
Input Filter Design for Feasibility in

Constraint-Adaptation Schemes

Gene A. Bunin, ∗ Grégory François, ∗ Bala Srinivasan, ∗∗

Dominique Bonvin ∗

∗ Laboratoire d’Automatique, Ecole Polytechnique Fédérale de
Lausanne, CH-1015 Lausanne, Switzerland

(e-mail: dominique.bonvin@epfl.ch).
∗∗ Department of Chemical Engineering, Ecole Polytechnique de

Montreal, Montreal, Canada, H3C 3A7.

Abstract: The subject of real-time, steady-state optimization under significant uncertainty
is addressed in this paper. Specifically, the use of constraint-adaptation schemes is reviewed,
and it is shown that, in general, such schemes cannot guarantee process feasibility over the
relevant input space during the iterative process. This issue is addressed via the design of a
feasibility-guaranteeing input filter, which is easily derived through the use of a Lipschitz bound
on the plant behavior. While the proposed approach works to guarantee feasibility for the single-
constraint case, early sub-optimal convergence is noted for cases with multiple constraints. In
this latter scenario, some constraint violations must be accepted if convergence to the optimum
is desired. An illustrative example is given to demonstrate these points.

Keywords: Real-time optimization, optimization under uncertainty, modifier adaptation, filter
design, robust optimization.

1. INTRODUCTION

For the past two to three decades, optimization has played
an increasingly significant role in the operation of plant-
wide processes, and will likely continue to do so for the
foreseeable future. Analogous in many ways to its more-
developed neighbor field of process control, the role of
optimization in the process industry appears to have gone
through a similar evolution - with simpler algorithms
giving way to more challenging and demanding ones as
processes are pushed to do more. As a result, what
might have originally been a design step to determine a
theoretically optimal set of operating regimes has now
become a closed-loop algorithm of its own. This has
created a sort of “optimization with feedback” subfield,
and has paved the way for the implementation of more
complex real-time optimization (RTO) structures (Engell
(2007); Tatjewski (2008)). This is important, as model
uncertainty is a standard issue in process operation, where
optimizing with a faulty model will not only lead to the
“wrong” optimum, but possibly to one that is infeasible as
well, either from a physical or safety viewpoint.

In view of these difficulties, numerous authors have inves-
tigated robustness and feasibility in RTO schemes. Many
have looked at the problem as one would look at robust
control, and have attempted to guarantee constraint sat-
isfaction with a high probability either through stochastic
chance-constraint programming (CCP) (see, e.g., Zhang
et al. (2002); Zhang (2010)) or through methods where
all the possible cases due to uncertainty are considered,
and a penalty slack term is introduced into the objective
as a compromise between strict feasibility and optimality
(Mulvey et al. (1995); Darlington et al. (1999)). Others

have placed emphasis on effectively integrating advanced
control layers into the RTO scheme, where robustness may
be, once more, cast into the well-known control framework
and included as part of the set-point optimization sub-
problem (Kassmann et al. (2000); Flemming et al. (2007)).
However, to the authors’ best knowledge, a proper cri-
terion for guaranteed feasibility of real-time optimization
schemes has not been given.

This last sentence qualifies precisely the goal of this pa-
per, where such a criterion will be derived for a very
general class of systems with Lipschitz-continuous plant
constraints. For each of these systems, it will be assumed
that some iterative optimization algorithm is at work
- collecting measurements at a given steady-state iter-
ation, updating the optimization problem, and then re-
optimizing to obtain a new optimum for the next iteration
(see Fig. 1). Although this could, in principle, be any black-
box algorithm, in this paper the discussion is limited to
constraint-adaptation schemes where the constraints of the
model are updated from iteration to iteration through bias
update terms (Marchetti et al. (2009)).

