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Abstract

We analyze the general structure of soft scalar masses emerging in superstring

models involving anomalous U(1) symmetries, with the aim of characterizing

more systematically the circumstances under which they can happen to be

flavor universal. We consider both heterotic orbifold and intersecting brane

models, possibly with several anomalous and non-anomalous spontaneously

broken U(1) symmetries. The hidden sector is assumed to consist of the uni-

versal dilaton, Kähler class and complex structure moduli, which are supposed

to break supersymmetry, and a minimal set of Higgs fields which compensate

the Fayet–Iliopoulos terms. We leave the superpotential that is supposed to

stabilize the hidden sector fields unspecified, but we carefully take into account

the relations implied by gauge invariance and the constraints required for the

existence of a metastable vacuum with vanishing cosmological constant. The

results are parametrized in terms of a constrained Goldstino direction, suitably

defined effective modular weights, and the U(1) charges and shifts. We show

that the effect induced by vector multiplets strongly depends on the functional

form of the Kähler potential for the Higgs fields. We find in particular that

whenever these are charged matter fields, like in heterotic models, the effect

is non-trivial, whereas when they are shifting moduli fields, like in certain

intersecting brane models, the effect may vanish.

http://arXiv.org/abs/0710.5105v1


1 Introduction

Superstring models represent a very appealing possibility for the microscopic framework

underlying supersymmetric extensions of the standard model. In this respect, a crucial

question concerns the way in which spontaneous supersymmetry breaking is realized. The

standard paradigm is that this breaking occurs in a hidden sector and is then transmit-

ted only through suppressed gravitational interactions to the visible sector containing the

supersymmetric extension of the standard model [1, 2, 3] (see also [4, 5, 6]). Since the

scale of supersymmetry breaking must be much lower than the Planck scale, it is pos-

sible to study the problem within a low-energy effective supergravity description. The

structure of the soft supersymmetry breaking terms depends however on the structure of

certain higher-dimensional operators, as well as on the direction of supersymmetry break-

ing. A particularly important issue is the flavor structure of the soft scalar masses. For

phenomenological reasons, these should be nearly universal, or suitably aligned with the

ordinary fermion masses. It is then natural to explore how this could come about.

A natural candidate for the hidden sector of string models is that of the universal neu-

tral moduli fields, whose scalar Vacuum Expectation Values (VEV) control the strength

of the coupling and the geometry of the internal space [7, 8, 9]. An interesting point

about this assumption is that the Kähler potentials for these moduli fields are determined

by dimensional reduction and are universal, at leading order in the weak-coupling and

low-energy expansions. They turn out to define constant curvature coset Kähler mani-

folds of the type G/H, where G is a group of global isometries and H is a local stability

subgroup. Moreover, also the couplings between matter fields and moduli fields, which

control soft scalar masses, have in general a special structure. More precisely, the leading

higher-dimensional operators that are relevant for these soft masses can be parametrized

in terms of certain effective modular weights for matter fields, which are constant in the

simplest cases but can in general depend on the moduli fields. The superpotential that

could be at the origin of the spontaneous breaking of supersymmetry is on the other hand

less understood. One can however leave it unspecified, and only assume that it produces

a scalar potential admitting a stationary point where the energy is approximately zero

and all the moduli are stabilized with a positive squared mass. The situation can then

be parametrized in terms of the Goldstino vector of auxiliary fields, which has a length

that is fixed by the condition of vanishing cosmological constant and a direction that can

a priori be arbitrary but will be constrained to certain cones by the metastability condi-

tion [10, 11, 12]. The structure of soft terms can then be parametrized in terms of the

Goldstino direction and the effective modular weights.

An important additional ingredient, which occurs in essentially all known models and

can significantly change the situation, is the presence of additional U(1) gauge symmetries.

For phenomenological reasons, these must be spontaneously broken, with a sufficiently

large mass for the corresponding gauge bosons. A beautiful way to make this breaking

natural is provided by anomalies in these extra U(1) symmetries, which are also pretty
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endemic. These anomalies are cancelled through the Green–Schwarz mechanism [13],

which has a slightly different form in different models, but rests on the same general

structure. The basic point is that one-loop effects do not only induce anomalies, but

also corrections to the Kähler potential, which force some of the moduli M i, which were

neutral at the tree level, to acquire at one-loop order a non-trivial behavior under the

U(1) transformations, shifting them by some constants δia. This implies then a non-

trivial gauge variation of the gauge-kinetic functions depending on these moduli, which

cancels the anomalies. This mechanism implies the emergence of moduli-dependent Fayet–

Iliopoulos terms, which act as a sources for the D-term contribution to the scalar potential

once these moduli are stabilized at constant values [14]. In all known models, there

exist however additional chiral multiplets with appropriate U(1) charges that get VEV

to approximately compensate such sources in the D-term potential, in such a way that

the main effect of the Fayet–Iliopoulos terms is to break the U(1) symmetries and to

preserve supersymmetry, rather than vice-versa. In such a situation, the anomalous U(1)

symmetries are necessarily non-linearly realized, and the corresponding gauge bosons are

massive. The Higgs fields are mostly a mixture of the charged fields taking VEV, with a

small contamination from the moduli that can be neglected at leading order in δia, and the

squared mass of the U(1) vector bosons is of the order of a loop factor times the Planck

mass squared. Furthermore, also non-anomalous U(1) factors can be forced to be broken,

if the mentioned Higgs fields have non-vanishing charges with respect to them. In fact, in

minimal situations where there are as many Higgs fields as U(1) symmetries, the VEV of

the Higgs fields are entirely determined by the various D-flatness conditions, which do or

do not have moduli-dependent Fayet–Iliopoulos source terms depending on whether the

corresponding symmetry is anomalous or not.

It has been appreciated for already some time that the presence of vector multiplets

with masses below the Planck scale induces important additional effects mixing the visible

and the hidden sectors, if both the visible and the hidden sector fields have non-vanishing

charges [15, 16]. In fact, they give a sizable additional contribution to the soft scalar

masses m2, in spite of the fact that the auxiliary fields of these vector multiplets are

suppressed as D ∼ m2
3/2M

2
P/M2

V , and thus much smaller than the auxiliary fields of the

hidden sector chiral multiplets, which are of order F ∼ m3/2MP. The reason is that if

both the visible and the hidden sector fields are charged, there is a contribution to m2

that is proportional to D, coming from the direct minimal renormalizable coupling to the

vector multiplet, and which is of the same size as the ordinary contribution proportional

to F 2/M2
P, coming from non-renormalizable effective interactions with the hidden sector

chiral multiplets induced by gravity. This additional contribution can also be understood

as coming from additional operators that are induced in the low-energy effective theory

for the light chiral multiplets when integrating out the heavy vector multiplets, with

D ∼ F 2/M2
V . In general this effect cannot be neglected, and brings a dependence on

the U(1) charges in the soft scalar masses. This represents an additional potential source

of flavor non-universality, since the charges are not necessarily flavor universal, and the
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broken symmetries might even be related to flavor physics. It is therefore important to

study the structure of soft scalar masses in the presence of such non-linearly realized U(1)

symmetries, to determined how much these change the situation with respect to the flavor

problem.

The effects on soft terms of a heavy vector field associated to an anomalous U(1)

symmetry were first explored in [17, 18, 19], mostly within a simplified effective set up

and assuming that supersymmetry breaking originates from gaugino condensation. The

structure of soft scalar masses in string models with anomalous U(1) factors, with a more

general supersymmetry breaking sector and no assumption on the origin of supersymmetry

breaking, has instead been first studied in [20, 21] and in [22, 23, 24], with slightly different

points of view. However, in these papers it was implicitly assumed that the hidden sec-

tor superpotential does not depend on the charged fields Higgsing the U(1) symmetries.

We believe that this is not appropriate, because the moduli fields participating in the

Green–Schwarz mechanism shift under gauge transformations, and a non-trivial superpo-

tential leading to generic F auxiliary fields can be gauge-invariant only if it depends on

holomorphic gauge-invariant combinations of moduli fields and charged Higgs fields. In

fact, in the minimal case, the relative effect of the Higgs fields compared to the moduli

fields in supersymmetry breaking is completely fixed by gauge invariance. Subsequently,

a proper computation of the form of soft scalar masses in the presence of an arbitrary

but gauge-invariant superpotential has been performed in [25], for the minimal situation

involving a modulus field and a matter Higgs field transforming respectively with a shift

and a phase under an anomalous U(1) symmetry. More recently, this analysis was gen-

eralized to include also additional non-shifting moduli [26]. But a general and complete

discussion of the detailed form of the scalar masses in string models with possibly several

broken U(1) symmetries and its implications for the flavor problem is still missing.

The aim of this paper is to examine the structure of soft scalar masses in various kinds

of string models involving spontaneously broken U(1) symmetries, leaving the superpo-

tential that is supposed to stabilize the moduli unspecified, but paying attention to the

constraints implied by its gauge invariance. In our analysis, we will take into account the

constraints that are put on the Goldstino direction by the requirement that all the moduli

fields should be stabilized with a positive squared mass [10, 11, 12]. We will also generalize

previous studies to cases involving several anomalous and non-anomalous U(1) symme-

tries, and Higgs fields that are either matter fields with a canonical quadratic Kähler

potential or moduli fields with a non-canonical Kähler potential. Finally, we will examine

more closely the typical situations arising in heterotic and brane models. In heterotic

orbifold models, the stabilization of the dilaton modulus implies a Fayet–Iliopoulos term

that is compensated by a canonical charged matter Higgs fields. This leads unavoidably

to a non-trivial D-term contribution to soft scalar masses. In intersecting brane models,

on the other hand, the stabilization of the dilaton and complex structure moduli may or

may not generate Fayet–Iliopoulos terms, depending on whether the angles preserve or

not some U(1) R-symmetry. In the second case, the net Fayet–Iliopoulos terms induced
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by the moduli fields are again compensated by canonical charged matter Higgs fields, and

the situation is very similar to that of heterotic models. In the former case, on the other

hand, one can interpret the complex structure moduli as non-canonical shifting moduli

Higgs fields compensating the Fayet–Iliopoulos terms induced by the dilaton, and the sit-

uation is radically different. Most importantly, there exist in this case situations where

the D-term contribution to soft scalar masses vanishes identically, as a consequence of the

related functional forms of the Kähler potentials for the various involved moduli fields.

The paper is organized as follows. In section 2, we review some general results concern-

ing scalar masses in supergravity models. In section 3, we examine more specifically the

effects of heavy vector multiplets. In sections 4 and 5 we study the F - and D-term con-

tributions to soft scalar masses in models with U(1) symmetries broken at a high scale,

for general situations where the Fayet–Iliopoulos terms are approximately cancelled by

the VEV of a minimal set of Higgs fields with respectively a canonical and non-canonical

Kähler potential. In section 6 we apply these general results to string models with a

supersymmetry breaking sector identified with the untwisted moduli sector, focusing in

particular on heterotic orbifolds and intersecting brane models. Finally, in section 7 we

summarize our conclusions.

