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Abstract: Dynamic optimization can be used to determine optimal input profiles for dynamic
processes. Due to plant-model mismatch and disturbances, the optimal inputs determined
through model-based optimization will, in general, not be optimal for the plant. Modifier
adaptation is a methodology that uses measurements to achieve optimality in the presence of
uncertainty. Modifier-adaptation schemes have been developed for the real-time optimization of
plants operating at steady state. In this paper, the concept of modifier adaptation is extended
to transient plants such as batch processes. Two different schemes are proposed, and their
performance is illustrated via the simulation of a semi-batch reaction system.
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1. INTRODUCTION

Dynamic optimization provides a framework for increasing
the productivity of dynamic processes, without violat-
ing safety and quality constraints. The problem is that
most optimization techniques are model-based, and reli-
able models are rarely available at the industrial level. This
is particularly true for batch processes, where the effort
required for accurate modeling is often incompatible with
short product life-time and the necessity for fast time-to-
market (Bonvin (1998)). The reactions in batch processes
are often more complex than those encountered in contin-
uous processes, thus making the development of detailed
models an extremely challenging task (Filippi-Bossy et al.
(1989)). In addition to modeling uncertainty, disturbances
occur due to variations in the initial conditions and the
operating conditions. Luckily, batch processes are usually
repeated, and often measured quantities are available at
the end of each batch. Run-to-run measurement-based
optimization uses these measurements to reduce the un-
certainty and recover optimal operation for future batches.

Measurement-based optimization techniques for transient
processes can be separated into two categories, namely
fixed-rule methods and repeated-optimization methods.
The distinction is based upon how the available measure-
ments are used. Fixed-rule methods try to improve the
input profiles without solving an optimization problem
between batches. NCO tracking (Frangois et al. (2005)),
interpolation-based algorithms (Krothapally et al. (1999)),
and measurement-based gradient search methods (Ge
et al. (2000), Zafiriou and Zhu (1990)) fall into this cate-
gory. Repeated-optimization methods, on the other hand,
modify the optimization problem and recompute the in-
put profiles. Typically the so-called ’two-step’ approach

is used. The available measurements are used in a first
step to re-identify the dynamic model at the end of each
batch, and this refined model is used in a subsequent
step to optimize for the next batch. An exhaustive review
of measurement-based optimization techniques, including
run-to-run schemes, is given in Srinivasan et al. (2003).
Although recent publications elaborate on some aspects
of these techniques (Kadam et al. (2007)), to the best
of the authors’ knowledge, no fundamentally different ap-
proaches have since been published.

The two-step repeated-optimization approach has the ad-
vantage of being particularly transparent, and as such it
is more easily accepted in industry. It has been well docu-
mented in the literature (Clarke-Pringle and Mac Gregor
(1998), Cruse et al. (2006)). It suffers, however, from two
main drawbacks: (i) The inputs determined through opti-
mization may not provide sufficient excitation to identify
the model parameters, and (ii) in the case of structural
plant-model mismatch, it is very unlikely that plant opti-
mality can be achieved (Forbes et al. (1994)).

The same problems occur when continuous processes are
optimized in real-time, which is static optimization. Exten-
sive work has shown that, rather than trying to identify the
plant, it often makes more sense to directly modify the cost
and the constraints of the optimization problem (Roberts
(1979), Gao and Engell (2004), Marchetti et al. (2010)).
In the literature, this is often referred to as modifier adap-
tation. However, when the process is transient in nature, a
level of complexity is added to the problem. This paper ex-
tends the modifier-adaptation concept to transient (batch)
processes. A first attempt was made by Marchetti et al.
(2007) using a continuous-time formulation and correction
terms on the constraint functions.



In contrast, this work uses a discrete-time formulation. In
this context, two approaches are possible. The correction
terms may be placed on either the dynamic equations or
the cost and constraints. Either way, the cost and the con-
straints of the optimization problem are modified, whether
it is indirectly or directly. It is shown that the two methods
share many similarities, yet differ considerably regarding
the measurements required for their implementation. The
first method requires that the constraints and the cost
be measured, while the second method assumes full state
measurements (or estimation). The merits of each method
are discussed, although the question of which one is more
useful is left open.

The paper is organized as follows. Section 2 formulates
the problem and presents two schemes for its solving it.
The performance of these schemes is illustrated in Section
3 via the simulation of a semi-batch reaction system.
Conclusions are drawn in Section 4.

