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Abstract

An accurate knowledge of the directional optical properties of advanced fenes-

tration materials is necessary for them to be adequately integrated in buildings.

These properties are expressed by the Bidirectional Transmission (or Reflection)

Distribution Functions (BTDF, BRDF) of such elements, which are measured by

specifically designed measuring equipment: an innovative, time-efficient bidirec-

tional goniophotometer, based on digital imaging techniques, was designed and

set up for that purpose.

In this paper, the in-depth validation used for the bidirectional measurements

performed with this apparatus is presented. It is based on different approaches

including experimental error estimation, comparisons to analytical or ray trac-

ing based models and to other measured data, and calculation of the directional-

hemispherical transmittance (reflectance) gauged against measurements of the

same systems with Ulbricht (integrating) spheres. The high accuracy and relia-

bility of this novel device were confirmed by this detailed investigation, and led

to a maximum error for BT(R)DF data of only 10%.
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List of Symbols

A sample illuminated area (mm2)

BTDF Bidirectional Transmission Distribution Function (cd·m-2·lx-1) or (sr-1)

BRDF Bidirectional Reflection Distribution Function (cd·m-2·lx-1) or (sr-1)

d distance between screen and sample centre (on emerging interface) along di-

rection (θ2, ψ2) (mm)

D illuminated sample diameter (on incident interface) (mm)

E1 illuminance on the sample plane due to the incident light flux (lx)

es sample thickness (mm)

Escreen illuminance on the screen plane (lx)

f ′1 quantity expressing the match ofS(λ) with V (λ)

fi arbitrary variable referring to one of the parameters affecting the accuracy of

a ray-tracing simulation

ε photometric error for assessing the impact of the spectral calibration

εelim relative error due to the elimination of pixels from a BT(R)DF measurement

g gap between detection area base and external sample interface, due to mechan-

ical constraints (mm)

h distance from equivalent point source to sample (mm)

H difference in level between screen detection area base and apex (mm):H = 1150 mm



M. Andersen - Validation of a bidirectional goniophotometer 2

L1 luminance of an element of incident light flux (cd·m-2)

L2 luminance of an element of emerging light flux (cd·m-2)

Lscreen screen luminance (cd·m-2)

Nf number of individual parameters affecting the accuracy of a ray-tracing sim-

ulation

Nλ number of wavelengths considered for spectral calibration

S(λ) (corrected) spectral sensitivity of the CCD camera

V (λ) normalized human eye’s spectral sensitivity

X, Y pixel co-ordinates on digital image

α angle between direction (θ2, ψ2) and normal to the screen plane (or more gen-

erally impinging angle on screen surface) (◦)

Γmeas(λ), Γcalib(λ) radiometric spectra of the light source used respectively for

BT(R)DF measurements and photometric calibration (µW·mm-2·sr-1)

∆θ2, ∆φ2 angular intervals determining the BT(R)DF averaging grid (◦)

∆θrad
2 , ∆φrad

2 angular intervals determining the BT(R)DF averaging grid (rad)

∆λn wavelength interval between measured data(n− 1) andn (nm)

εelim relative error due to eliminated pixels along cover edges

εBT(R)DF relative error on final BT(R)DF values

ετdh|ρdh relative error onτdh or ρdh values
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Θ0 projection screen inclination angle regarding the sample plane (◦): Θ0 = arctan 2√
3
∼=

49.1◦

θ1, φ1 polar co-ordinates of the incident light flux (◦)

θ2, φ2 polar co-ordinates of the emerging (either transmitted or reflected) light

flux (◦)

λ wavelength (nm)

ρdh directional-hemispherical light reflectance, for a given incident direction

ρdir regular (directional-directional) light reflectance, for a given incident direc-

tion

ρscreen screen reflection coefficient

τdh directional-hemispherical light transmittance of sample, for a given incident

direction

τdh | ρdh combined symbol to express eitherτdh or ρdh

Υθ2, Υψ2 maximum divergence of emerging rays reaching a given point on the

projection screen (◦)

ψ2 azimuth angle projected on the sample plane and lying between -30◦ and +30◦

(zero along the central axis of the screen), for an arbitrary screen position

(◦)

dω1, dω2 solid angle subtended by the incident, emerging light flux (sr)
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1 Introduction

In the present context of increasing needs for sustainability and energy savings,

reducing the environmental impact of buildings positions itself as a priority. As a

consequence, the control of daylight and solar radiation through fenestration sys-

tems has received a growing attention both in research and practice1, 2. Advanced

fenestration systems, which include solar blinds, new glazing materials and day-

light redirecting devices, can contribute to reducing significantly the energy con-

sumption of buildings, while simultaneously improving visual comfort conditions

for users3. Full knowledge of the light distribution characteristics of such systems

is, however, required to control the propagation of daylight deeper in rooms and

to allow larger solar gains in winter and lower solar loads in summer4.

