation between committed population density and killing rate could

be compared to the results of the ODE model with two populations (figure

4.27). We determined three properties for the sensitivity of both uncommitted

and committed populations to variations of the β-cell killing rate (kk). First,

the population of uncommitted cells is well controlled and remains almost

constant for all ratios of division rate over killing rate (kb/kk). Second, for

high ratios, the population of committed cells follows a power law with an

exponent close to 1/n where n is the Hill coefficient in the feedback function.

Third, for low ratios, on the contrary, the population decreases linearly with the

killing rate. For an ODE model with a Hill coefficient n = 16, the uncommitted

population is very robust to variations of the killing rate. For high ratios, the
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Figure 4.26: Population level properties of systems 2, 3 and 4. (A) Signal
to noise value (S/N) for different ratio of stem cell division rate (kb) and β-
cell killing rate (kk). Both systems 3 and 4 are able to maintain a better
performance for short survival time. For value lower than 1, all systems show
a strong decrease of performance. (B) Committed cell population density for
different ratio of stem cell division rate (kb) and β-cell killing rate (kk). All
systems have the same average population that decreases for large killing rate.
(C) Signal to noise value (S/N) for different cell volume Ω (corresponds to the
number of molecules in each cell). The S/N value of system 2 is constantly
decreasing, whereas systems 3 and 4 are able to maintain a better performance
up to a volume of Ω = 400. For all systems, performance decreases significantly
for very low molecular noise (Ω > 1000). (D-F) Same simulations with the
time-scaled optimized parameter values. S/N values are significantly improved
for all three models by about 5 units.

committed population is also robust due to its low exponent of 0.07 (close

the theoretical value 1/n = 0.0625 [139]), but follows a linear dependence

(exponent of 1.00) for high killing rates. These results are confirmed by a

theoretical analysis of the system [139]. But more interestingly, the results of

the stochastic simulations with the Langevin models are qualitatively similar

(figure 4.27B,D). The fits of system 2 – which is the closest to the ODE model

– have power laws with exponents 0.06 and 1.14 for respectively high and

low ratios. These values are very close to both the theoretical analysis and
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the ODE simulations of the simplified model, showing the consistency of our

analysis with multiple level of modeling. Note that systems 3 and 4 show small

differences for low ratio kb/kk, but the qualitative behavior is similar.
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Figure 4.27: Population density for different ratio of division over killing
rates. Deterministic simulation with a two-population model with n = 16 (A,C)
and stochastic simulations of the systems 2, 3 and 4 (B,D) show qualitatively
similar results. (A-B) the population of uncommitted cells remains constant
with a small decrease for low rate ratio. (C-D) the population of committed
cells follows a power law with an exponent near 1 for low ratio and close to
1/n = 0.625 for large ratio. Power laws in D are fitted on the results of system
2, the closest system to the ODE model.

Robustness to Variations of Molecular Noise Amplitude

The last population analysis we performed is how molecular noise affects

the system. Our systems rely on molecular noise to generate diversity: for

example, near the transition region for the UPC module, stochastic effects

will often cause cells exposed to similar environmental conditions to respond



124 Chapter 4: Results

very differently (i.e. they commit or remain uncommitted). In this analysis,

we change the amplitude of molecular noise in the three systems and clearly

see that the performance of system 2 decreases constantly with the number

of molecules in the system (Fig. 4.26C). For small values of Ω, systems 3 and

4 show the same performance as system 2, mainly because the large noise

present in protein expression overwhelms the control mechanisms and cells

commit almost randomly. But for intermediate values, the oscillator and the

throttle allows the systems to maintain better homeostasis for a larger range of

conditions than system 2. For high Ω values, all systems show a strong decrease

of performance that can be explained in system 2 by the lack of molecular noise

that induces a coordinate response and gives rise to a sudden commitment. In

system 3, the lack of desynchronization of the individual oscillators impedes the

S/N value. And finally in system 4, performance is decreased as the throttle

cannot prevent differentiation because its effect is too weak.

Analysis and Optimization of the Time Scale of the Different Modules

We will now give directions for optimization of the systems. Our modules

have relatively well defined response in isolation, for example the toggle switch

is engineered to be bistable and can be implemented using two mutually in-

hibiting repressors [119]. Assuming an input-output function that meets our

design specifications for each module, we study the effect of the time scales of

the modules independently. This reflects how fast a module will integrate the

incoming signal and change its outcoming signal according to the new input.

We regroup the different parameters according to their module and change

the rate constants (see appendix, section C.1 and table C.5) for each component

with the following factor: TSQS stands for the time-scale of the quorum sig-

naling molecules (including diffusion), TSQM for the time-scale of the quorum

sensing module (A1, R2, . . . ), other time-scales are specific to the components

R5, R6, R7 and At. In this reduced parameter space, we performed a random

sampling over one order of magnitude for each time-scale parameter and evalu-

ated the S/N value. Figure 4.28 shows the distribution and range of parameters

over which we sampled, along with the impact of variation in individual module

time-scales on system performance, as defined by S/N. Although informative,

the first-order correlations as shown by scatter plots in Fig. 4.28 can be in-

sufficient descriptors of parametric sensitivity for complex nonlinear systems.

We use the Random-Sampling High Dimensional Model Representation (RS-

HDMR) algorithm [149] to understand both the individual and cooperative

nonlinear effects of time-scale modulation on S/N (Fig. 4.29).
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For system 2, the first-order RS-HDMR component functions clearly show

that a fast diffusion and a rapid toggle switch (through R6 dynamics) are

necessary for a good performance of the system (Fig. 4.29A). Second-order

RS-HDMR component functions indicate cooperative interactions among pa-

rameters that may be interpreted as ‘inter-modular coupling’ (Fig. 4.29B). In

system 2, for example, having slow R7 dynamics can increase the beneficial im-

pact of fast diffusion. For system 3, the only significant correlations between

performance and time scales are found for the diffusion and, to a lesser extent,

the toggle switch dynamics (Fig. 4.29A). In contrast to system 2, RS-HDMR

detected no significant second-order component functions. One interpretation

of these results is that the oscillator decouples the modules from each other,

minimizing cooperative interactions between diffusion and the toggle switch

by creating a buffer between the two. The performance dependency on time-

scale parameters is more complex for system 4 compared to the other two

systems. First-order relationships are less pronounced in system 4, and second

order functions show greater significance (Fig. 4.29A-B). In particular, the co-

operative interaction of a slow R7 dynamics combined with fast R5 dynamics

produces a strong synergistic improvement in S/N. This is understandable as

the lateral inhibition could not be effective if the switch is instantaneous. Total

sensitivity indices, STi , represent the summed weight of first- and second-order

RS-HDMR component functions for each parameter (Fig. 4.29D). For system

2, observed S/N is most sensitive to changes in diffusion. In system 3, the

dependency on diffusion is even stronger, whereas for system 4, dependencies

are spread.

In general, performance of systems 3 and 4 is significantly better than sys-

tem 2 (Fig. 4.29C): mean S/N over the entire ensemble of time-scale parameter

sets was 16 for both systems 3 and 4, compared to 7 for system 2. Furthermore,

systems 3 and 4 are more robust to time-scale variation, with a CV for S/N of

16% and, respectively, 24%. This compares favorably to the CV observed in

system 2 (64%).

With the results of the time-scale analysis, we selected individually op-

timized values for systems 2 to 4 (see table 4.2). Using these values, the

performance of all three systems can be improved significantly: the result for

the two global analyses (variation of the killing rate kk and the cell volume

Ω) with optimized parameters are plotted in figure 4.26D-F. On average, the

optimization allows a gain of 5 units for the S/N value for all systems in all

conditions. The major qualitative difference is the ability of the time-scale op-

timized system 4 to cope with low molecular noise (Ω > 1000) in a comparable

way to system 3 (Fig. 4.26F). Note that such optimizations necessitate some
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Figure 4.29: Optimization results using RS-HDMR algorithm for systems 2, 3
and 4 at the module levels (time-scales). (A-B) RS-HDMR was used to analyze
the sensitivity of systems 2, 3, and 4 to changes in the reaction time-scales of
their module components. First- (A) and second-order (B) RS-HDMR com-
ponent functions describe the relationship between model parameters, which
in this case are time-scales linearly normalized to [0,1], and the corresponding
S/N observed in the overall system. (C) The distribution of S/N observed in
response to time-scale parameter sampling (black) and the RS-HDMR infer-
ence accuracy of that variation (blue). (D) Total sensitivity indices (ST

i ) of the
module time-scales observed for each system.
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TSQS TSQM TSR5 TSR6 TSR7 TSAt
System 2 2.31 1.14 1.29 1.67 1.24 –

System 3 2.14 0.91 1.08 1.84 1.11 –

System 4 1.95 0.88 1.38 1.54 0.72 1.01

Table 4.2: Time-scale optimal values for the different modules and systems.
These values are not the ones yielding the best S/N score, but are an average
of the best 10% parameter sets. We choose this to maintain some robustness
to small variations and have parameters that better represent a more realistic
optimization than a fine-tuning.

interaction to be faster (for example, TSQS > 2) which may not be possible to

implement.

Optimization of the Oscillator and Throttle Module

Most modules work near a steady state and therefore are robust to small

fluctuation and also less sensitive to parameter changes. But the oscillator

and throttle work transiently with the consequence that the dependence of the

systems on their parameter values is stronger. To understand how fluctuations

of individual parameters affect the efficiency of the control and which values

should be carefully chosen we performed parametric sensitivity analysis again.

To obtain the results, we sampled the parameters involved in the oscillator or

the throttle (see table C.5 in appendix). For systems 3 and 4, respectively,

figures C.1A and C.2A show the distribution and range of parameters over

which we sampled, along with the impact of variation in individual module

time-scales on system performance, as defined by S/N. We did not test the

system 2 as it only contains elements that work at their steady state.

First- and second-order RS-HDMR component functions, along with scat-

ter plots depicting first-order correlations, can be found in supplementary fig-

ures C.1B-C. RS-HDMR analysis indicates that for the oscillator, fluctuations

in HRo have the greatest impact on system behavior, accounting for roughly

20% of the total observed variance in S/N (Fig. 4.30A and C.1B-C). HAo−A

and HRo2 are also significant components, especially for the second-order func-

tions. These three parameters account for the activation of the components

Ro, Ao and Ro2, respectively, depending on the concentration of Ao. Such re-

lation is understandable as these parameters control the durations of the peaks:

a larger HAo−A results in a smaller auto-feedback effect of Ao and therefore

smaller and shorter peaks. For HRo, a larger value means that Ro will be



4.6 Design of a Robust Synthetic Circuit 129

less active and therefore the pulse of Ao (and further Ro2) will be longer and

the control mechanism less efficient. The other parameters correlated with the

S/N values (kRo2p , kRo2d and HR4) are related to the expression of Ro2 and the

output of the module.
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Figure 4.30: Optimization results using RS-HDMR for the additional modules
in systems 3 and 4. Effect of variation in the parameters values are summurized
in total sensitivity indices (ST

i ) for the oscillator in systems 3 (A) and the
throttle in system 4 (B).