2. RUN-TO-RUN OPTIMIZATION WITH MODIFIER
ADAPTATION

2.1 Problem statement
Using a discrete-time formulation, the optimal input pro-

files for a batch process are obtained by solving the follow-
ing model-based dynamic optimization problem:

U= argmin ¢ (x[f]) (1)
st x[j+1] = F(z[j],ulj]), =[0] =0,
Q(XvU) <0,

where the superscript (-)* indicates a quantity calculated
via optimization, « is the n,-dimensional vector of states,
u is the mn,-dimensional vector of inputs, ¢ is the ter-
minal cost, F' is the discrete dynamic model, g is a
vector of constraints, and f is the fixed final sampling

instant. Let us denote U = [u[0]7,..., u[f — I]T}T, X =
[z0)”,... =[]

The difficulty is that U™ determined this way is optimal for
the model, and not necessarily for the plant. In practice,
if U* is applied to the plant, the resulting performance
will probably be sub-optimal and may even be infeasible.
This is because the plant behaves differently to the model,
i.e. F, # F, where the subscript (-), denotes a quantity
related to the plant, in this case the dynamic equations.

Fortunately, batch processes are typically repeated many
times, and measurements are generally available at the end
of each batch. In run-to-run optimization, the idea is to
iteratively use these measurements to achieve optimality
and feasibility for the plant in as few runs as possible.

Optimization problem (1) can be modified at the end of
each batch, either via the cost and the constraints, or
through the discrete dynamic equations, as discussed next.

2.2 Method A - Cost and constraint modification

Let Uy and X} be the optimal trajectories for the k"
model-based optimization problem. Uy, is applied to the

min  ¢(x[f])
U *
st z[j+ 1] = Fz[j], ulj), Ukt
z[0] = xo,

g(X7U)+ € <0
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Fig. 1. Method A-0, which modifies the constraints.

plant, with the resulting state profile, X, ;. The model-
based optimization problem for the (k + 1) batch is
defined as:

Ui, = arglrjnin o(x[f]) + AL(U - U}) (2)
st.  z[j+1] = F(z[j],ulj]), =[0]= =,
g X, U)+e,+AX(U-Uy) <0,

where the modifier terms are defined as:
6k:g(XP7k7UZ)_g(XZ:7UZ)7 (3)

do(zpi(f])  do(xi[f])

¢ _ P, o k

M = au- au_ )
)‘Z _ dg(XP,k’ Uk) _ dg(Xk7Uk) (5)

dau dUu

Note that only the cost and the constraints are modified. It
can be shown that this approach is equivalent to standard
modifier adaptation for the static case. The derivative
operator, %, represents the derivatives with respect to
U, taking into account that X, and only X, is determined
by U.

The 0%"-order term, €j, matches the values of the con-
straints for the plant and the model at Uj,. The 15'-order

terms, )\f and )\g, match the gradients of the cost and
the constraints for the plant and the model, also at Ujy,.
As we will see in Section 2.4, this can be used to ensure
optimality upon convergence.

The modifier € is determined by measuring the values of
the constraints for the plant. If only the 0**-order term is
used, i.e. A = 0 and A{ = 0 for all k, we will refer to the
method as Method A-0. The method is then equivalent to
that proposed by Marchetti et al. (2007). If the 1%*-order
correction terms are used, the method is referred to as
Method A-1.

2.8 Method B - Modification of the difference equations

An alternative to correcting the cost and the constraints is
to add modifier terms to the discrete dynamic equations,
F'. At the end of the k' batch, the model-based optimiza-
tion problem for the (k + 1)*! batch then reads:
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Fig. 2. Method B-0, which modifies the dynamic equations.

Ujs1 = argmin o(z[f]) (6)
st w[j +1] = F(z[j], u[j]) + cx[J]
+Cilj] ["ﬂfj]‘_f”ggb[ﬂ o=,
g(X,U) <0,
where the modifier terms are defined as:
crlj] = @p ki + 1] — mkli + 1], (7)
Crlj] = [Apkli] — Arld], Bprlil = Bilill,  (8)

with @, x[j + 1] = F(z,x[j], u;[j]), the one-step-ahead
state prediction that the model would have made. A, x[j]
and B, x[j] are the partial derivatives of the dynamic
equations for the plant:

Apklil = aﬂ;} Do -1 ()
Bp,km—an(mg’l’im’“M), j=0,....,f—1. (10)

Ajlj] and Byg[j] are the partial derivatives of the model
F evaluated at @, x[j] and uj[j].