Such characteristics are expressed in terms of Bidirectional Transmission (or Re-

flection) Distribution Functions, abbreviated BT(R)DFs, defined by the Commis-

sion Internationale de l’Eclairage5 as the quotient of the luminance of a surface

element in a given direction by the illuminance incident on the material. These

values depend on both the angles of incidence and of emergence.

To assess these functions for complex fenestration systems, several bidirectional

goniophotometers have been developed6, 7, 8, 9, 10. Most are based on a conven-

tional design using a movable photo-sensor to track and measure in all possible

directions the luminance of the sample, after either transmission or reflection.

Their performance is accurate and reliable, but they show two significant draw-

backs: on one hand they are time consuming because numerous movements of

the mobile photo-sensor are required to achieve an appropriate angular resolution,

the number of these movements increasing tremendously with a finer resolution;
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on the other hand, the risk of missing a narrow light peak with a large gradient in

the space left between two measurement points can never be avoided. Materials

with a high dynamical luminance range can also cause serious technical difficul-

ties, and require local refinements of the angular resolution.

To overcome these problems, an innovative type of bidirectional goniophotome-

ter was developed11, 12, based on the projection of emerging light on a diffusing

screen before being detected by a calibrated CCD camera, used as a multiple-

point luminance meter. This detection principle allows the time needed to moni-

tor BT(R)DF data to be reduced to a few minutes per incident direction instead of

the several hours required for conventional methods based on a scanning process.

As for any new measurement device, validation of the results it produces is a cru-

cial issue. As there are no standard procedures for validating goniophotometric

data of complex fenestration materials, different approaches were chosen:

- assessment of the experimental uncertainty at each intermediate stage of

calibration and processing, leading to a global maximum error for BT(R)DFs;

- bidirectional measurement of systems presenting a known symmetry, and

verification against standard luminance meter data or analytical calcula-

tions;

- empirical validation based on bidirectional measurement comparisons be-

tween different devices; when there is disagreement, however, no conclu-

sion can be established;

- assessment of hemispherical optical properties by integrating BT(R)DF
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data over the whole hemisphere and comparison to integrating sphere mea-

surements;

- comparison of monitored data with ray tracing simulations to achieve a

higher level of detail in the assessment of BT(R)DF behaviour.

At least one of the first four methods has been applied to other existing gonio-

photometers13, 14, 10, 6. In this paper, the validation results obtained with all five

approaches are presented.

2 BT(R)DF assessment method

The novel bidirectional video-goniophotometer considered in this paper is exten-

sively described in two papers by Andersen et al.11, 12. Its functioning principle is

briefly summarized in this section.

Unlike other goniophotometers for measuring BT(R)DF’s, this instrument has a

flat, triangular diffusing screen which collects the light from the sample and at

which a calibrated Charge-Coupled Device (CCD) camera is aimed. To cover all

possible directions of the emerging light (2π steradian), the camera and the screen

perform six rotations of a 60◦ angle magnitude, leading to the investigation of the

full light flux transmission or reflection figure (Figure 1).

For BRDF measurements, there is one position (all six for normal incidence)

where the screen obstructs the incoming light flux. In this case, a special opening

in the latter is required to let the beam reach the sample, producing a blind spot at

that specific screen position. As explained in the paper by Andersen et al.12, nine

elliptic holes were therefore cut out of the screen to let the beam pass through

every 10◦in altitude (the removal and repositioning of the covers for these holes
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is taken care of by a robot). Darker pixels were observed in the images along

the edges of these covers, which were eliminated from the measurements as dis-

cussed in Section 3.2.

