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ABSTRACT 

Many conventional daylighting design tools are limited in that each simulation 
represents only one time of year and time of day (or a single, theoretical overcast 
sky condition).  Since daylight is so variable – due to the movement of the sun, 
changing seasons, and diverse weather conditions – one moment is hardly 
representative of the overall quality of the daylighting design, which is why 
climate-based, dynamic performance metrics like Daylight Autonomy (DA) and 
Useful Daylight Illuminance (UDI) are so needed.  Going one step further, the 
annual variation in performance (condensed to a percentage by DA and UDI) is 
also valuable information, as is the ability to link this data to spatial 
visualizations and renderings.  Trying to realize this combination of analytical 
needs using existing tools would become an overly time-consuming and tedious 
process.  The challenge is to provide all information necessary to early design 
stage decision-making in a manageable form, while retaining the continuity of 
annual data.  This paper introduces a climate data simplification method based 
on a splitting of the year into 56 periods, over which weather conditions are 
“averaged” and simulated using Perez’s ASRC-CIE sky model, while information 
on sun penetration is provided at a greater resolution.  The graphical output of 
the produced data in the form of “Temporal Maps” will be shown to be visually, 
and even numerically, comparable to reference case maps created using short 
time step calculations and based on illuminance data generated by Daysim.   
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1 INTRODUCTION 

The quality of daylighting design depends heavily on solar altitude, weather, and 
other time-dependent environmental factors.  Yet very few existing tools provide 
the user with some understanding of the annual performance of a daylighting 
design, and similarly few lighting metrics focus on this temporal aspect of light 
measurement.  The two existing time-based metrics are Daylight Autonomy (DA) 
(Reinhart and Herkel 2000; Reinhart and Walkenhorst 2001), which provides the 
percentage of annual work hours where daylight is sufficient to exceed a 
benchmark illuminance, and Useful Daylight Illuminance (UDI), which is similar 
to DA except that the benchmark is replaced by the illuminance range 100 to 
2000 lux (Mardaljevic and Nabil 2005, 2006).   Both metrics can be calculated for 
different points in a spatial grid, as is often done with Daylight Factor or 
illuminance measurements.  S.P.O.T. (Architectural Energy Corporation 2006), 
Daysim (Reinhart and Walkenhorst 2001), and Daysim’s recent on-line and 
interactive version, Daylight1-2-3 (Reinhart et al 2007), are three programs which 
provide calculations of DA, and the calculation engines of all three are based on 
the highly reliable Radiance engine for daylighting simulations (Mardaljevic 1995; 
Ward and Shakespeare 1998).  Daysim, which can calculate annual illuminances 
in intervals as short as 5 minutes, produces a highly detailed DA solution, and 
has been validated successfully against measured data (Reinhart and 
Walkenhorst 2001); it provides an output that is largely tabular and un-
graphical.  To be intuitive to non-experts, the DA metric condenses all time-based 
results to a single percentage, thus losing any sense of the annual variation in 
performance.  S.P.O.T. and Daylight 1-2-3 provide some spatial graphical output 
(simple renderings, work plane DA grid), but are more limited in the allowed 
geometric and situational input.   A recent paper by the creators of both DA and 
UDI outlines the benefits and limitations analyses performed using dynamic 
daylighting metrics (Reinhart et al 2006). 

For the sake of readability, it is impossible to show all available data in a single 
graph.  DA and UDI choose to sacrifice an understanding of the time-based 
variability of performance in favor of retaining the spatial variability of 
performance.  In other words, DA can show that for 70% of annual working 
hours, a particular point has adequate daylight, but it cannot show whether this 
point is underperforming in the morning hours, or in the winter.  On the other 
hand, the “Temporal Map” graphical format suggested by Mardaljevic (Mardaljevic 
2004) displays data on a surface map whose axes represent the hours of the day 
and the days of the year; this retains the temporal variability of performance in a 
very dense format. The combination of these two approaches would produce a 
highly detailed analysis of the performance of a space, showing how performance 
varies both over space and over time (Glaser et al 2004).  Beyond the practical 
implications of this approach in terms of computation, the greatest challenge 
involved in producing such an immense data set is to make sure it can be easily 
absorbed and interpreted by a designer.  

While the number of times per day and per year for which full simulations must 
be done has an obvious effect on the program’s simulation time, it also has a less 
obvious, but important, effect on the readability of the graphical output.  In other 
words, whereas a too low resolution might shortchange the variability of sky 
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conditions, a very high resolution data might require too much mental processing 
and analysis from the user to be quickly synthesized and efficiently translated 
into design changes. This also holds true for spatial renderings.  Because of this, 
information pre-processing becomes a precious advantage – one which goes 
beyond interactivity and calculation time concerns. In preparing data for quicker 
analysis, however, care must be taken to ensure that any information critical to 
inform design in its early stages is not lost through this process.   

This paper describes how a simplified annual data set, created by splitting the 
year into a relatively small number of periods of “similar moments” and using the 
ASRC-CIE sky model (Perez et al 1992), can produce temporal maps which are 
visually, and even numerically, comparable to reference case maps created using 
the highly detailed Daysim.  If then coupled with appropriate metrics to represent 
spatial variation of performance in a more condensed format (see section 6.3), 
such temporal maps can become an integral and informative part of design 
analysis. Their combination with a series of spatial renderings, a concept 
investigated further in (Andersen et al 2008) and made possible by the use of a 
discrete set of 4 sky types in the ASRC-CIE model, ultimately adds an extra 
dimension to our understanding of building performance by providing immediate 
yet comprehensive information about the spatial and temporal variability of 
performance.   

To demonstrate their capability to faithfully represent annual performance 
variation, four validations cases were chosen for visual and pixel-based 
comparison to Daysim-based results.  The first focuses on climate and weather by 
using an unobstructed view of the sky dome for ten diverse cities across the 
globe.  The second case introduces simple geometry to two cities but maintains a 
large unbroken view of the southern sky. The third introduces a more complex 
geometry which obscures all but small patches of the sky dome.  This last case 
introduces a discussion on the necessity for higher-frequency sun penetration 
data and proposes a way to include this information in the temporal maps.  An 
example of how this approach can inform the design process is then presented 
through a classroom design case study, to demonstrate the value of keeping time-
varied performance accessible to a designer in this form.   

