
Evaluating Static Source Code Analysis Tools

by

Thomas Hofer

B.S., École Polytechnique Fédérale de Lausanne (2007)

Submitted to the School of Computer and Communications Science
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

at the

École Polytechnique Fédérale de Lausanne

April 2010

c© Thomas Hofer, MMX. All rights reserved.

The author hereby grants to EPFL and CERN permission to reproduce and
distribute publicly paper and electronic copies of this thesis document in whole or in

part.

Author .
School of Computer and Communications Science

March 12, 2010

Evaluating Static Source Code Analysis Tools

by

Thomas Hofer

Submitted to the School of Computer and Communications Science
on March 12, 2010, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science

Abstract

This thesis presents the results of an evaluation of source code analyzers. Such tools constitute
an inexpensive, efficient and fast way of removing the most common vulnerabilities in a software
project, even though not all security flaws can be detected.

This evaluation was conducted at CERN, the European Organization for Nuclear Research, in
the intent of providing its programmers with a list of dedicated software verification/static source
code analysis tools. Particular focus of these tools should be on efficiently finding security flaws.
The evaluation covered close to thirty different tools for five major programming languages.

Thesis Supervisor: Philippe Oechslin
Title: Lecturer

Thesis Supervisor: Sebastian Lopienski
Title: Deputy Computer Security Officer at CERN

Thesis Supervisor: Stefan Lueders
Title: Computer Security Officer at CERN

Acknowledgments

I feel particularly grateful to the supervisor with whom I shared offices, Sebastian Lopienski, for

his many insightful comments over the months, for his friendly guidance and for his enthusiasm. I

would also like to thank Dr. Stefan Lueders for his continued ability to suggest improvements and

for a very interesting tour of CERN. My thanks as well to Dr. Philippe Oechslin for his support and

his helpful comments. I am indebted to my parents for bearing with me this long and for so many

other reasons. Erin Hudson has my undying gratitude for her very thorough and cheerful comments.

Renewed thanks to Luis Muñoz and Lionel Cons for their help sorting out the Perl::Critic policies.

Finally, many thanks to the Computer Security Team at CERN for creating such an enjoyable

working environment!

Contents

1 Introduction 1
1.1 Current State of Research . 1
1.2 Current Status at CERN . 2
1.3 Goals and Deliverables . 3
1.4 Organization of this Thesis . 3

2 Understanding the Tools 4
2.1 Model Checking . 5
2.2 Control and Dataflow Analysis . 5
2.3 Text-based Pattern Matching . 6

3 Defining the Metrics 8
3.1 Basic Considerations . 8
3.2 Metrics Used . 9

3.2.1 Installation . 9
3.2.2 Configuration . 10
3.2.3 Support . 10
3.2.4 Reports . 10
3.2.5 Errors Found . 11
3.2.6 Handles Projects? . 11

4 Presenting the Results 12
4.1 C(++) Source Code Analysis Tools . 12

4.1.1 Astree . 13
4.1.2 BOON . 14
4.1.3 C Code Analyzer . 14
4.1.4 Code Advisor (HP) . 14
4.1.5 Cppcheck . 14
4.1.6 CQual . 15
4.1.7 Csur . 15
4.1.8 Flawfinder . 15
4.1.9 ITS4 . 16
4.1.10 Smatch . 16
4.1.11 Splint . 17
4.1.12 RATS . 17

4.2 Java Source Code Analysis Tools . 18
4.2.1 CodePro Analytix . 18
4.2.2 FindBugs . 19
4.2.3 Hammurapi . 19

i

4.2.4 JCSC . 20
4.2.5 IBM Rational AppScan . 20
4.2.6 PMD . 20
4.2.7 QJPro . 21

4.3 Perl Source Code Analysis Tools . 21
4.3.1 B::Lint . 21
4.3.2 Perl::Critic . 21
4.3.3 RATS . 22
4.3.4 Taint Mode . 22

4.4 PHP Source Code Analysis Tools . 22
4.4.1 Sandcat.4PHP . 23
4.4.2 Pixy . 23
4.4.3 RATS . 24

4.5 Python Source Code Analysis Tools . 24
4.5.1 PEP8 . 25
4.5.2 PyChecker . 25
4.5.3 Pylint . 25
4.5.4 RATS . 26

5 Delivering the Results 27
5.1 CERN Computer Security Team Web site . 27

5.1.1 Packaging the Tools . 27
5.2 Post-C5 Presentation / IT Seminar . 28
5.3 Article in the CNL . 29

6 Conclusion 31
6.1 Results . 31
6.2 Achievements . 31
6.3 Main Challenges . 32
6.4 Outlook and Future Developments . 32

6.4.1 At CERN . 32
6.4.2 Further Improvements to Software Security 33

A Tools HOWTO I
A.1 Security Analysis Tools - Recommendations for C/C++ I
A.2 Security Analysis Tools - Recommendations for Java III
A.3 Security Analysis Tools - Recommendations for Perl V
A.4 Security Analysis Tools - Recommendations for PHP VI
A.5 Security Analysis Tools - Recommendations for Python VIII