When a new optimum is calculated by the updated op-
timization problem, this optimum is generally considered
as being more accurate than the previous (as it uses the
most recent measurements), and thus better. However, the
full calculated input step is usually not taken in practice
for safety reasons, and a filtered step is applied instead
(Brdys and Tatjewski (2005)). Although this means of
updating the input is known to have robustness properties,
the actual choice of the filter is generally not discussed,
and is rather chosen in an ad hoc manner. In this work,

Model-Based Optimization

user/market

demand

Process Operation

optimal

inputs measurements

Measurement-Based Correction

updated

problem

Fig. 1. A general representation of measurement-based
iterative optimization.

the value for the filter gain that minimizes the amount of
filtering while still guaranteeing feasibility will be given.

The structure of the paper is as follows. Section 2 gives
a brief review of the constraint-adaptation scheme and
demonstrates how, in general, such a scheme cannot guar-
antee feasibility from one iteration to the next. To allow
for such guarantees, the role of the input filter is then
introduced, and a proper derivation of an upper bound
for this filter gain (or a lower bound on the amount of
filtering) is given in Section 3. Section 4 then presents
the problems that arise when trying to use this filter
definition for systems with multiple constraints. Section 5
proposes a tentative solution to these problems and offers
an illustrative example, and Section 6 concludes the paper.

2. RTO VIA CONSTRAINT ADAPTATION

The optimal inputs obtained by solving an RTO problem
with adaptation on the constraints may be written as
follows (for more in-depth formulations of this method,
see Marchetti et al. (2009)) 1 :

u∗

k = arg min
u

. ϕ(u)

s.t. G(u, θ) + Λk � 0
, (1)

where u ∈ R
nu is the vector of inputs, ϕ ∈ R is the

objective function, G ∈ R
ng is the vector of inequality

constraints, (·)∗ denotes the optimal input computed by
the optimization, and the subscript (·)k indicates the kth

iteration. Uncertainty in the model is represented via a
set of uncertain parameters θ ∈ R

nθ , with the vector of
correction terms Λ ∈ R

ng serving to correct the model.
It may be assumed, without loss of generality, that ϕ is
linear and independent of θ by virtue of the epigraph
transformation (Boyd and Vanderberghe (2008)), where
an uncertain or nonlinear cost may simply be reformulated
as an inequality constraint.

In this paper, the correction terms will be defined simply
as the plant-model error at the previous iteration:

Λk = Gp(ūk−1) − G(ūk−1, θ), (2)

where Gp is the vector of measured plant constraints. The
overbar (̄·) is used to denote the input that is actually
applied.

Because applying u∗

k to the plant directly may result in
a step that is too aggressive and leads to an infeasible
point for the plant, an input filter - sometimes known as
a “relaxation” or “gain” coefficient (Brdys and Tatjewski
(2005)) - is generally used:

1 The symbol � is used to denote a system of less-than-or-equal-to

inequalities.

0 0.5 1 1.5 2 2.5 3 3.5 4 5
−100

−80

−60

−40

−20

0

20

40

u

C
o

n
s
tr

a
in

t
V

a
lu

e

g(u)
g

p
(u)

limit
g

p
(u*)

g(u*)

u
p

*

4.5

u
*

Fig. 2. The plant and model constraints in the optimiza-
tion problem (4)-(5).

ūk = Ku∗

k + (1 − K) ūk−1, (3)

where K ∈ [0, 1] is the gain of an exponential filter affect-
ing all the inputs, with K = 1 and K = 0 corresponding
to no filtering and to total filtering, respectively.

A brief example is given next to illustrate the efficacy of
this approach.