In the analysis of the throttle (Fig. 4.30B and C.2B-C), the parameters

HAt and HAI3−t have strong correlations with the performance of the system.

These are the values for the repression of the component At depending on the

concentration of R6 and, respectively, the activation of AI3 depending on the

concentration of At. We also see, especially for the second order correlations,

an influence of parameter HR7 representing the activation threshold of R7

expression depending on At concentration. All these parameters control the

length of the pulse of AI3 to some extent. These results give the directions to

design the oscillator and the throttle and, thanks to our modular system, these

elements can be optimized and controlled prior to be connected to the whole

system.

Optimization of the Quorum Sensing Module

In the Langevin models used for the previous optimization stages, we used

a simplified model for gene regulation and protein expression: we hypothesized

Hill-type responses, but such responses depend on many biophysical constants

and are not straightforward to obtain. An optimization at the molecular level

is necessary such that each element shows the desired sigmoidal response. We

implement a model of system 3 using the Gillespie algorithm to explicitly sim-

ulate all binding and transcription events. Note that the results of this part
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have been obtained by M. Miller and the details of the implementation of the

Gillespie algorithm can be found in [139].

We focus on the UPC module with the objective to obtain a step-like re-

sponse to population density, such that the module output is either low or high

depending on whether the population falls below or above a given threshold,

respectively. Fig. 4.31A-B demonstrates how excess UPC output below the QS

threshold (first row) or insufficient output above the threshold (second row)

in suboptimal systems can lead to overactive commitment or proliferation, re-

spectively. We again employed RS-HDMR analysis and a genetic algorithm

(GA) to optimize the module and understand how to control its behavior. To

sample and optimize parameters rapidly, we used a ODE “two-compartment”

model of the UPC module rather than the discrete stochastic model [139]. We

use positive feedback on the Rec1/AI1 expression in our system to engineer a

step-like “forward response” of UPC output to increasing cell density. However,

this feedback could generate hysteresis: a high UPC output may be maintained

as the population density decreases below the threshold level [191]. This hys-

teresis in UPC output can lead to sub-optimal or even non-functional tissue

homeostasis performance (Fig. 4.31C-D, first line) and therefore the objective

function should also account for the “reverse response”. Eventually, our GA

optimization was able to generate an ensemble of UPC networks with positive

feedback that exhibit both step-like and non-hysteretic behavior (Fig. 4.31C-D,

second line). The effect of optimizing the UPC module on the full-system be-

havior demonstrates how the subnetwork optimization is critical for the overall

system performance.

Rather than converging to unique solutions, the GA optimizations pro-

duced diverse ensembles of parameters, each with system behavior closely fit-

ting the objective (Fig. 4.31E). We performed RS-HDMR analysis of the UPC

subnetwork to understand how rate constants affect hysteresis. To estimate

global sensitivity while limiting ourselves to systems with desired input-output,

we examined local parameter “neighborhoods” around each GA-generated vec-

tor of optimized parameters from Fig. 4.31E. Our sensitivity analysis suggests

that systems displaying similar UPC behavior can have drastically different

responses to similar changes in rate-constants: each parameter neighborhood

that we analyzed has a distinct signature of parametric sensitivity (Fig. 4.31F).

We clustered parametric neighborhoods based on these signatures. Despite

differences in individual sensitivities, the clustered sensitivity analysis revealed

that the majority of signatures fall into two main clusters, each with distinctive

features. For example, in one cluster (red on the dendrogram) the decay rate

of the receptor protein Rec1 (Fig. 4.23) significantly affects hysteresis, while
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Figure 4.31: Parametric optimization of the “Uncommitted Population Con-
trol” subnetwork (Gillespie simulations). (A) GA optimization progress for
three specific generations, using an ODE model of the UPC module. The
objective function for the GA is a three-component step-function, with zero
UPC activity below a defined threshold, an ignored transition region, and high
activity above the transition region. (B) Behavior of the full system 3, imple-
mented in the Gillespie framework, corresponding to optimization progress in
A. (C) Average UPC module transfer curves when the reverse response is ei-
ther excluded or included in the subnetwork GA optimization. (D) Full system
behavior corresponding by row to the subnetwork optimization results in C.
(E) Distribution of rate constants for the optimized parameter vectors deter-
mined by 75 independent GA runs of 1000 generations each, using both forward
and reverse response objective functions. (F) Clustered sensitivity analysis of
the UPC Module. Each column corresponds to a “parameter sensitivity signa-
ture” for each of the 75 local parameter neighborhoods that we sampled; rows
correspond to the analyzed parameters of the UPC module. The first-order
sensitivity values shown in the heat map range from 0.0 (black) to 0.5 (red).
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the binding and dissociation rates of AI1-bound Rec1 complex (Rec1.AI1) have

little influence. The opposite is true for the other cluster (cyan on the dendro-

gram in Fig. 4.31F).

4.6.3 Conclusion

In this work, we first use a model of the cell populations based on ODE.

Even with this high abstraction level, useful conclusions could be drawn. Not

surprisingly, feedbacks are a necessity to robustly maintain a constant popu-

lation, but interestingly delays in the feedbacks should be avoided. To avoid

population-wide oscillations, the key concept is to introduce a commitment

process upstream of differentiation which feeds the population control module.

Cells have to decide on their fate quickly and inform other cells as soon as

their decision is irreversible. Moreover, the ODE analysis also teaches us that

some constraints on the population dynamics should be fulfilled to ensure a

asymptotically stable equilibrium, high cooperativity in the sensing module is

an example of such constraints. The scope of the population model is limited

and we then used a more detailed Langevin model that takes into account cells

as individuals. The major difference to the ODE model is the implementation

of the cells that in this case share identical synthetic genetic circuits but make

individual cell-fate decision based on intercellular communication. The results

of these simulations show that heterogenic phenotype in an isogenic population

is a necessity to maintain homeostasis. Although intrinsic noise generates some

heterogeneity, the implementation of an additional module to break asymmetry

enhances performance and robustness. With the oscillator and the throttle, we

propose two mechanisms that fulfill this task.

Another critical aspect for all biological systems is the fact that precise pa-

rameter values may be unknown and could vary in vivo. To be implemented, a

synthetic circuit should show robustness to such fluctuations. Therefore having

a glocal approach to know the region of the parameter space where the system

is functional and what are the most sensitive parameters is critical to build a

genetic network and optimize it. We use the RS-HDMR algorithm to obtain

first order, and second order correlations at the three levels of optimization.

First, we took advantage of the modular construction to find the best rela-

tive dynamics of the modules: in general, the critical component is the speed

of intercellular communication. We also notice that slow toggle switching is

beneficial for the system 4 but not the others. In general, we notice that a

fast dynamics coupled to the ultrasensitivity of the systems amplifies the effect
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of the molecular noise: it converts small fluctuations into a persistent pheno-

typic switch. Second, we specifically analyzed the oscillator and the throttle

modules. Here again, thanks to modularity, optimizing each module individu-

ally for its designed task benefits the whole system. The RS-HDMR algorithm

proved to be a useful tool: compared to traditional correlations analyses, it uses

polynomial functions to fit the statistical dependencies and also provides sec-

ond order relations. Finally, we focus on the population control module at the

highest level of detail. For this last analysis, we use a Gillespie simulation that

accounts explicitly for the binding, transcription and translation events. We

show that obtaining Hill functions for protein expression is not trivial and the

results of our GA results give which biophysics parameter should be changed

in order to achieve such response. To complete the RS-HDMR analysis, we

use clustered sensitivity analysis to find out which parameters can strongly

influence the objective functions and are therefore good manipulation targets.

The strength of our design method is to take advantage of the different

levels of modeling knowing the limits of each model. The ODE simulation

gave us insightful, but rough directions. The stochastic simulations using the

Langevin approximation are a good compromise to optimize the systems at

the module level. The Langevin model helps finding the input-output function

of each module that optimizes the overall system performance. The biophys-

ical rates that give such ideal input-output function can be obtained with an

optimization using the Gillespie model. These three levels of abstraction are

complementary and consistent. For example, all models show the same depen-

dence on the killing rate of the beta-cells: a very low sensitivity to parameter

changes when the ratio of birth over killing rate is high and a linear dependence

for low ratios.

To summarize, we successfully adapted design principles from engineering

to synthetic biology. We properly apprehended the biological constraints by

using different levels of modeling. But more than an academic exercise, this

work gives bases for large circuit design and building: glocal analysis completed

by the RS-HDMR algorithm revealed concrete manipulation targets to optimize

the system. On a more scientific level, this gives insight about how homeostasis

works: for example, heterogeneity in the stem cell population is necessary to

have a gradual differentiation. We also show that the patterning depends on the

mechanism that generates this asymmetry. An internal mechanism (oscillator)

creates small clusters of identical phenotypes as recently discovered natural

differentiating cells [192]. Whereas an external mechanism (lateral inhibition)

produces an alternation on small distance similar to what is found in pattern

formation [193].





Chapter 5

Discussion and Conclusion

This chapter starts with a discussion of the two sampling algorithms which

I used for my glocal analysis. In the second section, I will link the different

results of my thesis and discuss the advantages of the glocal approach. In

particular, I will summarize what the glocal approach taught us for each of the

studied applications and what could not have been discovered with a standard

method. I will then consider the connectivity of the viable parameter vectors

and discuss how to interpret this neutral viable space. Later, I will discuss

extensions and other possible applications of the glocal analysis. Finally, I will

conclude my thesis with possible improvements.

5.1 Sampling Algorithms

The glocal analysis is based on a broad sampling of the parameter space in

order to gather a large amount of viable parameter vectors. Random sampling

over parameter intervals can be done when the possible parameter values are

restricted to a small interval and the number of parameters is small, as in the

synthetic circuit analysis. However, brute force approaches become limited for

higher number of dimensions, or when a larger number of vectors are necessary

(for example when evaluating the viable volume) [55, 151]. Moreover, if the

viable space has a complex shape, a random sampling in a hyperbox defined

by parameter intervals loosely fits the viable region resulting in a large fraction

of tested parameter vectors being rejected.

135
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In this thesis, I proposed two methods that significantly improve sampling

efficiency. They are based on the restriction of the integration domain in the

parameter space to the most probable viable region. Both methods permit

to acquire a large number of uniformly distributed viable parameter points,

in comparison to previous methods based on uniform sampling in the entire

parameter space [67, 150, 151]. This advantage is highly significant in high-

dimensional parameter spaces.