2 METHODOLOGY 

2.1 DIVISION OF THE YEAR INTO 56 SIMILAR PERIODS 

 In dividing the year into periods of “similar” moments that will ultimately be 
represented by a single point on a temporal map, the most important 
consideration is to ensure that these periods include a range of conditions as 
limited as possible.  The sun should be at approximately the same position in the 
sky, as only one sun position will represent the whole period, and weather 
conditions should be reasonably consistent – satisfying both of these 
requirements typically means that a group of moments should be similar in both 
time of day and time of year. This concept resembles in some aspects the method 
presented by Herkel at the 1997 IBPSA conference (Herkel 1997), which uses the 
similarity of 3 factors – direct irradiance, diffuse irradiance, and solar altitude – to 
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separate a series of annual lighting simulations into “bins”. But because the 
latter’s objective was only to reduce calculation time, it discards information 
critical in a design process such as solar azimuth and a chronology in the 
division scheme, limitations that the proposed approach intends to overcome.   

For the test cases in this paper, the year was divided into 56 periods: the day is 
divided into 7 intervals, and the year into 8.  All times of day are in solar time, 
and since noon is an important solar day benchmark, it was decided preferable to 
divide the day into an odd number of intervals.  The seven daily intervals are 
spaced equally from sunrise to sunset.  This choice was made so that 
representation of the passing day does not change seasonally or by latitude – so 
that short days are not underrepresented and long days are not overrepresented.  
The year is divided by an even number, so that the solstices may serve as interval 
limits.  This is so that the sun positions determined by the day and time central 
to each interval represent average, not extreme angles.   

Because there is only one illuminance calculation done per period, only one sun 
position (the central point within that time period by both hour and day) is 
represented.  However, the weather and sky brightness of every hour within that 
period can influence the results of that calculation.  Hourly Typical Meteorological 
Year (TMY2) data, in the form of sky brightness and the occurrence of different 
sky types, are thus averaged over each period using the ASRC-CIE sky model 
developed by Perez (Perez et al 1992) (see section 2.2 below). This averaging is 
first applied to sky type, then as a weighted sum based on the sky type’s 
occurrence during that period (higher weight for the dominant sky conditions).   

This method of division results in 28 unique sun positions and 56 periods over 
the year, as shown in Fig. 1a. The spatial difference between the 28 sun positions 
and Daysim’s solar simulation points (Reinhart and Walkenhorst 2001; Reinhart 
2005) is illustrated in Fig. 1b.  

 

Fig. 1. Sun course diagram (source: University of Oregon 2007) overlaid with: a) the 
56 similar periods (28 sun positions), and b) the sun positions at which Daysim 
performs direct sun contribution calculations.  The colored bands show the division 
of the year, and the dotted lines show the division of the day.  
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While this averaging method into 56 annual periods proved adequate for data like 
general illuminance level (see sections 4, 5 and 6), the treatment of direct sun 
penetration needed a higher resolution to ensure that information critical to a 
designer was maintained, and thus required a separate processing. Section 6.2 
discusses how this issue is solved and how both approaches can still be displayed 
to the user as a unique temporal map.  

2.2 AVERAGING OF WEATHER CONDITIONS USING SKY MODELS 

The ASRC-CIE sky model, developed by Perez, is the one used in this paper.  It 
integrates the four standard CIE sky models into one angular distribution of sky 
luminance – the standard CIE overcast sky (Hopkins), the CIE averaged 
intermediate sky (Nakamura), the standard CIE clear sky, and a high turbidity 
formulation of the latter (CIE clear sky for polluted atmosphere)(CIE 1994).  

This sky model has been validated for diverse climate and sky zones (sun 
proximity) (Perez et al 1992; Littlefair 1994; Chaiwiwatworakul and 
Chirarattananon 2004) and compared with several other models. Comparison 
results vary from one study to another, but the ASRC model always gives good 
results, sometimes even better results than the more complex “all-weather sky 
model”, also developed by Perez (Perez et al 1993) and validated with several other 
models  (Perez et al 1993; Littlefair 1994; Chaiwiwatworakul and Chirarattananon 
2004; Igawa and Nakamura 2001; Igawa et al 2004).  According to Perez (Perez et 
al 1992), the good performance of the ASRC model is due to the two-fold 
parameterization of insolation conditions which help differentiate between sky 
clearness and sky brightness. The ASRC-CIE model was validated by Littlefair 
against the extensive BRE sky-luminance distribution dataset (Littlefair 1994).  It 
exceeded most other sky models in accuracy, including the Perez All-Weather 
model, and was declared most likely to be adaptable to a wide range of climate 
zones. 

It was deemed the most appropriate sky model for temporal data reduction 
because it is not only accurate, but conducive to averaging many skies in a 
realistic way.  Given typical meteorological data for all time within a certain range 
of days and hours, one can find an average horizontal illuminance separately for 
each of the major sky types (clear, clear-turbid, intermediate, and overcast) and 
the percent chance of that sky type occurring within that period.  Using these 
averaged values and weights, one can create four realistic, instantaneous sky 
maps which still represent the entire period in question.  One could not get the 
same effect using the All-Weather Perez model, for example, because averaging 
data from different types of skies might result in one sky map which is both 
impossible and unrepresentative of any sky that might occur within that time 
frame. 

The governing equation of the ASRC-CIE model is the following (Perez et al 1992): 

 ocievcoicievcictcievcctccievccvc EbEbEbEbE ........ +++=    (1) 
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where Evc is the illuminance at a sensor point and Evc.cie.c, Evc.cie.ct, Evc.cie.i and Evc.cie.o   

are, respectively, the illuminances at that sensor point under a standard CIE 
clear sky, a standard CIE clear turbid sky, a CIE intermediate sky and a CIE 
overcast sky. 

The weighting factors bc, bct, bi, bo, which were adopted by Perez in 1992, depend 
on the sky clearness ε and brightness ∆ (Perez et al 1992).  The ε and ∆ are 
calculated using the horizontal diffuse irradiance, the normal incident irradiance, 
and the solar zenith angle.  For any given ε and ∆, two of the four skies are 
selected depending on the prevailing value of sky clearness ε and are then 
assigned bj coefficients, or the probability of  each sky occurring. 

In short, we divide the year into 56 periods. For each period, the average bj 
coefficients are calculated, together with the average diffuse horizontal 
illuminances.  Point illuminance values are then calculated using the central sun 
position for the considered period, each of the four CIE sky types, and the 
weighted sum is calculated using the average bc, bct, bi and bo coefficients.  The 
one instance in which this method failed was for intermediate skies with sun 
altitudes greater than 80°.  Since the failure was caused by the inaccuracy of the 
CIE intermediate sky model at high sun altitudes (CIE 1994), these few 
simulations were replaced by All-Weather model simulations with ε set equal to 
1.35, as a representative clearness number for intermediate skies.  In this way, 
although only four simulations are done per temporal period, the sky models 
incorporate data from every day and hour of that period.  The only aspect which 
cannot be averaged is the sun position, a limitation that is addressed in section 
6.2. 