It is particularly interesting to examine the effect of the
0"-order modifier, ¢y [j]. We call this a 0*"-order correction
because the correction involves only the wvalues of the
states. For any z,[j] and u}[j] from the k' batch,
ci[j] is the difference between what the model would have
predicted for the states at the sampling instant ¢;;, and
the states which actually occurred, x, i [j+1]. Hence, ¢ [j]
can be seen as a one-step-ahead prediction correction. This
ensures that the modified dynamic equations for the (k +
1)** batch have no prediction error for the input trajectory
Uj, that is:

F(xp i, ur) + cilj] = Fp(@pp,ue) Vi (11)
If only the 0'-order term c[j] is used, i.e. Ci[j] = 0, the
method will be referred to as Method B-0. If the 1%¢-order
term, C',[j], is also used, the method will be referred to as
Method B-1.

2.4 Properties upon convergence

The attraction of Methods A-0, A-1, B-0 and B-1 is that,
upon convergence, it is possible to prove that either feasi-

bility (Methods A-0 and B-0), or feasibility and optimality
(Methods A-1 and B-1) will be achieved for the plant.

Theorem 1. If either Method A-0 or Method B-0 con-
verges, then it will converge to an input trajectory that
is feasible for the plant.

Theorem 2. If either Method A-1 or Method B-1 con-
verges, then it will converge to an input trajectory that
satisfies the 1%'-order necessary conditions of optimality
for the plant.

Outlines of the proofs are given in Appendix A.

It should be noted that, for these statements to hold
regarding Method B, we must assume that ¢ and g are
known and that the only uncertainty in the model-based
optimization problem comes from the model itself. This
is a reasonable assumption. Yet, even if this is not the
case, it is often possible, through a suitable choice of state
variables, to transfer the uncertainty to F.

2.5 Comparison of Methods A and B

Methods A and B have much in common. If they converge,
they converge to feasible trajectories for the plant, and
they both require gradient estimation to also guarantee op-
timality upon convergence. Which method is more useful?
We now give two reasons why Method B has the potential
to be superior, yet, for the moment, Method A is easier to
implement.

Integration with a control layer. The optimized input
profiles are rarely applied open-loop to a batch process,
although for simplicity it was considered to be the case
in this paper. A within-batch control layer is used to
ensure that safety and quality constraints are respected.
Hence, the optimization problem will typically supply ref-
erence trajectories to low-level controllers. In this respect,
Method B will supply accurate reference trajectories, as
the updated model has no prediction error upon conver-
gence. On the other hand, even if Method A yields the
optimal plant inputs, it will not provide the correct state
trajectories to be used as references, as the model is not
updated.

Gradient estimation.  Gradients are likely to be experi-
mentally costly to evaluate for both methods as estimating
them requires many measurements. However, both the
type of measurements and the number of batches required
to obtain the measurements differ for each method.

For Method A-1, it will generally be necessary to perform
multiple batches, each with slightly different inputs, to
determine the 1%%-order terms A{ and AY. The derivatives
can then be calculated via finite differences. The problem
is that this requires fn, + 1 batches. Hence, the number
of batches required to estimate one set of gradients rises
linearly with f.

For Method B-1, obtaining C'[j] is also a difficult task. It
can be shown to be equivalent to identifying a linear time-
varying model around the trajectories U}, and X, . This
requires sufficient excitation and so, as for the gradient
terms for Method A-1, it will generally be necessary
to perform multiple batches. The computation of the
gradients of the dynamic equations requires n, + n, + 1



measurements at each sampling instant. To obtain these
measurements, it would be necessary to perform n, +n, +
1 batches, each with different input and state profiles.
Determining input profiles that result in measurements
that are suitable for gradient calculation is a complicated
problem that will not be adressed in this paper.

The key difference is that, for Method A, the number
of batches required to estimate one set of gradients rises
linearly with the number of sampling instants f, while the
number of batches required by Method B to estimate one
set of gradients is independent of f. This appears to give
Method B an advantage over Method A. Unfortunately,
for Method B, there currently exists no systematic way of
determining what inputs should be applied to the plant to
determine the necessary measurements.