This original assessment method therefore avoids the need for point-by-point

scanning of the emerging light by a moving sensor, which reduces the measure-

ment time by a factor of about a hundred or more, depending on the resolution

chosen for the scanning. In addition, it overcomes the risk of missing a discon-

tinuity in the emerging luminance distribution. Instead, it splits the collecting

hemisphere into a regular grid of averaging sectors, illustrated in Figure 1, al-

lowing the production of a finite set of BT(R)DF data. Each BT(R)DF value is

associated with four angles (θ1, φ1, θ2, φ2) whereθ1, φ1 andθ2, φ2 are the polar

co-ordinates of the incident and emerging (either transmitted or reflected) light

flux respectively, all expressed in (◦) and shown in Figure 2 with the luminances

L1 andL2 and the solid angle elementsdω1 anddω2 they are associated with.

Hence, there are no gaps∆θ2 and∆φ2 between two data points, as would be the

case in a conventional scanning process, where interpolation is implicit. Here,

∆θ2 and∆φ2 give the angular distance between two averaging sectors centres

(θ2, φ2) and (θ2, φ2 ± ∆φ2) or (θ2 ± ∆θ2, φ2), which all truly represent adja-

cent hemisphere portions. The BT(R)DF investigation is therefore continuous,

the only limit in resolution being determined by the pixellisation of the digital

images.

A continuous investigation is critical especially for materials presenting a highly

dynamic luminance range. These require local refinements of the angular reso-

lution as well as a preliminary investigation for scanning-based characterization

methods.
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Figure 1: Light detection principle in transmission (BTDF) and reflection (BRDF) modes for

the LESO-PB / EPFL video-goniophotometer.

Figure 2: Photometric and geometric quantities for BT(R)DF definition.

To be used as a multiple-point luminance meter, the overall video digital system

must follow detailed calibration and correction procedures. These probably con-

stitute the main difficulty of this approach compared to the conventional moving

sensor approach, which provides the desired output almost directly. The reliabil-

ity of the data assessment and its related accuracy depend on the careful execution

of these procedures11, 15. They include: the spectral calibration of the CCD video

camera, so that its response matches that of the human eye’s sensitivityV (λ)16 as

closely as possible; the conversion of greyscale levels (or more generally speak-

ing the pixel values) into luminance values, for each integration interval; and the

determination of the relation between the pixel co-ordinates of the image and the

corresponding light ray direction17.

Additionally, to avoid losses of accuracy in the BT(R)DF assessment, other pos-

sible sources of experimental error were checked and, whenever possible, com-

pensated for or corrected analytically15: the incident beam collimation, the uni-

formity of the pixels’ response and stray light, mainly due to the incident beam

penetration in BRDF mode.

Once fully calibrated, the camera can be used to carry out luminance mapping

of the projection screen by capturing images of it at different integration inter-

vals, thus avoiding over and under-exposure effects. The latter are then treated
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appropriately to extract BT(R)DF data: the direction of emergence (θ2, φ2) and

luminanceLscreen, with which each pixel is associated, are determined. Based

on these parameters and using the simultaneously measured sample illuminance

E1(θ1), the corresponding BT(R)DF values are calculated from Equation (1)11 at

the pixel level (cf. list of symbols for quantities definition) and gathered accord-

ing to a suitable averaging grid17, 18 (Figure 3).

BT (R)DF (θ1, φ1, θ2, φ2) =
π

ρscreen

· d2(θ2, ψ2)

A · cos α · cos θ2

· Lscreen(θ1, φ1, θ2, φ2)

E1(θ1)

(1)

Figure 3: Conversion fromLscreen mappings into BT(R)DF data.

3 Experimental error

In this section, the sources of error caused by the various calibration and correc-

tion procedures, as well as the processing or mechanical constraints, are analyzed.

In the following sections, different approaches for validation are presented, based

on analytical or simulation models or empirical comparisons.

3.1 Calibration and correction error sources

The spectral response of the CCD camera was first determined experimentally,

then corrected by a combination of optical filters11. The relative errorf ′1 defined

by the Commission Internationale de l’Eclairage19 determines how well the rel-

ative spectral sensitivityS(λ) of the CCD camera matches the photopic function

V (λ). Its expression and applicable approximation are given by Equation (2):

f ′1(−) =

∫∞
0
|S(λ)− V (λ)|dλ∫∞

0
V (λ)dλ

' 0.0093584 ·
Nλ∑
n=1

| S(λn)−V (λn) | ·∆λn (2)
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f ′1 was found to be equal to 10.2%. Its actual effect on the BT(R)DF measure-

ments is, however, by far lower than 10%, as it only applies as a secondary error

source. Indeed, as the photometric calibration determines the relation between

pixel greyscale value and luminance taking the camera’s sensitivityS(λ) into

account, results will be affected only if the sources used for calibration and mea-

surement present different spectra: the closerS(λ) is to V (λ), the less these

spectrum differences will matter.