Note that there are systematic differences between the ASRC-CIE model used in 
this temporal data-reduction method and the All-Weather model chosen for the 
reference program Daysim; these will be discussed in the validation section 4.2. 

2.3 CREATION OF TEMPORAL MAPS 

The previous paragraphs describe the process used for dividing the year into 56 
time periods, and how one may arrive at a single representative illuminance value 
for the whole period in question.  What remains is to put this averaged data into 
an intuitive graphical form in order to understand how the illuminance level 
responds to hourly and yearly changes in weather and sun position.   

In 2003, Mardaljevic introduced the concept of Spatio-Temporal Irradiation Maps 
(STIMAPs) – surface graphs following the year on the x-axis and the day on the y-
axis – at the 8th international IBPSA conference (Mardaljevic 2003).  Other 
applications of the basic concept behind STIMAPs can be found in ECOTECT for 
the display of ventilation- and solar-thermal gains (Marsh 2008), or in the SPOT! 
program for direct shadows (Bund and Do 2005).   

Especially when coupled with spatial renderings, temporal maps are an intuitive 
and powerful way in which to view an entire year's worth of daylighting analysis 
in one glance.   Figure 2 shows the authors’ adaptation of the “Temporal Map” 
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concept with the corresponding reference case graph, in this case, for the 
horizontal sensor in Boston.  Figure 2a is a contour graph of the 56 data points.  
Points were added at sunrise and sunset on each of the 8 days where the 
illuminance was set to zero, in order to keep the daily extreme contours from 
falling off to quickly.  Figure 2b is a surface graph representing the illuminances 
calculated by Daysim.  It is composed of 105,120 data points (one for every five 
minute interval during the year) and is thus dense enough to need no contour 
interpolation between data points.  Despite the obvious detail reduction from the 
Daysim surface maps to the averaged contour graphs, the latter approach does 
not seem to hide most important features.  In fact, it makes general trends in 
performance clearer (see Section 3.1).   

All graphs in this paper were produced using MATLAB, and all illuminance 
calculations for the averaging method were done using Radiance.  The parameters 
used in the Radiance simulations are as follows:  -ab 7, -ar 128, -aa .1, -ad 2048, 
-as 256, -dp 4096, -ds .15, -dt .05, -dc .75, -dr 3, -ms 0.066, -sj 1, -st .01, -lr 12, 
-lw .0005, -I+, -h.  The only exception to this was the model in section 6, which, 
for the sake of calculation time, used -ab 5, -ar 256, -aa .15, -ad 1024, -as 256, -
dp 1024, -ds .15, -dt .1, -dc .75, -dr 3, -ms 0.1, -sj 1, -st .1,  -lr 12, -lw .01, -I+, -
h.  (The increase in the resolution parameter is due to the vast decrease in size of 
the architectural elements.)  All opaque materials were perfectly diffuse grey 
tones.  Most ceilings had a reflectance of 83%, walls 65%, floors 5%, and if there 
was glass, it had a transmission of 81%. 

 
Fig. 2. Comparison of temporal maps for an exterior horizontal sensor under Boston 
skies: a) the temporal averaging approach versus b) the corresponding Daysim 
reference case.  Overlaid on both maps is the division of the year into 56 periods, 
which is also the physical boundary of pixel areas analyzed for MBE. 

3 VALIDATION METHODS 

3.1 TWO APPROACHES: VISUAL AND AVERAGE PIXEL SIMILARITY 

These temporal maps will ultimately be used as visual displays of data, intended 
to help architects make design decisions.  Hence, it is important to confirm a 
visual similarity as well as numerical accuracy between the temporally averaged 
and the detailed reference case temporal maps. A critical validation point is also 
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to ensure that the “main visual features” of a very detailed Temporal Map would 
also be observed in a contour map based on 56 representative moments.  These 
main visual features refer to those aspects of the map which, if lost, would cause 
the architect to misjudge the performance of the design and may typically refer to 
the general level of illuminance, the way that illuminance levels change with time 
of day or season, indications of sun penetration, or indications of weather 
patterns.   

Three levels of validation will be subsequently discussed:  the validation of 
weather and climate variation (performed using unobstructed sensor points 
under a sky only), the validation of illuminance within a simple geometry, and the 
validation of illuminance within a complex geometry, in which one may begin to 
tie the results shown in a Temporal Map to an actual design process.  The first 
level of validation was performed for an extensive range of climates and locations, 
described in the next section, so as to demonstrate whether a reduction of the 
year in 56 adjacent periods could provide reliable results under arbitrary 
conditions. The second analysis was performed for two dissimilar climates, to 
assess whether conclusions drawn for outdoor conditions could be applied to 
indoor calculations too. The third study was based on a complex building model 
in Boston annual conditions, to evaluate the adequacy of this data reduction 
strategy in more complex environments.  

In addition to the visual comparison of these temporal maps, pixel-by-pixel 
analyses were also undertaken on greyscale versions of the unobstructed sky 
maps and the simple geometry maps: after dividing both the temporally averaged 
and detailed Daysim maps into portions corresponding with the 56 annual 
divisions (such as in Fig. 2), an average illuminance, corresponding with the 
average greyscale pixel brightness, was found for each of the 56 areas.  The Mean 
Bias Error (MBE, between the LightSolve and Daysim maps), given in Eqn. (2), 
was then analyzed for each of the 56 periods for ten locations over the globe (see 
section 3.2), meant to represent with reasonable breadth the range of climate 
zones and latitudes that one would find.  The Mean Bias Error is given as: 

 ∑
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−
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where PiL is the greyscale brightness of a pixel in the LightSolve Temporal Map 
and PiD is the same pixel in the Daysim map.  They are summed and averaged 
over all pixels in a single period.  These graphs, which are presented in section 
4.2, allow one to analyze the similarity between the 56 period technique and the 
detailed data on a per temporal area basis.  The Root Mean Square Error (RMSE) 
was not analyzed, because in this situation, a high standard deviation would not 
indicate a correlation failure.  The method being presented is not intended to 
match the level of detail of the reference data, but to produce a good visual 
similarity, in which case the effect of averaging peaks and troughs pixel by pixel 
in the Daysim data would skew the RMSE artificially high and would not inform 
the appropriateness of the simplification methodology.   

The one important exception to this reasoning is the inclusion of direct sun 
penetration.  Direct sun can change the illuminance level at a point by orders of 
magnitude, and when architectural obstructions are present, it can appear or 
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disappear rapidly.  Without higher frequency direct solar calculations (discussed 
in section 6.2), the lack of these short solar peaks might cause an 
underestimation in the illuminances found using the above averaging method.  
Another possible source of uncertainty is that inherent in the illuminances 
provided by the TMY2 data, which ranges from 1.2%-2.4% bias error according to 
the TMY2 user manual (Marion and Urban 1995).  Additionally, the test and 
reference data sets are produced using different sky models: the ASRC-CIE sky 
model, and the All-Weather sky model, respectively.  Both are validated and 
respected sky models, but a systematic difference between them has been 
observed, as detailed in section 4.2. 