2 Soft scalar masses in supergravity models

We will start by briefly reviewing some of the salient features of supergravity models that

will be needed for our analysis [27, 28, 29, 30, 31]. Let us consider more specifically a

generic supergravity theory involving some chiral multiplets Zr and some U(1) vector

multiplets V a. Setting MP = 1, the theory is specified by a real Kähler and gauge-

invariant function G = K + ln|W |2, depending on Zr, Z̄r and V a, and a holomorphic

gauge-invariant gauge-kinetic function fab, depending on Zr. Derivatives with respect to

the fields Zr, Z̄r and V a are denoted by lower indices r, r̄ and a, which are raised through

the inverse of the Kähler metric grs̄ = Grs̄, and the inverse of the real part of the gauge

kinetic function hab = Re fab.

The U(1) gauge transformations are specified by holomorphic Killing vectors Xa, gen-

erating isometries of the scalar manifold, with components Xr
a depending on the fields

Zr. More precisely, the supergauge transformations of the chiral and vector superfields

are given by δZr = ΛaXr
a and δV a = −i (Λa − Λ̄a). The function G must be invariant.

This implies that Ga = −iXr
aGr = iX r̄

aGr̄. Taking derivatives, one then also deduces

that Xar = −iGar, showing that Ga represent Killing potentials. The function fab must

instead have a gauge variation that matches possible residual quantum anomalies Qabc:

δfab = iΛcQabc. This implies that habr = i/2Xc
r Qabc.

The potential for the complex scalar fields of the chiral multiplets, which is the crucial

quantity controlling spontaneous supersymmetry breaking, has the following form:

V = eG
(

GrGr − 3
)

+
1

2
GaGa . (2.1)
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The flatness condition of vanishing cosmological constant is that V = 0 on the vacuum,

and it implies:

−3 + GrGr +
1

2
e−GGaGa = 0 . (2.2)

The stationarity conditions correspond to requiring that ∇rV = 0, and read:

Gr + Gs∇rGs + e−G
[

GarG
a +

1

2

(

habr − habGr

)

GaGb
]

= 0 . (2.3)

The Hermitian block of the mass matrix for small fluctuations of the scalar fields

around the vacuum can be computed as m2
rs̄ = ∇r∇s̄V , and is found to be [32, 33, 12]:

m2
rs̄ = eG

[

grs̄ + ∇rGt∇s̄G
t− Rrs̄tū GtGū

]

+
[

habGarGbs̄ +
(

Gars̄ − 2hbchab(rGcs̄) − 2Ga(rGs̄)

)

Ga (2.4)

−1

2

(

hab grs̄ − 2hcdhacrhbds̄ − 2hab(rGs̄) − hab GrGs̄

)

GaGb
]

.

The symmetric mass matrix for the vector fields has the form:

M2
ab = 2 grs̄GarGbs̄ . (2.5)

Finally, the gravitino mass is given by m3/2 = eG/2.

The auxiliary fields controlling supersymmetry breaking are determined by their equa-

tions of motion and are given by

Fr = −eG/2 Gr , Da = −Ga . (2.6)

These fields are however not independent from each other. A first kinematical relation

between them, which holds at any point of field space and represents a constraint due to

gravity, is implied by the gauge invariance of the function G. It reads:

Da = − i
Xr

a

m3/2
Fr . (2.7)

A second dynamical relation between them, which holds only at stationary points of V

and exists independently of gravity, comes from the stationarity conditions along the com-

plex partners of the would-be Goldstone directions. Indeed, contracting the stationarity

conditions with Xr
a and taking the imaginary part, one deduces that [34] (see also [26, 12]):

Gars̄ F rF s̄ +
1

2

[

M2
ab + 2

(

F rFr − m2
3/2

)

hab

]

Db − 1

2
QabcD

bDc = 0 . (2.8)

Let us now subdivide the chiral multiplets Zr into visible sector multiplets Qα and

hidden sector multiplets Xi. The visible sector multiplets Qα are distinguished by the fact

that all their components have vanishing VEV. This implies in particular that Gα = 0,

gαī = 0 and ∇αGi = ∇iGα = 0 on the vacuum. We will furthermore focus on matter

fields in chiral representations of the visible gauge group that do not admit holomorphic
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quadratic invariants. This implies that ∇αGβ = 0. We will also require that extra gauge

symmetries are at most linearly realized on them, so that Gaα = 0 on the vacuum. Finally,

since the gauge kinetic function must be invariant under the visible gauge group, one also

has habα = 0. For the hidden sector multiplets Xi, on the other hand, we do not impose

any particular constraint for the moment.

The hidden sector fields can have a pretty generic dynamics. There are however two

strong requirements that must be imposed in order to get a satisfactory situation at a

certain stationary point. The first is the flatness condition of vanishing vacuum energy,

and implies a restriction on the length of the Goldstino vector:

gij̄ F iF j̄ = 3m2
3/2 −

1

2
DaDa . (2.9)

The second is the stability condition of positivity of the mass matrix for small fluctuations

around the vacuum. As shown in [10, 11, 12], a necessary condition for this to happen is

that the Hermitian block m2
ij̄ be positive along the direction Gi, implying the constraint

m2
ij̄ GiGj̄ > 0. This leads to the following condition, which restricts the direction of the

Goldstino vector [12]:

Rij̄pq̄ F iF j̄F pF q̄ ≤ 6m4
3/2 +

(

M2
ab − 2m2

3/2 hab + hcdhacihbdj̄ F iF j̄
)

DaDb (2.10)

+
3

4
m3/2 Qabc DaDbDc − 1

2

(

habhcd −
1

2
h k

ab hcdk

)

DaDbDcDd .

The additional vector fields have a mass matrix which is automatically positive definite

and by assumption entirely generated by the hidden sector fields. It takes the form:

M2
ab = 2 gij̄GaiGbj̄ . (2.11)

The visible sector fields get soft masses through higher-dimensional operators mixing

them to the hidden sector fields. Under the assumptions made above, the non-trivial

Hermitian block of the scalar mass matrix takes the following form:

m2
αβ̄ = −

(

Rαβ̄pq̄ −
1

3
gαβ̄ gpq̄

)

F pF q̄ −
(

Gaαβ̄ − 1

3
gαβ̄ Ga

)

Da . (2.12)

One can rewrite this expression in an alternative form, which uses the parametrization

G = −3 ln (−Ω/3) that is naturally suggested by the superconformal approach. With

the same assumptions as before, one can easily verify that at the vacuum the following

relations hold true:

Rαβ̄pq̄ −
1

3
gαβ̄ gpq̄ = − 3

Ω

(

Ωαβ̄pq̄ − Ω−1γδ̄ Ωαpδ̄ Ωβ̄q̄γ

)

, (2.13)

Gaαβ̄ − 1

3
gαβ̄ Ga = − 3

Ω
Ωaαβ̄ . (2.14)

Plugging these expressions into eq. (2.12) one finds:

m2
αβ̄ =

3

Ω

[

(

Ωαβ̄pq̄ − Ω−1γδ̄ Ωαpδ̄ Ωβ̄q̄γ

)

F pF q̄ + Ωaαβ̄ Da

]

. (2.15)
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This expression can also be obtained directly from the superconformal formulation. The

auxiliary field F of the compensator chiral multiplet does not give any contribution 1. The

auxiliary fields F i of the hidden sector chiral multiplets give the first term directly and

the second through their mixing with the auxiliary fields Fα of the visible sector chiral

multiplets. The auxiliary fields Da of the vector multiplets give the last term. Finally,

the overall factor is due to the Weyl rescaling associated to the gauge choice φ = eG/6.

The two equivalent expressions (2.12) and (2.15) for the soft masses are both use-

ful, in different respects. The form (2.12) exhibits an interpretation of the masses in

terms of Kähler geometry. It shows for instance that the F -term contribution vanishes

for maximally symmetric spaces of constant curvature scale equal to 2/3, corresponding

to ”no-scale” models [35], for which Rαβ̄pq̄ = 1/3 gαβ̄ gpq̄, and similary that the D-term

contribution vanishes whenever Gaij̄ = 1/3 gij̄ Ga. The form (2.12) gives instead an inter-

pretation of the masses that is more physically connected to the rigid limit intuition. It

shows that the F -term contribution vanishes whenever the function Ω is separable into two

distinct parts describing the visible and the hidden sectors, corresponding to the so-called

sequestered situation [36], and similarly that the D-term contribution vanishes whenever

the function Ω does not contain any minimal coupling between the visible sector fields

and the vector fields.

3 Effects of heavy vector multiplets

The effect of vector multiplets relative to that of chiral multiplets substantially simplifies

whenever the mass eigenvalues of the vector fields are all much larger than the gravitino

mass: Ma ≫ m3/2. We also assume that Ma <∼ 1, since the vectors are kept in the effective

theory below the Planck scale, and that m3/2 ≪ 1, in order for supersymmetry to help

explaining the hierarchy between the Fermi and the Planck scale. The above conditions

for the vector masses are usually verified for the vector fields associated to anomalous

U(1) symmetries with a Green–Schwarz mechanism in string models. We will therefore

focus on this situation of heavy vector fields from now on, and proceed to derive some

simple general results emerging in this limit. Most importantly, it turns out that the

vector auxiliary fields Da become small compared to the chiral auxiliary fields F i, and the

vector multiplet dynamics decouples from the supersymmetry breaking dynamics, which

is dominated by chiral multiplets, leaving only simple corrections. These corrections are

formally sub-leading, but they can nevertheless be relevant.