The first method uses principal component analysis (PCA) to guide the

sampling and obtain parameters more efficiently. This method requires very

little adjustments, the only potential limitation being the initialization of the

iterative procedure that requires a viable parameter vector. In the applications

I presented (sections 4.1, 4.2 and 4.5), published data were used to define

the initial conditions. However, even where such information is unavailable,

random sampling and optimization techniques [194] are available to find such

a vector. The drawback of this method is that efficiency decreases when the

viable region differs strongly from an ellipsoidal shape as in the case of non-

convex or poorly connected spaces for instance.

The second method involves two-stages: a coarse grained identification of

viable regions followed by various applications of the PCA method. The initial

exploration of the viable space allows identification of the regions where viable

parameter vectors are found. It therefore overcomes the limitations of the

PCA method as it can characterize viable regions that may be non-convex and

poorly connected. Potential limitations of this approach include the choice of

values for the algorithm parameters, e.g. maximum frequency of sampled viable

points, bounds for the frequency of accepted iterations, and scaling factors for

ellipsoid expansions. This approach also requires that the cost function maps

continuously and injectively to the viability criteria. Such a cost function may

not be trivial to find if multiple, unrelated interval criteria should be fulfilled.

I should add two comments that concern both methods. First, the borders

of the sampling range should be restricted to realistic values. In some models,

specific parameters may not be constrained, as only a combination or their ratio

affects the systemic properties. This could result in parameters that cannot

be individually identified which may bias the robustness measure. Having an

a priori range for the sampling avoids such problems. The borders of the

sampling range may be dictated by biophysical constraints, but also by the

validity of the model. Note that a conservative choice of this range may only

slow down marginally the efficiency of the algorithm as the iterative procedure

quickly directs the sampling to viable regions.
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The second comment refers to the number of dimensions. If both methods

can cope much better with high dimensionality than brute force sampling, they

are still limited by this factor. First, for a higher number of parameters, the

complexity of the viable space can increase: a high-dimensional space allows

more poorly connected viable regions to appear. Such regions can exponentially

increase the minimum number of iterations needed for a complete sampling.

Moreover, for a representative sampling, the number of viable vectors should

also significantly increase with the dimension of the system.

Finally, I would like to emphasize that the interval approach used for the

sampling algorithms, may better suit biological systems than a single valued

approach. Whether one reports biological data or kinetic constants for bio-

chemical reactions, the error intervals remain significant. This structural or

practical unidentifiability of some parameters has been observed in many bio-

chemical models [154, 155, 57]. For the potentially large class of models with

this property, model parameters that yield an observed behavior cannot be

uniquely identified even in the presence of arbitrarily abundant and precise

data. In addition, even in the presence of error-free data, biological rates may

fluctuate in vivo depending on the environmental conditions. Therefore, any

unique parameter vector, even if exact, is representative of a unique condition.

Due to these reasons, an approach using intervals for both the systemic prop-

erties and the viable parameter values, as in my glocal analysis, seems more

correct to characterize biological systems.

5.2 Results Obtained With the Glocal Approach

In this section, I will review the different results obtained in this thesis

emphasizing the aspects discovered with the glocal analysis. Most of the pub-

lished work on the robustness of cellular circuits addresses either global or local

robustness [51, 48, 49, 62]. My glocal approach overcomes the limitations of

both global and local analyses. First, by generating large samples of parameter

vectors, the method can estimate a viable volume of the parameter space that

yields the correct values for the systemic properties. Second, by having a lo-

cal measure for each parameter vector, the robustness evaluation is less easily

misled by results derived from a particular chosen point in parameter space.

This contrasts with parameter fitting that yields only single point estimate of

the robustness.

The first advantage of the glocal analysis is that the analysis of parameter

vectors, spanning over multiple orders of magnitude, shows how local robust-
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ness varies in parameter space. The second advantage is that the combination

of local and global analyses lends itself to a deeper mechanistic understanding

of the circuit behavior. In particular, it can lead to the identification of key

parameters important for robustness. Obvious applications include synthetic

biology, where tunability of a synthetic circuit’s robustness by changing key pa-

rameters is highly desirable. Third, the design of new experiments in order to

discriminate between possible parameters or models can use the results of the

robustness analysis and test specific perturbations with a high discrimination

power. Fourth, the glocal method can also help deduce the differences between

alternative architectures, independently of the parameters values. Finally, by

studying different quantifiers of local robustness, one can obtain trade-offs be-

tween robustness and other system properties or network structures.

5.2.1 Glocal Robustness Analysis for Model Comparison

In the analysis and comparison of the two models of the cyanobacterial

circadian clock (section 4.1), I first characterized the viable region of the pa-

rameter space for both models. The autocatalytic model shows a lack of ro-

bustness due to a strong correlation between two reaction rates, whereas the

parameters of the two-sites model can vary independently in a broader region

(figure 4.2). The most interesting results come from the distribution of the

local robustness quantifiers. For both models I identified one critical rate that

correlates with the robustness to molecular noise (figure 4.4C, D). Interestingly,

in both models, the particular reaction related to this rate influences the feed-

back component showing that the feedback amplifies stochastic fluctuations. I

also found that, in the autocatalytic model, the dephosphorylation rate corre-

lates with the robustness to concentration perturbations (figure 4.4B). Glocal

predications of this kind can guide new experiment to discriminate parame-

ter values. Finally, the glocal approach showed that the two-sites model has

greater local robustness over a larger range of parameters (figure 4.6G). Such

a conclusion may not be obvious when focusing on the published parameter

vector: in fact, the local robustness of the parameter vector published for the

autocatalytic model is higher than the median robustness of all viable pa-

rameter vectors (figure 4.3F). This example shows that the glocal analysis is

necessary to uncover such biased robustness results.
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5.2.2 Glocal Analysis for Network Architecture Comparison

Twice in this thesis, I used the glocal approach to compare different net-

work architectures. In the work with the Drosophila circadian clock (section

4.2), I compared two models with either one or two negative feedback loops.

The global sampling revealed that the additional loop increases the robustness

of the system, especially when the external entrainment is released. The use

of the phase response curve as a local quantifier emphasizes the robustness ad-

vantage of multiple feedback loops. I also found that the rates of the reactions

affecting the concentration of the nuclear complex discriminate between the

different types of PRCs (Figure 4.10). This could explain why recent models of

the Drosophila clock [107] integrate more complex control mechanisms of the

nuclear components. In the second architecture comparison using the mitotic

cycle models (section 4.5), we found that the robustness to molecular noise

is higher for the model with an additional positive feedback loop. Here, the

glocal analysis completes the analytical approach by showing that the robust-

ness improvement is parameter-independent. To summarize, glocal results for

architecture comparison imply that robustness differences are a consequence of

the topology and not an artifact of a specific parameter vector.

5.2.3 Glocal Approach for Evolutionary Analyses

To study evolution of system architectures by addition of feedback loops,

I used a generic model of the mitotic cycle. As the oscillations can occur with

either a positive feedback or a negative feedback loop, a natural question to ask

is why biological systems exhibit multiple feedback loops. Here, I tried to first

answer that evolution is possible without disturbing the oscillations. First, in

section 4.3, I proposed a new algorithm that mimics biological evolution with

multiple small steps in the parameter space. With this method, I showed that

the addition of a feedback loop is possible while maintaining some systemic

properties. In the application of the two-stage sampling method (section 4.4),

we also found that the system is more robust when the negative feedback is the

main mechanism inducing oscillations, but robustness to parameter changes is

even higher when a positive feedback loop is added. In these analyses the local

aspect is not as present as in the applications discussed previously, but it may

be used in the future to study the difference of local robustness through this

evolutionary mechanism.
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5.2.4 Robustness Analysis for Synthetic Circuits

To show the broad scope of the glocal method, I addressed the design

of a synthetic biological circuit. The goal of the circuit is to maintain two

populations of stem and β-cells knowing that stem cells divide and can also

differentiate to β-cells which die at a constant rate. The first stage of the

design is based on modularity. We started with a basic system to which new

modules were added to increase performance and robustness. We obtained

two alternative circuits that can maintain homeostasis under a large range of

parameters and found the best parameter values for each system. For the

optimization, the glocal analysis provides correlations between performance

and parameter values that give directions for improvement. But, in order to

be viable, such an artificial circuit should be on a par with the robustness of

natural biological circuits, therefore the system should be optimized toward

both performance and robustness. Therefore, the glocal analysis is important

to choose not only the best parameter vector, but the one at the center of the

region of performance in order to be less sensitive to small fluctuations. In

conclusion, this work, which includes a glocal analysis of a synthetic circuit, is

a proof of concept for synthetic circuit design.

5.3 Connectivity of the Viable Parameter Space

In my different works, I pointed out that the viable parameter space forms

a connected set. If no rigorous proof of this affirmation can be made, it is

reasonable to conjecture that the dense sampling and the continuity of the

systemic properties mean that any region of the viable parameter region can

be connected to another without leaving the viable region. The viable space

formed by these parameter vectors can be considered as a ‘neutral volume’ [45]

in which the systemic properties of the system are preserved. This observa-

tion is significant to understand how systems could evolve [57, 175, 102], in

particular through gradual, small changes of individual parameters.

As shown in section 4.3, it is possible to evolve in the parameter space

continuously while maintaining some macroscopic properties. Thus, robust

circuits are accessible to natural selection through the connectedness of the

neutral volume, without the need to change the system behavior itself. In this

sense, evolution could favor robust circuits over the other: in the most robust

regions, the features will be fulfilled for a broader range of perturbations.
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It leads to the question of the relation between functionality and robust-

ness: for a system to fulfill its features, such as period and amplitude for

oscillatory systems [48, 151], many parameter vectors or even architectures

are equivalent. But even with equivalent features, adaptation or robustness

can differ. Recently, others have shown that frequency tunability is better for

multi-loop oscillators[117]. Here, I have shown that an additional feedback loop

in a system based on a negative feedback increases the robustness to parameter

changes (section 4.4) or molecular noise (section 4.5). In relation to that, the

natural question that arises is “can the robustness to molecular noise (or any

other local robustness property) be a driving force for the observed tendency of

evolution to favor additional feedback loops?”. It is also important to stress,

considering the results of section 4.4, that an oscillatory system with a unique

feedback loop can only evolve toward a system with multiple feedback loops

without losing its cyclic behavior, favoring large networks.

5.4 Potential Applications for the Glocal Analysis

The different results in this thesis showed that my method is more than

a theoretical concept: glocal robustness analysis provides new insights on the

studied systems. I will now discuss extensions and other potential applications

of the glocal analysis.

A first application is discrimination of models for a system with a well-

defined robustness, such as the circadian clocks. This could be also used for

systems with low robustness [50] where sensitivity to a certain type of per-

turbations is expected. In many systems, the experimental data cannot fully

constrain model parameters and the inclusion of robustness could help restrict

the parameter space. The glocal analysis results in correlations between pa-

rameter values and local robustness of the models. This information can be

used in two ways: either to discriminate some regions of the parameter space

if the system robustness is known, or to design new experiments to test the

specific robustness and choose between concurrent parameter vectors.