B Sample Output X

C Additional contributions XI
C.1 Wrapper for Pixy . XI
C.2 Script to Retrieve Wiki Pages . XX

ii

List of Tables

3.1 The Metrics Table. 9

4.1 Evaluation Results For C/C++ Tools . 13
4.2 Evaluation Results For Java Tools . 18
4.3 Evaluation Results For Perl Tools . 21
4.4 Evaluation Results For PHP Tools . 23
4.5 Evaluation Results For Python Tools . 25

iii

1
Introduction

1.1 Current State of Research

Over the past fifteen years, computer security has been getting growing attention and publicity.

Security flaws can lead to disclosure of confidential information, loss of functionality or damaged

image of a company, amongst other issues. Computer security is relevant and should be consid-

ered whenever computers are used, e.g. when creating and sharing of documents, proving services

or developing software and web applications. This work is concerned with aspect of the latter:

development of software and web applications.

There are various complementary ways to approach computer security where development is

concerned. Training the programmers is most effective before starting the development, yet still

meaningful later in the process. Source code analysis can be performed whenever the code can

be compiled and helps identifying potential risks early on. Once the software is almost ready to be

released, it can be reviewed manually by experts, preferably external to the project. Lastly, dynamic

analysis can be used to try and discover if the program misbehaves on unexpected input. Source

code analysis is the main focus of this thesis.

Research on software analysis is quite extensive and aims either at verifying a program’s cor-

rectness [1] or at optimizing its performance [2]. This thesis will exclusively focus on correctness

related research and more particularly where security aspects are involved.

In 1936, Alan Turing proved that the halting problem is undecidable [20]. This has tremendous

repercussions on the field of software verification. Indeed, if an essential and apparently simple

property such as termination can be impossible to prove for some programs, how can one expect to

prove much more complex statements about security considerations?

It is important to note that the undecidability of a property does not imply that it is impossible

to prove it for any program. There are infinitely many programs that can be proven to terminate on

an infinite set of inputs. Therefore, theoretical and formal approaches such as abstract interpretation

[3] or model checking [17] still hold their place and have a role in this area. However, simpler and less

thorough methods tend to yield faster results while requiring less effort. The most trivial example

1

is the use of the Unix grep utility to find all calls to library functions that have been flagged as

dangerous.

Over the past decade, there has been an effort to find a middle ground between these extremes.

While some attempt to build up from simple tools, to offer developers a light interface to identify

the most common errors, such as ITS4 [22], others work on heuristics and abstractions to make

formal methods more efficient and reliable.

1.2 Current Status at CERN

CERN, the European Organization for Nuclear Research, was founded in 1954 as one of Europe’s

first joint ventures. Its purpose is research in fundamental physics, gaining a better understanding

of the Universe. While fans of fiction know it as a place where antimatter is created 1, it should be

noted that it is also the place where the web was born 2.

Of the many faces CERN has to offer, the one which will be most relevant to this thesis is its very

particular software development environment. While CERN only employs about 2500 people, about

three to four times that many visiting scientists spend part of their time at CERN and need computer

accounts to be able to conduct their research there 3. Each of those people has the opportunity to

create a Web site to host a personal project, present information about their latest research or run

a Web application. Any Web site can be restricted to internal usage at CERN or open to the rest

of the world. While the vast majority of such Web sites only contains static content, i.e. no code,

diversity and freedom make this a difficult environment to control.

Furthermore, a few hundred software projects are being developed for various purposes, from

assistance with daily HR tasks to control and monitoring of the particle accelerators. While key

projects such as these are developed with some concern for security, many of the smaller ad-hoc

software projects are developed by people with little or no training in secure software development

– although this number is diminishing as regular courses on the topic are scheduled.

This implies that vulnerabilities are bound to appear in programs used in production at CERN.

While it is not feasible in any reasonable time at reasonable cost to get rid of all the vulnerabilities

– Secunia4 releases multiple security advisories daily for reputable and security-aware products –,

one should always try and make the best out of the time available for computer security.