Example. Consider the following optimization problem:

max
u

. u

s.t. g(u) = 4u2 + 1.2u − 100 ≤ 0

0 ≤ u ≤ 5

, (4)

where the goal is to maximize u, while honoring certain
constraints. Assume that the real constraint for the plant
is given by:

gp(u) = u3 + 1.05u− 100. (5)

The graphical representation of this problem is given in
Fig. 2, from where it is immediately evident that applying
the computed optimal input would lead to a significant
constraint violation for the plant (compare gp(u

∗) and
g(u∗)). To get around this issue, one may use the scheme
(1)-(3) as follows:

Λk = (ū3

k−1
+ 1.05ūk−1 − 100)
−(4ū2

k−1
+ 1.2ūk−1 − 100)

u∗

k = argmax
u

. u

s.t. 4u2 + 1.2u − 100 + Λk ≤ 0
0 ≤ u ≤ 5

ūk = Ku∗

k + (1 − K)ūk−1.

(6)

Choosing the feasible initial input ū0 = 3.5, one can
run this algorithm iteratively and see that convergence
to the true optimum is easily achieved in a relatively
small number of iterations (see Fig. 3 - only the input is
shown for this case, as it is clear that constraint violation,
g(ū) > 0, will only occur if the input ū goes above the
optimal value u∗

p).

It is clear from this simple example that the filter can
play a crucial role in deciding both the feasibility and
convergence speed properties. In the next section, an upper

0 5 10 15 20 25 30
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Iteration Number k

u

K = 0.1

K = 0.5

K = 0.9

Fig. 3. The solution to (6) with different filter gains.

bound on the filter gain that guarantees feasibility from
iteration to iteration is derived.

3. UPPER BOUND ON THE FILTER GAIN

The following theorem is the main result of this work, and
derives a bound on the filter gain Kk such that feasibility is
guaranteed from iteration to iteration. The subscript (·)k

is added to the filter gain so as to indicate that the value
is iteratively adapted (i.e. Kk is the filter gain that will
guarantee plant feasibility at iteration k).

Theorem. Assume that all the plant constraints in the vec-

tor Gp(u) =
[

gp,1(u),gp,2(u), ...,gp,ng
(u)

]T
are Lipschitz-

continuous functions, i.e.:

∃κi ∈ [0,∞) :
|gp,i(ua) − gp,i(ub)| ≤ κi ‖ua − ub‖

∀ua,ub ∈ U; ∀i = 1, ..., ng

, (7)

where ua and ub are any two points in the input space U.

Then, the RTO method given by (1)-(3) will be feasible at
the kth iteration if:

Kk ≤ min
i

[

−gp,i(ūk−1)

κi ‖u∗

k − ūk−1‖

]

. (8)

Proof. The proof will use the feasibility of the initial
point (assumed) and iteratively extend it to all future
iterations. It will be assumed that the system is feasible
at the (k − 1)st iteration, i.e.:

Gp(ūk−1) � 0, (9)

and a condition on Kk that ensures the feasibility at the
kth iteration will be determined.

The Lipschitz relation (7) allows bounding the value of the
plant constraint at the kth iteration (the absolute value has
been removed as it is unnecessary here):

Gp(ūk) � Gp(ūk−1) + κ ‖ūk − ūk−1‖ , (10)

where κ =
(

κ1, κ2, ..., κng

)T
. It is clear from (10) that the

feasibility criterion at k, Gp(ūk) � 0, will be automatically
satisfied if:

Gp(ūk−1) + κ ‖ūk − ūk−1‖ � 0. (11)

Using the filter law (3) for ūk gives:

Gp(ūk−1)

+κ ‖Kku
∗

k+ (1 − Kk) ūk−1 − ūk−1‖ � 0
, (12)

or

Gp(ūk−1) + κKk ‖u
∗

k − ūk−1‖ � 0 . (13)

This is a system of inequalities that, if treated component-
wise and rewritten for Kk, will yield the following individ-
ual bounds:

K
gi

k ≤
−gp,i(ūk−1)

κi ‖u∗

k − ūk−1‖
, (14)

where gp,i(ūk−1) is simply the measurement of the ith
constraint at the previous iteration k − 1.

As Kk is a scalar, it suffices to take the component-wise
minimum of the K

gi

k values in (14) for (13) to be satisfied.
This thus leads to the condition (8) for Kk. 2

Two remarks are in order:

(i) Note that (8) represents a sufficient condition for
feasibility.

