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Abstract— The rotate-and-forward scheme was intro-
duced in (Yang-Belfiore, 2010) to recover spatial diversity
in multi-hop MIMO relay networks. It was shown that
this scheme achieves the optimal diversity-multiplexing
(DMT) trade-off in a two-hop relay network, with two
antennas at the relay node. In this paper, it is shown
that the scheme is DMT optimal for arbitrary number
of antennas at the source, relay, and destination node.

I. INTRODUCTION

The gain of using multiple antennas for setting
up communication over a wireless medium has been
widely acknowledged in the literature, starting with the
seminal works [1], [2]. For point-to-point channels, the
performance of multiple antenna systems is quite well
understood by now. In particular, the optimal tradeoff
between reliability and rate (also known as diversity-
multiplexing tradeoff or DMT) of such systems at high
SNR was analyzed in detail in [3].

In recent years, there has been a surge of interest in
cooperative diversity techniques, where spatial diver-
sity is exploited with distributed relay antennas. Many
different schemes have been proposed to improve the
diversity of the channel (see, e.g., [5], [6], [7], [8], [9],
[10], [11], [12], [16], [13], [14], [15] and references
therein). Essentially, these schemes can be divided into
two categories, namely, linear and nonlinear relaying
schemes. Based on message decoding (e.g., decode-
and-forward) or signal compression (e.g., compress-
and-forward) or a mixture of both at the relays, nonlin-
ear relaying schemes are “intelligent” and can usually
outperform the “dumb” linear relaying schemes (e.g.,
amplify-and-forward) where relays only forward linear
combinations of individual observations. It is worth
noting that a nonlinear scheme called quantize-and-
forward, recently proposed in [14], has been shown to
achieve any rate within a constant number of bits to the
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capacity of multi-hop relay networks and thus attains
the optimal DMT of such networks.

On the other hand, linear relaying schemes are
appealing for their low complexity. More importantly,
it has been shown that they can be DMT optimal in
some settings [10], [17]. It is worth mentioning that an
interesting linear scheme, called theflip-and-forward
scheme, was proposed in [16], and in [18], it was shown
that it is DMT optimal when there are two antennas at
the relay. Another interesting linear relaying scheme,
called therotate-and-forward scheme, was proposed in
[17], and it was shown to be DMT optimal when the
relay node is equipped with two antennas. However,
the proof for the optimality of this scheme in a more
general setting was still open. In this paper, we prove
the DMT optimality of the rotate-and-forward scheme
in a two-hop MIMO relay network with an arbitrary
number of antennas at the source, relay and destination.

The rest of the paper is organized as follows. The
system model and the main theorem on the DMT opti-
mality of the rotate-and-forward scheme are presented
in Section II. From there, we build the necessary tools
for the proof of the main theorem. The strategy for
the proof is as follows. We first obtain an asymptotic
behavior of the mutual information, which involves
the determinant of a combination of random matrices.
Then, we obtain a lower bound on the determinant
which can be expressed as a simple function of in-
dependent random variables with known distributions.
This lower bound gives an upper bound on the outage
probability which in turn yields a lower bound on
the diversity order. From the joint distribution of the
random variables involved in the lower bound on the
mutual information, we compute the corresponding
diversity order, following the methodology of [3], and
show that this lower bound matches the optimal DMT
found by the cutset bound. In Section III, we first
show a corresponding lower bound on the DMT of
the classical MIMO channel, which turns out to be
the key for proving the DMT optimality of the rotate-
and-forward scheme. In Section IV, we complete the
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Fig. 1: Two-hop MIMO relay channel.

lower bound on the rotate-and-forward scheme and
compute the corresponding DMT. Finally, we conclude
in Section V and details of proofs are provided in the
Appendix.