The second application is related to architecture comparison with respect

to robustness. As already applied in this thesis, the robustness of a specific

architecture independently of its parameters can be assessed with glocal anal-

ysis. With this approach, even in the absence of precise parameter values,

conclusions can be drawn. Indeed my glocal method has already been ap-

plied by others [159] to compare alternative topologies. Large scale parameter
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sampling and the glocal robustness analysis could be integrated in ensemble

modeling approaches; a method that has already been successfully used in

different contexts [195, 71, 196].

Linking parameter space and network topologies can be done as discussed

above with a unique system where certain reactions are inactive (very low

parameter values) to reflect the different topologies. It results in a high-

dimensional parameter space where a neutral space can be found. A connected

path in this viable space can be interpreted as an evolutionary path where

the systemic properties are conserved. Walks in the parameter space obtained

with the evolutionary algorithm described in section 4.3.1 could be coupled

to a glocal analysis to form a Metropolis-like algorithm [153]. This approach

results in random walks in the parameter space biased toward regions with

higher local robustness and may reveal why certain architectures are preferred

to others [151, 2].

All these considerations can be reverted and applied to Synthetic Biology

with a forward engineering approach. The field of Synthetic Biology, while

producing new modules, is currently under pressure to build large functional

circuits [120]. Along with feature and performance, modularity and robust-

ness could be the key elements to design complex systems. On the one hand,

modularity allows multiple combinations and extends system possibilities while

keeping a small pool of elementary elements. On the other hand, these modules

should be independent, yet compatible. It means that the modules should be

able to function in a wide range of conditions (robust to parameter variations)

and their input-output response should remain unaffected by other modules

(robust to external perturbations). When applied to a module, the glocal

approach can provide the functional parameter region and also suggest how

robust the module is depending on the choice of parameters.

Another practical application of the glocal analysis is to understand and

take advantage of drug cross-talk. With a proper knowledge of the system

and a good model, the effects of the drugs can be hypothesized: drugs or

any external interaction is reflected by a variation of some parameter in the

model. On the one hand, this information could be used to understand why

drugs have different side effects depending on the stress context [197]. For

instance, the external stress, by changing some model parameters, could cause

an unfortunate alteration of system robustness and the side effects of the drugs

may be visible only in this case. On the other hand, some drugs, which may

have little therapeutic effects, could decrease the robustness of the system and

therefore open the possibility for another drug to act more efficiently. Such
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dual-drug therapies are promising for some resistant cancer types [198]. In

these two cases, a robustness analysis on a glocal scale could provide a better

understanding of the drug effects and trigger new therapies.

5.5 Follow-up Work and Improvements

The first possible improvements concern the sampling algorithms. Both

methods need some adjustments in order to be more robust and applicable

to any sampling problem without tuning. As discussed, the PCA method is

limited to ellipsoidal viable parameter space. To circumvent this problem the

two-stage method, which can adapt to more complex shapes, was proposed,

but its efficiency depends on the number of cluster and sampling iterations.

To ensure a conservative coverage of the viable regions, the first stage of the

method should span over larger ranges and therefore use more computational

time. A way to circumvent this issue is to implement the algorithm on highly-

parallelized graphic processor units with languages as CUDA for example [199].

Other variations of the Monte Carlo sampling used in statistical physics could

be used to expand the initial, rough, parameter search. A promising option is

Exchange Monte Carlo [200] where multiple parallel random walks explore the

parameter space. Finally, another avenue is to restrict the exploration to the

border of the viable region as done for bifurcation analysis [60], but this does

not solve the dimensionality problem or the problems caused by unconnected

regions.

Other improvements concern the formalism of the glocal approach. First,

the specification of the viability criteria could use better semantics as described

in linear temporal logic [146, 147]. Such formalism may also help to define a

cost function necessary for the two-stage sampling algorithm. Second, the

correlation analysis in the parameter space could be improved. In this sense,

the use of the RS-HDMR algorithm [149, 201] provides higher order correlations

and also uses nonlinear functions. Other analyses based on the geometry and

the spatial distribution of the local quantifier values [202] could be integrated.

Concerning the algorithm for the evolutionary study, as discussed above,

the random walk could be merged with a local quantifier to obtain a Metropolis-

like evolution algorithm [156, 153]. Here also, the Exchange Monte-Carlo could

help to explore the high-dimensional parameter space including different net-

work topologies. These directions will provide a new tool for the study of evo-

lution of biochemical network where the performance or the robustness could
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be the driving force. Evolutionary algorithm may also be an alternate method

for the design of circuits in synthetic biology where a specific behavior would

be the driving force.

5.6 Conclusion

To characterize the behavior and robustness of cellular circuits is a major

challenge for Systems Biology. The interest in this question is emphasized as

robustness quantification can be used in different context. It can help testing

models validity (natural systems being usually robust), give explanations for

system architectures (different topologies show different robustness), or investi-

gate system malfunctions (where robustness is abnormally weak or high). The

applications of robustness also extend to synthetic biology or drug design. Yet,

this field is still in its infancy: different robustness approaches can be found in

the literature and a unified measure of robustness is still missing.

This thesis contributes to the advancement of the research in this field with

a novel approach for robustness quantification based on a glocal analysis. It

combines different methods to obtain a more objective measure. Throughout

the different examples ranging from model discrimination to network compar-

ison and circuit design, I showed that the glocal analysis is a powerful tool

to quantify robustness. The application of the method is facilitated by the

efficient sampling algorithms developed in this thesis. In conclusion, the glocal

robustness analysis opens new possibilities in Systems Biology and the poten-

tial applications for this method are broad and numerous.
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Appendix A

Technical Details for the

Two-stage Sampling Method

Please note that this part has been written by Elias Zamora from the

University of Zurich. I only adapted the terminology to match the other parts

of the thesis. It could be found in the supplementary information of article

“Efficient Characterization of High-Dimensional Parameter Spaces for Systems

Biology”.

A.1 Minimum Volume Enclosing Ellipsoid Calculation

The ellipsoid with minimum volume that encloses a set of N data points in

a p-dimensional space can be constructed by solving the following optimization

problem{
Minimize, log

[
det
(
A−1

)]
, Vol = v0 det

(
A−1

) 1
2 ,

Subject to, (ki − c) A (ki − c)′ ≤ 1, i = 1, 2, . . . , N,
(A.1)

by means of a solver based on the Khachiyan algorithm [203], where A is the

p×p matrix of the ellipsoid equation in the center form (k−c) ·A ·(k−c)′ = 1,

c is the center of the ellipsoid, and v0 is the volume of the unit hypersphere in

dimension p.
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We estimated the runtime of this procedure as a function of the number of

points in a data set. The results (see [159]) show a polynomial O(N2.25) depen-

dence on the number of points. The main effect of this polynomial complexity

is to make the Monte Carlo integration computationally expensive, because it

requires calculation of ellipsoids with minimum volume for large sets of viable

parameter points involved in the definition of the integration domain.

To remedy this problem we developed a heuristic algorithm that approxi-

mates the ellipsoid obtained by the solver based on the Khachiyan algorithm,

but requires much less time. Given a data set B0 with N points from a p-

dimensional space (N � p), the first step of this heuristic defines a set V1

composed of n points (n� N) that are randomly chosen from the initial data

set. Then, it calculates the ellipsoid with minimum volume that encloses V1 by

using the solver based on the Khachiyan Algorithm, and obtains the ellipsoid

matrix A1, its center c1, and its volume Vol1. After that, the algorithm defines

a new data set

B1 =
{
k ∈ B0

∣∣(k− c1) A1 (k− c1)′ > 1
}
, (A.2)

that includes all the points in B0 that were not enclosed by the ellipsoid defined

by A1 and c1. In the second iteration the algorithm chooses n points randomly

from B1 and adds them to V1 to form V2. The algorithm then calculates the

ellipsoid with minimum volume that encloses all the points in V2, as well as its

ellipsoid matrix A2, its center c2, and its volume Vol2. The procedure then

defines the data set B2

B2 =
{
k ∈ B1

∣∣(k− c2) A2 (k− c2)′ > 1
}
, (A.3)

which forms the basis for the next iteration. The algorithm stops when the

ellipsoid volumes converge or when the set Bi is empty. The results of the

algorithm are the matrix Ai, and the center ci of the ellipsoid with minimum

volume calculated in the last iteration before stopping.

By using the same data sets employed in the runtime test of the Khachiyan

algorithm, we studied the complexity of our heuristic approach. The results

show that, using n = N/10, the ellipsoid volumes estimated by the Khachiyan

algorithm and our method are quite similar. Nevertheless, the complexity of

our approach, albeit polynomial, has a much smaller exponent O(N1.56) than

the Khachiyan algorithm. In the analysis of the biochemical oscillator with

two feedback loops, this property allowed us to calculate the ellipsoid with

minimum volume that encloses the set of 19543 viable points found by EBS

and AMC approximately 1000 times faster than with the Khachiyan algorithm.
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A.2 Construction of the Integration Domain: Determi-

nation of the Number of clusters

To calculate the viable volume and to obtain a large set of uniformly dis-

tributed viable parameters efficiently, one cannot simply sample over the entire

parameter space, because doing so would be too inefficient. It would be much

better to perform a uniform sampling over a subspace B′ ∈ K that encloses the

viable space as tightly as possible.

To construct such a subspace, we use the points obtained in the exploration

steps (Adaptive Metropolis Monte Carlo and Ellipsoid-Based Sampling) to

obtain a large set of viable parameter points VMC∪VES . To define the subspace

I, we group this set into nC clusters, and calculate the ellipsoids with minimum

volume that enclose the viable parameter points grouped in every cluster. The

integration domain is then defined by the union of all these ellipsoids.

We next explain the idea behind our heuristic clustering algorithm for cases

where the viable space is not convex but could be well approximated by a set

of n ellipsoid-like viable regions. In this case, a clustering algorithm should

subdivide the space into nC = n clusters. Also in this case, n ellipsoids defined

by n clusters will typically fill much less volume than n−1 ellipsoids defined by

n−1 clusters (Figure A.1), for the following reason. If the viable space has been

subdivided only into n− 1 clusters, at least one of the ellipsoids will typically

enclose points from a non ellipsoid-like region, and much of its volume will be

filled by non viable points. When we use, on the other hand, n ellipsoids, every

ellipsoid will cover one ellipsoid-like region, and many nonviable parameter

points will not be covered by any ellipsoid (Figure SA.1), rendering the volume

covered by ellipsoids smaller.

When we use n + 1 ellipsoids defined by n + 1 clusters, one of the “old”

n ellipsoids becomes subdivided into two ellipsoids placed in the same convex

region (Figure A.1). The total volume enclosed by the n + 1 ellipsoids can

not be much smaller than the volume filled by n ellipsoids, because the most

part of the “old” ellipsoid volume was already filled by viable parameter points

(Figure A.1).