In the limit Ma ≫ m3/2, the flatness condition (2.2) and the dynamical relation (2.8)

1Note that this is a consequence of the vanishing of the cosmological constant. In the presence of a

cosmological constant V , one would find a contribution −2Ωαβ̄/Ω V or equivalently 2/3 gαβ̄ V , which is

entirely due to the Weyl rescaling of the potential by the factor |φ|4, which for the Einstein frame is equal

to e2G/3.
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imply together that F i ∼ O(m3/2) and Da ∼ O(m2
3/2/M

2
a ), with:

Da ≃ −2M−2abGbij̄ F iF j̄ . (3.1)

The kinematical relation (2.7) implies then that the VEV of the scalar fields arrange in

such a way that their contributions to Da cancel each other at the leading order O(m3/2),

and leave only a subleading effect of order O(m2
3/2/M

2
a ) as implied by (3.1). In other

words, we get following the approximate D-flatness conditions:

Xi
aFi ≃ 0 . (3.2)

In this situation, the flatness and stability constraints on the Goldstino vector of auxiliary

fields can be approximated as:

F iFi ≃ 3m2
3/2 , (3.3)

and

Rij̄pq̄ F iF j̄F pF q̄ − M2
ab DaDb <∼ 6m4

3/2 . (3.4)

The soft masses can in turn be rewritten in the form:

m2
αβ̄ ≃ gαβ̄ m2

3/2 − Rαβ̄pq̄F
pF q̄ − Gaαβ̄Da . (3.5)

Whenever the vector fields are much heavier that the gravitino, as in the above situa-

tion, one can actually account for their leading-order effect in a much simpler way. Indeed,

the scale of gauge symmetry breaking is then much higher than the scale of supersym-

metry breaking. One can then first integrate out the heavy vector multiplets to define a

simpler effective theory with only chiral multiplets, which can be used to describe super-

symmetry breaking. The vector multiplets can be integrated out directly at the level of

superfields. In doing so, one can neglect terms with supercovariant derivatives, and freeze

the superconformal compensator to Φ = eG/6. The relevant equation of motion of the

vector superfield in terms of the chiral superfield is then simply that Ga ≃ 0. One must

then choose a supersymmetric gauge. It is convenient to impose for this the gauge-fixing

condition Ga ≃ 0, where the dependence on the vector superfields is now discarded, which

corresponds to an approximate unitary gauge. This allows to consistently assume that

the superfields V a are small and to make an expansion of the action in powers of V a, to

linearize the problem. At leading order in V a, the equations of motion yields then [12]:

V a ≃ −2M−2abGb . (3.6)

Taking the D component of this expression, where M2
ab is treated as a number and Gb

is taken to depend only the chiral superfields, one recovers then the dynamical relation

(3.1). One can also plug back the solution (3.6) into the quadratic approximation to the

V a-dependent terms in G, namely ∆G = GaV
a + M2

ab/4V aV b, to deduce the form of the
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leading order correction that is induced by the heavy vector fields on the dynamics of the

light chiral multiplets:

∆G ≃ −M−2abGaGb . (3.7)

It is straightforward to compute what is the corresponding correction to the Kähler cur-

vature tensor. One finds:

∆Rij̄pq̄ ≃ −2M−2ab
(

Gaij̄ Gbpq̄ + Gaiq̄ Gbpj̄

)

, (3.8)

∆Rαβ̄ij̄ ≃ −2M−2abGaαβ̄ Gbij̄ . (3.9)

Using these expressions, as well as the relation (3.1), we can then interpret the leading

corrections depending on Da in eqs. (3.4) and (3.5) as emerging from the corrections to

the curvature tensors in the terms depending on F i.

It is now important to observe that the corrections induced by the heavy vector mul-

tiplets in eqs. (3.4) and (3.5) are in principle both significant. In fact, we will now see

in somewhat more detail that in string models, where the squared masses M2
ab are in-

duced by Higgs fields and the symmetry breaking scale is around the Planck scale, that

is M2
ab ∼ O(1), all the terms in eqs. (3.4) and (3.5) are of the same order of magnitude,

as far as the scaling with dimensionfull quantities is concerned. The only particularity

of the terms induced through the vector multiplets is that they are proportional to the

charges of the involved fields. These can happen to be small, if they reflect a non-minimal

coupling induced at a subleading order in perturbation theory.

4 Models with canonical Higgs fields

Let us consider first the case of U(1) symmetries that are realized through rephasings

on the matter fields Qα and some gauge symmetry breaking fields Hx with charges qαa

and qxa, and through shifts δia on the supersymmetry breaking fields M i. This means

that the Killing vectors have components that are given by Xα
a = i qαaQ

α, Xx
a = i qxaH

x

and Xi
a = − i δia. For simplicity, we shall assume that δia ≪ 1, as it turns out to be

in most of the known string models, and evaluate all the formulae at leading order in

δia. In such a situation, the would-be goldstone bosons that are absorbed by the gauge

vectors are essentially linear combinations of the fields Hx, with only a small admixture

of the fields M i. We will consider the minimal situation where the number of gauge

symmetry breaking fields Hx with non-zero charges qxa is equal to the number of U(1)

vector fields V a. The charge matrix qxa is then a square matrix that can be inverted, the

inverse charge matrix q−1
ax being defined to satisfy the identities 2

∑

a q−1
xa qay = δxy and

∑

x qaxq−1
xb = δab. We emphasize here that the shifts δia can be pretty arbitrary. The only

restriction that we shall impose is that they are not all zero, the non-vanishing ones setting

2In this section, we shall make sums over indices of type a and x explicit, to avoid confusions.
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the gauge symmetry breaking scales. This means that there can be an arbitrary but non-

zero number of anomalous U(1) symmetries and an arbitrary number of non-anomalous

U(1) symmetries.

For concreteness, let us take as starting point the following general form of the Kähler

potential defining the effective supergravity Lagrangian, with a canonical term for the

Higgs fields:

K = K̂
(

M i + M̄ i −
∑

a

δiaV
a
)

+
∑

x

K̃xx̄

(

M i + M̄ i −
∑

a

δiaV
a
)

H̄xe
P

aqxaV a
Hx

+
∑

α

Kαᾱ

(

M i + M̄ i −
∑

a

δiaV
a
)

Q̄αe
P

aqαaV a
Qα + . . . . (4.1)

The superpotential is instead left to be a generic gauge-invariant holomorphic function of

the shifting moduli M i and the charged Higgs fields Hx:

W = Ŵ
(

M i +
∑

a,x

δiaq
−1
ax ln Hx

)

+ . . . . (4.2)

The dots in the above expressions denote possible additional terms that are of higher order

in the fields Qα, whose VEV are vanishing by assumption, and in the fields Hx, whose

VEV will turn out to be small.

Our aim is to compute the total contribution to soft scalar masses of the chiral multi-

plets of the visible sector, due to both the F i, F x and the Da auxiliary fields of chiral and

vector multiplets of the hidden sector. This computation was first done in [22, 23], in the

context of heterotic orbifold models with a single anomalous U(1), and generalized to type

I models with several U(1)’s in [24]. In the following, we shall present a more general com-

putation, which is valid for an arbitrary number of anomalous and non-anomalous U(1)’s,

an arbitrary number of shifting and non-shifting moduli, and a generic supersymmetry

breaking dynamics compatible with gauge invariance. We will first do the computation

along the lines of [22, 23, 24], but paying attention to the consistency constraints put by

gauge invariance of the superpotential. We will then also show how the same result can

be obtained in a simpler way by integrating out the heavy vector multiplets directly at

the superfield level, along the lines of [25, 26].

On the vacuum, and at leading order in δia, the non-trivial components of the Kähler

metric in the visible and hidden sectors are given by:

gαᾱ = Kαᾱ ; gij̄ = K̂ij̄ +
∑

x

K̃xx̄ij̄ |Hx|2 , gxx̄ = K̃xx̄ , gxī = K̃xx̄ī H̄
x . (4.3)

Since the off-diagonal terms are small, it is possible to find simple expressions also for the

various blocks of the inverse of the metric, at leading order in Hx. One finds

gαᾱ = g−1
αᾱ ; gij̄ = g−1

ij̄ , gxx̄ = g−1
xx̄ , gxī = −

∑

k

g−1
xx̄ gkx̄ g−1

kī . (4.4)

The tensor quantities that enter the formula for the soft masses can be easily evaluated.

At leading order in δia, one finds Rαᾱpq̄ = gαᾱ ∂p∂q̄ ln
(

Kαᾱ

)

and Gaαᾱ = gαᾱ qαa. The
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soft masses take therefore the form:

m2
αᾱ = −gαᾱ

[

∂p∂q̄ ln
(

Kαᾱe−K̂/3
)

F pF q̄ +
∑

a

qαaD
a

]

. (4.5)

Our main task is now to compute the Da’s in terms of the F i’s, after exploiting the fact

that in the minimal situation under consideration, gauge invariance completely fixes the

VEV of the Higgs scalar fields Hx and the corresponding auxiliary fields F x in terms of

the VEV of the moduli fields M i and the corresponding auxiliary fields F i.

4.1 Relation between auxiliary fields

The vector auxiliary fields can be computed through the relation Da = −Ga and take the

following form:

Da =
∑

k

δka K̂k −
∑

x

qxa gxx̄ |Hx|2 . (4.6)

The mass matrix M2
ab of the vectors fields is given by

M2
ab = 2

∑

i,j

gij̄ δia δj̄b + 2
∑

x

qxaqxb gxx̄ |Hx|2 . (4.7)

Assuming that the VEV of the fields M i are of order O(1), and recalling that the shifts

δia are of the order of a loop factor, and thus small but not tiny, we see from the first

term in the above expression that one indeed naturally gets the situation M2
ab ≫ m2

3/2

described in section 3.

At the stationary point of the potential, the VEV that the Da’s actually develop

depend quadratically on the auxiliary fields of all the non-trivially transforming chiral

multiplets, and are given by the relation (3.1), which becomes now:

Da = −2
∑

b

M−2ab
(

Gbij̄ F iF j̄ + Gbxx̄ F xF x̄ + Gbix̄ F iF x̄ + Gbxj̄ F xF j̄
)

. (4.8)

Neglecting terms of order O(δia|Hx|2), the coefficients appearing in this expression are

found to be Gbij̄ =
∑

x qxbK̃xx̄ij̄|Hx|2−∑

k δkbK̂kij̄, Gbxx̄ = qxbK̃xx̄ and Gbxi = qxbK̃xx̄iH̄
x.