To quantify the extent to which these differences will influence the results, the

photometric errorε is used19, given by Equation (3):

ε(%) =

( ∑Nλ

n=1 S(λn) · Γmeas(λn) ·∆λn

)
·
( ∑Nλ

n=1 V (λn) · Γcalib(λn) ·∆λn

)
( ∑Nλ

n=1 V (λn) · Γmeas(λn) ·∆λn

)
·
( ∑Nλ

n=1 S(λn) · Γcalib(λn) ·∆λn

)

(3)

As the measurement source itself was used for calibration,ε can be neglected, as it

only depends on the source’s own fluctuations in spectrum of about 0.6%; when

assessed against the solar spectrum, the photometric error does not go beyond

0.6%.

One important restriction of the BT(R)DF data’s appositeness should be outlined.

Owing to its photometric nature, a spectrally selective sample (coloured or coated

glass, film, screen) will not be differentiable from a neutral but less transmissive

(reflective) one if the total loss in emerging luminance is the same. This implies

that no conclusion can be made on the BT(R)DF resulting from a superposition of

possibly selective layers if these were only assessed individually (thus requiring

them to be measured again in their superposed configuration).

The photometric calibration consisted of capturing images of a diffusing surface
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at all possible integration intervals used for sample measurements for a varying

illumination situation and relating the obtained greyscale values to the simulta-

neously measured luminances assessed with a validated luminance meter. The

latter showed variations, which were very low: for usual luminances, an aver-

age relative fluctuation of 0.3% was observed, which remained below 2% for the

lowest measured values. As far as the analyzed area on the diffusing surface is

concerned, the standard deviation in greyscale level of the pixels was less than

1% in relative terms, which implies they differed on average by less than 1 abso-

lute level.

Spatial calibration (which defines the relation between pixel coordinates (X, Y )

and emerging directions (θ2, φ2)) was shown to have no significant effect on

BT(R)DF accuracy.

The sample illuminance was measured simultaneously with each image capture

by an external luxmeter, over a period of time corresponding to the image’s inte-

gration interval. The measured illuminance values were found to have a relative

inaccuracy of less than 1% while the illuminance uniformity over the sample area

showed 1.4% relative variation (2% for grazing anglesθ1 > 70◦).

To compensate for the spread of the incident beam reaching the sample areaA,

correction factors were estimated and applied to the sample diameterD15. These

factors showed a relative error of 1.4%, which therefore gives a 2% relative error
(

∆A
A

=
√

2∆D
D

)
for the area.

As a darkening of pixels was observed towards the edges of the images, a cor-
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rection was applied by estimating the factor to be applied to each pixel15; these

factors were determined with a 0.6% relative error.

Stray light was made negligible by choosing highly absorbing materials for the

goniophotometer’s inner surfaces, which were therefore covered with “velvetine”

(highly absorbing, black velvet-like material), and by performing the measure-

ments in a dark chamber. No influence of internal reflections could be detected,

whereas some detectable stray light was caused by the light rays passing through

the obstructing screen position in reflection mode. This excess light flux was

however compensated for by subtraction of an adequately calibrated background

image, leading to a negligible error due to stray light.

3.2 Inaccuracies due to equipment constraints

The captured digital images were treated as maps of luminances to be converted

into BT(R)DF data. Several parameters influence the quality of the achieved

maps.

Pixel resolution was shown to affect the data by only 0.5%. This value was as-

sessed by using ray tracing calculations: BT(R)DF data based on a faithful model

of the averaging grid were compared to values obtained with a shifted one (by the

equivalent in degrees of half a pixel in altitude and azimuth i.e. the average extent

of a pixel in both directions15).

The blind zone induced in reflection mode by the hole made for the passage of the

incident beam for one of the screen positions must not be considered as an error

source in itself but as missing information, which does not influence the quality
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of the monitored BT(R)DF data.