In sum, if the viable space can be approximated by n-ellipsoids, the volume

of these n-ellipsoids will typically be much smaller than the volume of n − 1

ellipsoids that cover the viable space, but not much larger than the volume of

n+ 1 ellipsoids. In order to choose a number of clusters similar to the number
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Figure A.1: Clustering of data points for integration domain definition (hy-
pothetical example). Viable volumes are generally non-convex. Therefore, the
single ellipsoid that encloses all the viable parameter points (second to left
panel) will generally be much larger than the viable volume. It will typically
also contain a high proportion of nonviable parameter points. Both features
are undesirable. In the hypothetical example shown, when we group the vi-
able points into 2 clusters, the sum of the ellipsoid volumes defined by them is
smaller than in the case of a single cluster, but the two ellipsoids still enclose
non-convex regions, and are filled by a high proportion of nonviable parameters.
In this hypothetical example, the viable space is well approximated by a set of
three ellipsoids; therefore, after grouping the viable points into 3 clusters, the
ellipsoids defined by them enclose mainly viable parameter points and the sum
of their volumes is much smaller than in the case of two clusters but not much
higher than the volume defined by 4 clusters.

of ellipsoid-like regions of the parameter space we force this property to be

hold. To do so, we found the following heuristic expression useful

nC = maxi

(
Voli+1Voli−1

Vol2i

)
, Vol0 = Vol1. (A.4)

Here, Voli is the sum of i ellipsoid volumes defined by grouping the viable points

into i clusters. When the number of clusters increases, then each ellipsoid

encloses fewer points, its mean axis length decreases, and the sum of the volume

filled by the ellipsoids usually also decreases. That is, Voli+1

Voli
< 1 will normally

hold. According to the expression (A.4), nC will be chosen such that, VolnC
is much smaller than VolnC−1 but not much larger than VolnC+1, just as we

would desire from a clustering algorithm.

Finally, it is worth pointing out that the nonuniform distribution of the set

of viable parameter points VMC∪VES does not allow the use of quality measures

that emphasize homogeneity [204] to determine the number of clusters. The

techniques used to explore the viable space and obtain VMC ∪VES can sample

some part of the viable space in much more detail than others. This creates

an artificial high concentration of viable points that is not proportional to the

actual density of viable parameter points. Therefore, a method that emphasizes

homogeneity would choose the number nC of clusters based on differences in

the density of viable parameter points in VMC ∪ VES that are just an artefact

of the exploration technique.
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A.3 Acquisition of Viable Parameter Points near the

Boundary of the Viable Space

In the beginning of every ellipsoid expansion, our EBS technique uses a bi-

section technique [153] to find 2p viable parameter points near the intersection

between the boundary of the viable region and the straight lines parallel to the

axes of the Cartesian coordinate system that pass trough the viable point ki.

These lines are defined as

rj ≡ t ej + ki, i = 1, 2, . . . , p. t ∈ R, (A.5)

where ej is a vector of length one parallel to the j-th axis and ki is the viable

parameter point from which the j-th ellipsoid expansion starts.

The algorithm first determines whether the intersection point between the

boundary of the parameter space and r1 is viable. If so, this point is stored. If

the point is not viable, the algorithm defines the following parameter points

a = kv, b = Ω ∩ r1, t > 0, (A.6)

where Ω stands for the boundary of the parameter space. Then, the algorithm

determines whether the parameter point

c =
b− a

2
. (A.7)

is viable. After that, it updates a and b{
a = c, b = b, if c is viable,

a = a, b = c, if c is not viable,
(A.8)

and calculates a new parameter point c from these updated values. It deter-

mines this points’s viability, and continues iteratively in this manner until the

Euclidean norm ‖b−a‖ becomes smaller than a fixed threshold. At this point

the parameter point a is saved as the final estimate of the intersection point

between r1 and the boundary of the viable region. The procedure is repeated

for negative values of t, as well as for all other lines (axes) ri (i > 1). The

result is a set of 2p viable parameter points that are close to the boundary of

the viable region.

A.4 Choice of starting points for ellipsoid expansions

To be able to explore non-convex viable spaces it is necessary to start

ellipsoid expansions from viable parameter points placed in different regions of
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parameter space. Thus, after the first ellipsoid expansion started from k1, we

must choose a new starting viable parameter point k2 from the set composed

by VMC and VES,1; that is, the set of viable parameter points obtained after

the AMC exploration and the first ellipsoid expansion, respectively. We next

explain how to choose k2.

We choose the new starting parameter point preferentially far from the old

starting point k1, because we want to sample regions that have not yet been

explored by EBS. To do so, we first calculate the maximum and minimum

distances from k1 to all the viable parameter points included in VMC and

VES,1

Dmax,1 = maxk ‖k− k1‖ , k ∈ {VMC , VES,1} ,
Dmin,1 = mink ‖k− k1‖ , k ∈ {VMC , VES,1} . (A.9)

Then, we introduce a stochastic variable D with probability density

ρ1(D) =

 2
D −Dmin,1

Dmax,1 −Dmin,1
, D ∈ [Dmin,1, Dmax,1] ,

0, D /∈ [Dmin,1, Dmax,1] .
(A.10)

Thus, the stochastic variable D takes values close to Dmax,1 with higher prob-

ability than values close to Dmin,1.

Next, we sample a scalar D1 from the distribution (A.10) and define the

starting point k2 for the new ellipsoid expansion as

k2 = mink (‖k− k1‖ −D1) , k ∈ {VMC , VES,1} . (A.11)

The scalar D1 has a high probability of being close to Dmax,1; therefore, the

starting point k2 has a high probability of being far from k1.

The next ellipsoid expansions follow an analogous principle. We calculate

the maximum and minimum distances from all the viable points included in

the set {VMC , VES,1, VES,2, . . . , VES,i} to the mean value of all the previous

initial points

Dmax,i = maxk ‖k− 〈kv〉‖ , k ∈ {VMC , VES,1, . . . , VES,i} ,
Dmin,i = mink ‖k− 〈k〉‖ , k ∈ {VMC , VES,1, . . . , VES,i} , (A.12)

where 〈k〉 is the mean value of {k1, kv,2, . . . , kv,i}.

Once Dmin,i and Dmax,i are obtained, the stochastic variable D is redefined

ρ1(D) =

 2
D −Dmin,i

Dmax,i −Dmin,i
, D ∈ [Dmin,i, Dmax,i] ,

0, D /∈ [Dmin,i, Dmax,i] .
(A.13)
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A scalar Di sampled from the distribution (A.13) is used to define the starting

point ki+1 for the new ellipsoid expansion

ki+1 = mink (‖k− 〈k〉‖ −Di) , k ∈ {VMC , VES,1, VES,2, . . . ,VES,i} .
(A.14)

Because the scalar Di has a high probability of being close to Dmax,i, the

starting point ki+1 has a high probability of being far from 〈k〉.





Appendix B

Equations for the Models of the

Drosophila Circadian Clock

In this section, the equations of the two models of the Drosophila circadian

clock are presented (see figure 4.8).

The one-loop model, whose equations follow, was published by Goldbeter

in 1995 [104].

d[per mRNA]

dt
= k1

k4
2

k4
2 + [nPER]

− k3
[per mRNA]

k4 + [per mRNA]
− k16[per mRNA]

d[PER]

dt
= k5[per mRNA]− k6

[PER]

k10 + [PER]
+ k7

[PER∗]

k10 + [PER∗]

−k16[PER]

d[PER∗]

dt
= k6

[PER]

k10 + [PER]
− k7

[PER∗]

k10 + [PER∗]
− k8

[PER∗]

k10 + [PER∗]

+k9
[PER∗∗]

k10 + [PER∗∗]
− k16[PER∗]

d[PER∗∗]

dt
= +k8

[PER∗]
k10 + [PER∗]

− k9
[PER∗∗]

k10 + [PER∗∗]
− kd(t)

[PER∗∗]

k12 + [PER∗∗]

−k13[PER∗∗] + k14[nPER]− k16[PER∗∗]

d[nPER]

dt
= +k13[PER∗∗]− k14[nPER]− k15[nPER] (B.1)

with PER∗∗ degradation that depends on light as kd(t) = k11∗(1.5+((atan(10∗
(mod(t−12, 24)−12))−atan(10∗(mod(t, 24)−12))) 2

π ). With this function, kd
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is equal to 2k11 from 0 to 12 hours and k11 from 12 to 24 hours with a smooth

continuous transition.

The two-loop model, whose equations follow, was published by Leloup and
Goldbeter in 1998 [105].

d[per mRNA]

dt
= k1

k42
k42 + [nTIM-PER]

− k3
[per mRNA]

k4 + [per mRNA]
− k26[per mRNA]

d[PER]

dt
= k5[per mRNA]− k6

[PER]

k10 + [PER]
+ k7

[PER∗]

k10 + [PER∗]

−k26[PER]

d[PER∗]

dt
= k6

[PER]

k10 + [PER]
− k7

[PER∗]

k10 + [PER∗]
− k8

[PER∗]

k10 + [PER∗]

+k9
[PER∗∗]

k10 + [PER∗∗]
− k26[PER∗]

d[PER∗∗]

dt
= +k8

[PER∗]
k10 + [PER∗]

− k9
[PER∗∗]

k10 + [PER∗∗]
− k11

[PER∗∗]

k12 + [PER∗∗]

−k20[PER∗∗][TIM∗∗] + k21[TIM-PER]− k26[PER∗∗]

d[tim mRNA]

dt
= k1

k42
k42 + [nTIM-PER]

− k3
[tim mRNA]

k4 + [tim mRNA]
− k26[tim mRNA]

d[TIM]

dt
= k13[tim mRNA]− k14

[TIM]

k10 + [TIM]
+ k15

[TIM∗]

k10 + [TIM∗]

−k26[TIM]

d[TIM∗]

dt
= k14

[TIM]

k10 + [TIM]
− k15

[TIM∗]

k10 + [TIM∗]
− k16

[TIM∗]

k10 + [TIM∗]

+k17
[TIM∗∗]

k10 + [TIM∗∗]
− k26[TIM∗]

d[TIM∗∗]

dt
= +k16

[TIM∗]
k10 + [TIM∗]

− k17
[TIM∗∗]

k10 + [TIM∗∗]
− kd(t)

[TIM∗∗]

k19 + [TIM∗∗]

−k20[PER∗∗][TIM∗∗] + k21[TIM-PER]− k26[TIM∗∗]

d[TIM-PER]

dt
= k20[PER∗∗][TIM∗∗]− k21[TIM-PER]− k22[TIM-PER]

+k23[nTIM-PER]− k24[TIM-PER]

d[nTIM-PER]

dt
= k22[TIM-PER]− k23[nTIM-PER]− k25[nTIM-PER] (B.2)

with TIM∗∗ degradation that depends on light as kd(t) = k18∗(1.5+((atan(10∗
(mod(t−12, 24)−12))−atan(10∗(mod(t, 24)−12))) 2

π ). With this function, kd
is equal to 2k18 from 0 to 12 hours and k18 from 12 to 24 hours with a smooth

continuous transition.