At CERN, computer security requirements are often complicated by the necessity for academic

freedom, which is essential to the advancement of fundamental research. Also, the Computer Security

Team has limited direct authority over users; except for a few exceptional measures in case of

immediate threat, matters are handled through hierarchical channels. On top of this, due to the

size of the organization, it is impossible to control and verify all of the software in use at CERN.
1Read http://angelsanddemons.cern.ch/ for information about the “science behind the story”.
2http://cern.ch/public/en/About/Web-en.html
3Numbers taken from: http://cern.ch/public/en/About/Global-en.html
4Check http://www.secunia.com/advisories.

2

http://angelsanddemons.cern.ch/
http://cern.ch/public/en/About/Web-en.html
http://cern.ch/public/en/About/Global-en.html
http://www.secunia.com/advisories

Therefore the responsibility for security always lies with the developers and providers of the services,

rather than with the Computer Security Team.

In consequence of this, if any measures are proposed to improve the security of the software

developed at CERN, programmers can not easily be ordered to, coerced into or made to use them.

They need to be convinced that it makes sense for them to invest part of their time into improving

their code. This is the key consideration in the definition of the metrics detailed in Chapter 3.

1.3 Goals and Deliverables

The global goal of this project is to improve software security at CERN. More particularly, there is

interest in improving the security of the many pieces of software developed at CERN. It was agreed

that this needs to be approached in a breadth-first manner, in the sense that the focus should be

finding a tool that as many developers as possible would use, even if find finds fewer errors, rather

than a tool that would find (almost) all of the errors for only a few developers.

The purpose of this project is to evaluate existing source code analysis tools, according to metrics

prioritizing ease of use and “quick gains” over more efficient but more complex solutions.

The deliverables requested by the CERN Computer Security Team consisted mostly of docu-

mentation on how to install, configure and use the tools selected. At least one tool should be rec-

ommended and documented for each of the main programming languages in use at CERN, namely:

C/C++, Java, Perl, Python and PHP. Those languages were selected according to recommendations

of the Computer Security Team, and based on the proportion of standard lines of code (SLOC) in

the source code database built from all accessible SVN and CVS repositories at CERN, as well

as from the Web sites hosted on AFS. Finally, the tools should be packaged along with a default

configuration, so as to make installation easier for the developers.

1.4 Organization of this Thesis

Chapter 2 gives some theoretical background on source code analysis. Chapter 3 explains the metrics

used to evaluate the tools. Chapter 4 presents the tools that have been evaluated and the results

of the evaluation. Chapter 5 discusses the means used to propagate information about source code

analysis tools at CERN. Finally, Chapter 6 gives some perspective on further improvements to

Computer Security, both about what is done in parallel and in extention of this project as well as

more general considerations and concludes this thesis, discussing the results obtained, presenting

some of the challenges faced and what this work has achieved.

3

2
Understanding the Tools

There are many ways to look at a piece of software to try to improve it. This chapter will discuss

where static analysis fits in and some of the main forms it can take. Categories of software analysis

tools can be established according to various criteria. One of the most relevant and interesting

criteria is whether a process is “manual” or “automatic”. Manual software improvement processes

involve a developer or a quality analysis expert to actively evaluate the piece of software, make use

of their previously acquired knowledge to understand it and identify its shortcomings. Automatic

methods consist of a tool that performs a predetermined series of tests on the piece of software it is

given and produces a report of its analysis.

Another criteria commonly used in differentiating the various existing methods of analyzing

software is the approach they take. A method can either use a “black-box” approach, considering

the whole piece of software as an atomic entity, or an “white-box” approach, examining the inner

workings of the software, e.g. its source code. The “black-box” approaches most often consist of

trying to give the piece of software being analyzed unexpected input parameters or unexpected

values, thus hoping to trigger incorrect behavior. The “white-box” approaches vary significantly in

their implementations and can for instance simply look for certain patterns in the code, reconstruct

the logic or data-flow of the software or even attempt to simulate all possible executions of the

program.

Where “black-box” approaches are concerned, automatic methods tend to produce better results.