(ii) Although this result is illustrated in the context of
RTO via constraint adaptation, it can be used for any
measurement-based, iterative optimization scheme,
provided that the assumption regarding Lipschitz
continuity of the plant constraints holds.

4. SUB-OPTIMAL CONVERGENCE IN THE
MULTI-CONSTRAINT CASE

It may be tempting to use the derived criterion (8) directly
in the iterative optimization when defining a filter gain
value, and indeed, this gives excellent results for cases
with only a single constraint. Unfortunately, sub-optimal
convergence is seen in the case of multiple constraints.

4.1 Single-Constraint Case

Consider, once more, the example given earlier.

The Simple Example Revisited. Returning to Problem
(6), one starts by initializing at the feasible point u∗

0
=

ū0 = 3.5, and then applying the proposed filter gain
calculation at each iteration. The maximum slope of the
plant constraint over the relevant input space is used as
the Lipschitz bound (κ = 76.05).

With the convergence criterion defined as ‖u∗

k − ūk−1‖2
≤

0.01, it is shown in Fig. 4 that this is sufficient for the plant
to converge safely in 3 iterations. Fig. 4 also shows the
performance of the “ideal” filter gain of K = 0.7, found
here by trial and error, that would yield safe convergence
in a single iteration for this one-dimensional case.

4.2 Multi-Constraint Case

Unfortunately, the results obtained above cannot be re-
tained for multi-constraint problems. The intuitive reason
for this is simple: some constraints enjoy a faster conver-
gence rate than others, and the constraints do not converge
simultaneously. The consequences of this are stated in the
following corollary.

0 1 2 3 4 5 6 7 8 9
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Iteration Number k

u

K
k

K = 0.7

Fig. 4. Solution to (6) using the proposed approach.

Corollary. Let one of the plant constraints becomes active
at iteration k − 1,

∃gp,a ∈ Gp :

gp,a(ūk−1) = 0.
(15)

Then, an algorithm that bounds the filter gain according
to (8) will converge to ū∞ = ūk−1.

Proof. Defining the filter gain by its upper bound (the
least conservative gain that guarantees feasibility):

Kk := min
i

[

−gp,i(ūk−1)

κi ‖u∗

k − ūk−1‖

]

, (16)

it is easily seen that Kk = 0, since Kk ∈ [0, 1] and

K
ga

k =
−gp,a(ūk−1)

κa ‖u∗

k − ūk−1‖
= 0. (17)

By the filter law (3),

ūk = Kku
∗

k + (1 − Kk) ūk−1 = ūk−1. (18)

This may be extended to all future iterations to show that
ū∞ = ūk−1, even when ū∗

k 6= ūk−1, thereby forcing the
algorithm to converge prematurely. 2

It is clear that premature convergence is impossible for
the single-constraint case due to a single filter and a single
active constraint, but becomes an issue when multiple
active constraints are present.

Take the following example:

min
u1,u2

. u1 + u2

s.t. − u3

1 ≤ 0

−u1 − 2u2 ≤ 0

, (19)

with the initial inputs of (1,1). Assume that the constraints
in (19) already include ideal correction terms, and that
solving at each iteration will give the true optimum of
(0,0). If κ = 5 is used for both constraints and the filtering
scheme is applied, the convergence behavior given in Table
1 is observed.