Substituting these expressions into eq. (4.8), completing the squares and using also the

expressions (4.3), one can rewrite the result as:

Da = −2
∑

b

M−2ab

[

(

∑

x

qxb |Hx|2
(

K̃xx̄ij̄ − K̃−1
xx̄ K̃xx̄iK̃xx̄j̄

)

−
∑

k

δkb K̂ij̄k

)

F iF j̄

+
∑

x

qxb gxx̄ F̃ xF̃ x̄

]

, (4.9)

where

F̃ x = F x + gxx̄gx̄iF
i . (4.10)
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The VEV of the fields Hx are related to the VEV of the fields M i. Indeed, since the

auxiliary fields Da must obtain a small VEV of O(m2
3/2/M

2
a ), the terms of O(m3/2) in the

expression (4.6) must cancel out. This leading order approximate D-flatness condition

Da ≃ 0 implies that
∑

x qxa gxx̄ |Hx|2 ≃ ∑

k δka K̂k. The VEV of the Hx’s are then

completely determined in terms of the VEV of the M i’s. Indeed, multiplying this equation

by q−1
ya and summing then over a, one extracts:

|Hx| ≃ g
−1/2
xx̄ vx , (4.11)

where

vx =
(

∑

k,a

δkaq
−1
ax K̂k

)1/2
. (4.12)

The mass of the vector fields (4.7) is dominated by the second term. The mass matrix

and its inverse can then be approximately written as:

M2
ab ≃ 2

∑

x

qxaqxbv
2
x , M−2ab ≃ 1

2

∑

x

q−1
ax q−1

bx v−2
x . (4.13)

The values of the auxiliary fields Fx are similarly related to the values of the auxiliary

fields Fi. Indeed, according to eq. (2.7), the Da’s can also be written as linear combinations

of the Fi’s and Fx’s: Da = − i
(

Xx
a Fx + Xk

aFk

)

/m3/2, and the approximate D-flatness

conditions Da ≃ 0 imply thus also the approximate relations (3.2), which in our case read
∑

x qxaH
xFx ≃ ∑

k δkaFk. Multiplying this equation by q−1
ya , summing over a and using

the relation (4.11), one deduces then that the Fx are completely determined in terms of

the Fi:

Fx = g
1/2
xx̄ v−1

x

∑

k,a

δkaq
−1
ax Fk . (4.14)

It is now straightforward to derive the values of the auxiliary fields with upper indices,

by using the inverse metric (4.4). Since Fx is suppressed by a factor of order O(Hx) with

respect to Fi, it is enough to keep O(Hx) terms only in F x, and neglect them in F i. The

non-vanishing off-diagonal component gxj̄ is thus relevant only in the computation of F x,

and after using gxj̄ = −gxx̄gij̄gix̄, one finds F x = gxx̄
(

Fx̄ − gij̄gix̄Fj̄

)

and F i = gij̄Fj̄. This

implies then the simple relation F̃ x = gxx̄Fx̄. Finally, using the relation (4.14), we see

that gauge invariance forces the F̃ x’s to be linear combinations of the F i’s:

F̃ x = g
−1/2
xx̄ v−1

x

∑

k,a

δkaq
−1
ax K̂kj̄F

j̄ . (4.15)

The above results on the relation between the auxiliary fields of the Higgs fields and

those of the supersymmetry breaking fields are most conveniently summarized through the

relation between F x/Hx and F i. This can be easily deduced from the already mentioned
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relation F x = gxx̄
(

Fx̄ − gij̄gix̄Fj̄

)

, after using eqs. (4.11) and (4.14). The result takes the

following simple form:

F x

Hx
= ∂i ln

(

K̃−1
xx̄

∑

k,c

δkcq
−1
cx K̂k

)

F i . (4.16)

We can now come back to the problem of evaluating eq. (4.9). Using the above results

(4.11), (4.13) and (4.15) for |Hx|, M−2ab and F̃ x, one obtains:

Da =
∑

x

q−1
ax

[

−
(

K̃−1
xx̄ K̃xx̄ij̄ − K̃−2

xx̄ K̃xx̄iK̃xx̄j̄

)

+
(

∑

k,b

δkbq
−1
bx v−2

x K̂ij̄k −
∑

k,l,b,c

δkbq
−1
bx δlcq

−1
cx v−4

x K̂kj̄ K̂il̄

)

]

F iF j̄ . (4.17)

Recalling the expression (4.12) for vx, this result can finally be rewritten in the very simple

form

Da =
∑

x

q−1
ax ∂i∂j̄ ln

(

K̃−1
xx̄

∑

k,c

δkcq
−1
cx K̂k

)

F iF j̄ . (4.18)

The above result can in fact be derived in a much simpler way by integrating out the

heavy vector fields at the superfield level, along the lines of [37, 38] and [25, 26]. In the

limit where Ma ≫ m3/2, supercovariant derivatives can be neglected and the equations of

motion are entirely controlled by the Kähler potential. To start with, it is convenient to

define the following new gauge-invariant combinations of chiral and vector fields:

Q′α = Qα exp

{

−
∑

x,a

qαaq
−1
ax ln Hx

}

,

M ′i = M i +
∑

x,a

δiaq
−1
ax ln Hx , (4.19)

V ′a = V a +
∑

x

q−1
ax

(

ln Hx + ln H̄x
)

.

These allow to rewrite the Kähler potential and the superpotential with one less type of

fields, namely without any H ′
x. In fact, this procedure can actually be interpreted as a

gauge-fixing corresponding to setting H ′
x = 1, with the choice Λa = i

∑

x q−1
ax ln Hx for the

superfield gauge parameter. The Kähler potential can then be rewritten as

K = K̂
(

M ′i + M̄ ′i −
∑

a

δiaV
′a

)

+
∑

x

K̃xx̄

(

M ′i + M̄ ′i −
∑

a

δiaV
′a

)

e
P

aqxaV ′a

+
∑

α

Kαᾱ

(

M ′i + M̄ ′i −
∑

a

δiaV
′a

)

Q̄′αe
P

aqαaV ′a
Q′α + . . . , (4.20)

and the superpotential as

W = Ŵ
(

M ′i
)

+ . . . . (4.21)
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The superfield equations of motion for V ′a are now easily computed by taking a derivative

of K with respect to V ′a. At leading order in δia, and ignoring the visible sector fields,

one finds:

∑

x

qxaK̃xx̄

(

M ′i + M̄ ′i
)

e
P

b qxbV
′b

=
∑

k

δkaK̂k

(

M ′i + M̄ ′i
)

. (4.22)

Notice that we could neglect the dependence on V ′a in all the brackets. This is a radical

simplification, which is crucial to be able to algebraically solve for V ′a. The solution for

V ′a is finally obtained by using the inverse charge matrix q−1
ax . One finds:

V ′a =
∑

x

q−1
ax ln

(

K̃−1
xx̄

∑

k,c

δkcq
−1
cx K̂k

)

. (4.23)

Having found the solution of the superfield equation of motion for V ′a, it is now trivial

to deduce the value of its D′a auxiliary component in terms of the auxiliary fields F ′i.

Taking the D-component of (4.23), one reproduces indeed the result (4.18):

D′a =
∑

x

q−1
ax ∂i∂j̄ ln

(

K̃−1
xx̄

∑

k,c

δkcq
−1
cx K̂k

)

F ′iF ′j̄ . (4.24)

4.2 Structure of the soft masses

The soft masses of the visible fields are given by the expressions (4.5) and (4.18), and have

the following rather simple and compact structure:

m2
αᾱ = −gαᾱ ∂i∂j̄

[

ln
(

Kαᾱe−K̂/3
)

+
∑

a,x

qαaq
−1
ax ln

(

K̃−1
xx̄

∑

k,c

δkcq
−1
cx K̂k

)

]

F iF j̄ . (4.25)

The expression (4.25) represents the result we were aiming at. It shows that the results

of [25, 26] generalize in a pretty simple way to more general situations involving several

U(1) symmetries, which can be either anomalous or non-anomalous, with equally many

gauge symmetry breaking fields, and an arbitrary set of moduli fields, which can either

shift or not shift under gauge transformations.

The physical soft masses can be obtained by rescaling the above expression by the

metric gαᾱ, which appears as a non-trivial wave-function factor in the kinetic term. The

result can then be rewritten in the following suggestive form:

m2
α = m2

Fα −
∑

a,x

qαaq
−1
ax

(

m2
Fx − m2

Ax

)

, (4.26)

where

m2
Fα = −∂i∂j̄ ln

(

Kαᾱe−K̂/3
)

F iF j̄ ,

m2
Fx = −∂i∂j̄ ln

(

K̃xx̄e−K̂/3
)

F iF j̄ , (4.27)

m2
Ax = −∂i∂j̄ ln

(

∑

c

q−1
cx K̂ce

−K̂/3
)

F iF j̄ .
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The first term is the usual F -term contribution. The second term isolates a general

part of the D-term contribution that has the same form as for non-anomalous U(1) sym-

metries, and consists in a linear combination of the F -term masses of the Higgs fields

suitably weighted by their charges. Finally, the third contributions encodes essentially

the non-trivial effects due to the fact that some U(1) symmetries are anomalous, with

some supersymmetry breaking fields transforming non-trivially under them.

One can also compute the form of the flatness and stability constraints (3.3) and (3.4).

The effects of chiral multiplets correspond to the unique term in (3.3) and the first term

in (3.4). In the case treated here, one should in principle include the effects of both the

M i and the Hx fields. However, the terms involving F x are negligible with respect to the

terms involving F i, meaning that that the effect of the Hx fields can be neglected. The

effects of the fields V a have already been neglected in (3.3) but lead to the potentially

sizable second term in (3.4). This term can be computed by using the result (4.18),

and can then be reexpressed as a correction to the effective curvature for the fields M i.

However, it also turns out to be negligible, essentially because the ”charges” induced for

the moduli fields are only of order O(δia) and thus small. In the end, the flatness and

stability constraints can be written in terms of the metric and the curvature of the moduli

space simply as:

gij̄ F iF j̄ ≃ 3m2
3/2 , (4.28)

Rij̄pq̄ F iF j̄F pF q̄ <∼ 6m4
3/2 . (4.29)

The physical components of the Goldstino directions can be obtained by suitably

rescaling the auxiliary fields by the square root of the metric, which appears in front of

their kinetic terms.

Notice finally that the rescaling procedure needed to switch to canonical scalar and

auxiliary fields corresponds geometrically to switching to normal coordinates around the

vacuum point. It is then natural to rewrite the above results in this local frame, whose

indices will be denoted with capital letters. This is done simply by defining Qα = eαα Qα,

M I = eI
i M

i, HX = eX
x Hx, and V A = eA

a V a, with the help of the vielbeins eαα , eI
i , eX

x

and eA
a . In this new basis the metrics are trivial: gαβ̄ = δαβ̄, gIJ̄ = δIJ̄ , gXȲ = δXȲ

and hAB = δAB . The physical soft scalar masses are then given in terms of the rescaled

auxiliary fields F I = eI
i F

i by

m2
αᾱ =

[

1

3
δIJ̄ − RαᾱIJ̄ +

∑

A,X

qαAq−1
AX

(

RXX̄IJ̄ − SXX̄IJ̄

)

]

F IF J̄ , (4.30)

and the flatness and stability conditions by

δIJ̄ F I F̄ J̄ ≃ 3m2
3/2 , (4.31)

RIJ̄P Q̄ F I F̄ J̄FP F̄ Q̄ <∼ 6m4
3/2 , (4.32)
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where qαA ≡ qαa, qXA ≡ qxa and

RIJ̄P Q̄ = ei
Ie

j̄
J̄
ep
P eq̄

Q̄

(

K̂ij̄pq̄ − K̂rs̄K̂ips̄K̂j̄q̄r

)

,

RαᾱIJ̄ = ei
Ie

j̄
J̄

∂i∂j̄ ln
(

Kαᾱ

)

, RXX̄IJ̄ = ei
Ie

j̄
J̄

∂i∂j̄ ln
(

K̃xx̄

)

, (4.33)

SXX̄IJ̄ = ei
Ie

j̄
J̄

∂i∂j̄ ln
(

∑

k,c

δkcq
−1
cx K̂k

)

.