This is because it is easier, and faster, for a computer program than for a human being to list a large

number of inputs likely to lead to faulty behavior. On the other hand, in most cases manual analysis

yields much better and more accurate results when it comes to “white-box” approaches, because

automated tools can only understand concepts that have been built-in by their developers, whereas

human beings can learn to detect new types of errors more easily. However, manually reviewing

millions of lines of code is a rather time consuming task, even if one focuses on the critical routines

or methods, which have to be identified first. A comparison of manual versus automatic code review

is presented by Miller et al. [16]. While it is clear from their results that manual code review can

reveal key issues that are missed by some of the best tools, it is worth noting that the manual

4

reviewing process took the authors about two years. The time consumption of manual code review

is so important that over the last few years much work has been invested into improving the results

of automatic source code analysis. The following sections will present three of the major trends that

have emerged in the area.

2.1 Model Checking

Model checking labels a group of formal methods for software and hardware verification. It aims to

test whether a given system model complies with a specification. Applied to source code analysis, it

verifies if a given implementation meets a set of requirements. Whether model checking actually fits

within the automatic source code analysis category is debatable. Indeed, this technique requires the

definition and description of properties that should be checked for a piece of software, most often in

a tool specific format. However, once this specification has been established no additional human

input is needed to perform the analysis.

The major class of Model Checking methods is based on Temporal Logic. Initial work on this

topic is attributed to Emerson and Clarke [11], [6], [7] and to Queille and Sifakis [18]. While most

of the research about Model Checking assumes that the model analyzed is given as a Finite State

Machine, there are some Model Checkers available that are able to analyze C or Java source code

directly. Former EPFL Professor T. A. Henzinger et al. [14], [5] have developed BLAST 1, a tool to

check safety properties of C code.

Model Checking is perfectly fitted to the needs of software developers who need high confidence,

or even guarantees, about critical programs, such as flight control systems for airplanes or docking

systems for automated space vessels. However Model Checking remains an expensive and complex

technique, not suited for integration in nightly builds of non security-critical projects, despite the

efforts of the scientific community to make it more accessible and simpler to use.

2.2 Control and Dataflow Analysis

One representation that is widely used in formal methods for optimizing and verifying source code

is that of Control Flow Graphs (CFG). In a CFG, each node represents a basic bloc of code, i.e.

lines of code that will not be executed independently during normal program execution. In other

words, the nodes do not contain any jumps or labels (jump targets). The jumps are represented by

directed edges. Usually CFG implementations have two special nodes: the “entry point”, which is

the starting point of the execution; and the “exit point”, where the execution exits the graph.

Based on this representation, some observations resulting from graph reachability are trivial:

if a subgraph is unreachable from the entry point, the nodes that form this subgraph consist of

unreachable code; if the exit point is unreachable from the entry point, there is an infinite loop in
1http://mtc.epfl.ch/software-tools/blast/index-epfl.php

5

http://mtc.epfl.ch/software-tools/blast/index-epfl.php

the code.

Control Flow Graphs have little more practical use on their own, but they are used in various

other techniques as a representation of all the possible paths of execution. One such technique is

dataflow analysis [15]. Dataflow analysis can be performed by defining how each block modifies the

data and then performing fixed-point iteration across the whole CFG.

This approach is particularly useful for optimization of the software. More relevant to the scope

of this project, dataflow analysis can facilitate the identification of interdependencies in data and

track the effects of user input.

Input tracking is essential in software security, as anything coming from outside the program

should be considered as potentially malicious, including configuration files and inter-thread commu-

nication. If an untrusted value is used in a critical place in code without having been verified, it

can lead to an exploitable bug. Therefore, dataflow analysis can be quite helpful in determining a

system’s security vulnerabilities. However, dataflow analysis suffers from high computational com-

plexity and even with advanced heuristics, applying dataflow analysis to a large program can be

very time consuming.

Coverity [4] developed a static analysis tool that uses dataflow analysis. Running this tool on one

of the projects developed at CERN – the ROOT framework2 – takes about 28 hours for slightly over

2 millions lines of code. While the developers of this project are very satisfied with the results they

obtained from this run, this kind of tool requires some meddling into the compilation process and

more time and effort than most CERN developers would be able and willing to invest into software

security.

2.3 Text-based Pattern Matching

The simplest and quickest way to find some trivial vulnerabilities in C source code is to grep

through the files for weak and potentially vulnerable functions calls like the gets or the strcpy

library functions, amongst others. Indeed, gets is always vulnerable to buffer overflows and is

nowadays even the cause of compiler warnings. This problem is actually so well-known that this

function is likely not to be specified in the upcoming version of the C standard, dubbed C1X. A

note available at http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1420.htm mentions its

removal from the standard, and the current draft (http://www.open-std.org/JTC1/SC22/WG14/

www/docs/n1425.pdf) of C1X does not include any mention of it.