Clearly, the constraints converge at different rates due to
their differing structures (one is cubic, while the other
is linear). While g1 has practically converged after 100
iterations, g2 has not, and a significant offset is noted
from the true optimum as a result. This is because the
convergence of a single constraint pushes the filter gain,
as defined in (8), to Kk = 0. While it appears that Kk

never becomes 0 exactly (notice that the algorithm is still

Table 1. Convergence behavior for the example
in (19).

k ū1 ū2 gp,1 gp,2 Kk Opt. Loss

0 1.00 1.00 -1.00 -3.00 0.141 100%

1 0.86 0.86 -0.63 -2.58 0.104 86%

2 0.77 0.77 -0.45 -2.31 0.084 77%

3 0.70 0.70 -0.35 -2.11 0.070 70%

4 0.66 0.66 -0.28 -1.97 0.061 66%

100 0.18 0.18 -0.01 -0.55 0.005 18%

1000 0.06 0.06 -0.00 -0.18 0.001 6%

10000 0.02 0.02 -0.00 -0.06 0.000 2%

moving after 10,000 iterations), it would be impractical to
rely on this sort of asymptotic convergence due to both
measurement noise and time constraints that would arise
in real applications. In a realistic scenario, gp,1 would likely
be declared as being exactly 0 after 100 iterations, if not
sooner, and the algorithm would effectively converge with
Kk = 0 exactly. gp,2 would remain inactive and some
optimality losses would be incurred.

For cases where the main reduction in optimality loss
may be achieved prior to this sub-optimal convergence
(the loss would be 18% in the example above if Kk is
defined as 0 after 100 iterations - see Table 1), the amount
of sub-optimality may be acceptable. However, for cases
where full convergence is desired, an algorithm that trades
absolute feasibility for optimality is proposed next.

5. OPTIMALITY VIA STEPWISE CONVERGENCE

5.1 The Stepwise Convergence Algorithm

In this scheme, the filter gain is adapted as proposed,
and the smallest component-wise filter is applied at each
iteration. As stated above, this will generally lead to one
constraint converging before the rest. When this occurs,
that constraint is simply removed from the subsequent
filter calculations. The algorithm may be outlined as
follows:

(i) Specify κ and choose a feasible u∗

0. Set ū0 = u∗

0 and
apply it to the plant. Set k := 1.

(ii) Use measurements to compute Λk = Gp(ūk−1) −
G(ūk−1, θ).

(iii) Solve (1) to obtain u∗

k.
(iv) Compute all the K

gi

k as given by (14).
(v) Check if −gp,i(ūk−1) ≤ δ, ∀i ∈ [1, ng], where δ

is some convergence threshold. If yes, ignore the
corresponding K

gi

k in the following step.
(vi) Calculate the largest possible filter gain as given by

(8), compute ūk according to (3), and apply it to the
plant.

(vii) Check if the entire process has converged with re-
spect to the overall criterion ‖u∗

k − ūk−1‖2
≤ δu. If

not, set k := k + 1 and return to Step 2.

Note that absolute feasibility cannot be guaranteed for this
scheme, as steps are still being made by the iterative RTO
after a single constraint has converged. The maximum
violation in this case may be bounded as follows.

Proposition. Let gp,1(u), gp,2(u) ∈ Gp(u), and let K
g1

k and
K

g2

k be filter gain values that, at iteration k, will guarantee
feasibility for gp,1(u) and gp,2(u), respectively, as defined
by (14). If Kk = K

g2

k when gp,1(ūk−1) = 0 (Kg1

k is ignored

in step (v) of the algorithm above), then the maximum
value of gp,1(ūk) will be bounded by the relation:

gp,1(ūk) ≤ −
κ1

κ2

gp,2(ūk−1), (20)

This corresponds to the maximum possible violation in
gp,1(u) if a filter gain larger than the minimum component-
wise gain is used.

Proof. The proof follows readily from the component-
wise version of condition (10) for constraint gp,1(u):

gp,1(ūk) ≤ gp,1(ūk−1) + κ1 ‖ūk − ūk−1‖ , (21)

where substituting the filter law (3) leads to:

gp,1(ūk) ≤ gp,1(ūk−1) + κ1Kk ‖u
∗

k − ūk−1‖ . (22)

It is now supposed that the filter gain Kk comes from the
second constraint:

Kk =
−gp,2(ūk−1)

κ2 ‖u∗

k − ūk−1‖
. (23)

Substituting this filter gain into (22) yields:

gp,1(ūk) ≤ gp,1(ūk−1) −
κ1

κ2

gp,2(ūk−1). (24)

This is a useful general result, but the case of interest is
for when gp,1(ūk−1) has converged to 0, which then returns
(20). 2

For cases when these violations are expected to be small
and/or can be offset by a properly decoupled controller,
or for cases where a good local model is available for the
active constraint, this proposed scheme may be effective
in keeping violations to a minimum while avoiding sub-
optimal convergence.