4.3 Basic moduli

Let us now illustrate the general result derived above in the particular case where the

supersymmetry breaking fields are a set of universal string moduli, each spanning a dis-

tinct one-dimensional Kähler manifold, which in the low-energy limit has the form of an

SU(1, 1)/U(1) coset space. In general, all these moduli can shift under the U(1) sym-

metries, with arbitrary but small shifts δia. The Kähler potential has then the following

structure:

K̂ = −
∑

i

ci ln
(

M i + M̄ i −
∑

a

δiaV
a
)

. (4.34)

Applying eqs. (4.33), one easily finds:

RIJ̄P Q̄ =
2

cI
δIJ̄P Q̄ , (4.35)

SXX̄IJ̄ =
2

cI

tIX
(
∑

K tKX

) δIJ̄ − 1√
cIcJ

tIX tJX
(
∑

K tKX

)2 , (4.36)

in terms of the following quantities, proportional to the inverse of the VEV of the moduli

fields through a particular linear combination of their shift parameters:

tIX =
∑

a

δiaq
−1
ax ci

(

M i + M̄ i
)−1

. (4.37)

The quantities RαᾱIJ̄ and RXX̄IJ̄ represent the unspecified mixed components of the cur-

vature corresponding to the direct mixing between matter and Higgs fields with moduli

fields. These generically depend on the VEV of the moduli fields, but there exist also spe-

cial situation where they are constant. For instance, if Kαᾱ =
∏

i

(

M i+M̄ i−∑

a δiaV
a
)nαi

and Kxx̄ =
∏

i

(

M i + M̄ i −∑

a δiaV
a
)nxi , with constant modular weights nαi and nxi, like

in modular-invariant heterotic models, then one finds simply RαᾱIJ̄ = −nαI δIJ̄ and

RXX̄IJ̄ = −nXI δIJ̄ . On the other hand, the quantity SXX̄IJ̄ has a fixed dependence on

the moduli fields, which is non-trivial as soon as several fields shift under U(1) symme-

tries. In the particular case of models with a single anomalous U(1) and a single shifting

modulus M0, one has however tIX = t0X δ0I and one finds thus a constant result given by

SXX̄IJ̄ = c−1
0 δ0IJ̄ , independently of the values of the shift and the charges.
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5 Models with non-canonical Higgs fields

Let us consider next the case of U(1) symmetries that are realized through rephasings on

the matter fields Qα and through shifts ηxa and δia on the gauge symmetry breaking fields

Mx and on the supersymmetry breaking fields M i. This means that the components of

the Killing vectors defining the action of the U(1) symmetries are given by Xα
a = i qαaQ

α,

Xx
a = − i ηxa and Xi

a = − i δia. For simplicity, we shall again assume for the moment that

δia ≪ 1, and evaluate all the formulae at leading order in the parameters δia. But we

will instead work exactly in the quantities ηxa. In this situation, the would-be goldstone

bosons that are absorbed by the gauge vectors are mostly linear combinations of the fields

Mx, with only a small mixture of the fields M i. We will also consider again the minimal

situation where the number of gauge symmetry breaking fields Mx with non-zero shifts

ηxa is equal to the number of U(1) vector fields V a. The shift matrix ηxa is then a square

matrix that admits an inverse η−1
ax .

In this case, we will take as starting point the following general form of the Kähler

potential, with an unspecified non-canonical term for the Higgs fields:

K = K̂
(

M i + M̄ i −
∑

a

δiaV
a
)

+ K̃
(

Mx + M̄x −
∑

a

ηxaV
a
)

+
∑

α

Kαᾱ

(

M i + M̄ i −
∑

a

δiaV
a
)

Q̄αe
P

aqαaV a
Qα + . . . . (5.1)

The superpotential is instead left to be a generic gauge-invariant holomorphic function of

the shifting moduli M i and Mx:

W = Ŵ
(

M i −
∑

a,x

δiaη
−1
ax Mx

)

+ . . . . (5.2)

The dots denote as before possible additional terms which are of higher order in the fields

and can therefore be neglected.

On the vacuum, the Kähler metric is in this case block-diagonal, and the soft masses

take the same form as before:

m2
αᾱ = −gαᾱ

[

∂p∂q̄ ln
(

Kαᾱe−K̂/3
)

F pF q̄ +
∑

a

qαaD
a

]

. (5.3)

Our main task is again to compute the Da’s in terms of the F i’s, after exploiting the fact

that in the minimal situation under consideration, gauge invariance completely fixes the

VEV of Mx and F x in terms of the VEV of M i and F i.

5.1 Relation between auxiliary fields

The vector auxiliary fields is determined by the relation Da = −Ga and takes in this case

the following form:

Da =
∑

k

δka K̂k +
∑

x

ηxa K̃x . (5.4)

18



The mass matrix M2
ab of the vectors fields is given by

M2
ab = 2

∑

i,j

δiaδj̄b K̂ij̄ + 2
∑

x,y

ηxaηyb K̃xy . (5.5)

At the stationary point of the potential, the VEV that the Da actually develop are

given by the relation (3.1):

Da = −2
∑

b

M−2ab
(

Gbij̄ F iF j̄ + Gbxȳ F xF ȳ
)

. (5.6)

One easily calculates Gbij̄ = −∑

k δkbK̂kij̄ and Gbxȳ = −∑

z ηzbK̃zxȳ. Substituting these

expressions into eq. (5.6), one finds:

Da = 2
∑

b

M−2ab

[

∑

k

δkb K̂ij̄k F iF j̄ +
∑

z

ηzb K̃xȳz F xF ȳ

]

, (5.7)

Before proceeding, we shall now make the following further mild assumptions concern-

ing the form of the Kähler potential of the Higgs fields:

K̃ ′′ = diagonal , (5.8)

K̃ ′′/(K̃ ′)2 ≫ K̂ ′′/(K̂ ′)2 . (5.9)

These assumptions are not strictly necessary, but they simplify the computation enough

to be able to carry it out in general.

The VEV of the Mx are related to the VEV of the M i. Indeed, the approximate

D-flatness conditions Da ≃ 0 imply that
∑

x ηxa K̃x ≃ −
∑

k δka K̂k. Thanks to (5.8), one

can then formally extract the value of the Higgs fields in terms of the inverse function

K̃ inv
x of the function K̃x. One finds:

Mx + M̄x ≃ K̃ inv
x

(

v2
x

)

, (5.10)

where now

vx =
(

−
∑

k,a

δkaη
−1
ax K̂k

)1/2
. (5.11)

As a consequence of (5.9), the mass of the vector fields (5.5) is again dominated by the

second term. The mass matrix and its inverse can then be approximately written as:

M2
ab ≃ 2

∑

x

ηxaηxbK̃xx̄ , M−2ab ≃ 1

2

∑

x

η−1
ax η−1

bx K̃−1
xx̄ . (5.12)

The values of the auxiliary fields Fx are similarly related to the values of the auxiliary

fields Fi. Indeed, the approximate relation (3.2) implies that
∑

x ηxaFx ≃ −∑

k δkaFk.

One deduces then that:

Fx = −
∑

k,a

δkaη
−1
ax Fk . (5.13)
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In this case, it is trivial to derive the values of the auxiliary fields with upper indices, since

the fields Mx and M i do not mix in the Kähler potential. One simply has F x = gxx̄Fx̄

and F i = gij̄Fj̄. This implies then that

F x = −K̃−1
xx̄

∑

k,a

δkaη
−1
ax K̂kj̄F

j̄ . (5.14)

Finally, the above expression can also be rewritten in a more illuminating form. Indeed,

by the definition of the inverse function appearing in (5.10) one has (K̃ inv
x )′ = K̃−1

xx̄ , and

thus:

F x = ∂i K̃ inv
x

(

−
∑

k,c

δkcη
−1
cx K̂k

)

F i . (5.15)

We can now evaluate eq. (5.7). Using the above results (5.10), (5.12) and (5.14) for

Mx + M̄x, M−2ab and F x, one obtains:

Da =
∑

x

η−1
ax

[

∑

k,b

δkbη
−1
bx K̃−1

xx̄ K̂ij̄k +
∑

k,l,b,c

δkbη
−1
bx δlcη

−1
cx K̃xx̄x K̃−3

xx̄ K̂kj̄ K̂il̄

]

F iF j̄ .(5.16)

Recalling the expression (5.11) for vx, and noticing that by the definition of the inverse

function appearing in (5.10) one has (K̃ inv
x )′ = K̃−1

xx̄ and (K̃ inv
x )′′ = −K̃xxx̄K̃−3

xx̄ , this result

can finally be rewritten simply as

Da = −
∑

x

η−1
ax ∂i∂j̄ K̃ inv

x

(

−
∑

k,c

δkcη
−1
cx K̂k

)

F iF j̄ . (5.17)

The above result can again be derived in a much simpler way by integrating out the

heavy vector fields at the superfield level. To do so, we define the following new gauge-

invariant combinations of chiral and vector fields:

Q′α = Qα exp

{

∑

x,a

qαaη
−1
ax Mx

}

,

M ′i = M i −
∑

x,a

δiaη
−1
ax Mx , (5.18)

V ′a = V a −
∑

x

η−1
ax

(

Mx + M̄x
)

.

These combinations of fields allow to rewrite the theory with one less type of fields, without

any M ′x. This procedure can as before be interpreted as a gauge fixing corresponding to

setting M ′x = 0, with the choice Λa = − i
∑

x η−1
ax Mx for the superfield gauge parameter.