While this method fails to be directly useful to non-specialists as such, for one has to know

beforehand what particular patterns should be searched, some tools have been developed on this

principle. Those tools come with a list of patterns that are known to lead to vulnerable code, or

to be commonly misused, and sometimes contain short explanations of what the risk of using the

identified function or construct could be. ITS4 [22] is an early example of such a tool. It looks

2http://root.cern.ch

6

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1420.htm
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1425.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1425.pdf
http://root.cern.ch

for calls to functions typically involved in a security vulnerability in C source code, such as gets,

strcpy, strcat or a wide variety of string formatting functions.

From a theoretic point of view, such an approach can seem somewhat limited, as tools of this

category will only detect flaws that have been described to them explicitly, as opposed to the formal

approaches discussed above, which could discover weaknesses in a more analytic fashion. However,

the vulnerabilities found by these tools are the ones most commonly exploited and the difference in

time and effort invested before obtaining results is abysmal in comparison to the methods presented

earlier in this chapter.

7

3
Defining the Metrics

3.1 Basic Considerations

Based on the context presented in Section 1.2, key elements can be defined and prioritized. The end

goal of this research is to increase software security at CERN by finding tools that make it as easy as

possible for the programmers to identify and understand some of the security flaws in their software.

Since the deadlines leave little margin to squeeze security in, developers need to be motivated to use

the tools suggested, which is discussed in Chapter 5, and then it is important to ensure that their

experience goes as smoothly as possible and that they do not encounter excessive difficulties in the

process of using the tools. While it is impossible to offer any guarantees, the user experience with

a tool can be divided in various phases, each of which will be cautiously examined and evaluated.

The first place where issues can appear is during installation of the tool. It is important that

developers get a good first impression, as it will be a lasting one. The amount and availability of

prerequisites, the accessibility of the tool itself and the complexity of the installation process ought

to be considered.

Secondly, the effort and time spent to configure the tool should be given some attention as well.

This can be split in two aspects: the configuration absolutely needed to get results from the tool –

the less the better; and the configuration options to optimize the quality, readability or usability of

the results – the more the better.

Next, the information given by the tool should be easy to understand, useful and trustworthy. In

order to be of any use, the reports must be self-explanatory at first sight, yet be complete enough so

that they can lead to good understanding of the vulnerability reported and, eventually, to getting it

fixed. The utility of the reports also depends on the trust the users have in them. If a tool were to

report thousand warnings for each real threat, the effort of sorting through the false positives would

eventually discourage developers from using it.

There are two other obvious items on the list of things to consider, although in this context they

are of lesser importance than the elements presented above. Clearly, it would be optimal to leave

as few errors as possible unhandled, so the ratio of false negatives should be taken into account.

8

However, this is clearly a difficult and time-consuming measurement to take, quite beyond the time

that was available for this project. Lastly, if commercial products are considered, it implies that

pricing will come into play.

3.2 Metrics Used

Table 3.1 shows the criteria used to evaluate the tools, along with the importance each criterion was

given and the “grades” that were attributed to the tools.

This was intended to be used as a first filter to determine which tools should be investigated

further. As it turns out, the results obtained using this simpler set of metrics were clear enough to

allow for a choice to be made without needing to go back to the original set of metrics.

Title Weight Values
Installation High Eliminating, Cumbersome, Average, Easy
Configuration Low [N/A], Complex, Standard, Not required
Support Medium [N/A], None, Slow replies, Helpful
Reports High [N/A], Unparsable, Parsable, Readable
Errors found High [N/A], None, Common, Uncommon
Handles projects? Medium [N/A], Single Files, Import, Yes

Table 3.1: The Metrics Table.

3.2.1 Installation

This metric encompasses the different aspects of a tool’s installation process. If a tool is too complex

to install, or has too many prerequisites, then developers will have a negative first impression of it

and are likely not to be willing to put more effort in getting it set up. While the installation process

can be simplified to some extent by packaging, compilation errors and numerous prerequisites are

much more complex to compensate.

The tools that would not compile, despite attempts to fix them, as well as the tools having too

heavy or numerous prerequisites have been discarded without further investigation. In those cases,

installation was declared “Eliminating” and all further metrics were labeled “[N/A]”.

If tools had their own custom installation process, they would have been given a “Cumbersome”

grade. However, no such tool was evaluated.

For some of the tools, the installation process required previous knowledge of a specific, yet

standard, mechanism. One such example is the common series of commands: ./configure, make

and make install. Tools falling into this category where graded “Average”.