5.2 Illustrative Example

The following 6-input-4-constraint case is considered:

max
u

. 0.45u1 + 0.04u2 + 0.88u3 + 0.69u4

+0.95u5 + 0.56u6

s.t. g1(u) = 2.2u2

1 + e3u3 + 0.9u2

5

−0.9u6 − 0.8 ≤ 0

g2(u) = 1.1u2

2 − 1.1u3 + 0.9u2

4

−u4 − 2 ≤ 0

g3(u) = −2u2 + e1.5u5 + 0.8u2

6 − 2 ≤ 0

g4(u) = −1.2u3 + u4 + 2.5u2

6 − 4 ≤ 0

0 � u � 1

, (25)

with the plant constraints given as:

gp,1(u) = 2u2

1
+ e2u3 + u2

5
− u6 − 0.8

gp,2(u) = u2

2
− u3 + u2

4
− u5 − 2

gp,3(u) = −u1 − u2 + eu5 + u2

6
− 2

gp,4(u) = −u3 + u2

4
+ 3u2

6
− 4

. (26)

The constraint-adaptation scheme in (1)-(3) is used for the
iterative RTO. The appropriate Lipschitz constants are

0 5 10 15 20

0

0.5

1

u

0 5 10 15 20
−1

−0.5

0

g
p
(u

)

u1

u2

u3

u4

u5

u6

gp,1

gp,3

gp,2

gp,4

0 5 10 15 20

0

0.5

1

O
p
ti
m

a
lit

y
 L

o
s
s

Iteration Number k

Fig. 5. Convergence results with K = 0.5 for the problem
(25)-(26). Fast convergence is attained, but feasibility
is compromised for gp,1.

defined as κ = [14.78, 2, 2.72, 6]T for this example. As will
be seen, constraints 1, 3, and 4 are active at the optimum,
while constraint 2 remains inactive for the duration of
operation. The goal is to start at the initial feasible, sub-
optimal point of u∗

0 = (0.29, 0.94, 0.07, 1.00, 0.43, 0.98) and
to converge to the optimum governed by a set of active
constraints.

Two cases are studied. In the first, an ad hoc constant filter
gain of 0.5 is used, while the second employs the stepwise
convergence scheme, with a convergence threshold of δ =
0.005 used to decide when a constraint should be removed
from the filter gain analysis.

The results are presented in Figs. 5 and 6 for the two cases,
respectively. The use of a constant preset filter gain results
in significantly faster convergence than the feasibility-
seeking scheme, but compromises the feasibility of the first
constraint during convergence. Whether this violation is
grievous or whether it is acceptable depends, of course,
on the specific context and application. The stepwise
approach follows the one-by-one constraint convergence
as prescribed, but also incurs some violations during the
convergence of gp,4 in the second step. As should be
expected, the price of improved feasibility is a significant
increase in the number of iterations needed to converge.

0 50 100 150 200

0

0.5

1

u

0 50 100 150 200
−1

−0.5

0

g
p
(u

)

u1

u2

u3

u4

u5

u6

gp,1

gp,3

gp,2

gp,4

k
c , 1

k
c , 4

min[K
k
,K

k
,K

k
] K

k

K
k
=

min[K
k
,K

k
]

g1 g3 g4 g3 g4 g3

0 50 100 150 200

0

0.5

1

Iteration Number k

O
p

ti
m

a
lit

y
 L

o
s
s

Fig. 6. Convergence results with adaptive filtering and the
stepwise convergence scheme for the problem (25)-
(26). Note the successive activation of the constraints
gp,1, gp,4, and gp,3 (kc,1 and kc,4 denote the instances
where gp,1 and gp,4 have converged, respectively). A
violation in gp,1 is seen during the second step.