   

3.2 VALIDATION ACROSS THE GLOBE: TEN CITIES TO COVER A RANGE OF 
CLIMATES AND LATITUDES 

To validate any proposal that heavily depends on weather and solar position, one 
needs to perform this validation for a group of locations representative of different 
climate types and latitudes.  Ideally, a group of test locations would encompass a 
wide range of latitudes and a similarly wide spread of climate types.  It would be 
heavy on those latitudes and climates most relevant to the majority of the world’s 
population, which is distributed unevenly over the globe.  The cities chosen 
should also be ones for which annual data is readily available.     

Assisting in the choice of latitude distribution was the chart in Fig. 3, which 
shows the world’s population distribution as a function of latitude.  By far, the 
largest density of world population falls between 20° N and 45° N. Latitude ranges 
between 5° N and 20° N and between 45° N and 60° N have about half the 
population density as the previous range, and the latitudes between 25° S and 5° 
N have about one sixth.  In other latitudes, the population density falls off very 
quickly.  This distribution resulted in a greater number of cities representing the 
northern hemisphere than southern: three cities were chosen from the most 
populous zone “A”, two each from the northern and southern halves of zone “B”, 
two again from the much larger zone “C”, and one from the southern part of zone 
“D”, which represents everything else.  In this way, the large range of latitudes 
was preserved and concentrated slightly in the higher population latitudes while 
still including a few cities at extreme latitudes and two from the southern 
hemisphere.  Each location was also chosen with regard to its climate and 
average number of sun hours available (BBC World Weather 2007, Houghton 
Mifflin 2007).   
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Fig. 3. An illustration of world population as a function of latitude (source: Tobler 
1999), divided into approximate population density zones. 

The final ten cities in Table 1 (listed in order of distance from the equator) 
represent both hemispheres, 5 continents, 5 climate types, a range of average sun 
hours per day, and a wide spread of latitudes.  All have TMY2-type data (or 
similar) available on the Energy Plus website, and all are reasonably populous. 

TABLE 1.  Ten locations for simulation, listed in order of distance from the Equator. 

City Latitude Climate Sun hrs/day (ave) Pop. Zone 

Singapore 1.2 Tropical 5.6 C 

Addis Ababa 9.0 Highland 7 Bs 

Bangkok 13.8 Tropical 7.2 Bs 

Harare -17.8 Hot Arid 8.3 C 

Hong Kong 22.1 Warm Temperate 5.5 A 

Phoenix 33.4 Hot Arid 11.1 A 

Sydney -33.8 Warm Temperate 6.7 D 

Boston 42.3 Cool Temperate 7.4 A 

London 51.5 Warm Temperate 4 Bn 

St. Petersburg 59.9 Cool Temperate 4.5 Bn 

 

4 COMPARISON OF EXTERNAL SKY AND WEATHER VARIABILITY 
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4.1 VISUAL COMPARISON FOR EXTERIOR DATA 

The first level of validation was performed with five unobstructed sensors under 
an open sky – one vertical sensor facing each cardinal direction and one 
horizontal sensor facing upwards.  The purpose of comparing illuminance values 
taken with an unobstructed sky view is to validate the temporal data reduction 
and averaging method against the far more detailed Daysim data set from a 
weather representation standpoint, without adding an architectural variable. This 
validation model was given the nickname “cube” because the sensors were placed 
as if on the five exposed faces of a cube.   

As shown in Figs. 2 and 4, the biggest visual difference between the reduced data 
temporal maps and Daysim temporal maps is the effect of averaging.  The Daysim 
maps, which have a resolution of 5 minutes, can show minute changes in 
weather and the “scan-line” striations of back-to-back clear and cloudy days, the 
result of which is a busy, almost fuzzy, Temporal Map.  The Daysim map can 
show the exact illuminance at each sensor point at any time of the day or year, 
but on the smoother averaged map, general trends through time are also revealed 
clearly - and without what could be perceived as noise. 

However, the averaged maps also show high illuminance values that are less 
extreme than those in the Daysim maps, which is the logical effect of averaging 
illuminances over a certain period of time. Because this might become a critical 
oversimplification in some cases, especially in terms of pointing out high 
illuminance risks, it was concluded that an overlay with direct-sun data, 
described in section 6.2, was necessary.    

Unsurprisingly, the visual effects of averaging are more pronounced in maps of 
cities in which the weather is highly changeable – in other words, those cities 
which have a balanced number of clear and cloudy periods in quick succession 
with each other.  Boston (Fig. 2, 4c, and 4d) is one such city, as are Hong Kong 
and Addis Ababa to an even greater degree.  Harare (Fig. 4a and 4b) and Phoenix, 
two hot arid climates, tend towards more consistently sunny days, resulting for 
the most part in a higher visual correlation between the two maps.  Likewise, 
although Sydney and Bangkok have average sun hours that are closer to 
Boston’s, the weather in those cities seems to change more slowly, causing less 
discrepancy between the two maps.   

On the other extreme are cities such as London (Fig. 4e and 4f), St. Petersburg, 
and Singapore, which are largely overcast climates.  The visual correlation 
between the temporally averaged and detailed Daysim maps for these cities is 
good, because the sunny “peaks” in the Daysim maps are so few and far between 
that their “smoothing out” becomes acceptable.  The temporal maps shown in Fig. 
2 and 4 are not the best visual correlations produced, but are typical of the cities 
with similar characteristics, as described above.  In fact, the south-facing Boston 
map is one of the worst visual correlations produced by this method.  Yet even in 
this map, it can be seen that the general illuminance level on the south face 
increases around midday during fall and spring, and decreases in the middle of 
summer and winter (presumably because of the steeper sun angles of the former 
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season, and because of the overcast weather of the latter season).  The other 
maps only increase in visual accuracy.   

For example, Harare’s horizontal averaged map faithfully reproduces high-
illuminance spots during the spring and early summer (September through 
December at Harare’s southern latitude), and London’s South-facing map shows 
a lack of those high-illuminance peaks, while indicating that the late summer is 
the brightest time of year (however marginally).  These time-dependent patterns of 
illuminance could be vital to design decisions and are clearly marked on every 
averaged Temporal Map.  One could even argue that the smoother presentation of 
the averaged maps is preferable to the busy Daysim maps, because they are less 
distracting and show general trends more clearly.  
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Fig. 4. Temporal maps comparison for exterior conditions: averaged maps on the 
left, Daysim-produced maps on the right. (a, b) Harare horizontal sensor, (c, d) 
Boston vertical south-facing sensor (e, f) London vertical south-facing sensor.  The 
saturation illuminance is 90,000 lux for all maps. 