Ultimately, some tools make things even easier on their users and provide an installer file or

package that takes care of everything. This includes .exe files for Windows, and RPMs or .deb files

for Linux. This was deemed “Easy” installation.

9

3.2.2 Configuration

Here the complexity of configuring the tool before running it is measured. This is considered as

mildly important, as long as a default configuration can be provided with the tool. This differs from

the configuration considerations about model checkers or some of the codeflow analysis tools in the

sense that for those tools configuration needs to be altered in significant ways from one project to

another, and thus providing a customized configuration is not sufficient to make the tool easy to

use.

If the only way to configure a tool was through command-line options, or if the configuration

could not be easily propagated or shared with developers once it had been created, it was classified

as “Complex”. One specific case of “Complex” configuration encountered during the evaluation

appeared when tools would crash when run on their own, albeit running successfully when wrapped

with valgrind. Usually used for debugging purposes, valgrind works very similarly to a virtual

machine, inserting itself between the original program and the host machine. This is originally

intended to examine and analyze programs memory calls, but in this context its most interesting

feature was its graceful handling of segmentation faults, allowing the programs to continue their

execution and issuing a warning instead of merely halting the execution. In those cases, the more

specific “valgrind” designation was used.

On the other hand, if the configuration was easy to share with the developers, e.g. as a configu-

ration file, it was marked as “Standard”.

For some tools however, no configuration was required to get a list of security risks for a given

program. This was awarded a “Not required” mention.

3.2.3 Support

While in most cases there was no need for it, support teams were contacted for the tools that were

troublesome to install. This is not critical metric, but it was envisioned as giving a second chance to

the tools that failed to install in the testing environment but could lead to interesting results with

additional effort from the tester.

If the contacted support teams failed to answer, “None” was used.

When replies took longer than a month to obtain, the tool was given a “Slow replies” for this

metric.

Lastly, the tools for which replies were quick and complete enough were marked “Helpful”.

3.2.4 Reports

This next metric is concerned with the quality of the reports given by the tools. This measures how

easy it would be to offer programmers understandable results.

Those tools that would have required unreasonable effort in packaging to convert their reports

into something that could be read and understood directly by developers would have been evaluated

10

as “Unparsable”.

On the other hand, the tools whose output was reasonably easy to convert into a clear and legible

format were marked as “Parsable”.

The tools that had readable and informative output out of the box were said to be “Readable”.

3.2.5 Errors Found

Here the range of errors found is evaluated. The focus of this project is on security related flaws

and this is what this metric determines.

If the focus of the tool was on coding style and best practices and no verification related to

security is performed, the result was “None”.

The tools that had fairly few checks related to security and only pointed to errors most of the

other tools found as well were marked as “Common”.

The few tools that did find errors missed by most of the others were listed as finding “Uncommon”

errors.

3.2.6 Handles Projects?

This metric determines whether projects are handled by the tool or not. This is relevant for two

reasons. First and more importantly, if a tool does not recognize the interactions between source

files, it is unlikely to understand anything but the most simple errors. Secondly, if a project consists

of thousands of source files, it would be quite cumbersome to have to run the tool manually on each

of those files. The latter is not that big an issue, as it can be solved with simple packaging of the

tool.

If the tool only analyzes files one at a time, this metric will be set to “Single Files”.

Tools that only accept single files as arguments but try to import the files referenced in the

source will get an “Import” mention.

A full blown “Yes” will reward the tools which can be given a source directory as argument and

then figure out on their own which files they should process.

11

4
Presenting the Results

All of the evaluation runs were conducted on a dual-core Intel Pentium IV @ 3.00GHz, running

Scientific Linux CERN 5, which is based on Red Hat Enterprise Linux and uses Linux kernel 2.6.18.

The source code analyzed either came from CERN SVN and CVS repositories, was directly shared

by groups willing to have their code reviewed or was retrieved from AFS hosted Web sites. As some

of the projects analyzed are in production and not all the flaws found have been fixed yet, I will

not disclose detailed bug reports herein, but rather mention which categories of flaws each of the

tools was able to find. Detailed reports have been sent to and discussed with some of the people

responsible for maintaining the projects or Web sites. Also, the source code base was so large – over

a hundred millions of lines of code – that only a small subset of the hits reported by the tools have

been confirmed or invalidated “by hand”.

This chapter will present the results obtained with the tools evaluated. While some of the

tools yielded interesting results, others had to be abandoned for various reasons, e.g. not installing

properly. As the categories of flaws found varied slightly from one language to the other and the

aim was to select the most suitable tools per language, the evaluations will be classified by language.