Eliminating the pixels corresponding to the edges of the screen covers, however

(see Section 2), does affect BT(R)DFs as it requires an implicit interpolation of

neighbouring pixels. To estimate the degree to which this retrieval influences the

final data, bidirectional transmission measurements made with a full projection

screen (presenting no cut-out ellipses) were compared with those obtained for the

same samples using the screen shown in Figure 4. Overall, a standard deviation

of 5% due to the effect of eliminated pixels was found.

Figure 4: Screen image: the edges of the elliptic covers generate a slight darkening of the pix-

els, which are therefore eliminated from the BT(R)DF assessment.

Each surface element on the detection screen (i.e. each image pixel), although

associated with a single (average) emerging direction (θ2, ψ2), can be reached by

rays corresponding to a range of directions, the extent of which is proportional to

the sample illuminated area.

As BT(R)DFs are averaged within sectors the angular extent of which is propor-

tional to the sample size, this possible divergence is compensated for as long as

angular intervals∆θ2 and∆φ2 are greater or equal to angular rangesΥθ2 and

Υψ2 for altitude and azimuth respectively. Since bothΥθ2 andΥψ2 are functions

of θ2 andφ2 and thus vary over the screen area, this compensation needs to be

checked for every combination of direction (θ2, φ2), thicknesses (affectingd)

and sample diameterD, asD determines the optimum intervals∆θ2 and∆φ2

(typically equal to (5◦, 5◦), (10◦, 15◦) and (15◦, 20◦) for D = 100 mm, 200 mm

and 300 mm respectively). Fortunately, the study revealed that such values re-

mained greater than the correspondingΥθ2 andΥψ2 values for almost all of these
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combinations.

The screen diffusion variations were assessed experimentally for different im-

pinging and emerging directions and found to be equal to 2.6%. Accounting

also for the slight spectral dependence of the reflection coefficientρscreen over the

visible range (1.5%) and for its 0.2% variation over the surface of the screen, a

relative uncertainty of 3% (
√

0.0262 + 0.0152 + 0.0022 = 0.0301) was found.

The light source remaining fixed, the incident direction is determined by tilting

and rotating the sample itself. The uncertainty on the tilt angle was observed to

lie between 0.1◦ and 0.2◦; the sample holder’s positioning accuracy was checked

to be of±0.2◦.

Ray tracing simulations were then used to estimate the influence on BT(R)DF

data of variations in incident altitude and azimuth of±0.15◦and±0.2◦respectively.

The resulting mean relative BTDF fluctuations were of 1.3% and 0.3%, leading

to a standard deviation of about 1.3% (
√

0.0132 + 0.0032 = 0.0133) due to inci-

dent direction inaccuracy.

The projection screen’s positioning uncertainty with respect to the sample plane

were measured with a micrometric protractor, a spirit level and source beam

alignment. They were found to be equal to about±0.1◦. Using again ray-tracing

simulations and comparing slightly shifted screen situations, a standard deviation

of 0.8% was determined on BTDFs. As this error is associated with the distanced

from sample to screen, its actual effect on BT(R)DFs is doubled,d being squared

in Equation (1).
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3.3 Global relative error

Table 1 gathers all the significant error sources from the above analysis and asso-

ciates each of them to the affected parameter in Equation (1).

Table 1: Relative errors incurred at the different calibration stages and list of corresponding

affected parameters in Equation (1).

The global maximum errorεBT(R)DF in the monitored BT(R)DF data was calcu-

lated from Equation (4),εelim being added separately because it affectsBT (R)DF

values directly:

εBT(R)DF =
∆BT (R)DF

BT (R)DF
=

√√√√
Nf∑
i=1

(∆fi

fi

)2

+ εelim (4)

By including the different specific terms of Table 1 in Equation (4), a global

maximum error for BT(R)DF data was determined:

εBT(R)DF = 4.5% + 5.0% ' 10% (5)

4 Analytical verification

Known symmetries were checked for the corresponding BT(R)DF data sets for

various materials, amongst which a white opalescent acrylic panel and the highly

diffusing coating of the projection screen (2.6% relative variations from the lam-

bertian model, see Section 3.2), manufactured by LMTr (LMT Lichtmesstechnik

GmbH Berlin).