It is important to note that, if one wanted to guarantee
absolute feasibility for this example, it would be sufficient
to stop after approximately 90 iterations for the stepwise
scheme (the constraint gp,1 would approximately reach
0, but its respective filter would not be removed from
analysis). This would effectively lead to sub-optimal con-
vergence, with both gp,4 and gp,3 inactive. However, note
that the majority of the optimality losses have already
been diminished by that point (Fig. 6), and so the sub-
optimality would not be great. This point is especially
relevant for systems with frequent market perturbations
where the cost function is modified often and where the
system will not stay at the sub-optimal converged state for
long anyway.

6. CONCLUSIONS

This paper has addressed the use of input filtering to guar-
antee absolute feasibility in iterative, measurement-based

RTO algorithms. Using the concepts of Lipschitz continu-
ity, a sufficient feasibility condition was found by placing
an upper bound on the filter gain. Although the implemen-
tation of this bound into a working algorithm is not en-
tirely straightforward for multi-constraint systems, where
it may lead to sub-optimal convergence, one such imple-
mentation was proposed here with stepwise constraint-
by-constraint convergence and reduced constraint viola-
tions. This was demonstrated for a simulated 6-input-4-
constraint problem, and it was shown that accepting sub-
optimal convergence to maintain absolute feasibility would
not lead to major optimality losses for this case.

It is acknowledged that the results, while of potential
academic interest, may still require modifications to be
implemented practically. This is because feasibility, while
important, will not always outweigh the other important
performance factor - speed. A relaxation of the absolute
feasibility criteria so as to allow for an intuitive, “tunable”
tradeoff between feasibility and speed is something yet to
be addressed. The results presented here should, however,
be of significant use for RTO problems where prolonged
constraint violations are costly.

REFERENCES

Boyd, S. and Vanderberghe, L. (2008). Convex Optimiza-
tion. Cambridge University Press.

Brdys, M. and Tatjewski, P. (2005). Iterative Algorithms
for Multilayer Optimizing Control. Imperial College
Press.

Darlington, J., Pantelides, C., Rustem, B., and Tanyi,
B. (1999). An algorithm for constrained nonlinear
optimization under uncertainty. Automatica, 35, 217–
228.

Engell, S. (2007). Feedback control for optimal process
operation. J. Process Contr., 17, 203–219.

Flemming, T., Bartl, M., and Li, P. (2007). Set-point
optimization for closed-loop control systems under un-
certainty. Ind. Eng. Chem. Res., 46, 4930–4942.

Kassmann, D., Badgwell, T., and Hawkins, R. (2000). Ro-
bust steady-state target calculation for model predictive
control. AIChE Journal, 46(5), 1007–1024.

Marchetti, A., Chachuat, B., and Bonvin, D. (2009).
Modifier-adaptation methodology for real-time opti-
mization. Ind. Eng. Chem. Res., 48(13), 6022–6033.

Mulvey, J., Vanderbei, R., and Zenios, S. (1995). Ro-
bust optimization of large-scale systems. Operations
Research, 43(2), 264–281.

Tatjewski, P. (2008). Advanced control and on-line process
optimization in multilayer structures. Annual Reviews
in Control, 32, 71–85.

Zhang, Y. (2010). Robust dynamic real-time optimization
under parametric uncertainty for plant-wide processes.
In 8th World Congress on Intelligent Control and Au-
tomation, in Jinan, China.

Zhang, Y., Monder, D., and Forbes, J.F. (2002). Real-time
optimization under parametric uncertainty: A probabil-
ity constrained approach. Journal of Process Control,
12, 373–389.