II. SYSTEM MODEL

We consider a two-hop relay channel withm an-
tennas at the source,p antennas at the destination and
n antennas at the relay1. We assume that there is no
direct link between the source and the destination, and
that the relay is full-duplex. LetF denote then × m

channel matrix between the source and the relay, andG

denote thep×n channel matrix between the relay and
the destination (see Figure 1). Furthermore, the channel
state is assumed to be known at the receivers, but not
at the transmitters.

The considered relaying scheme can be described by
the following signal model:

yR[t] = F x[t] + zR[t],

xR[t] = ∆[t] yR[t − 1],

yD[t] = GxR[t] + zD[t],

where x ∈ C
m×1, xR ∈ C

n×1, yR ∈ C
n×1 and

yD ∈ C
p×1 are the transmitted signal from the source,

transmitted signal from the relays, received signal at
the relays, and received signal at the destination, re-
spectively;zR ∈ C

n×1 andzD ∈ C
p×1 are the additive

white Gaussian noise with unit covariance at the relay
and the destination, respectively.∆[t] ∈ C

n×n is a
diagonal matrix.

We are interested in the highSNR behavior of this
system. In this work, we will focus on a distributed
relaying scheme, i.e. no information on the message or
channel state information (CSI) is exchanged between
the relays.

In order to evaluate the performance of the relay-
ing scheme, we use the diversity-multiplexing tradeoff

1Since we do not consider joint processing of different antennas,
the results apply to an arbitrary number of relays andn generally
refers to the total number of antennas within the layer of relays.

(DMT) introduced in [3] for MIMO systems. A relay-
ing scheme is said to achievemultiplexing gainr and
diversity gaind(r) if

d(r) = lim
SNR→∞

−
log(Pout(r log SNR))

log SNR
,

wherePout(r log SNR) denotes the outage probability,
that is, the probability that the mutual information
between the source and the destination is lower than
the target rateR = r log SNR.

In the rotate-and-forward scheme proposed in [17],
a linear relaying scheme is performed, according to
a fixed sequence of diagonal matrices. Let us define
a set ofL equally spaced angles in[0, 2π) and the
corresponding set of complex rotations as follows

AL ,

{

0,
2π

L
, . . . ,

2(L − 1)π

L

}

,

RL ,

{

ejφ | φ ∈ AL

}

.

Definition 1: A sequence of diagonal matrices
(∆[1], . . . ,∆[T ]) with T = Ln is said to be adis-
tributed rotation sequence(DRS) if

1) ∆[t] = diag(ξ1[t], . . . , ξn[t]) with ξi[t] ∈ RL,
2) ∆[t] 6= ∆[t′], ∀ t 6= t′.

A fixedDRS is used by the relays to create time-varying
channels. A codewordX , (x[1], . . . , x[T ]) ∈ C

m×T

spanning overT time symbols is transmitted by the
source with. At timet, each relay transmits a rotated
version of what it received at instantt−1. The rotation
used by the relayi is ξi[t], theith element of the vector
ξ[t]. Therefore, the equivalent channel in the highSNR
regime can be formulated as2

yR[t + 1] = G∆[t]F x[t] + G∆[t] zR[t] + zD[t + 1],
(1)

for t = 1, · · · , T . Hence, the transmitted codewordX

goes through an equivalent time-varying fading channel
with channel matrixG∆[t]F and noise covariance
Σz = I + GG∗ (where A∗ denotes the complex-
conjugate transpose ofA).

In the high SNR regime, we can ignore the noise
covariance for the DMT analysis. Consequently, the
mutual information between the source and the des-
tination can be approximated as

IT (SNR) (2)

=
1

T

T
∑

t=1

log det(In + SNR∆[t]FF ∗∆[t]∗G∗G)

2Due to the power constraint, a normalization factor
q

SNR

SNR+1

is applied. This factor is ignored in the highSNR regime.



and

Pout(r log SNR)
.
= P (IT (SNR) < r log SNR) ,

where
.
= denotes asymptoticexponential equality, as

defined in [3]. The corresponding DMT was studied in
[17] in the particular case of2 antennas at the relay.
In the present paper, we generalize this result to an
arbitrary number of antennas at the relay. The following
theorem is our main result.