For the first diffuser, rotational symmetry was checked in transmission at the pixel
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level and found to present 1.2% relative fluctuations, the deviation from a lamber-

tian distribution being 3.1% for all non-grazing directions. In reflection, a strong

specular component of predictable direction (θ2, φ2) = (θ1, φ1 + 180◦) combined

with a diffuse behaviour in all other directions was expected and observed, the

isotropic diffuse distribution being verified with a 1.5% relative fluctuation.

For the second, the observed fluctuations for allθ2 andφ2 angles remained close

to 5.4% and the total reflectanceρdh deduced from measured BRDF data (see

Equation (7)) was checked against theρscreen = 0.75 value assessed with a Mi-

nolta CR-200b surface chromameter.ρdh was found equal to 0.81, leading to a

8% relative discrepancy.

With a simple aperture (τdh = 1), an expression for (Lscreen

E1
) within the directly

illuminated screen area (unique bright spot) can easily be deduced; it is given by

Equation (6), whereh is the distance from the sample to a point source that would

provide an equivalent beam spread:

Lscreenspot

E1(θ1)
=

ρscreen

π

h2 · cos α

(h + d)2
(6)

A set of theoretical values were thus established for differentθ1 andD configu-

rations, as well as for intermediate screen positions (to varyd andα). They were

compared to the ones obtained for the calibrated pixels within the corresponding

bright spots.

The comparison showed, again, a very good agreement between theory and mea-

surement: the relative differences were lower than 8.7% with an average of only

2.9% for the configurations considered.
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5 Empirical validation

Some early stage comparisons of BTDF data monitored with several existing go-

niophotometers were carried out within the framework of International Energy

Agency Task 21 “Daylighting in Buildings”6; unfortunately, only a few bidirec-

tional datasets were made available, mainly from Berlin University of Technol-

ogy (TUB), in addition to the extensive set of EPFL data15.

Based on these other goniophotometric data, BT(R)DF comparisons were made

for three types of glazing. Because of the important differences in the assessment

methods (mean BT(R)DFs inside adjacent hemisphere parts versus scanning pro-

cess), such comparisons would not be valid for steep luminance gradients; sys-

tems presenting diffuse components in their emerging light distribution were thus

selected.

Opalescent glazing had been measured within the REVIS project conducted by

the TNO Building and Construction Research in The Netherlands20 and a good

general agreement between the two datasets was found, with relative differences

of only 5%.

To conduct comparisons for another opalescent acrylic panel manufactured by

Roehm, TUB’s datasets were first averaged inside angular sectors correspond-

ing to the EPFL measurements, and results compared for all incident directions

individually (see Table 2).

Both datasets fit each other within a very reasonable range: for all (θ1, θ2, φ2)

configurations, a mean relative difference of 8.1% was found, reducing to 6.2%

if only non-grazingθ2 angles are considered (θ2 <70◦). This demonstrates on the
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one hand the reliability of both devices and on the other hand that the averaging

method applied for the EPFL goniophotometer does not alter the quality of the

measurements.

Table 2: Mean relative differences between TUB and EPFL measurements for the BTDF char-

acterization of the opalescent acrylic for different incident altitudesθ1.

Finally, the sun-directing glass “LumitopTM” manufactured by Vegla was consid-

ered for a BTDF comparison.

From the available set of 145 incident directions, incidence (θ1, φ1) = (60◦, 285◦)

was selected for the significant scattering features presented by its transmission

figure; the latter were located on the hemispherical projection shown on Fig-

ure 5(a).

The monitored BTDFs are shown on Figures 5(b) and 5(c) for the two labora-

tories. The discrete TUB data along directions (θ2, φ2) were averaged inside

angular sectors of intervals (∆θ2, ∆φ2) = (5◦, 5◦), in accordance with the EPFL

investigation method.

For the selected diffuse space portions, the data were then compared: although

the transmission features were this time not as close to the lambertian model as

for the opalescent acrylic, only a 3.5% mean relative difference was found be-

tween the two datasets (with a maximum divergence of 8.5%), which strongly

reinforces the previous conclusions for diffusing materials.

Figure 5: BTDF data (cd·m-2·lx-1) monitored by TUB and EPFL for the sun directing glass,

incidence (θ1, φ1) = (60◦, 285◦); (a) Projection of BTDF data on virtual hemisphere:
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quasi-diffuse transmission sectors located in circles, (b) TUB photometric solid, (c) EPFL

photometric solid.