3. SIMULATED EXAMPLE
3.1 Plant

Methods A-0, A-1, B-0 and B-1 are tested on the simulated
example of an isothermal semi-batch reactor (Ruppen
et al. (1998)). Two reactions occur: A + B — C and
2B — D. The objective is to maximize the production
of C' at a fixed final time. The manipulated variable is the
feed rate of B. There are limits on the concentrations of B
and D at final time.

If we consider the state vector [ca cB V]T, where ¢4 and
cp are the concentrations of A and B and V is the volume
of material in the reactor, the plant is governed by the
continuous dynamic equations:

cA —kicacp
C:B = —kchCB — 2]6263”
v 0

—ca

1
+ — |cB,, —cB|u.(12)

The concentrations of C' and D can be expressed as:

1

cc = 7 (caoVh —eaV), (13)
1

cp = ﬁ((CA + cpin — ¢B)V — (ca0 + ¢Bin — ¢B0)). (14)

The numerical values used in this simulation are given in
Table 1. We consider a piecewise-constant input, with the
sampling period h = 15.625 min between each switching
instant.

3.2 Model

The discrete-time nominal model is:

z1[j +1] 1] —k1,0 21[j]22]] ;
walj +1]| = |w2lj]| +h | k1o 21[j]a[j] — 2k2,0 22[5]™
z3lj + 1] 23] 0
h —x1[j] )
+— (B —22lil| ulj],  @[0] =z, (15)
w3li] | )

where ki,, k2, and K, are the nominal values of the
uncertain parameters, and the concentrations cc and cp
are given by equations (13) and (14). The model-based
optimization problem (without modifiers) is formulated as:
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Fig. 3. Optimal inputs: plant in solid, nominal model in
dashed.

U* = argmax z3[f]co[f] (16)

U
s.t. xzlj + 1] = F(z|j],ulj]), =[0] ==,
equations (13) — (14)
Umin < u[]] < Umaz
CB [.ﬂ < CBf,max
CD [f] < CDf,max-

Notice that all the uncertainty in the model-based opti-
mization problem is contained in F'.

Table 1. Parameters, operating bounds and
initial conditions.

k1 0.053 1/mol min k1,0 0.03 1/mol min
ko 0.128 1/mol min k2o 0.15 1/mol min
K 2 Ko 2.5
CBin 5 mol/1 Umin 0 1/min
Umaz 0.001 1/min CBfmaz 0.025 mol/1
CDf,max 0.15 mol/1 cA0 0.72 mol/1
CBO 0.05 II101/1 Vo 1 1
h 15.625 min f 16

3.8 Simulation of A-0 and B-0

Figure 3 displays the optimal input for the plant and for
the nominal model. The convergence towards feasibility
for Methods A-0 and B-0 is shown in Figure 4. Both
methods also converge to near optimality. Figures 5 and
6 indicate that the convergence path is infeasible for both
methods. Indeed, there is no guarantee that either of the
methods will converge following a feasible path. Constraint
violation could be avoided by including an inner controller
to monitor constraints. Another possibility would be to
add a ’back-off’ (negative bias) to the constraint.

8.4 Simulation of A-1 and B-1

Figure 4 also shows that both Methods A-1 and B-1
converge to optimality, although by different paths. The
path by which Method A-1 converges results in violation
of the constraint on B, while the path by which Method
B-1 converges results in violation of the constraint on D.
This again highlights that, for a practical implementation,



Fig.

Fi

a2

Concentration of D at final time [mol/ 1]

Fig

Production of C [mol]

Concentration of B at final time [mol/ I]

- _-6»—-6——6——8-—4J)
0.43 ¢ 1
0.425 |
0.42 1
0.415 1
-+-A-0
-¢-B-0
0.41 At
—o—B-1
0.405 L L L L L
2 4 6 8 10 12
Batch number k
4. Cost function: production of C' vs. the batch

number. The dot-dashed line indicates the optimal
production for the plant.

0.045¢

0.041

0.035¢

0.03¢

0.025¢

0.02¢

0.0157

0.01

2 4 6 8 10 12
Batch number k
. 5. First constraint: Concentration of B at final time

vs. the batch number. The shaded region indicates
constraint violation.