Some of the tools provide support for various languages and will therefore appear multiple times,

once for each of the languages they were tested for. The tools are ordered in alphabetical order

within each language group. Each language section contains a table summarizing the results and

a detailed evaluation description for each of the tools. The tools that have been selected to be

documented and suggested to CERN developers are highlighted with a light grey background in the

table.

4.1 C(++) Source Code Analysis Tools

Where security is concerned, C can be a tricky language. Indeed, it leaves much freedom to the de-

velopers, notably concerning memory management. This much freedom, along with some inherently

unsafe library functions (such as gets), means that the burden of ensuring security is made heavier

on a programmer. The most common vulnerabilities in C code are also the easiest to find and fix.

12

Many of the unsafe or commonly misused library functions have a “secure” counterpart which too

many developers are unaware of. The fact that some of those errors are so common makes them

easy to search for and they formed a large percentage of the errors found by the tools tested in this

project.

Table 4.1 shows the results of the evaluation of tools for C and C++. They are explained in

detail below.

Tool Name Installation Configuration Support Reports Errors found Project support
Astree N/A N/A N/A N/A N/A N/A
BOON Eliminating N/A None N/A N/A N/A
CCA Eliminating N/A None N/A N/A N/A
HP Code A Eliminating N/A N/A N/A N/A N/A
cppcheck Average Standard N/A Readable Common N/A
CQual Average Not required N/A Parsable Common Single files
Csur N/A N/A N/A N/A N/A N/A
Flawfinder Easy Not required N/A Readable Uncommon Yes
ITS4 Easy valgrind N/A Readable Uncommon Single files
Smatch Average valgrind N/A Parsable Common Import
Splint Easy Complex N/A N/A N/A Import
RATS Easy Not required N/A Readable Uncommon Yes

Table 4.1: Evaluation Results For C/C++ Tools

4.1.1 Astree

Tool Name Installation Configuration Support Reports Errors found Project support

Astree N/A N/A N/A N/A N/A N/A

Astree is a static analysis tools, which originated from the Ecole Normale Supérieure and the

Centre de Recherches Scientifiques. Since December 2009 it is commercialized by AbsInt (http:

//www.absint.de/astree). Unfortunately no public or demonstration version was available during

the evaluation phase of this project. An evaluation version was released on January 15th 2010, which

includes various checks for C. It uses abstract interpretation to find possible run-time exceptions.

It currently supports C according to the C99 standard, with the exception of dynamic memory

allocation and recursions. While it is regrettable that this late release prevented the evaluation

of this tool, those limitations would be prohibitive for most of CERN projects. However, earlier

versions of this tool have been successfully used by Airbus and the European Space Agency to prove

the absence of run-time exceptions in critical systems.

While this tool sounds promising and interesting for targeted analysis of very specific pieces of

code, it is oriented towards the Software Analysts trying to prove a set of given properties and does

not fit the needs of the target audience defined in Section 1.2. Therefore, it does not meet the

requirements defined for this project.

13

http://www.absint.de/astree
http://www.absint.de/astree

4.1.2 BOON

Tool Name Installation Configuration Support Reports Errors found Project support

BOON Eliminating N/A None N/A N/A N/A

BOON stands for Buffer Overflow DetectiON. It has been developed at Berkeley and is available

from http://www.cs.berkeley.edu/~daw/boon. It seems to have many prerequisites not directly

available at CERN, which meant a lengthy and difficult to package installation process. Furthermore,

the tool comes without any support and is no longer maintained. It was thus discarded, because

CERN developers cannot be expected to invest this kind of time and effort into Computer Security.

4.1.3 C Code Analyzer

Tool Name Installation Configuration Support Reports Errors found Project support

CCA Eliminating N/A None N/A N/A N/A

C Code Analyzer is written in C, Perl and OCAML. It can be downloaded from http://www.

drugphish.ch/~jonny/cca.html. The webpage claims that C Code Analyzer can fully track user

input and detect quite a few other errors. However and despite several attempts and meddling into

the Makefile, I was unable to get it to compile on any of the machines available to me. This tool

does not seem to be supported any longer and no update has been made to the webpage in four

years.

4.1.4 Code Advisor (HP)

Tool Name Installation Configuration Support Reports Errors found Project support

HP Code A Eliminating N/A N/A N/A N/A N/A

Hewlett Packard’s Code Advisor takes advantage of its close relationship with the HP C/C++

Compiler to maximize its understanding of the source code analyzed. It uses a client / server

architecture, and while clients are available for most platforms, the server can only run on an HP-

UX system. This made evaluating the tool impossible in our setting and would not be suitable for

CERN programmers.