6 Directional-hemispherical transmittance (reflectance) comparisons

Numerically integrating bidirectional data over the whole emerging hemisphere

to compare directional-hemispherical transmittance or reflectance values is one of

the most commonly used methods to validate BT(R)DFs measurements21, 8, 10, 22, 20.

The mathematical development leading from BT(R)DF data to the directional-

hemispherical visible transmittanceτdh(θ1, φ1) or reflectanceρdh(θ1, φ1), expressed

by the combined symbolτdh|ρdh for simplification, can be found in15; the relation

obtained is given by Equation (7), which agrees with the relation provided forτdh

in the source book of the International Energy Agency, Task 216:

τdh|ρdh(θ1, φ1) =
1

2
·∆θrad

2 ·∆φrad
2 ·

θ2max∑

θ2=0

360◦−∆φ2∑

φ2=0

BT (R)DF (θ1, φ1, θ2, φ2)·sin(2θ2)

(7)

To estimate the inaccuracy ofτdh or ρdh values deduced from BT(R)DFs, the cal-

culation of the square root of the summed squared individual uncertainties for

BT(R)DFs is a far too pessimistic method, which leads to increasing errors when

the averaging grid intervals∆θ2 and∆φ2 decrease: this disagrees with the fact

that the sum (7) will actually become a better approximation of the integral from

which it is deduced. In consequence, a different approach was adopted to eval-
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uate these errors, based on comparisons with either calculated or experimentally

assessedτdh or ρdh values.

For simple apertures of various diametersD (100 mm, 150 mm and 200 mm),

transmittancesτdh determined through Equation (7) were compared to their ex-

pected value of 1 for incident altitudesθ1 between 0◦ and 75◦.

About twentyD andθ1 configurations were considered, showing discrepancies of

5% on average and 15% at most, all but two being less than 10%. No correlation

with either the diameterD or the altitudeθ1 was found, confirming the accuracy

of theτdh (or ρdh) calculation method.

Based on these results, a range of 10% to 15% was determined as representative

of the error on directional-hemispherical transmittance or reflectance.

To refine this statement and to validate the BT(R)DFs themselves,τdh and ρdh

values based on goniophotometric data were compared to Ulbricht (integrating)

sphere23 measurements carried out by different European institutes1 for several

optical materials. These materials included an opalescent acrylic panel, a laser

cut panel, a prismatic film manufactured by 3M, an acrylic prism manufactured

by Siemens AG presenting 42◦/5◦ gratings (asymmetric panel), two coated fabric

blinds and a white opalescent plastic panel.

The measuredτdh|ρdh values were compared for these different systems with those

obtained with the goniophotometer. Some of the results are shown in Figures 6

and 7.
1Berlin University of Technology (TUB), Fraunhofer Institute for Solar Energy Systems (ISE)

and Siemens Lighting Division in Germany; Bartenbach Lichtlabor (BAL) in Austria; Building
and Construction Research Organisation (TNO) in The Netherlands; Glaceries de Saint-Roch
(GSR), Centre de d́eveloppement du B̂atiment, in France; Stazione Sperimentale di Vetro (SSV),
Optical Testing Laboratory and Istituto Elettrotecnico Nazionale Galileo Ferraris (IENGF) in
Italy; the Solar Energy and Building Physics Laboratory (LESO-PB) at EPFL, in Switzerland.



M. Andersen - Validation of a bidirectional goniophotometer 21

From the discrepancies observed on measuredτdh | ρdh values between laborato-

ries for a same material, standard deviations were calculated for each incident

direction and were used as as estimation of their error (error bars for “Integrating

Spheres” curves). The error bars for the “Goniophotometer” curves of Figures 6

and 7 correspond to the relative maximum error of 15% determined above.

Figure 6: Directional-hemispherical light transmittance comparisons for diffusing and redirect-

ing glazings:τdh values based on BTDF integration compared to Ulbricht sphere mea-

surements for (a) the white opalescent acrylic and (b) the Laser Cut Panel.

Figure 7: Directional-hemispherical light transmittance comparisons for a 3M prismatic film on

float glass:τdh values based on BTDF integration compared to Ulbricht sphere measure-

ments for the 3M film on the (a) incidence side and (b) emerging side.