The Kähler potential can then be rewritten as

K = K̂
(

M ′i + M̄ ′i −
∑

a

δiaV
′a

)

+ K̃
(

−
∑

a

ηxaV
′a

)

+
∑

α

Kαᾱ

(

M ′i + M̄ ′i −
∑

a

δiaV
′a

)

Q̄′αe
P

aqαaV ′a
Q′α + . . . , (5.19)
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and the superpotential as

W = Ŵ
(

M ′i
)

+ . . . . (5.20)

The superfield equations of motion for V ′a are now easily computed by taking a derivative

with respect to V ′a. At leading order in the shift parameters δia, one finds just:
∑

x

ηxaK̃x

(

−
∑

b

ηxbV
′b
)

= −
∑

k

δkaK̂k

(

M ′i + M̄ ′i
)

. (5.21)

From this one easily extracts the following solution for V̂ a:

V ′a = −
∑

x

η−1
ax K̃ inv

x

(

−
∑

k,c

δkcη
−1
cx K̂k

)

. (5.22)

Taking the D-component of (5.22), one finally recovers eq. (5.17):

D′a = −
∑

x

η−1
ax ∂i∂j̄ K̃ inv

x

(

−
∑

k,c

δkcη
−1
cx K̂k

)

F ′iF ′j̄ . (5.23)

5.2 Structure of soft masses

The soft masses of the visible fields are in this case given by the formulae (5.3) and (5.17),

and have the following structure:

m2
αᾱ = −gαᾱ ∂i∂j̄

[

ln
(

Kαᾱe−K̂/3
)

−
∑

a,x

qαaη
−1
ax K̃ inv

x

(

−
∑

k,c

δkcη
−1
cx K̂k

)

]

F iF j̄ . (5.24)

The expression (5.24) represents the generalization of (4.25) to the case where the Higgs

fields have an arbitrary Kähler potential but do not directly mix to the moduli fields.

Taking K̃(x) = ex, so that K̃ inv
x (y) = ln(y), one recovers the situation of previous section

in the particular case K̃xx = 1, after identifying Hx = eMx
and qxa = −ηxa. Eq. (5.24)

shows that in the situation where the Higgs fields have a non-canonical Kähler potential,

the D-term contribution to soft masses has a functional dependence that is determined by

the inverse function of the first derivative of this potential. This can in particular happen

to vanish if the functional form of the Kähler potential for the Higgs fields is related to

that of the moduli fields.

The physical soft masses, obtained by rescaling the above expression by the metric

gαᾱ, can be rewritten in the form:

m2
α = m2

Fα +
∑

a,x

qαaη
−1
ax

(

m2
Fx − m2

Ax

)

, (5.25)

where now

m2
Fα = −∂i∂j̄ ln

(

Kαᾱe−K̂/3
)

F iF j̄ ,

m2
Fx = −∂i∂j̄ K̃ inv

x

(

e−K̂/3
)

F iF j̄ , (5.26)

m2
Ax = −∂i∂j̄ K̃ inv

x

(

−
∑

c

η−1
cx K̂ce

−K̂/3
)

F iF j̄ .
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The first term is the usual F -term contribution. The second term isolates as before a

general part of the D term contribution consisting of a linear combination of generalized

F -term masses of the Higgs fields suitably weighted by their charges. Finally, the third

contributions encodes the non-trivial effects related to anomalies.

The flatness and stability constraints (3.3) and (3.4) are as before dominated by the

moduli fields. The effects of the Higgs fields and of the vector fields are again small as a

consequence of the assumption that the shift vectors δia of the supersymmetry breaking

fields are small. In the end, the flatness and stability constraints read thus simply:

gij̄ F iF j̄ ≃ 3m2
3/2 , (5.27)

Rij̄pq̄ F iF j̄F pF q̄ <∼ 6m4
3/2 . (5.28)

As before, the physical components of the Goldstino direction are obtained by rescal-

ing the auxiliary fields by the square root of the metric, and the flatness and stability

constraints are unchanged.

In the frame of normal coordinates around the vacuum, corresponding to canonically

normalized fields, the physical soft scalar masses can also be written as

m2
αᾱ =

[

1

3
δIJ̄ − RαᾱIJ̄ +

∑

A,X

qαAη−1
AX SXX̄IJ̄

]

F IF J̄ , (5.29)

and the flatness and stability conditions read

δIJ̄ F I F̄ J̄ = 3m2
3/2 , (5.30)

RIJ̄P Q̄ F I F̄ J̄FP F̄ Q̄ ≤ 6m4
3/2 , (5.31)

where qαA ≡ qαa, ηXA ≡ ηxa and

RIJ̄P Q̄ = ei
Ie

j̄
J̄
ep
P eq̄

Q̄

(

K̂ij̄pq̄ − K̂rs̄K̂ips̄K̂j̄q̄r

)

,

RαᾱIJ̄ = ei
Ie

j̄
J̄

∂i∂j̄ ln
(

Kαᾱ

)

, (5.32)

SXX̄IJ̄ = ei
Ie

j̄
J̄

∂i∂j̄ K̃ inv
x

(

−
∑

k,c

δkcη
−1
cx K̂k

)

.

5.3 Basic moduli

Let us finally see what happens in the particular case where the supersymmetry breaking

fields and the gauge symmetry breaking fields both belong to a set of universal string

moduli, each spanning an SU(1, 1)/U(1) manifold. In general, all the supersymmetry

breaking and gauge symmetry breaking fields can shift under the U(1) symmetries, with

shifts δia and ηxa. The Kähler potential has the following structure:

K̂ = −
∑

i

ci ln
(

M i + M̄ i −
∑

a

δiaV
a
)

, (5.33)

K̃ = −
∑

x

cx ln
(

Mx + M̄x −
∑

a

ηxaV
a
)

. (5.34)
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In this interesting situation, the approximations done to derive eq. (5.29) are unfortunately

not valid. In particular, one has K̃ ′′/(K̃ ′)2 ∼ K̂ ′′/(K̂ ′)2, in conflict with (5.9). As a

consequence, it is not possible to neglect terms with higher powers of δia, and one has

to do an algebraically exact computation. This is feasible, thanks to the simple form of

the Kähler potential, but unfortunately only a case by case analysis seems to be possible.

Notice nevertheless that applying eqs. (5.32), one would find:

RIJ̄P Q̄ =
2

cI
δIJ̄P Q̄ , (5.35)

SXX̄IJ̄ = −2 cX

cI

tIX
(
∑

K tKX

)2 δIJ̄ +
2 cX√
cIcJ

tIX tJX
(
∑

K tKX

)3 , (5.36)

in terms of the quantities

tIX = −
∑

a

δiaη
−1
ax ci

(

M i + M̄ i
)−1

. (5.37)

The quantity SXX̄IJ̄ has again a fixed dependence on the moduli fields. This is non-trivial

when several supersymmetry breaking fields shift under U(1) symmetries. But whenever

there is a single shifting modulus M0 breaking supersymmetry and being stabilized inde-

pendently, one has tIX = t0X δ0I and the result vanishes: SXX̄IJ̄ = 0. This suggests that

in this case there is no D-term effect in the soft masses.

For any fixed number of supersymmetry and gauge symmetry breaking fields with

Kähler potential given by (5.33) and (5.34), it is possible to compute the exact expression

for the D-term contribution to soft masses in a rather straightforward way, by using the

method of integrating out the vector multiplets at the superfield level. In the presence

of a single supersymmetry breaking field M0 with non-trivial shifts δ0a, the equations of

motions of the vector superfields imply that
∑

a YxaV
′a = M ′0+M̄ ′0, in terms of the square

matrix Yxa = δ0a + (c0/cx)
∑

b δ0b η−1
bx ηxa. The solution of this linear system of equations

takes then the simple form V ′a =
(
∑

x Y −1
ax

)(

M ′0 + M̄ ′0
)

. This result implies that the

corresponding Da vanish, and shows that there is indeed no effect in this particular case.

It should also be noted that in this case the VEV of the Higgs scalar fields and their

auxiliary partners cannot be neglected and contribute on the same footing as the moduli

fields to the vacuum energy and the moduli soft masses, and thus to the flatness and

stability conditions. In other words, one must in this case include in the set of multiplets

contributing to supersymmetry breaking also the Higgs multiplets, and since the VEV of

these multiplets are determined in terms of the VEV of the other moduli multiplets, a

special restriction on the Goldstino direction arises.

6 Toroidal string models

Let us now study more in detail what happens in the simplest string models, based on a

toroidal compactification geometry with some discrete orbifold or orientifold projection,
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under the assumption that the supersymmetry breaking sector is identified with the sec-

tor of the untwisted moduli. These include the dilaton S, the Kähler class and complex

structure moduli Tr and Us, and the Wilson line moduli Za. The scalar fields of the corre-

sponding chiral multiplets control respectively the string coupling, the size and the shape

of the compactification geometry, and the structure of the gauge bundle. The Kähler po-

tential of such moduli is determined, at leading order in the weak-coupling and low-energy

expansions, by a simple dimensional reduction of the minimal ten-dimensional supergrav-

ity theory. On a torus, the moduli space would be the product of an SU(1, 1)/U(1) factor,

parametrized by S, and an SO(6, 6 + r)/(SO(6) × SO(6 + r)) factor, r being the rank

of the gauge group, parametrized by the Tr, Us and Za. The discrete projection defin-

ing the model preserves the first factor but reduces the second factor to a submanifold.

This is in general a coset Kähler manifold which cannot be completely factorized. More

precisely, it consists of up to 6 basic dimensions spanning SU(1, 1)/U(1, 1) submanifolds,

associated with the universal Kähler class and complex structure moduli Tr and Us, and

a variable number of additional dimensions, associated with additional model-dependent

moduli, which enhanced the product of these basic factors to a larger and more symmetric

manifold. For simplicity, we will assume that only the basic ”diagonal” moduli associated

with the SU(1, 1)/U(1) submanifolds participate to supersymmetry breaking, whereas the

additional ”non-diagonal” moduli enhancing the scalar manifold do not have a relevant

breaking effect. This assumption is not expected to represent a severe limitation, because

the latter are associated with additional isometries, which suggest that it should be pos-

sible to rephrase in an equivalent way effects due to off-diagonal moduli as a effects due

to diagonal moduli 3.

Ignoring for the moment vector fields, the Kähler potential for the moduli sector has

the following simple and separable structure, at leading order in the low-energy and week-

coupling expansions [39, 40, 41]:

K̂ = −ln
(

S + S̄
)

−
∑

r

ln
(

Tr + T̄r

)

−
∑

s

ln
(

Us + Ūs

)

. (6.1)

The flatness condition implies that the rescaled auxiliary fields can be parametrized in

terms of a Goldstino angle θ, controlling the relative importance of the dilaton S and

the geometric moduli Tr and Us, some spherical parameters Θr and Θs, satisfying the

constraint
∑

r Θ2
r +

∑

r Θ2
s = 1 and parametrizing the relative importance of the different

geometric moduli, as well as some arbitrary phases γ, γr and γs (the bars denote flat

indices) [8]:

F S̄ =
√

3 eiγ sin θ m3/2 , (6.2)

F T̄r =
√

3 Θr eiγr cos θ m3/2 , F Ūs =
√

3 Θs eiγs cos θ m3/2 . (6.3)

3This is certainly true for the masses of the moduli themselves, and the off-diagonal fields do not allow

to alleviate the flatness and stability conditions arising for the basic moduli [11]. It is generically expected

to hold true also for the soft masses, provided however that the isometry group of the moduli space survives

as a global symmetry for the whole scalar manifold, including the matter fields.
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The stability condition implies further restrictions on the parameters θ and Θr. More

precisely, it reads

sin4 θ +
(

∑

r

Θ4
r +

∑

s

Θ4
s

)

cos4 θ <∼
1

3
. (6.4)

Notice that the quantity z =
∑

r Θ4
r +

∑

s Θ4
s is maximal when one of the Θr,s is equal to 1

and all the other 0, and minimal when all the Θr,s are equal to 1/
√

n, where n is the total

number of geometric moduli. So z ∈ [1/n, 1], and small and large values of z correspond

respectively to very democratic and antidemocratic distributions of the breaking among

the geometric moduli. It is straightforward to see that the condition (6.4) can be satisfied

for some θ only if z <∼ 1/2. This means that the breaking must be distributed over the

various geometric moduli in a sufficiently democratic way, in order to increase their weight

compared to the dilaton in the condition. Thus, one finds the necessary condition

∑

r

Θ4
r +

∑

s

Θ4
s

<∼
1

2
. (6.5)

When this condition is satisfied, that is z <∼ 1/2, the range of Goldstino angles satisfying

the bound is given by θ ∈
[

θ−, θ+

]

, where θ± = arccos
[(

1 ±
√

(1 − 2z)/3
)

/
(

1 + z
)]1/2

.