Theorem 1:The DMT of the rotate-and-forward
scheme in a two-hop MIMO relay channel with
i.i.d. Rayleigh fading is given by

dmin{m,p},n(r), (3)

wheredm,n(r) denotes the DMT of a classicalm × n

MIMO channel.

According to the cut-set bound from information
theory, it is readily shown that the DMT of the end-
to-end channel with any relaying scheme is dominated
by both the DMT of the source-relay cut and the relay-
destination cut, i.e. bymin{dm,n(r), dn,p(r)}, which
coincides with (3). So what the above theorem shows is
that the rotate-and-forward scheme achieves the optimal
DMT in this setting. To the authors’ best knowledge,
this is the first distributed linear relaying scheme that
is shown to achieve the optimal DMT for an arbitrary
number of antennas at the source, relay and destination.

The proof of the above theorem is provided in
Section IV for the case wheremin{m, p} ≥ n (the
general case is an easy extension, that will be treated
in the journal version of this paper). We follow the
procedure decribed in [17] for analyzing the DMT of
the rotate-and-forward scheme, extending it to the case
of an arbitrary number of antennas at the relay. The
core of this extension relies on the argument exposed
in the next section.

III. C LASSICAL MIMO CHANNEL

In this section, we describe a new approach for
obtaining a lower bound on the DMT of the classical
MIMO channel. This approach turns out to be the
key for proving the DMT optimality of the rotate-and-
forward scheme. Let us consider a classical MIMO
channel withn antennas at the source andm antennas
at the destination, and letHn be them × n channel
matrix, with i.i.d. circularly symmetric complex Gaus-
sian entries with unit variance. In this case, the mutual
information between the source and destination is ap-
proximated at highSNR by I(SNR) ≈ log det(In +

SNRH∗
nHn). The key proposition of this section is the

following.

Proposition 1: Assume without loss of generality
that m ≥ n. The following lower bound holds:

det(In + SNRH∗
nHn)

=
∑

J⊆{1,...,n}

SNR|J | det(H∗
nHn)J

≥ 1 + SNR
n
∑

i=1

p
(m)
i +

n
∑

k=2

SNRk
n−k+1
∑

i=1

a
(m)
ki ,(4)

wherep
(m)
i = ‖h

(m)
i ‖2, with h

(m)
i ∈ C

m×1 being the
ith column of the matrixHn, and

a
(m)
ki = p

(m)
i





n
∏

j=n−k+2

p
(m)
j





×
k−1
∏

l=1



u
(m)
i,n−l+1,...,n

n−l
∏

j=n−k+2

u
(m)
j,n−l+1,...,n



 ,(5)

where by convention,
∏q

j=p cj = 1 if q < p. The ran-

dom variablesp(m)
i are independent and Gamma(m, 1)

distributed:

p
p
(m)
i

(x) =
xm−1 e−x

Γ(m)
1x≥0, (6)

while the random variablesu(m)
J appearing in (5) with

J ⊆ {1, . . . , n} and |J | = l + 1 are independent and
Beta(m − l, 1) distributed:

p
u

(m)
J

(u) = (m − l)um−l−1 10≤u≤1. (7)

Furthermore, the random variablesp
(m)
i and u

(m)
J are

independent.