If we consider the systems individually, we can observe that for very diffuse ma-

terials (opalescent plastics), the discrepancies remain generally lower than 6% in

relative terms. For strongly specular systems such as the laser cut panel (Fig-

ure 6(b)), the Siemens prisms and the grey fabric blind, the mean relative dif-

ference was of about 14%, but the integrating sphere data showed variations for

these materials that were actually even larger. Finally, for hybrid systems like the

3M prismatic film (Figure 7) and the grey and red fabric blind that both present

high luminance gradients combined with a smooth light scattering for many inci-

dent directions, a mean relative difference of 13% was observed, despite, again,

there being very large differences in the integrating sphere data for the 3M pris-

matic film.
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As a consequence, this analysis confirmed the accuracy of the BT(R)DF mea-

surements and the adequacy of theτdh |ρdh calculation method; it also confirmed

that the maximum errors of respectively 10% and 15% were applicable for any

system type.

7 Detailed BT(R)DF comparisons with ray tracing simulations

In Andersen et al.24, 25, the reader can find the description of a novel validation

methodology for detailed bidirectional properties of a complex system with ray

tracing simulations. It was applied on a substantial set of experimental BT(R)DF

data for different fenestration systems and led to relative discrepancies between

the two approaches far less than the assumed inaccuracies of the simulation re-

sults themselves.

8 Conclusion

In this paper, a detailed assessment of the experimental accuracy of an innova-

tive goniophotometer based on digital imaging techniques was carried out using

different approaches.

The many intermediate calibration stages necessary to extract BT(R)DF data

from raw digital images are reviewed and the experimental error associated with

each of them calculated. An overall maximum error for BT(R)DF data equal

to 10% was estimated and thereafter verified with detailed comparisons using

different approaches. This error corresponds to a very satisfactory accuracy for

measurements as complex as BT(R)DFs, considering that even commercial il-

luminance meters and luminance meters (used as references for calibration) can

show errors between 3% and 6% and between 4% and 7% respectively19 and that
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a BT(R)DF is equal to the ratio of a luminance and an illuminance value.

Different materials presenting predictable transmission or reflection features were

characterized; expected BTDF or BRDF values were verified against measured

data, with discrepancies varying from 1% to 8%.

Within the framework of international projects, several systems were character-

ized with various goniophotometers. Whenever possible, the respectively ob-

tained bidirectional measurements were compared for diffuse transmission with

measurements taken with the present device. These comparisons showed differ-

ences lower than 8%, which verified that the BT(R)DF data were reliable for the

different instruments. It also showed that the averaging method chosen for this

instrument did not alter the quality of the results.

The more commonly used method for validating BT(R)DF data was also applied

to cross-check the reliability and accuracy of the novel goniophotometer. It con-

sisted of integrating numerically the bidirectional data to deduce the directional-

hemispherical transmittance or reflectance. This value was then compared to

an Ulbricht sphere measurement made with the same sample at various European

laboratories. Overall, the agreement between the two assessment methods proved

excellent, the observed discrepancies remaining lower than the measurement er-

rors.

These results, together with an analysis performed in the absence of any sample,

allowed the determination of a relative maximum error of 15% on theτdh andρdh

values deduced from BT(R)DF data.

Overall, these different validation approaches, in addition to the more detailed
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ray-tracing simulations comparison carried out by Andersen et al.24, 25, led to

satisfactory results for the bidirectional goniophotometer described in this paper,

placing reliance on the assumptions made in the construction of the instrument

and on the various calibration and correction procedures that were necessary to

convert the CCD camera into a reliable multiple-points luminance meter.

The growing interest shown by practitioners and the window components indus-

try in this kind of data confirms the adequacy of this measurement device for

fulfilling their needs. It allows them to benefit from an easy, rapid - and there-

fore cheap - access to reliable and accurate characterization of their products and

prototypes. It also provides them with objective guidelines for improving their

performance, as suitable adjustments of shapes, coatings or both (reflection co-

efficients, texture, etc.) can be recommended, and thereafter verified for further

optimization.

In the field of building simulation tools, the potentialities of daylighting perfor-

mance assessment programs will be considerably increased if they can benefit

from an accurate and objective database of new fenestration systems and include

their bidirectional properties in the calculation routines.
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