In the original model by Leloup and Goldbeter [105], the kinetics param-

eters of the two loops were identical: k13 = k5, k14 = k6, k15 = k7, k16 = k8,

k17 = k9, k18 = k11 and k18 = k12. In this work, we distinguished the symmet-

rical two-loop model where this constraint is kept for the sampling procedure
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and the asymmetrical two-loop model where each parameter is individually

sampled.





Appendix C

Models, Algorithms and

Supplementary Results for the

Synthetic Biology Circuit Design

C.1 Langevin Model for the Systems 2, 3 and 4

The results for the time-scale analysis, the module optimization and the

different robustness analysis are performed using Langevin simulations [10].

The Langevin simulations are a compromise between efficiency and a realistic

implementation of molecular noise. A modulated white noise is added to each

reaction at each integration step. The parameter that control the amplitude

of the noise is Ω. We refer to it as ‘volume of the cell’, because it makes the

correspondence between the concentration and the amount of molecules in the

cell. For example, a volume of 200 means that a concentration of 1 (which is the

average value for most of the components when they are active) corresponds

to a total of 200 molecules in the cell. The maximum number of cells in the

system set to Nmax. The number of cells during the simulation should not

reach this threshold otherwise it may mean that the number of cells may not

be under control. We choose a maximum of 150 cells for all simulations (other

values does not change qualitatively the comparisons between the systems).

The output of the simulations is the number of committed cells over time.
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Ideally, it should be constant with the smallest possible fluctuations. We

measure this property with the signal to noise ratio S/N of the fraction of

committed cells ρc in a simulation of duration T :

S/N =
ρc√

1/T
∫ T

0 (ρc(t)− ρc)2 dt
where ρc = 1/T

∫ T

0
ρc(t)dt (C.1)

The simulations are started a certain time (usually 500 hours) before the

‘recording’ of the populations to leave enough time for the system to relax

and reach its long-run regime.

The evolution of each component in each model (main text, figures 4.21

to 4.24) follows a Hill kinetic with a coefficient of n = 4 that assumes coop-

erativity. This modelism simplifies the activation and inhibition mechanisms.

As describe in the section 4.6.2, such specific input-output functions is not

trivial and can be obtained by adjusting the binding and dissociation rates in

the mechanistic model. If necessary, a higher sensitivity could be obtained by

increasing the number of elements in the cascade.

We will now details the equations for the different elements present in

systems 2 to 4. We choose the following nomenclature. The maximum rate

is named kαp and half-rate constant Hα for component α. Degradation follows

mass-action kinetics (rate kαd ) for all components. Finally, diffusion is a linear

function (rate kdiff ) of the difference between internal and external (AIαout)

concentrations.

C.1.1 Quorum Sensing Module

In systems 2 to 4, AI1 is the signaling component for uncommitted cells

and its expression, through I1, is regulated by the toggle switch (R6 and R7

cross-inhibition): its production is inhibited by R7 as R7 is produced only

when the cell is committed. On the contrary, AI2, the signal for committed

cells, is inhibited by the other component of the switch, R6, that is produced

in uncommitted cells. We simplify the equations by having the concentration

of the AI depending directly on R6 and R7. The dynamical equations for the
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concentration of these components are therefore:

d AI1

dt
= kAI1p

Hn
AI1

Hn
AI1 +R7n

−kAI1d AI1

+kdiff (AI1out −AI1) (C.2)

d AI2

dt
= kAI2p

Hn
AI2

Hn
AI2 +R6n

−kAI2d AI2

+kdiff (AI2out −AI2) (C.3)

And the time evolution of the external concentrations of these components

follows:

d AI1out
dt

= −
∑
Cells

kdiff
Nmax

(AI1out −AI1Cells)

−kAI1d AI1out (C.4)

d AI2out
dt

= −
∑
Cells

kdiff
Nmax

(AI2out −AI2Cells)

−kAI2d AI2out (C.5)

Out of these equations, the values for the dynamical equilibrium of the

concentrations of AI1 and AI2 in uncommitted cells can be calculated as a

function of the number of uncommitted and committed cells. We assume that

the production rate in eq. (C.2) and (C.3) is either zero or maximal (kAIαp ) de-

pending on the state of each cell. The size of both cell populations is expressed

as a fraction of Nmax: ρu = Nu
Nmax

for uncommitted cells and ρc = Nc
Nmax

for the

committed ones.

AI1(ρu, ρc) =
kAI1p

kAI1d

(kAI1d + kdiff )(kAI1d + ρukdiff ) + ρckdiffk
AI1
d

(kdiff + kAI1d )(kdiff + kAI1d + ρukdiff + ρckdiff )

(C.6)

AI2(ρu, ρc) =
kAI2p

kAI2d

ρck
2
diff

(kdiff + kAI2d )(kdiff + kAI2d + ρukdiff + ρckdiff )

(C.7)

We can notice that the sensitivity of the AI1 function to ρc (
∣∣∣∂AI1∂ρc

∣∣∣) is lower

than the one for AI2 due to the internal production of AI1 in uncommitted

cells. The difference between both modules is reduced when the diffusion is

increased. Note that we are not interested in the concentration of AI1 and
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AI2 in committed cells since their fate are not influenced by the concentration

of AI1 or AI2 (they remain committed until their death).

Knowing these functions allows calculating the half-rate constant for the

production terms of the elements in the population control modules, A1/R1

and R2. We name AI1 = AI1(ρu, ρt) and AI2 = AI2(ρu, ρt) the concentra-

tion of AI1, resp. AI2, in uncommitted cells that corresponds to a fraction of

uncommitted cells ρu (chosen around 0.45) and of committed cells ρc (around

0.4). AI1 binds to the receptor Rec1 that control the production of the compo-

nent A1 (or for system 5, the repressor R1). AI2 binds to Rec2 and activates

the production of the repressor R2. In the models, the expressions of A1/R1

and R2 is simplified: they depend directly on the concentration of AI1 or AI2.

d A1

dt
= kA1

p

AI1n

Hn
A1 +AI1n

with HR1 = AI1

−kA1
d A1 for systems 3 and 4 (C.8)

d R1

dt
= kR1

p

Hn
R1

Hn
R1 +AI1n

with HR1 = AI1

−kR1
d R1 for system 5 (C.9)

d R2

dt
= kR2

p

Hn
R2

Hn
R2 +AI2n

with HR2 = AI2

−kR2
d R2 (C.10)

C.1.2 AND Gate and Toggle Switch

We will now focus on the AND gate and the toggle switch. The AND gate

is integrating the information of the two quorum sensing modules (and the

oscillator or the throttle in systems 3 and 4). To integrate all inputs, systems

3 and 4 comprise an activator A3 and an additional repressor R4 in system 3.

For all systems, the final signal is R5. The connections are made such that

cells differentiate only if the number of uncommitted cells is high enough and

if the number of committed cells is too low. The dynamical equations follow

the same Hill term for activation/inhibition and mass-action for degradation.

For system 2, that only have R5, the equation is:

d R5

dt
= kR5

p

A1n

Hn
R5−1 +A1n

Hn
R5−2

Hn
R5−2 +R2n

−kR5
d R5 (C.11)
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In system 3, the AND gate includes two additional elements A3 and R4 to

incorporate the information of the oscillator whose output is Ro2 (see below):

d A3

dt
= kA3

p

A1n

Hn
A3−1 +A1n

Hn
A3−4

Hn
A3−4 +R4n

−kA3
d A3 (C.12)

d R4

dt
= kR4

p

Hn
R4

Hn
R4 +Ro2n

−kR4
d R4 (C.13)

d R5

dt
= kR5

p

A3n

Hn
R5−3 +A3n

Hn
R5−2

Hn
R5−2 +R2n

−kR5
d R5 (C.14)

In system 4, the throttle through the signaling molecule AI3 is acting on

R5 as the other signaling molecules of the quorum sensing module. We also

need to include an element A3 prior to R5:

d A3

dt
= kA3

p

Hn
A3−1

Hn
A3−1 +R1n

Hn
A3−2

Hn
A3−2 +R2n

−kA3
d A3 (C.15)

d R5

dt
= kR5

p

A3n

Hn
R5−3 +A3n

Hn
R5−t

Hn
R5−t +AI3n

−kR5
d R5 (C.16)

The toggle switch comprises the two repressors, R6 and R7, inhibiting each

other. All cells start their life in the uncommitted state with a high level of

R6, therefore a low level of R7. The component of the toggle switch, R6, is

inhibited (and the toggle may change state) when R5 is produced. In addition

to this regulation, R6 is inhibited by R7 to produce the switch behavior that

is related to the cell fate; R6 is therefore a NOR gate with these two inputs.

The equations for these components are:

d R6

dt
= kR6

p

Hn
R6−5

Hn
R6−5 +R5n

Hn
R6−7

Hn
R6−7 +R7n

−kR6
d R6 (C.17)

d R7

dt
= kR7

p

Hn
R7

Hn
R7 +R6n

−kR7
d R7 (C.18)

The equation for R7 is different for the system 5 as the toggle includes the

throttle system. The details are discussed below.



182 App. C: Details for the Synthetic Biology Circuit Design

C.1.3 Cell Fate

Cells, in their uncommitted state, can divide and, in the committed state,

die. The division process has to be controlled in order to avoid proliferation of

the cells. This is implemented with the production of a growth arrest factor

(GAF ) controlled by the quorum sensing. The commitment is controlled by

the component GATA: when GATA reaches a certain threshold the cell is

considered as committed and slowly dies. These processes are implemented as

follow.

Division Process

GAF is controlled by A1/R1 (quorum sensing of the uncommitted cells):

d GAF

dt
= kGAFp

A1n

Hn
GAF +A1n

−kGAFd GAF for systems 3 and 4 (C.19)

d GAF

dt
= kGAFp

Hn
GAF

Hn
GAF +R1n

−kGAFd GAF for system 5 (C.20)

If GAF is below a threshold, thGAF , the cell grows. To model that, we use

an integrator for the division depending on GAF level:

Div(t) =

∫ t

t0

kbΘ(thGAF −GAF (τ))− kb
3

Θ(GAF (τ)− thGAF )dτ

Where t0 is the birth of the cell (beginning of the simulation or after cell

division) and Θ is the Heaviside function (Θ(x) = 0 if x < 0 and Θ(x) = 1 if

x ≥ 0). The division rate is kb. We choose kb = 1
96h
−1, such that the average

time for division (in absence of GAF ), is set to 96h. The value of Div cannot

be negative.