As an illustration, in the particular casen = 3, this
proposition reads

det(I3 + SNRH∗
3H3)

≥ 1 + SNR (p
(m)
1 + p

(m)
2 + p

(m)
3 )

+ SNR2 (p
(m)
1 p

(m)
3 u

(m)
13 + p

(m)
2 p

(m)
3 u

(m)
23 )

+ SNR3 p
(m)
1 p

(m)
2 p

(m)
3 u

(m)
13 u

(m)
23 u

(m)
123 ,

wherepi(m) are Gamma(m, 1)-distributed,
u

(m)
13 andu

(m)
23 are Beta(m − 1, 1)-distributed,

u
(m)
123 is Beta(m − 2, 1)-distributed,

and all these random variables are independent.
The proof of the above proposition is given in the

Appendix. Let us try here to provide some intuition



on the result and also to briefly explain its main
consequence. Notice first that contrary to the approach
taken in [3], the expressions (4) and (5) do not involve
the eigenvalues of the random matrixH∗

nHn; instead,
the random variablesp(m)

i are related to the norms of
the columns ofHn, while the random variablesu(m)

J
are related to the angles between these columns.

Second, notice that the subdeterminants
det(H∗

nHn)J appearing in the first line of (4)
are intricate random variables, from which one could
hardly deduce anything on the outage probability.
Instead, the random variablesa(m)

ki defined in (5) have
a much nicer structure. In particular, writing down
explicitly what thea

(m)
ki are for the first two values of

k:

a
(m)
2i = p

(m)
i p(m)

n u
(m)
in ,

a
(m)
3i = p

(m)
i p

(m)
n−1 p(m)

n u
(m)
in u

(m)
n−1,n u

(m)
i,n−1,n,

we discover the inherenthierarchyof the lower bound
(4): each random variablea(m)

ki is the product ofa(m)
k−1,i

and some other random variables independent ofa
(m)
k−1,i.

Moreover, the final expression in (4) is a simple func-
tion of independent variables, from which the diversity
order can be easily deduced, using the methodology of
[3]. Without entering into the proof details, we obtain
the following main outage events and diversity orders,
depending on the multiplexing gainr:

- if r = 0, then the main outage event occurs
when the n random variables(p(m)

i , i = 1, . . . , n)
are of orderSNR−1, which leads to a diversity order
d(0) = n m.

- if r = k ∈ {1, . . . , n}, then the main out-
age event occurs when then − k random variables
(u

(m)
i,n−k+1,...,n, i = 1, . . . , n − k) are of orderSNR−1,

which leads to a diversity orderd(k) = (n−k) (m−k).

IV. ROTATE-AND-FORWARD SCHEME AND DMT
ANALYSIS

In this section, we provide the main steps for the
proof of Theorem 1, restricting ourselves to the case
wheremin{m, p} ≥ n for simplicity. The first steps of
this proof, which have already been presented in [17],
will be exposed without detailed proof. (Detailed proofs
will be stated in the journal version of this paper.) In
order to obtain a lower bound on the diversity order,
we look for an asymptotic lower bound on the mutual
informationIT (SNR) given by (2). It can first be shown

that

IT (SNR) ≥

(

L − 1

L

)n−1

I⋆(SNR) − 2,

where we recall thatT = Ln, andI⋆(SNR) is defined
as

I⋆(SNR) , log(Eθ det(In + SNRRθFF ∗R∗
θG

∗G)).

Here, Rθ = diag(exp(iθ1), . . . , exp(iθn)) and Eθ

denotes the expectation over the random variables
θ1, . . . , θn, which are assumed to be independent and
uniformly distributed on[0, 2π). From this, we deduce
that the diversity order corresponding toIT (SNR) is
approached by that corresponding toI⋆(SNR) asL →
∞. Next, it can be shown that

IT (SNR) ≤ log(Eθ(det(In+SNRRθFF ∗R∗
θG

∗G)))+n,

where the explicit computation of the expectation on
the right-hand side gives

Eθ(det(In + SNRRθFF ∗R∗
θG

∗G))

=
∑

J⊆{1,...,n}

SNR|J | det(FF ∗)J det(G∗G)J .(8)

Adopting now the methodology of the previous section,
the following lower bound on the last expression can
be obtained:

∑

J⊆{1,...,n}

SNR|J | det(FF ∗)J det(G∗G)J

≥ 1 + SNR

n
∑

i=1

p
(m)
i q

(p)
i

+
n
∑

k=2

SNRk
n−k+1
∑

i=1

a
(m)
ki b

(p)
ki , (9)

where a
(m)
ki is given by (5) andb

(p)
ki is given by a

similar expression, with the random variablesp
(m)
i

replaced byq(p)
i and theu

(m)
J replaced byv(p)

J . Notice

also that here,p(m)
i = ‖f

(m)
i ‖2 and q

(p)
i = ‖g

(p)
i ‖2,

wheref
(m)
i denotes theith row of F andg

(p)
i denotes

the ith column of G, respectively. All the random
variablesp(m)

i , q
(p)
i , u

(m)
J andv

(p)
J appearing above are

independent and distributed as

p
p
(m)
i

(x) =
xm−1 e−x

Γ(m)
1x≥0,

p
q
(p)
i

(y) =
yp−1 e−y

Γ(p)
1y≥0,

p
u

(m)
J

(u) = (m − l)um−l−1 10≤u≤1,

p
v
(p)

J

(v) = (p − l) vp−l−1 10≤v≤1.



for |J | = l+1. Gathering all pieces together, we obtain

Pout(r log SNR)

·
≤ P

(

1 + SNR
n
∑

i=1

p
(m)
i q

(p)
i

+
n
∑

k=2

SNRk
n−k+1
∑

i=1

a
(m)
ki b

(p)
ki < r log SNR

)

.

Operating the following change of variables:

p
(m)
i = SNR−αi , q

(p)
i = SNR−βi ,

u
(m)
J = SNR−γJ , v

(p)
J = SNR−δJ .

and applying Laplace’s integration method from [3] in
order to compute the diversity order, we obtain the
following lower bound on the diversity:

d(r) ≥ dLB(r) = min
{

m

n
∑

i=1

αi + p

n
∑

i=1

βi

+
n−1
∑

k=1

(m − k)
n−k
∑

i=1

γi,n−k+1,··· ,n

+
n−1
∑

k=1

(p − k)
n−k
∑

i=1

δi,n−k+1,··· ,n

}

,

subject toαi ≥ 0, βi ≥ 0, γJ ≥ 0, δJ ≥ 0 and

max
{

0, {1 − αi}
n
i=1, {2 − αi − αn − γin}

n−1
i=1 , · · · ,

n −

n
∑

i=1

αi −

n−1
∑

i=1

γin − · · · − γ1,2,··· ,n,

{1 − βi}
n
i=1, {2 − βi − βn − δin}

n−1
i=1 , · · · ,

n −
n
∑

i=1

βi −
n−1
∑

i=1

δin − · · · − δ1,2,··· ,n

}

≤ r.

We now separate the analysis into two cases:m = p

andm 6= p.

A. Casem = p

Due to the symmetry of the problem, the optimal
solution is such thatαi = βj for all 1 ≤ i, j ≤ n

and γI = δJ for all I, J such that |I| = |J |.
For simplicity, suppose first thatr = k for k ∈
{0, 1, 2, · · · , n}. To satisfy the above constraint, all the
variables which have less thank + 1 indices must be
equal to0. Furthermore, the variables withk+1 indices
should be set to1 in order to satisfy the constraint.
This in turn enforces that all the other variables with
more thank + 1 indices are equal to0. As a result,
d(k) = (m − k) (n − k) is obtained.

In general, the solution of this optimization problem
is the following. Fork−1 ≤ r ≤ k andk ∈ {1, · · · , n},
we have

αi = βi = (1 − r)+,

δJ = γJ =







k − r, if |J | = k.

r − k + 1, if |J | = k + 1,
0, otherwise.

Therefore, the lower bound on the DMT of the rotate-
and-forward scheme is given by

dLB(r) = (n − k + 1)(m − k + 1)(k − r)

+ (n − k)(m − k)(r − k + 1) = dm,n(r),

which matches the cutset upper bound.