One analogy which can be drawn here is the practice of leaving nonessential and 
peripheral details out of a rendering or architectural model.  For instance, a 
rendering in grey tones prevents clients from complaining about the color of the 
wallpaper when they’re supposed to be judging the building form.  In the case of a 
Temporal Map, it is much more important for an architect to understand that 
there’s too much light at midday during the summer than to focus on the fact 
that it’s cloudy on March 17th in the afternoon during the theoretical “Typical 
Meteorological Year”. 

The most prominent piece of information not captured in the temporally averaged 
maps is that of changeable weather and the greater averaging of those 
illuminance extremes, a discrepancy addressed by the direct sun penetration 
overlay described in section 6.2.  For less changeable climates (like London and 
Harare), a few peaks or troughs may still be lost, but since they are not the norm, 
they probably should not have a great weight in design decisions, and may even 
serve to confuse matters. 

 

4.2  PIXEL COMPARISON FOR EXTERNAL DATA 

It was found that, in general, the averaged maps estimate illuminances that are 
lower than those produced by Daysim.  For every orientation, the Mean Bias error 
for each of the 56 periods usually ranges from 0 to -25%, although the early 
morning and evening periods often produce much larger errors (both negative and 
positive).  Daily extremes are indeed prone to higher relative errors because of the 
low illuminance values associated (even if absolute errors are small). In addition,  
although every attempt was made to ensure that the correct data was used 
regarding each range of solar time hours, there may still be some diurnal shifting 
of illuminances in both the averaged moments and the Daysim temporal maps. 
The reason for this is that TMY2 (as well as other weather data formats) tend to 
be in civil time rather than solar time, which means that each TMY2 data point 
will be off by a certain number of minutes depending on the time of year.  As part 
of the averaging process, any solar data “hour” falling within each of the seven 
times of day contributes to the sky model parameters. This includes solar data 
“hours” which may only partially fall within the given daily period; in this case, 
they are given partial “credit” in the averaging (smaller weighing coefficient). 

Differences between the ASRC-CIE and All Weather sky models may also be a 
source of some negative error.  In a comparison study involving carefully recorded 
measurements and seven different sky models, Littlefair found that both the 
ASRC-CIE model (used in the data reduction scheme) and the Perez All-Weather 
sky model (used in Daysim) overestimated sky luminance in comparison with 
actual measurements, and that the All-Weather model overestimation was 
significantly greater in certain circumstances (Littlefair 1994).  Specifically, the 
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All-Weather Mean Bias Error (MBE) was significantly higher than the ASRC-CIE 
MBE for low solar altitudes, as was the Root Mean Square Error (RMSE).  
Particular trouble spots for the All-Weather model were sky areas near the sun (at 
low sun altitudes) for cloudy and intermediate skies and sky areas opposite the 
sun (at any altitude) for intermediate and clear skies.  For example, Littlefair’s 
paper found that compared to measured data from Garston, England (which is 
very close to London), the average MBE for all sky luminance near the sun at low 
solar altitudes was 24%, and for cloudy skies (which are prevalent in London 
winters) this error increased to 39% (Littlefair 1994). The corresponding MBE for 
ASRC-CIE model sky luminances was only 7% for cloudy skies and 8% for all 
skies.  This makes the potential low sun angle error – attributed only to sky 
model difference – anywhere from 16% to 32%.  

This may also explain why a south-facing façade in Boston produced a relatively 
bad comparison to Daysim.  Boston being located at a relatively high latitude, it 
has lower sun angles in comparison with other cities, especially in the wintertime, 
which is were the temporal regions of poorest performance.  This is also borne out 
by the MBE of St. Petersburg, the city located at the highest latitude, and – 
although not as obviously - by that of London, which has the second highest 
latitude. 

To assess the potential limitations of our averaging method to represent actual 
weather data, an error comparison was made between the horizontal 
unobstructed sensor data and the global horizontal illuminance data extracted 
directly from the TMY2 files.  Qualitatively, the graphs created using the 
measured TMY2 data were typically good visual matches with the corresponding 
averaged maps and the Daysim-based temporal maps. A few of the graphs 
produced artefacts when contour mapped in MATLAB, the worst of these by far 
being Sydney; that city was therefore removed from the ensuing quantitative 
analysis. Figure 5 shows three different Mean Bias Error comparisons.  The error 
for the seven daily periods was averaged for each of the 8 times of year (including 
early morning and late evening outliers) and graphed for all ten cities.  This chart 
color codes each city by distance to the equator.  While the majority of temporal 
periods had an MBE between 0% and negative 25% when compared with the 
Daysim graphs, the MBE for the TMY2 data comparisons turned out to be both 
positive and negative, and generally stayed within ±25%. This finding is 
significant, because a couple sources of potential negative error, such as the act 
of using discrete points to average a generally convex daily brightness curve, had 
been suggested.  Although the TMY2 MBE is biased slightly negative, the 
existence of positive error, or averaging overestimation, in this situation suggests 
that this type of error either does not exist or that it is insignificant. 
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Fig. 5. MBE analysis: a) MBE between all south-facing averaged and Daysim 
temporal maps as a function of time of year. b) MBE between all horizontal averaged 
and Daysim temporal maps as a function of time of year. c) MBE between all 
horizontal averaged data and TMY2 global horizontal data.  Sydney was disregarded 
because of mapping artifacts.  For all maps, early morning and late evening errors 
are included in the average per time of year.   

In short, there is a documentable difference between the averaged and detailed 
Daysim maps with some bias towards lower sun angles, but there is not enough 
evidence to support artificially correcting for a higher correlation between the two.      

 

5 COMPARISON OF INTERIOR ILLUMINANCE FOR SIMPLE GEOMETRIES 

5.1 PIXEL COMPARISON FOR SIMPLE GEOMETRIES 

Having shown that the averaged temporal maps are a reasonable correlation to 
those produced by Daysim under an unobstructed sky, one must demonstrate 
that restricting the access to the sky (via architecture) does not seriously change 
this correlation.  To this end, two simple shoebox-like rooms were constructed 
and tested under Boston and Harare skies.  The Radiance model consists of a 
rectangular room, 10m x 7.5m x 3m, in which the shorter facades face north and 
south.  There is one south-facing window, 1.5 m tall and 5.5m wide, with a head 
height of 2.5m, rendered without glass.  The idea behind this model was to 
restrict access to the sky but still provide a large, unbroken, direct connection.  A 
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modified version of the shoebox model was also tested in the Boston environment:  
a diffuse light shelf was added to the south window of the Boston shoebox model 
as well as strip window on the north wall a third the area of it’s opposite (flush 
with the ceiling with a height of 0.5m). All shoebox models were rendered with a 
3x4 grid of 12 horizontal sensor points at the height of one meter to simulate a 
work plane.  Points numbered 1, 2, and 3 are closest to the south window, and 
points 10, 11, and 12 are furthest north.  temporal maps and pixel analyses, 
similar to those done for the outdoor “cube” model, were applied to the shoebox 
model.  