Division occurs when Div(t) ≥ 1. The two daughter cells inherit the

concentrations of all the components of the mother cell except the value Div

that is reset to zero.
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Commitment Process

GATA is inhibited by R6. When the toggle switches to high level of R7,

GATA starts to be produced:

d GATA

dt
= kGATAp

Hn
GATA

Hn
GATA +R6n

−kGATAd GATA (C.21)

GATA concentration quickly rises and when it reaches a threshold, the

cell changes fate and becomes committed. This is a strong simplification as

the biological process is much more complex, but it is sufficient for the purpose

of this analysis. As a committed cell, it can only die. The lifetime of the

committed cells is implemented with an integrator for cell death:

Death(t) =

∫ t

t0

kkdτ

Where t0 is the time of commitment. The division rate is kk. We choose

kk = 1
200h

−1, such that the average time for division (in absence of GAF ), is

set to 200h.

Cell dies when Death(t) reaches 1.

C.1.4 System 3 – Implementation of an Oscillator

The aim of the oscillator is to differentiate the behavior the cells through

the population, therefore one of its main qualities should be irregularity. The

simplest possible oscillator is made of a component Ao that activates itself (au-

topositive feedback) and regulates the expression of a repressor Ro that inhibits

Ao. The readout of the system is implemented with two successive components:

a second repressor Ro2 is acting on R4 that represses cell commitment. With

proper parameter values, this system generates short interval of low R4 con-

centration with an irregular latency where R4 concentration remains high. The
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equations of the oscillator are:

d Ao

dt
= kAop

(
kAo0 +

Aoscn

Hn
Ao−A +Aon

)
Hn
Ao−R

Hn
Ao−R +Roscn

−kAod Aosc (C.22)

d Ro

dt
= kRop

Aon

Hn
Ro +Aon

−kRod Ro (C.23)

d Ro2

dt
= kRo2p

Aon

Hn
Rosc2 +Aon

−kRo2d Ro2 (C.24)

Linking the oscillator and the quorum sensing module to the toggle switch

occurs in two steps as described above. The elementA3 is controlled by bothA1

and R4, therefore A3 is produced only when A1 is high (enough uncommitted

cells) and R4 low (Ao peaking).

C.1.5 System 4 – Implementation of a Throttle

The production of the signaling molecule, AI3, is controlled by an activa-

tor At and represses by R7 such that AI3 is produced transiently when the

toggle is switching. The use of an intermediate component ensures that the

toggle will not be able to switch back and also allows an amplification of the

AI3 production. AI3 diffuses through the membrane, gives rise to a external

concentration AI3out that enters other cells. The dynamical equations are:

d At

dt
= kAtp

Hn
At−6

Hn
At−6 +R6n

−kAtd At (C.25)

d AI3

dt
= kAI3p

Atn

Hn
AI3−t +Atn

Hn
AI3−7

Hn
AI3−7 +R7n

−kAI3d AI3

+kdiff (AI3out −AI3) (C.26)

d AI3out
dt

= −
∑
Cells

kdiff
Nmax

(AI3out −AI3Cells)

−kAI3d AI3out (C.27)

The remaining elements are similar to systems 2 and 3. There are only

two differences from system 2: first, the addition of A3 in order that AI3 is
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acting on R5 (equation above). Second, the control of R7 by At instead of R6

directly:

d R7

dt
= kR7

p

Atn

Hn
R7 +Atn

−kR7
d R7 (C.28)

C.1.6 Logic Tables for Systems 2 to 4

To clarify the mechanisms of the different systems, we express the compo-

nent interactions in a logic table (tables C.1 to C.3) emphasizing the relations

that lead to commitment.

Logical ρu < ρu ρu > ρu
Component relation ρc > ρc ρc < ρc ρc > ρc ρc < ρc

A1 = AI1 > AI1 low low high high
GAF = A1 low low high high

R2 = AI2 > AI2 high low high low
R5 = A1

∧
¬R2 low low low high

Logical R5 high (ρu > ρu AND
Component relation R5 low ρc < ρc)

R6 = ¬R5 high low

R7 = ¬R6 low high
GATA = ¬R6 low high

Cell fate = ¬R6 Uncommitted Committing

Table C.1: Logic table for system 2.
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Logical Ao high (transient
Component relation Ao low while Ro is low)

Ro = Ao low high

Ro2 = Ao low high
R4 = ¬Ro2 high low

ρu < ρu ρu > ρu
Logical ρc > ρc ρc < ρc ρc > ρc ρc < ρc

Component relation R4 not important R4 high R4 low R4 high R4 low

A1 = AI1 > AI1 low low high high high high
GAF = A1 low low high high high high

R2 = AI2 > AI2 high low high high low low
A3 = A1

∧
¬R4 low low low high low high

R5 = A3
∧
¬R2 low low low low low high

Logical R5 high (ρu > ρu AND
Component relation R5 low R4 low AND ρc < ρc)

R6 = ¬R5 high low

R7 = ¬R6 low high
GATA = ¬R6 low high

Cell fate = ¬R6 Uncommitted Committing

Table C.2: Logic table for system 3 (oscillator).

Logical ρu < ρu ρu > ρu
Component relation ρc > ρc ρc < ρc ρc > ρc ρc < ρc

R1 = AI1 < AI1 high high low low
GAF = ¬R1 low low high high

R2 = AI2 > AI2 high low high low
A3 = ¬(R1

∨
R2) low low low high

Logical A3 low A3 high (ρu > ρu AND ρc < ρc)
Component relation AI3 low AI3 high AI3 low AI3 high

R5 = A3
∧
¬AI3 low low low high

R6 = ¬R5 high high high low

R7 = ¬R6 low low low high
GATA = ¬R6 low low low high

Cell fate = ¬R6 Uncommitted Committing

Logical R6 high R6 low R6 and R7 medium
Component relation R7 low R7 high (transient)

At = ¬(R6
∨
R7) low low high

AI3 = At low low high

Table C.3: Logic table for the system 4 (throttle).
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C.1.7 Parameters and State Variables for Langevin Models of Sys-

tems 2 to 4

System 2 System 3 System 4
Module Name var. # Init. val. Name var. # Init. val. Name var. # Init. val.

In each cell

Quorum AI1 1 high identical identical
singaling AI2 2 zero identical identical

Quorum A1 3 medium identical identical
sensing R2 4 low identical identical
module A3 5 low identical identical

Commitment R5 6 low identical identical
module R6 7 high identical identical

R7 8 low identical identical

Cell fate GAF 9 low identical identical
components GATA 10 low identical identical

Additional – Ao 11 random At 11 low
modules (low to med.)

– Ro 12 low AI3 12 low
– Ro2 13 low –
– R4 14 low –

Cell Div (intern) random identical identical
fate Death (intern) inactive identical identical

External

Quorum AI1out 1∗ at eq. identical identical
singaling AI2out 2∗ zero identical identical
(extern) – – AI3out 3∗ zero

Table C.4: State variable numbering. Initial values are based on an ini-
tial population of uncommitted cells only below the target fraction. ‘High’,
‘medium’ and ‘low’ refer to values corresponding to 0.95 · kp/kd, 0.5 · kp/kd and
0.05 · kp/kd, respectively (see table C.5).
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System 2 System 3 System 4
Module Name para. # Value Name para. # Value Name para. # Value

Quorum kAI1
p 1 2.0 identical identical

singaling HAI1 2 1.5 identical identical
kAI1
d 3 0.2 identical identical
kAI2
p 4 2.0 identical identical

HAI2 5 0.45 identical identical
kAI2
d 6 0.2 identical identical
kdiff 7 5.0 identical identical

Quorum kA1
p 8 1.0 identical to Syst. 2 kR1

p 8 1.0
sensing HA1 9 2.7 identical to Syst. 2 HR1 9 2.7
module kA1

d 10 1.0 identical to Syst. 2 kR1
d 10 1.0

kR2
p 11 1.0 identical identical

HR2 12 2.0 identical identical
kR2
d 13 1.0 identical identical

– kA3
p 14 2.0 identical

– HA3−1 15 0.5 identical
– HA3−4 16 0.5 HA3−2 16 0.5
– kA3

d 17 2.0 identical

Commitment kR5
p 18 1.0 identical identical

module HR5−1 19 0.6 HR5−3 19 0.6 identical
HR5−2 20 0.5 identical to Syst. 2 HR5−t 20 0.9
kR5
d 21 1.0 identical identical
kR6
p 22 1.0 identical identical

HR6−5 23 0.5 identical identical
HR6−7 24 0.5 identical identical
kR6
d 25 1.0 identical identical
kR7
p 26 3.0 identical identical

HR7 27 0.4 identical identical
kR7
d 28 1.0 identical identical

Cell fate kGAF
p 29 1.7 identical identical

parameters HGAF 30 0.7 identical to Syst. 2 HGAF 30 0.3
kGAF
d 31 1.0 identical identical

kGATA
p 32 1.0 identical identical

HGATA 33 0.2 identical identical
kGATA
d 34 1.0 identical identical

Additional – kAo
p 35 50 kAt

p 35 4.0
modules – kAo

0 36 0.0002 HAt 36 0.5
– HAo−A 37 0.5 kAt

d 38 4.0
– HAo−R 38 0.01 kAI3

p 39 200
– kAo

d 39 0.1 HAI3−t 40 0.6
– kRo

p 40 2.5 HAI3−7 37 0.5
– HRo 41 0.5 kAI3

d 41 0.5
– kRo

d 42 0.04 –
– kRo2

p 43 5 –
– HRo2 44 0.2 –
– kRo2

d 45 2.0 –
– kR4

p 46 1.0 –
– HR4 47 0.9 –
– kR4

d 48 1.0 –

Table C.5: Parameters for the Langevin models of systems 2 to 4.
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C.1.8 Details for the Different Simulations

The results presented in the section 4.6.1 for system 2 to 4 and the analysis

(expect the quorum sensing optimization) are performed with stochastic sim-

ulations using a Langevin algorithm [10] with the equations given above. For

all simulations, if not mentioned otherwise, Ω equals 200, the maximal number

of cells is 150, the average division time (in absence of negative feedback) is

96 hours (kb = 1
96h
−1) and the average survival time of a committed cell is

200 hours (kk = 1
200h

−1). All simulations start with a low uncommitted cell

density and evolved for 1000 hours and the recording lasts 3000 hours.

Spatial Simulations

For the results about spatial bias, spatial simulations using the Langevin

model are performed. To mimic the spatial distribution, the volume of the

system is divided in a grid with Nmax = 150 boxes (the grid has grid has

dimensions 6, 5 and 5), each with the same volume as a cell. Each cell is

occupying a box on the grid. The diffusion can occur between the cell and

its box or between the boxes. As diffusion is physically faster than any other

process in the cell, it is simulated without the noise term (standard ordinary

differential equation). Diffusion is occurring from one edge to the other one

(periodic boundary conditions) in order to mimic a larger system and avoid

border effect. A cell dividing is pushing the other cells in chain until there is

an empty box, therefore daughter cells are contiguous. For these simulations,

the recording time was 104 hours to obtain more significant results.