0.156

0.154F

0.152

0.15¢

0.148¢

0.1461

0.144

2 4 6 8 10 12
Batch number k
. 6. Second constraint: concentration of D at final time

vs. the batch number. The shaded region indicates
constraint violation.

the methods would need to be combined with within-batch
control.

It is assumed that a method is available for calculating
suitable inputs, such that the gradients required in Method
B-1 could be determined. Given this assumption, Method
A-1 requires 17 batches to computete each set of gradients,
while Method B-1 requires only 5 batches.

It is interesting to note that the performance of Methods
A-0 and B-0 is similar to that of Methods A-1 and B-
1. This is because, for this particular problem, achieving
optimality is mainly dependent on meeting the active con-
straints. Methods A-1 and B-1 are expected to outperform
Methods A-0 and B-0 for problems where optimality is
mainly dependent on driving the cost sensitivity to zero.

It is worth noting that the convergence of the proposed
algorithms can be significantly altered by filtering the
modifier terms. For example, a low-pass filter generally
results in slower, yet less oscillatory convergence.

4. CONCLUSIONS

In the presence of modeling uncertainty, resolving the
model-based optimization problem will, in general, not
lead to optimality for the plant. Modifier adaptation is a
methodology for using plant measurements to achieve op-
timality despite modeling uncertainty. Until now, this has
only been applied to processes operating at steady state.
In this paper, we have successfully extended the modifier-
adaptation concept to transient (batch) processes.

Two measurement-based optimization methodologies have
been proposed. Method A modifies the cost and the con-
straints in the model-based optimization problem, while
Method B modifies the dynamic equation. Each method-
ology has two variants, depending on whether gradients
are used, giving a total of four methods.

Both methodologies guarantee feasibility upon conver-
gence, and also optimality if gradient terms are used. An
attractive aspect of the methods is that this holds even
in the case of structural mismatch between the nominal
model and the plant. This is because, unlike the standard
two-step approach, the corrections are aimed at correcting
the necessary conditions of optimality, rather than the
(structurally incorrect) model of the process.

The methods were compared in simulation, which showed
that there is little difference in terms of speed of conver-
gence. The main difference between the two methodologies
lies in the measurements required to obtain the necessary
modifiers.

This paper raises an important question: Is it better
to modify the cost and constraints (Method A) or the
dynamic equations (Method B)? A preliminary discussion
on this subject in Section 2.5 shows that Method B
has the potential to be more useful, yet has greater
implementation difficulties.
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Appendix A. OUTLINE OF CONVERGENCE
PROOFS

A.1 Method A
We assume that there exists a unique solution to the

difference equations F', which can be written as an explicit
function of the control variables:

z[j] = §;(U). (A1)
The optimization problem (1) can be written as:
U" =argmin @ (U) (A.2)
U

s.t. GU) <0,

where ®(U) = ¢(S;(U)) and G(U) = g(S(U),U). From
this formulation we can see that Method A is equivalent
to modifier adaptation for the static case. The proofs
regarding optimality and feasibility upon convergence are
given in Marchetti et al. (2010).

A.2 Method B

If convergence occurs, with klim U; = U~ , then, due to
— 00

the 0*"-order correction terms, there is no prediction error,
and:

where G, are the plant constraints. Hence, feasibility is
obtained upon convergence.

The effect of the 15¢-order correction term is a little less
obvious. We will first show that V®(U) can be expressed
as a function of the partial derivatives of F' and ¢. We
have:

0p(x oS

Differentiating Ss using the chain rule gives:

(A.4)

r+1

08;(U) OF (x[i), uli), )
a»i[r] = I -

OF (x[r],ur],r)
dulr] '

Combining this with equation (A.4) shows that V& (U)
depends on the partial derivatives of F' and ¢. In the
same manner, we can express VG(U,) as a function
of the partial derivatives of g and F. Such expressions
are used in numerical optimization to compute functional
derivatives via forward sensitivity analysis (Rossenwasser
and Yusupov (2000)). We have assumed that the only un-
certainty in the model-based optimization problem comes
from F'. The above development shows that by correcting
the gradient of F' we also correct the gradients of ® and
G. Hence, we have:

Vo (UL) = Vo,UY),
VG (UL) = VG, (UL),

(A.5)
(A.6)
where @, is the cost for the plant. From this, it is easily

shown that, if U7, is a KKT point for the model, it is also
a KKT point for the plant.