Figure 6 shows that the nature of the period-based MBE in the Boston shoebox 
model is similar to the error for an unobstructed view of the sky.  In other words, 
the large vertical south window in the shoebox room gives a similar view of the 
sky as would be seen by the south-facing vertical sensor in the cube model, and 
so the error patterns are also the same – there is a larger difference between 
averaged and detailed Daysim maps for the lower sun angles in Boston’s winter 
and less error in summer, and this is somewhat true of Harare also, although the 
sun is on the north side of the building in that case, and the error curve is flatter 
throughout the year.  There is one anomalous curve for the normal shoebox 
model in Boston, which falls between -50% and -70%, the peak of which is barely 
visible on the graph in Fig. 6b. 

One interesting observation to make is that the error between averaged and 
detailed maps is generally a good 10% less for the shoebox model than for the 
unobstructed sensors, and some points tend slightly positive rather than 
negative.  It is encouraging that this simplification method moves even closer to 
the Daysim Temporal Map’s performance when one adds architecture into the 
model, especially since much of the validation done for Daysim was done using 
interior sensor points (Reinhart and Walkenhorst 2001).  The systematic 
underestimation as a function of solar altitude, which was discussed in section 
4.2, can clearly be seen still, but most of the MBE curves have shifted closer to 
zero.   
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Fig. 6. Shoebox model MBE between averaged and Daysim maps as a function of 
time of year for (a) Boston, and (b) Harare.  The thick lines represent the MBE for 
the south-facing vertical cube model sensors, included for the sake of comparison. 

5.2 VISUAL COMPARISON FOR SIMPLE GEOMETRIES 

Just as the pixel analysis correlates to the “cube” model sensor which sees the 
same swath of sky, many of the visual correlations and discrepancies are also 
carried over from the open sky to the large-windowed box.  The south-facing cube 
sensor for Boston (Fig. 4c and 4d), being vertical, facing the sun, and at higher 
latitude, was susceptible to a high MBE between the ASRC-CIE and All-Weather 
sky models, and this was very visually perceptible in the winter moments.  
Likewise, the lower winter illuminance occurs also in the Boston shoebox model, 
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and is most striking at the points 6m from the window (points 7, 8, and 9 – see 
point 8 in Fig. 7c and 7d).  The window on the Harare model, on the other hand, 
is facing away from the sun and only receiving more even diffuse light.  Like its 
north-facing unobsructed counterpart, these graphs show a high visual 
correlation and smooth, easily definable temporal illuminance features.  With a 
window this large, there is a good visual and pixel correlation between the 
unobstructed sensors and the shoebox model sensors.  

 

Fig. 7. Temporal maps for averaged method (a & c, left) and Daysim (b & d, right) 
corresponding to sensor points situated at 1 m (a, b) and 6 m (c, d) from the window 
in the Boston shoebox model. Saturation illuminances are respectively 10,000 lux 
(a, b) and 1000 lux (c, d). 

The modified shoebox model for Boston is similar in many respects.  There is 
definitely a lessening of direct sunlight near the window in the spring, fall, and 
summer, which is the point of a light shelf.  This reduction also shows up in the 
Daysim-produced maps.  The middle of the room is a bit darker as well, and the 
points near the northern wall benefit from their new proximity to a window, 
especially in the summer.   

 

6 COMPLEX GEOMETRY COMPARISON:  MUSEUM MODEL 

6.1 VISUAL AND PIXEL COMPARISON 
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The third validation case was based on a four-room museum (Figure 8a).  
Designed by an architecture student at MIT, it is a building of much higher 
complexity than the shoe box model and includes features such as louvers, small 
windows, divided skylights, and lattices.  The walls are around 70-75% reflective 
(diffuse), and the ceiling and skylight wells are about 80% reflective.  The object of 
this case study was to see if the complex geometry changed the level of visual 
correlation between the temporally averaged and detailed Daysim maps. Figure 8 
shows an exterior (8a) and two interior shots (8b and c) of the museum model.  

 

Fig. 8. Museum design in Boston. a) Exterior rendering with cardinal directions 
indicated.  b)  Interior rendering of the Northeast room in which the dotted outline 
on the wall indicates a vertical area of interest. c) Interior rendering of the 
Southwest room in which a horizontal area of interest is represented as a floating 
panel with a dotted outline. 

Two areas of interest were chosen in the museum:  a horizontal area in the center 
of the southwest room at table height (1m), outlined in Fig. 8c and represented by 
9 sensor points spaced 1.5m apart, and a vertical area along the north and east 
walls in the northeast room, outlined in Fig. 8b and represented by ten sensor 
points (four on one wall and six on the other, at heights 0.65m and 2.5 m).  
Temporally averaged maps and Daysim-based maps were then produced for each 
sensor point in each area under Boston skies, resulting in 19 x 2 maps to 
compare.  

The first important observation one could make was that for general illuminance 
levels, the same high level of visual correlation could be observed between the 
temporally averaged and detailed Daysim maps, which was a satisfying result 
considering the complexity of the building model.  One big difference, however, 
was that there were also small stripes or patches of direct sunlight moving 
around the rooms which were only intermittently captured using the 56 moments 
method. This was due to the fact that most of the sensor points never see the sky 
directly, or if they do, it is as tiny patches scattered over the hemisphere.  To 
make matters more complex, the reference maps were produced by Daysim, 
another program which limits the number of sun angles it simulates (see Fig. 1b).  
According to the Daysim tutorial, the program only simulates 60-65 independent 
sun angles (over 100 per year), and extrapolates the sun’s contribution at all 
other moments from the nearest 3 or 4 sun positions rendered (Reinhart 2005).  
Quick shadow casting techniques keep track of those points which catch direct 
sunlight when the surrounding measured sun contributions do not, but the 
result of this occurrence is a zero illuminance error from Daysim.  Basically, 

a) b) c) 
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Daysim simulates just over twice the number of sun angles that the averaging 
method simulates and does a shadow casting check on the rest of the points.  
This results in Daysim catching far more direct sun spots, but neither approach 
is completely immune to error in complex geometric situations.   