For z ≃ 1/2, there is only one critical value θ0 ≃ arcsin (3−1/2). For z < 1/2, there are

distinct minimal and maximal values θ− and θ+ departing monotonically from the critical

value θ0. For z ≃ 1/3, these reach the values θ− ≃ 0 and θ+ ≃ π/4. For smaller z ≪ 1/3,

the minimal value stays unchanged, θ− ≃ 0, whereas the maximal value saturates at the

the absolute upper bound θ+ ≃ arcsin (3−1/4). In any case, the Goldstino angle must

therefore certainly satisfy the following bound:

0 ≤ sin2 θ <
1√
3

. (6.6)

The above results show that none of the moduli is allowed to dominate supersymmetry

breaking on its own [10] (see also [42]). In particular, dilaton domination is excluded. On

the other hand, it is conceivable that the 3 or more of the geometric moduli may dominate.

In the presence of heavy vector fields associated to broken U(1) symmetries, some or

all of the moduli may acquire a small shift transformation law. A small VEV for D is

then generated. Its effect on the vacuum energy and the moduli masses can be neglected,

and the above results concerning the Goldstino direction remain approximately valid. On

the other hand, this small D gives significant effects on the soft terms of all the charged

fields, whose form depends on the details of the models.

6.1 Heterotic models

Let us first study the case of heterotic orbifold models [43, 44]. In these models, there

can be only one anomalous U(1) symmetry, and the Green–Schwarz mechanism involves

only S and not Tr or Us. The Higgs fields are always charged matter fields Hx and have

a canonical Kähler potential.
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The situation is of the type discussed in section 4, and the general form of the Kähler

potential is given by eq. (4.1). The potential of the moduli has the simple form:

K̂ = −ln
(

S + S̄ −
∑

a

δaV
a
)

−
∑

r

ln
(

Tr + T̄r

)

−
∑

s

ln
(

Us + Ūs

)

. (6.7)

The couplings between the moduli fields and the matter and Higgs fields also have in this

case a simple structure and depend on constant modular weights nαr, nαs and nxr, nxs,

representing the charges of the matter field Qα and the Higgs field Hx with respect to the

U(1) isometry transformations associated to the moduli Tr, Us [45, 46]:

Kαᾱ =
∏

r

(

Tr + T̄r

)nαr ∏

s

(

Us + Ūs

)nαs

, (6.8)

Kxx̄ =
∏

r

(

Tr + T̄r

)nxr ∏

s

(

Us + Ūs

)nαs

. (6.9)

Notice that the corresponding mixed components of the Riemann tensor are given simply

by RαᾱIJ̄ = −nαi δij̄ and RXX̄IJ̄ = −nxi δij̄, and are thus field-independent and diagonal.

This leads to a very simple structure for the F -term contribution to soft terms [8].

The expression for the physically normalized soft scalar masses can be obtained by

applying the general results derived in section 4. One finds the following very simple

result

m2
α

m2
3/2

=
[

1 + nα cos2 θ
]

−
∑

a,x

qαaq
−1
ax

[

nx cos2 θ + 3 sin2 θ
]

, (6.10)

in terms of the total modular weights

nα = 3
(

∑

r

nαrΘ
2
r +

∑

s

nαsΘ
2
s

)

, (6.11)

nx = 3
(

∑

r

nxrΘ
2
r +

∑

s

nxsΘ
2
s

)

. (6.12)

In the particular case where a single anomalous U(1) is present, without any extra non-

anomalous U(1), eq. (6.10) simplifies to 4

m2
α

m2
3/2

= 1 +
(

nα − qα

qx
nx

)

cos2 θ − 3
qα

qx
sin2 θ . (6.13)

The formula (6.13) shows that the soft scalar masses are universal for an arbitrary θ

only if both the modular weights nα and the U(1) charges qα are universal. In the dilaton

domination limit θ → π/2, it is enough that the charges qα are universal. This situation

4The expression (6.13) differs from the one derived in [22, 23, 24] by the coefficient and the dependence

on the Goldstino angle of the last term, which plays an important role for the issue of flavor universality.

This can be traced back to the fact that the expression obtained by applying eq. (4.16) for the values of

the auxiliary components of the Higgs fields differs from the one used in [22, 23, 23], where the dependence

on Hx implied by gauge invariance in the superpotential stabilizing S was not taken into account.
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is however excluded by metastability considerations. On the other hand, in the geometric

moduli domination limit θ → 0, it is enough that the combination nα − qα/qx nx, acting

as an effective modular weight, is universal. This situation is allowed by metastability

consideration, and we will consider it as our preferred scenario. Summarizing, one could

conceivably achieve universal soft masses if θ → 0 and the differences between the modular

weights and the charges of any pair of different flavors of matter fields satisfy:

∆n − ∆q

qx
nx = 0 . (6.14)

It is now worth to comment on what happens in the situation of [20, 21], where the U(1)

symmetries play the role of flavor symmetries. In these works it was shown that a non-

zero perturbative Yukawa coupling mixing two flavors can arise from a gauge-invariant and

modular-invariant higher-dimensional operator involving powers of the gauge symmetry

breaking fields Hx, provided that the differences between the modular weights and the

charges of the two involved matter fields satisfy a selection rule which is precisely given

by eq. (6.14). In such a situation, the contribution to the soft scalar masses that we

have computed above would display an improved structure, with the difference between

two different flavors given simply by ∆m2/m2
3/2 = −3∆n/nx sin2 θ 5. In the volume

domination limit θ → 0, one finds in particular universal diagonal values for the soft

scalar mass matrix. However, it must be emphasized that the relation (6.14) also allows

the appearance of gauge-invariant and modular-invariant higher-dimensional operators in

the Kähler potential mixing two different families of matter fields and powers of the gauge

symmetry breaking fields Hx. These would induce subleading off-diagonal elements for

the soft mass matrix, which are as dangerous as differences between diagonal elements,

and represent the main difficulty in constructing viable supersymmetric flavor models.

It would nevertheless be interesting to further explore whether this somewhat peculiar

situation can help in getting a simple and satisfactory supersymmetric flavor model in

this framework, with the anomalous U(1) symmetry, possibly together with other non-

anomalous but Higgsed U(1) symmetries, playing the role of flavor symmetries.

6.2 Brane models

Let us consider now the case of intersecting brane models [47, 48, 49]. In these models,

there can be several anomalous U(1)’s, and the Green–Schwarz mechanism compensating

them involves linear combinations of S and the Us, but not the Tr. In this case, the

Higgs fields compensating the Fayet–Iliopoulos terms induced by the anomalous U(1)’s

can be either additional matter fields Hx with a canonical Kähler potential and a moduli-

5This result differs qualitatively from the one derived [20, 21], as far as the dependence on the Goldstino

angle is concerned. We believe that this is due to the fact that the simple minimization procedure used

in [20, 21] to derive the value of the vector auxiliary field also implicitly neglects the fact that gauge

invariance implies a non-trivial dependence of the F -term potential on the Higgs fields, which does not

amount just to their soft mass terms.
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dependent wave-function factor, or the complex structure moduli Us, which have a non-

canonical Kähler potential 6.

In the case where all the moduli S, Tr and Us are stabilized by F -term effects and the

D-terms are compensated by canonical matter Higgs fields Hx, the situation is of the type

discussed in section 4, and the general form of the Kähler potential is given by eq. (4.1).

The potential of the moduli has the simple form:

K̂ = −ln
(

S + S̄−
∑

a

δaV
a
)

−
∑

r

ln
(

Tr + T̄r

)

−
∑

s

ln
(

Us + Ūs−
∑

a

δsaV
a
)

.(6.15)

The form of the relevant couplings between the moduli fields and the matter and Higgs

fields have been studied only very recently in the literature [52, 53]. Their precise form is

still under debate [54], and does not seem to rest on any symmetry argument. For this

reason, we shall leave it arbitrary and take:

Kαᾱ = Kαᾱ

(

Tr + T̄r, Us + Ūs−
∑

a

δsaV
a
)

, (6.16)

K̃xx̄ = K̃xx̄

(

Tr + T̄r, Us + Ūs−
∑

a

δsaV
a
)

. (6.17)

We can however still parametrize the corresponding mixed components of the Riemann

tensor as RαᾱIJ̄ = −nαij̄ and RXX̄IJ̄ = −nxij̄. The quantities nαij̄ and nxij̄ play then

the role of effective modular weights. In general they can depend on the moduli fields and

have non-vanishing off-diagonal components. The structure of the F -term contribution to

soft terms is consequently more complicated in this case [55, 56].

We can now apply the results obtained in section 4 to derive the physically normalized

soft masses. The result can be written in terms of the above-defined effective modular

weights and reads

m2
α

m2
3/2

=
[

1 + nα cos2 θ
]

−
∑

a,x

qαaq
−1
ax

[

(

nx + bx

)

cos2 θ + ax sin2 θ + cx sin 2θ
]

, (6.18)

in terms of the total modular weights

nα = 3
(

∑

r,r′

nαrr′ΘrΘr′ +
∑

s,s′

nαss′ΘsΘs′

)

, (6.19)

nx = 3
(

∑

r,r′

nxrr′ΘrΘr′ +
∑

s,s′

nxss′ΘsΘs′

)

. (6.20)

6It is useful to recall that the angles defining the geometric orientation of the branes are determined by

the VEV and the shift charges of S and Us, whereas the nature of the intersection is possibly influenced by

localized Higgs fields Hx [48, 49, 50, 51]. The condition for approximate supersymmetry that the sources

induced for the D-terms by the fields S and Us vanish translates then into the conditions that the relative

angles between the branes should correspond to rotations belonging to an SU(3) subgroup of SO(6) and

preserving a U(1) factor. The two situations described above can then be interpreted as follows. In the first

case, the values of the angles are fixed by some F -term dynamics and violate supersymmetry; the VEV of

the additional Higgs fields can then be geometrically interpreted as corresponding to a recombination of the

branes through their intersections to a final state with new angles preserving approximately supersymmetry.