B. Casem 6= p

Let q denote the minimum ofm andp. By the cutset
bound, the diversity of the system can be upperbounded
by the diversity of each stage, i.e.

d(r) ≤ min{dm,n(r), dn,p(r)} = dn,q(r). (10)

- If m > p = q, we can simply not send any signal
in m−p antennas at the source node. So we can apply
the result giving us a lower bound on the DMT which
matches the upper bound in (10). Therefore,d(r) =
dn,q(r).

- If q = m < p, we can simply ignore the received
signal inp−m antennas at the destination node. Again,
using the cutset bound, we deduce thatd(r) = dn,q(r).

This completes the proof of Theorem 1. �

V. CONCLUSION AND PERSPECTIVES

In this paper, we have proved that the rotate-and-
forward scheme presented in [17] is DMT optimal
for an arbitrary number of antennas at the relay. This
problem was open up to now, and the DMT opti-
mality of the scheme was only shown for the case
of two antennas at the relay. The new result shows
that the diversity-multiplexing tradeoff for a two-hop
relay channel can be achieved with a quite practical
linear relaying scheme. The technique that we used for
computing the DMT was to set up a lower bound for
the determinant of a random matrix with an expression
which is a simple function of independent random
variables with known distributions. Regarding future
work, the optimality of the rotate-and-forward scheme
may hold in more generality, in a multi-hop relay
network, with arbitrary number of antennas at the relays
and arbitrary number of relays. However, the proof of
this fact remains open.



APPENDIX

A. Proof of Proposition 1

We prove the proposition by induction. First, it is ob-
vious that for anym ≥ n = 1, det(In+SNRH∗

nHn) =

1+SNR ‖h
(m)
1 ‖2 satisfies (4). Now, let us suppose that

equation (4) holds for somem ≥ n; we will show that
it remains true form + 1 andn + 1, proving therefore
Proposition 1 for all possible values ofm ≥ n.

As the matrixHn+1 is an(m + 1)× (n + 1) matrix
with i.i.d. circularly symmetric Gaussian entries, it can
be expressed as

Hn+1 = U H̃n+1, (11)

whereU is uniformly distributed on the set of(m +
1) × (m + 1) unitary matrices (Haar distribution) and
H̃n+1 is given by

H̃n+1

=
[

h̃
(m+1)
1 , h̃

(m+1)
2 , · · · , h̃(m+1)

n , ‖hn+1
(m+1)‖ em+1

]

,

where em+1 = [0, · · · , 0, 1]∗ ∈ C
(m+1)×1 and

h̃i
(m+1)

∈ C
(m+1)×1 are independent column vec-

tors with i.i.d. circularly symmetric Gaussian entries.
Hence,

det(In+1 + SNRH∗
n+1Hn+1)

= det(In+1 + SNR H̃∗
n+1U

∗UH̃n+1)

= det(In+1 + SNR H̃∗
n+1H̃n+1).

Define nowH̃n the m × n reduced matrix ofH̃n+1

without the(m + 1)th row and(n + 1)th column.

Lemma 1:Let I ⊆ {1, 2, · · · , n} and J = I ∪
{n+1}. Let also(H̃∗

n+1H̃n+1)J denote the matrix con-
structed by rows and columns of the matrixH̃∗

n+1H̃n+1

for which the indices are inJ . Then the determinant
of (H̃∗

n+1H̃n+1)J can be expressed as

det(H̃∗
n+1H̃n+1)J = ‖h̃

(m+1)
n+1 ‖2 det(H̃∗

nH̃n)I .