 

6.2 HIGHER FREQUENCY DIRECT SUN OVERLAY 

In a recent paper by Bourgeois, Reinhart, and Ward (Bourgeois et al 2008), a new 
format for dynamic daylighting simulation (DDS) was proposed that calculates 
2305 direct daylight coefficients per sensor point, which is the number of non-
zenithal Tregenza sky patches (Tregenza 1987) multiplied by a factor of 16.  While 
DDS accounts for the full sky dome rather than just the annual sun path lines, 
their research indicates the need for much higher frequency direct sun 
contribution than is accounted for by dividing the year into 56 moments.   

Based on these findings, it was deemed necessary to include an additional zero-
bounce sun penetration data set to the proposed 56 moments method, calculated 
at 15 times per day and 80 times per year, or 1200 moments and 600 separate 
sun angles. This dataset is calculated by doing illuminance calculations in 
Radiance similar to those done for the 56 annual periods, using the ASRC-CIE 
sky model and the TMY2 weather data, but at a much greater number of sun 
angles and discarding interior reflections.  The result is that with this fast 
calculation, the sensor will only record the direct sky component of the 
illuminance. Whenever it still exceeds the illuminance level of the original map, 
i.e. whenever the direct sky component is by far the dominant one, the new 
illuminance value should be considered in lieu of the original one because it 
better reflects the risk of direct sun penetration. These additional datasets are 
thus overlaid onto the general illuminance temporal maps for all the moments 
where they exceed the original illuminance values.    

The number 1200 was considered sufficient in comparison with the DDS scheme, 
since these sun angle test points are all concentrated within the actual angles of 
a location’s specific sun path, rather than over the full sky dome as in DDS.  The 
decision to limit the daily divisions to 15 stems from the fact that for most 
climates there are not many days which exceed 15 hours, and the TMY2 climate 
data available has a resolution of only one hour per day.   

Figure 9 shows two examples of general illuminance temporal maps overlaid with 
direct-sun data.  The “shoebox” model graph in Fig. 9a is an example of an 
overlay which does not greatly change the general illuminance temporal map.  
This is because the large connection to the sky afforded by the shoebox window 
causes large, consistent, and long-lasting sun spots.  On the other hand, the 
“museum” model graph in Fig. 9b illustrates a situation in which there are many 
small sun patches flitting around the room.  In this extreme case, the general 
illuminance temporal map did not catch any of these points of direct sunlight, 
whereas the higher-frequency direct-sun checks did. Weather was taken into 
account in both cases of finding direct sun spots by weighing and averaging bi 
coefficients as discussed in section 2.2.  Although ignoring internal reflections 
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will result in a slight underestimation of illuminance values, this process is only 
meant to pinpoint moments in which direct sun may be an issue; the general 
illuminance is still calculated by the 56 periods averaging method. 

The combination of the simplified annual performance analysis with this detailed 
direct sun penetration check still allows a designer to grasp, at a glance, how 
lighting conditions will vary over time for that particular location’s climate. But it 
also allows him to point out when there will probably be comfort and performance 
issues due to direct sunlight.  With 1200 yearly direct solar point calculated (600 
unique sun positions), the overlay effectively corrects for the largest weakness in 
the 56 periods averaging method alone.  The added solar penetration calculation 
has a resolution of ten times the public distribution of Daysim (Reinhart 2005) 
and is similar to the more recent DDS format (Bourgeois et al 2008).   

 

Fig. 9. Direct sun overlay examples for a horizontal sensor point in a) the "shoebox" 
model and b) the museum model. Saturation illuminance for a) is 10,000 lux (sensor 
is next to the window), and for b) is 5,000 lux.   

 

6.3 SINGLE GRAPH ILLUMINANCE DATA: PROPOSAL FOR AN AREA-BASED 
ILLUMINANCE METRIC 

In analyzing both the shoebox and museum models, it became obvious that with 
so many sensor points, the number of temporal maps produced was becoming 
unwieldy.  A method of compiling and displaying all data for a single area of 
interest was thus developed, resulting in graphs displaying not illuminance, but 
an area-based illuminance metric which corresponds to the percent of area within 
a targeted illuminance range.  Reversing Daysim’s approach (using Daylight 
Autonomy to display the percent of time which each point of an area has reached 
the desired illuminance), the current illuminance metric displays the percent of 
the area which is within the desired illuminance range, and how it changes over 
time.   

Similarly to DA calculations, a grid of sensor points over the area is considered, 
and illuminance values calculated over the year at their respective locations.  Full 
credit (100%) is then given to any point within the illuminance range desired (that 
may have both an upper and a lower limits or only one of the two); in addition, a 
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buffer zone adjacent to these limits can be defined, inside which partial credit will 
be given. Partial credit decreases linearly from 100% at the limit value to 0% at 
the buffer zone boundaries.  This method of condensing all data to one temporal 
map will be utilized in section 7. 

 

7 TEMPORAL MAPS IN THE DESIGN PROCESS:  CLASSROOM CASE STUDY 

This section will follow three iterations of a classroom design.  It will show how 
temporal maps analysis can illustrate the weaknesses in a particular daylighting 
design and ensure that the final version meets the user’s design goals. 

For this simple example, located in Sydney, Australia, we assumed no major 
obstructions to the sky dome.  The original classroom design was given the same 
dimensions as the shoebox model in section 5, and the same spread of work 
plane illuminance sensors were defined: 12 horizontal sensors, 1m from the floor, 
arranged in 4 rows of 3 where sensors 1, 2, and 3 are closest to the south wall.  
The wall reflectance value was 65%, the ceiling’s 83%, the floor’s 20%, and all 
surfaces were assumed perfectly diffuse.  A large chalkboard was added on the 
east wall with a reflectance of 5%.  The general window region was the same size, 
except that it was divided into two smaller punch windows, glazed with double-
pane clear glass (80% visible transmission) and facing north, the sunny side in 
Australia.   

The performance goal for this classroom was to create conditions that were 
generally bright enough during the school day (7 am through 4 pm solar time) 
and academic year (February through November) to illuminate the work plane 
using daylight alone but to avoid really bright patches as well.  A desired 
illuminance of 400 to 1500 lux was chosen accordingly, with a buffer zone 
extending down to 200 lux and up to 2000 lux.  At every design iteration, three 
temporal maps were created: one displayed the percent of the work plane within 
the desired illuminance range, one map displayed the percent of the work plane 
that was too bright, and the third indicated how much of the work plane was too 
dark.  Note that when integrated into these condensed illuminance graphs, the 
high-frequency direct sun calculations discussed in section 6.2 will contribute 
weight to the “percent too high” graphs and detract from the other two.  