In the second case, the values of the angles are instead fixed by the D-term dynamics itself, and do thus

approximately preserve supersymmetry from the beginning.
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and the following functions of the variables (4.37) depending on the inverse VEV of the

moduli fields:

ax = 6
tSx

tSx +
∑

s tUsx
− 3

( tSx

tSx +
∑

s tUsx

)2
,

bx = 6
∑

s

tUsx

tSx +
∑

s tUsx
Θ2

s − 3
(

∑

s

tUsx

tSx +
∑

s tUsx
Θs

)2
, (6.21)

cx = − 3
( tSx

tSx +
∑

s tUsx

)(

∑

s

tUsx

tSx +
∑

s tUsx
Θs cos

(

γs − γ
)

)

.

In the particular case where a single anomalous U(1) is present, without any additional

anomalous or non-anomalous U(1) and only one Higgs field, the above expression simplifies

and yields

m2
α

m2
3/2

= 1 +
(

nα − qα

qx

(

nx + bx

)

)

cos2 θ − qα

qx

(

ax sin2 θ + cx sin 2θ
)

. (6.22)

The formula (6.22) shows that the soft scalar masses are as before universal for an

arbitrary θ only if both the modular weights nα and the U(1) charges qα are universal. In

the dilaton domination limit θ → π/2, it is enough that the charges qα are universal, but

this situation is again excluded by metastability considerations. In the geometric moduli

domination limit θ → 0, on the other hand, it is enough that the corrected modular

weight nα − qα/qx

(

nx + bx

)

is universal. Since nα and nx may have related functional

forms, but bx is instead an unrelated function, this universality could plausibly arise only

in situations where bx = 0. This happens for instance in the case where all the complex

structure moduli are stabilized in a supersymmetry way, so that Θs = 0. Summarizing,

one could conceivably achieve universal soft masses if θ → 0, Θs → 0, and the differences

between the effective modular weights and the charges of any pair of different flavors of

matter fields satisfy:

∆n − ∆q

qx
nx = 0 . (6.23)

In this situation, supersymmetry would be dominated only by the Kähler moduli. Since

there are 3 of them, the metastability condition is then marginally violated, and subleading

corrections to the Kähler potential are expected to play a crucial role in the stabilization

of the lightest modulus [10].

In the case where only the S and Tr moduli are stabilized by F -term effects, whereas

the Us moduli are stabilized by D-terms and act as Higgs fields, the situation is that of

section 5, and the general form of the Kähler potential is given by eq. (5.1). The potential

of the supersymmetry breaking moduli and the Higgs fields have the forms:

K̂ = −ln
(

S + S̄ −
∑

a

δaV
a
)

−
∑

r

ln
(

Tr + T̄r

)

, (6.24)

K̃ = −
∑

s

ln
(

Us + Ūs −
∑

a

ηsaV
a
)

. (6.25)
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The coupling between the moduli fields and the matter fields is again left arbitrary, whereas

the coupling between the moduli fields and the Higgs fields is in this case absent:

Kαᾱ = Kαᾱ

(

Tr + T̄r, Us + Ūs −
∑

a

ηsaV
a
)

. (6.26)

As before, we can still parametrize the mixed components of the Riemann tensor as

RαᾱIJ̄ = −nαij̄, where nαij̄ is some effective modular weight depending on the moduli

fields and possessing non-vanishing off-diagonal entries. On the other hand, RXX̄IJ̄ = 0

in this case.

We can now apply the results obtained in section 5 to derive the physically normalized

soft masses. As discussed in section 5, the D-term contribution to the soft masses vanishes

in this case. One finds then simply:

m2
α

m2
3/2

=
[

1 + nα cos2 θ
]

, (6.27)

in terms of the total modular weights

nα = 3
(

∑

r,r′

nαrr′ΘrΘr′ +
∑

s,s′

nαss′ΘsΘs′

)

. (6.28)

This result is in particular valid in the minimal situation involving three anomalous U(1),

whose D-terms stabilize the three complex structure moduli Us relative to the dilaton S.

As mentioned at the end of section 5, there is in this case a restriction on the Goldstino

direction. Indeed, the bosonic components of the 3 complex structure multiplets Us are

completely determined in terms of the those of the dilaton S. More precisely, from the

3 D-flatness conditions one finds the relations
(

Us + Ūs

)−1
=

(
∑

aZ
−1
sa

)(

S + S̄
)−1

and

FUs =
(
∑

aZ
−1
sa

)

FS , in terms of the 3 by 3 matrix Zsa = −ηsa/δa. This implies then that

the rescaled auxiliary fields satisfy the simple relation F Ūs = F S̄ . Comparing with the

general parametrization of eqs. (6.2) and (6.3), this implies the restriction

Θs = tan θ . (6.29)

The formula (6.27) shows that the soft scalar masses are in this case insensitive to

the U(1) charges qαa, and are universal for an arbitrary θ if the modular weights nα are

universal. Notice finally that in the geometric moduli domination limit θ → 0 nothing

really special happens for the soft masses, but the relation (6.29) implies then that the

complex structure moduli give a negligible effect as well and only the Kähler moduli

break supersymmetry. Since there are 3 of these, the metastability condition is then

again marginally violated, implying that subleading corrections to the Kähler potential

are expected to play a crucial role in stabilizing at least one of them [10].

7 Conclusions

In this paper, we have studied in some generality the structure of soft scalar masses in

superstring models with heavy anomalous U(1) vector fields. We have considered the
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minimal situation where the sources induced by the supersymmetry breaking fields in the

D-terms are approximately compensated, at leading order in m3/2, by some Higgs fields

taking suitable VEV. We have computed with two different methods the structure of the

D-term contribution to soft scalar masses, relative to the usual F -term effect. We have

shown that the result significantly depends on the functional form of the Kähler potential

for the Higgs fields. In particular, assuming that the supersymmetry breaking fields are

untwisted moduli fields with a logarithmic Kähler potential, we find that the effect of

heavy vector fields is non-trivial when the Higgs fields are matter fields with a quadratic

Kähler potential, but can accidentally vanish if they happen to be moduli fields with a

logarithmic Kähler potential.

For heterotic orbifold models, we find a result for the soft scalar masses that slightly

differs from previous analyses. We assume that the supersymmetry breaking moduli S,

Tr and Us are stabilized by some F -term effects and that the D-terms are approximately

compensated by a minimal set of matter Higgs fields Hx with a quadratic Kähler potential.

The resulting soft scalar masses have then a pretty simple structure, with a non-trivial

D-term contribution that is as important as the F -term contribution. The total masses

depend on the Goldstino direction of supersymmetry breaking, but not on the scalar VEV

of the supersymmetry breaking fields. They can be flavor-universal independently of any

further assumption about the superpotential and the Goldstino direction only under the

very strong condition that both the modular weights nα and the U(1) charges qαa of

the matter fields are universal. On the other hand, in the geometric moduli domination

limit, which on the contrary of the dilaton mediation limit is compatible with flatness and

metastability of the vacuum, flavor universality of the soft masses is guaranteed under the

milder requirement that suitable linear combinations of modular weights and U(1) charges

are universal.

For intersecting brane models, on the other hand, we find new results displaying a

richer variety of possibilities. In this case, there exist two qualitatively different options

for the stabilization of the various fields, leading to radically different structures for the

soft scalar masses. A first possibility is that all the supersymmetry breaking moduli S, Tr

and Us are stabilized by F -term effects and that the D-terms are approximately compen-

sated by a minimal set of matter Higgs fields Hx with a quadratic Kähler potential, much

as in heterotic models. The resulting soft scalar masses have then again a non-trivial

D-term contribution that is comparable to the F -term contribution. The total masses

depend in this case not only on the Goldstino direction of supersymmetry breaking, but

also on the scalar VEV of the supersymmetry breaking fields. As for heterotic models,

they can be flavor universal without any tuning only if both the modular weights nα and

the U(1) charges qαa are universal. On the other hand, in the geometric moduli domi-

nation limit, it is enough that certain linear combinations of the latter are universal. A

second possibility is that only the S and Tr supersymmetry breaking moduli are stabi-

lized by F -term effects, whereas the Us moduli behave as a minimal set of Higgs fields

with a logarithmic Kähler potential and are stabilized by the D-terms in such a way to

31



approximately compensate them. In this radically different situation, the resulting soft

scalar masses have an accidentally vanishing D-term contribution and are thus entirely

controlled by the F -term contribution. The total masses depend also in this case on both

the Goldstino direction of supersymmetry breaking and the scalar VEV of the supersym-

metry breaking fields. The interesting novelty arising in this situation is that these masses

can be flavor universal without any tuning under the mild constraint that these effective

modular weights nα are universal, independently of the U(1) charges qαa. On the other

hand, the Goldstino direction turns out to be constrained by gauge invariance. In the

geometric moduli domination limit, no further simplification occurs in the soft masses,

but the Tr moduli dominate over the Us moduli.

We should finally emphasized that we have restricted our attention to situations in-

volving a minimal set of Higgs fields, which do at the same time the jobs of compensating

the D-term potential and making the superpotential of the moduli gauge invariant. In

this case, the effects of the Higgs fields can be entirely related to those of the moduli

fields; as a consequence, the soft masses can then be parametrized in terms of the arbi-

trary F terms of the sole moduli multiplets. One may however consider also more general

non-minimal situations, where two different sets of Higgs fields are used respectively to

compensate the D-term potential and to make the superpotential of the moduli gauge

invariant. In that case, the effects of the Higgs fields will not be entirely determined by

those of the moduli fields, and the extra Higgs multiplets will behave as additional fields

of the hidden sector, together with the moduli fields; the soft masses will then depend on

the arbitrary F terms of not only the moduli but also the extra Higgs multiplets. In other

words, whenever more charged fields than gauge symmetries are involved in the hidden

sector dynamics, the number of light gauge-invariant chiral multiplets participating to

supersymmetry breaking in the low-energy theory increases. One may then consider the

particular limit in which these extra degrees of freedom decouple at the scale of supersym-

metry breaking, for example because of a large mass preserving supersymmetry. In that

case, one should then recover the same situation as for a minimal set of Higgs fields. This

means that the minimal situation considered in this paper can actually be viewed as the

most general situation compatible with the assumption that the hidden sector involves

only the moduli.
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