Proof: The matrix (H̃∗
n+1H̃n+1)J can be ex-

pressed as

(H̃∗
n+1H̃n+1)J =

(

A b

b∗ c

)

,

whereA ∈ C
|I|×|I|, b ∈ C

|I|×1 and c ∈ C are given

by

A =

{

m+1
∑

i=1

h̃
(m+1)
j,i h̃

(m+1)
k,i

}

j,k∈I

,

b =

{

‖h
(m+1)
n+1 ‖ h̃

(m+1)
j,m+1

}

j∈I

,

c = ‖h
(m+1)
n+1 ‖2,

whereh̃
(m+1)
k,i is theith entry of column vector̃h(m+1)

k .
We know that

det

(

A b

b∗ c

)

= c det

(

A −
1

c
bb∗
)

and therefore obtain

det(H̃∗
n+1H̃n+1)J

= ‖h
(m+1)
n+1 ‖2 det

{

m
∑

i=1

h̃
(m+1)
j,i h̃

(m+1)
k,i

}

j,k∈I

= ‖h
(m+1)
n+1 ‖2 det(H̃∗

nH̃n)I .

This completes the proof of Lemma 1.

Lemma 2:The following inequality holds:

det(In+1 + SNR H̃∗
n+1H̃n+1)

≥ 1 + SNR

n
∑

i=1

‖h̃
(m+1)
i ‖2

+ SNR ‖h̃
(m+1)
n+1 ‖2 det(In + SNR H̃∗

nH̃n).

Proof: The proof is done in two steps:

det(In+1 + SNR H̃∗
n+1H̃n+1)

=
∑

J⊆{1,2,··· ,n+1}

SNR|J | det(H̃∗
n+1H̃n+1)J

≥ 1 + SNR

n
∑

i=1

‖h̃
(m+1)
i ‖2

+
∑

J=I∪{n+1}
I⊆{1,2,··· ,n}

SNR|J | det(H̃∗
n+1H̃n+1)J .

By Lemma 1, we further obtain
∑

J=I∪{n+1}
I⊆{1,2,··· ,n}

SNR|J | det(H̃∗
n+1H̃n+1)J

= SNR ‖h̃
(m+1)
n+1 ‖2

∑

I⊆{1,2,··· ,n}

SNR|I| det(H̃∗
nH̃n)I

= SNR ‖h̃
(m+1)
n+1 ‖2 det(In + SNR H̃∗

nH̃n),

so the proof of Lemma 2 is complete.



Lemma 3: If X andY are two independent Gamma-
distributed random variables with parameters(p, 1) and
(q, 1) respectively, then the random variableZ = X

X+Y

is independent of bothX and Y and is distributed
according to the Beta distribution with parameters
(p, q), i.e.

pX(x) =
xp−1 e−x

Γ(p)
1x≥0, pY (y) =

yq−1 e−y

Γ(q)
1y≥0,

pZ(z) =
zp−1 (1 − z)q−1

∫ 1
0 up−1 (1 − u)q−1 du

10≤z≤1.

Proof: See [19].

Lemma 4:The random variablesa(m)
ki defined in (5)

satisfy the following recursive relation:

a
(m+1)
k+1,i = p

(m+1)
n+1 a

(m)
ki .

Proof: Remembering definition (5):

a
(m)
ki = p

(m)
i





n
∏

j=n−k+2

p
(m)
j





×

k−1
∏

l=1



u
(m)
i,n−l+1,...,n

n−l
∏

j=n−k+2

u
(m)
j,n−l+1,...,n





and defining further

u
(m+1)
j,n+1 =

p
(m)
j

p
(m+1)
j

, j = 1, . . . , n,

and

u
(m+1)
j,n−l+1,...,n+1 = u

(m)
j,n−l+1,...,n, j = 1, . . . , n−l, l ≥ 1,

we obtain

p
(m+1)
n+1 a

(m)
ki = p

(m+1)
i





n+1
∏

j=n−k+2

p
(m+1)
j





× u
(m+1)
i,n+1





n
∏

j=n−k+2

u
(m+1)
j,n+1





×

k−1
∏

l=1



u
(m+1)
i,n−l+1,...,n+1

n−l
∏

j=n−k+2

u
(m+1)
j,n−l+1,...,n+1





= a
(m+1)
k+1,i .