Figure 10a shows an interior rendering (produced with Radiance) of the North 
and South façades at 8:18am solar time (the second of seven daily moments) on 
February 27th (the second of eight yearly moments) for the first design iteration (it 
also includes a small exterior rendering of the North façade, superimposed in the 
bottom left corner). This initial design consisted of a north-facing unilateral 
punch window room with a flat roof. Figure 10b shows its performance over the 
year. One can immediately observe that, during the later winter, upwards of 60%-
75% of the work plane is in the correct illuminance range, while in the spring, fall 
and summer, only about 40% of the work plane is meeting the illuminance 
criteria.  A glance at the “too high” and “too low” temporal maps (not included 
here) also revealed that about 20%-30% of the work plane is always too bright, 
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and the dark portion expands up to 50% of the area on spring, fall, and summer 
around 7-8am or 3-4pm (solar time).   

This distribution of illuminance is not unusual for a unilateral side-lighting 
situation. The bright part would represent the area next to the windows, while the 
dark part depends on the time of year because solar altitude changes with the 
seasons.  The low sun angles of midwinter achieved the furthest light penetration 
and thus the largest area of work plane in range.   

 

Fig. 10. Area -based “percent in range” temporal maps over the entire year and 
composite renderings corresponding to 8:18am solar time on February 27 (indicated 
by a cross on the maps) for the three design iterations of the classroom model.  
Design iteration 1 is shown in a) and b), design 2 in c) and d), and design 3 in e) and 
f).  The desired illuminance range was 400 to 1500 lux (with a buffer zone down to 
200 and up to 2000 lux). 

Even if none of the above analysis was obvious to the designer, the temporal 
maps do easily show that the performance is better in the winter (more orange 
and yellow, less blue), but that the daylight is always insufficient to switch off the 
electric lights.  In addition, the high and low maps (not shown here) and the 
associated renderings indicated that there are problems with both brightness and 
darkness at once throughout nearly the full year.  Therefore, two windows, 
similar to those on the north wall, were added to the south wall, and the resulting 
model was the second design iteration, shown in Fig. 10c for the same date and 
time as the previous iteration. 

Figure 10d shows that while 7-8am and 3-4pm are very highly in range all year 
long, only about 50% of the work plane is in range between those times.  The 
additional high and low temporal maps indicated that practically all work plane 
space that is not in range was too bright rather than too dark.  Therefore, design 
iteration 2 eliminates the dark space problem, but creates additional problems 
with too much light.  It especially decreases the performance in the wintertime.   

The next iteration of design addresses this by reducing the amount of light 
without creating dark patches in the room.  To this end, both south and north 
windows are reduced in size, while an overhang and an exterior light shelf are 



 

 24

added to the north window (Fig. 10e).  This strategy effectively eliminates all 
direct sun penetration during warmer months while allowing low-angled winter 
light to reflect off the light shelf and into the space.  The north wall is also made 
4m tall and the north facing windows are moved higher on the wall.   

As illustrated decisively in Fig. 10f, this last design iteration keeps the work plane 
80% – 100% in range during occupancy hours during the course of the full year 
with only a slight seasonal bias. The temporal maps analyses made this 
conclusion possible in a relatively small number of design iterations by 
pinpointing the problem areas as a function of time. This mock design process 
thus convincingly illustrates how this graphical representation can be effectively 
condensed to convey a large amount of data and allow quick progress in design 
iterations, and how it can be both design goals specific and easily accessible to 
non-experts. A preliminary interview exercise amongst architecture students led 
to similar conclusions and to very enthusiastic reactions about the potential of 
this type of visualization to help addressing design issues in a more 
comprehensive way (Yi 2008). Based on these promising results, the authors 
intend to expand this preliminary survey to a more thorough user study in the 
near future. 

 

8 DISCUSSION AND FUTURE WORK 

The comparison models presented in sections 4, 5, and 6 indicate a strong visual 
and numerical correlation between temporal maps produced using the 56 annual 
periods method and those produced using detailed illuminance data extracted 
from the program Daysim.  The result of averaging the illuminance over each area 
on the Temporal Map is that small details and the sense of immediate weather 
changeability are lost, while the changeability of performance on an annual scale 
is retained, and even made clearer.  Furthermore, the overlay of high-frequency 
direct solar data compensates for the inability of a small number of annual 
periods (and thus a small sampling of possible sun angles) to capture the highly 
dynamic nature of direct solar irradiance.   

Beyond illuminance, the authors hope to apply glare probability metrics and solar 
heat gain indicators to the temporal maps format.  Similar methods of 
representing the annual performance of these metrics will be researched and will 
hopefully add to the future capabilities of a daylighting design tool. 

 

9 CONCLUSION 

Climate-based, time-variable data are very valuable to the design process because 
they are able to reveal the nature of the environmental conditions in which a 
design performs well or poorly, to make visual comfort predictions, and because 
they encourage the designer to address the most important issues in daylighting 
with an annual perspective, such as building orientation, position and size of 
openings, and shading strategies.  It is critical for an architect to have such data 
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in hand early in the design process, before the overarching design strategies have 
been solidified.  Ultimately, it will also be critical for an architect to connect such 
numerical data to visualizations of a space so as to reconcile performance criteria 
with aesthetic considerations (Andersen et al 2008). 

While some of the components of this data processing and display methodology 
have been in existence for years, it is their unique combination that holds great 
promise in the capacity of helping architects to make design decisions.  The 
application of the ASRC-CIE sky model allows one to calculate illuminances 
under a few discrete, realistic skies which nonetheless represent many unique 
annual conditions.  This makes it invaluable to the calculation and reduction of 
massive amounts of annual data, which can then be displayed in an intuitive 
form on temporal maps.  The ability to see – in one glance – the variation in 
annual performance of a building design via temporal maps adds an extra and 
important dimension to the design process.  With this information, one could 
modify a design according to seasonal or daily trends without drowning in data 
noise, and without having to rely on single renderings representing only a few 
somewhat arbitrary moments during the year.  Reducing the annual data points 
to 56 and using the ASRC-CIE sky model enables interactive design support for 
the architect and opens up the possibility attaching spatial data through a series 
of renderings linked to various points on the Temporal Map.  This pre-processing 
of annual data and its linking to both temporal maps and spatial renderings, an 
approach designed for a program named Lightsolve,  is what the authors see as 
the next development phase of a research effort meant to help architects make 
the correct daylighting design decisions early in the process.  Lightsolve, a work 
in progress, will also incorporate interactive rendering optimization capabilities 
(Cutler et al 2008) and is described in further detail in another paper (Andersen et 
al 2008).  
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