Robustness to Variation of the Killing Rate kk

To test the influence of the killing rate in the models, we change the value

of kk from 1
45h
−1 to 1

550h
−1 (corresponding to a ratio kb/kk of 0.5 to 6) as

shown in figure 4.26A, D and 4.27B, D. For each value of kk, 24 simulations

are performed and the average S/N value is plotted in figure 4.26A, D and the

population densities in 4.26B, E. The error bar is the standard deviation of the

results of the 24 simulations.

Robustness to Variations of Molecular Noise Amplitude

To test the influence of stochastic fluctuations in the models, we change

the volume from 40 to 1400 as shown in figure 4.26C, F. For each value of Ω, 24



190 App. C: Details for the Synthetic Biology Circuit Design

simulations are performed and the average S/N value is plotted in figure 4.26C,

F. The error bar is the standard deviation of the results of the 24 simulations.

Time-scale Optimization

We sampled 360 points randomly in the time-scale space with a uniform

distribution in the logarithmic domain over 1 order of magnitude for each

parameter (TSα ∈ [1
3 , 3] for α = {QS, QM, R5, R6, R7, At}). For each time-

scale set, we performed 8 long simulations (1000 units of time for relaxation,

2000 units of time of recording, volume of 200, Nmax = 150) and average their

signal to noise ratio.

Module Optimization

We use the same procedure than the time-scale optimization: we randomly

sampled the parameter space in the log10 domain of the additional module

(oscillator in system 4 and throttle in system 5). We allowed one order of

magnitude around the nominal values (see table C.5). For each set (2000 for

system 4 and 1000 for system 5), we run a stochastic simulation with the

Langevin model and recorded the S/N value as in the time-scale optimization.

C.2 Algorithms Used for the Analysis of the Systems

C.2.1 Patterning and Neighbor Density Analysis

Analysis of distances between pairs of committed and uncommitted cells

was performed to identify patterning between the two cell-types. For a given

committed or uncommitted reference cell, the ratio of committed to uncom-

mitted neighbors at a given distance was calculated for all distances. We define

p(c)i,d,t as the observed fraction of committed cell neighbors at distance d for

the ith cell at time t. The normalized score Z(c)i,d,t for that observation is

then described by

Z(c)i,d,t =
p(c)i,d,t − µt

σi,t
(C.29)

where µt represents the overall fraction of committed cells at time t and σi,t

describes the standard deviation of the observed probability given by the stan-
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dard form:

σi,t =

√
µt(1− µt)

ni,t
(C.30)

where ni,t is the number of total neighbors observed for the ith cell at time

t. Normalized Z-scores are combined into an average Z-score, Z̄(c)d, for each

distance value,
¯Z(c)d =

∑
i

∑
t

Z(c)i,d,t/
√
Nd (C.31)

where Nd is the total number of sample Z-scores Z(c)i,d,t for each distance.

C.2.2 RS-HDMR Sensitivity Analysis

RS-HDMR is a tool to deduce non-linear interactions between a set of

inputs and an output [201]. In this application, input-output relationships are

defined as the effects of parametric variation on hysteresis of the UPC module

response to fluctuations in population density. More specifically, we define

hysteresis as the difference between the forward and reverse response values

of population density (ρp), where the UPC module’s output ([pA2.Rec1.AI1])

is 50% of maximum, or (max output + min output)/2. We focus on absolute

levels of hysteresis rather than normalizing to the average population density

threshold, because we focus on systems with similar average thresholds and

consider absolute changes in population density to be a relevant optimization

feature of our system in the context of its biomedical application.

We performed RS-HDMR sensitivity analysis on datasets describing neigh-

borhoods of parameter space around optimal parameter vectors obtained from

GA runs. 150 total optimal parameter vectors were obtained from 150 inde-

pendent GA runs. Random sampling around each optimal parameter vector

was from a normal distribution N(µ, σ) where µ is the optimized parameter’s

value and σ = µ/20. Empirical evidence suggested that significantly broader

sampling resulted in too many parameter sets that did not yield QS behavior.

Sample size of the training set was 2000, and the resultant model was tested

on unsampled points for validation purposes.

RS-HDMR describes the independent and cooperative effects of p param-

eters k = (k1, k2, ...kp) on an output, y = f(k), in terms of a hierarchy of

RS-HDMR component functions:

f(k) = f0 +

p∑
i=1

fi(ki) +
∑

1≤i<j≤p
fij(ki, kj) + ...+ f12...p(k1, k2, ...kp) (C.32)
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Here f0 represents the mean value of f(k) over the sample space, the

first-order component function fi(ki) describes the generally non-linear inde-

pendent contribution of the ith input variable to the output, the second-order

component function fij(ki, kj) describes the pairwise cooperative contribution

of ki and kj , and further terms describe higher order cooperative contribu-

tions. In this work, we only consider the first-order RS-HDMR component

functions in order to perform efficient high-throughput analyses of local pa-

rameter “neighborhoods.” We approximate RS-HDMR component functions

as weighted orthonormal basis functions, which take the following form:

fi(ki) ≈
no∑
r=1

αirϕ
i
r(ki) (C.33)

where no is an integer (generally ≤ 3 for most applications), {α} are con-

stant weighting coefficients to be determined, and the basis functions {ϕ} are

optimized from the distribution of sample data points to follow conditions of

orthogonality [201]. Basis functions are approximated here as non-linear poly-

nomials, where

ϕi1(ki) = a1ki+a0 ϕi2(ki) = b2k
2
i +b1ki+b0 ϕi3(ki) = c3k

3
i +c2k

2
i +c1ki+c0

(C.34)

The coefficients a0,a1,b0,...c3 are calculated using Monte Carlo integration

under constraints of orthogonality, such that when integrated over all data

points,

∫
ϕr(k)dk ≈ 0 ∀ r

∫
ϕ2
r(k)dk ≈ 1 ∀ r

∫
ϕp(x)ϕq(x)dx ≈ 0 (p 6= q)

(C.35)

Optimal basis functions are weighted by coefficients (αir), which are calcu-

lated from least-squares regression. Only inputs and their respective compo-

nent functions measured as significant by the statistical F -test were included in

RS-HDMR expansions [205]. The resultant expansion in Eq. C.32 serves both

as a predictive model of network response due to its parametric interactions

and as a statistical representation of the underlying system.

The relative strength of response to parametric changes can be quanti-

tatively determined through sensitivity analysis based on the respective RS-

HDMR component functions. A global sensitivity analysis may be calculated
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from the RS-HDMR expansion through a decomposition of the total variance

σ2 of an output species, f(k), into hierarchical contributions from the individ-

ual RS-HDMR component functions. The RS-HDMR expansion may be given

in terms of the np significant component functions gl(l = 1, 2, 3, ...np), such

that

f(k)− f0 =
n∑
i=1

fi(ki) + ...+ ε =

np∑
l=1

gl + ε (C.36)

where ε represents any residual error of the model. The total variance, σ2,

of an output variable f(k) is then defined as follows, with integration over all

data points:

σ2 =

∫
[f(k)− f0]2 dk =

∫ [ np∑
l=1

gl + ε

]2

dk

=

∫  np∑
l=1

(gl)
2 +

np∑
l=1

np∑
i 6=l

(gl)(gi) + ε2

 dk (C.37)

When the input variables are sampled independently of one another, the

RS-HDMR component functions are calculated to be mutually orthogonal.

However, under conditions of correlation among input variables, the orthog-

onality of distinct component functions may not be strictly upheld. Conse-

quently, the output variance σ2 can be decomposed in terms of independent

and correlated contributions of the RS-HDMR component functions, where the

correlated contributions are described as the summed pairwise-covariances of

the individual component functions (
∫ ∑np

l=1

∑np
i 6=l(gl)(gi)).

The sensitivity indices, Si(i = 1, 2, ..., np), are then defined as the portion

of the total variance σ2 represented by the lth component function out of np

total number of functions. The relationship between sensitivity indices and the

output variance σ2 is given by the following:

Si =
1

σ2

∫ (gl)
2 +

np∑
i 6=l

(gl)(gi)

 dk (C.38)

The magnitudes of Si were analyzed to quantify the relative strength of connec-

tions between hysteresis and the model parameters (Fig. 4.29D and Fig. 4.30).
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C.3 Supplementary Results
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Figure C.1: RS-HDMR analysis of the oscillator module. (A) Oscillator rate
contstants (see Table C.5) were randomly varied across one order of magnitude
around initial values (linearly normalized to range [0,1], uniform distribution
in the log space) to produce roughly 2000 parameter sets. Simulations of each
parameter set yielded a corresponding S/N value, which is plotted here as a
function of the individual parameters. Each point represents an individual
parameter set. Warmer colors indicate higher point density; contour lines also
indicate point density. (B-D) RS-HDMR parametric sensitivity analysis of data
in A, describing the influence of parameter variation on observed S/N. (B) RS-
HDMR first-order component functions, in order of decreasing sensitivity index
Si. (C) Second-order RS-HDMR component functions in order of decreasing
sensitivity index Sl.
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University of Liége, Belgium. Further visits in 2009.

Nov 2007 Visit of Dr. Ralf Steuer in the group of Prof. Markus Koll-

man at the Humboldt University, Berlin, Germany.

Aug - Oct

2005

Internship at the Institute of applied radiophysics, Univer-

sity Hospital, Lausanne, development of a protocol for the

positioning of the patient in the prostate treatment.

mailto:marc.hafner@a3.epfl.ch


Publications

• M. Milles∗, M. Hafner∗, E. Sontag, S. Subramanian, P. Purnick, N. David-

sohn and R. Weiss, Design of a large scale synthetic biological circuit to

maintain artificial tissue homeostasis, in preparation. ∗equal contribution.

• E. Zamora-Sillero, M. Hafner, A. Ibig, J. Stelling and A. Wagner, Effcient

characterization of high-dimensional parameter spaces for systems biology,

in BMC Systems Biology (2010), submitted.

• M. Hafner, T. Petrov, J. Lu and H. Koeppl, Rational design of robust

biomolecular circuits: from specification to parameters, in Design and Anal-

ysis of Bio-Molecular Circuits (2011), edited by H. Koeppl, D. Densmore,

M. di Bernardo and G. Setti, Springer, New York. In press.

• M. Hafner and H. Koeppl, Stochastic Simulations in Systems Biology, in

Handbook of Research on Computational Science and Engineering: Theory

and Practice (2010), edited by J. Leng and W. Sharrock, IGI Global In press.

• D. Gonze, M. Hafner, Positive feedbacks contribute to the robustness of the

cell cycle with respect to molecular noise, in Advances in the Theory of

Control, Signals and Systems, with Physical Modelling, Lecture Notes in

Control and Information Sciences, Vol. 407 (2011), pp. 283-295 edited by J.
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