Let us check that the random variables appearing
in this expression are distributed according to what
is stated in Proposition 1. Indeed, by definition,
p
(m+1)
j = ‖h

(m+1)
j ‖2 are Gamma(m+1, 1) distributed,

u
(m+1)
j,n−l+1,...,n+1 are Beta(m − l, 1) = Beta((m + 1) −

(l + 1), 1) distributed forl ≥ 1, and all these variables
are independent. What remains therefore to be checked
is that the new random variablesu

(m+1)
j,n+1 defined above

are Beta(m + 1, 1) distributed and also independent of
all the other random variables:

u
(m+1)
j,n+1 =

p
(m)
j

p
(m+1)
j

=
‖h

(m)
j ‖2

‖h
(m+1)
j ‖2

=
‖h

(m)
j ‖2

‖h
(m)
j ‖2 + |h

(m+1)
j,m+1 |

2
,

where h
(m+1)
j,m+1 is the (m + 1)th entry of the column

vector h
(m+1)
j . Therefore, by Lemma 3, the new ran-

dom variablesu(m+1)
j,n+1 are Beta(m + 1, 1) distributed

and independent of the random variablesp
(m+1)
j . Fur-

thermore, these new random variables are functions of
‖h

(m)
j ‖2 and |h

(m+1)
j,m+1 |

2, which are independent of all

the random variablesu(m+1)
j,n−l+1,...,n+1 = u

(m)
j,n−l+1,...,n,

l ≥ 1.

We are now ready to complete the proof of Proposi-
tion 1. By Lemma 2,

det(In+1 + SNRH∗
n+1 Hn+1)

= det(In+1 + SNR H̃∗
n+1 H̃n+1)

≥ 1 + SNR

n
∑

i=1

‖h̃
(m+1)
i ‖2

+ SNR ‖h̃
(m+1)
n+1 ‖2 det(In + SNR H̃∗

nH̃n),

and by the induction assumption, Proposition 1 holds
for det(In + SNR H̃∗

nH̃n), as the matrix H̃n has
i.i.d. circularly symmetric Gaussian entries with unit
variance. Therefore,

det(In+1 + SNRH∗
n+1 Hn+1)

≥ 1 + SNR

n
∑

i=1

‖h̃
(m+1)
i ‖2 + SNR ‖h̃

(m+1)
n+1 ‖2

(

1 + SNR

n
∑

i=1

p
(m)
i +

n
∑

k=2

SNRk
n−k+1
∑

i=1

a
(m)
ki

)

= 1 + SNR

n
∑

i=1

p
(m+1)
i + SNR p

(m+1)
n+1

×

(

1 + SNR

n
∑

i=1

p
(m)
i +

n
∑

k=2

SNRk
n−k+1
∑

i=1

a
(m)
ki

)

as ‖h̃
(m+1)
i ‖2 = ‖h

(m+1)
i ‖2 = p

(m+1)
i . We finally



obtain

det(In+1 + SNRH∗
n+1 Hn+1)

≥ 1 + SNR

n+1
∑

i=1

p
(m+1)
i

+ SNR2
n
∑

i=1

p
(m+1)
i p

(m+1)
n+1 u

(m+1)
i,n+1

+

n
∑

k=2

SNRk+1
n−k+1
∑

i=1

p
(m+1)
n+1 a

(m+1)
ki

= 1 + SNR
n+1
∑

i=1

p
(m+1)
i

+
n+1
∑

k=2

SNRk

(n+1)−k+1
∑

i=1

a
(m+1)
ki ,

using the fact thata(m+1)
2i = p

(m+1)
i p

(m+1)
n+1 u

(m+1)
i,n+1 ,

as well as Lemma 4. This completes the proof of
Proposition 1. �
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