4.1.5 Cppcheck

Tool Name Installation Configuration Support Reports Errors found Project support

cppcheck Average Standard N/A readable Common N/A

Cppcheck is a community developed and maintained static analysis tool, available from Source-

Forge at http://sourceforge.net/apps/mediawiki/cppcheck/index.php?title=Main_Page. It

14

http://www.cs.berkeley.edu/~daw/boon
http://www.drugphish.ch/~jonny/cca.html
http://www.drugphish.ch/~jonny/cca.html
http://sourceforge.net/apps/mediawiki/cppcheck/index.php?title=Main_Page

is written in C++ and is available as a msi file for Windows users. Its source code is available on a

public git repository.

Compilation and installation worked flawlessly. It can be run either from the command-line or

through a GUI, which is quite intuitive to understand. Runs on various C/C++ projects yielded

a fairly comprehensive subset of the checks listed at http://sourceforge.net/apps/mediawiki/

cppcheck/index.php?title=Main_Page#Checks. In particular some memory leaks were detected

as well as improperly closed file handles.

4.1.6 CQual

Tool Name Installation Configuration Support Reports Errors found Project support

CQual Average Not required N/A parsable Common Single files

CQual uses type qualifiers to analyze source code. It takes advantage of type inference techniques

to limit the number of annotations required from the programmer.

It is available from http://www.cs.umd.edu/~jfoster/cqual/ and it installed flawlessly by

running standard Unix installation commands. Its command-line interface is self-explanatory, and

the default configuration yields some quick results. However, the flaws found without requiring

additional effort from the user are quite limited. Actually, unless it is provided with additional

information about the program architecture and the constraints that should be enforced, there is

little that type inference can achieve. On the other hand, flaws such as vulnerabilities to string

formatting attacks can be detected, for instance by marking all user input with a “tainted” type

qualifier and requiring the first argument of all functions in the printf family to be “untainted”

[19]. While a few other possible usages have been researched by Wagner [9], Foster et al. [13] and

Foster [12] amongst others, those techniques still require a good understanding of the type inference

mechanisms used by CQual in order to place the proper type qualifier annotations at the right place

in the source code.

4.1.7 Csur

Tool Name Installation Configuration Support Reports Errors found Project support

Csur N/A N/A N/A N/A N/A N/A

Csur is developed under copyright license and a beta version is announced for the near future

since 2004. It could therefore not be evaluated.

4.1.8 Flawfinder

Tool Name Installation Configuration Support Reports Errors found Project support

Flawfinder Easy Not required N/A readable Uncommon Yes

15

http://sourceforge.net/apps/mediawiki/cppcheck/index.php?title=Main_Page#Checks
http://sourceforge.net/apps/mediawiki/cppcheck/index.php?title=Main_Page#Checks
http://www.cs.umd.edu/~jfoster/cqual/

Flawfinder is a security oriented static analyzer for C/C++, which was specifically developed by

its author to be easy to install and to use. It uses text-based pattern matching to detect calls to

inherently vulnerable or commonly misused library functions.

It is available as a source rpm for Fedora based Unix systems and only requires Python. It is

therefore easy to run from source on Windows, e.g. using Cygwin. When invoked directly on a

source file or directory, it will report a warning for each call to functions it considers as a potential

risk. The text output is easy to understand and includes a short description of the reason for which

the function is considered insecure and in some cases suggests a possible fix. The reported hits are

given a threat level, ranging from 0 (benign) to 5 (high risk). Flawfinder will also print a short

summary of the analysis, displaying the number of lines of code analyzed and the number of hits

reported for each threat level. Command-line arguments include the ability to set the minimal threat

level reported, directives to output the report in html or xml and “header-/ footerless, single ligne

per error” output, which is useful for editor integration.

While Flawfinder does yield some false positives – after all, not every single call to strcpy results

in a security vulnerability – it also comes with a mechanism to report false positives, by including a

comment on the falsely accused line. It will then ignore the error(s) found on that line, unless the

--never-ignore option is used.

It was decided to keep this tool because of its noteworthy ease of use and distinct ability to find

a wide range of simple, yet common, errors. It also has a few options to manage and customize the

output.

4.1.9 ITS4

Tool Name Installation Configuration Support Reports Errors found Project support

ITS4 Easy valgrind N/A readable Uncommon Single files

ITS4 was developed and maintained by Cigital, but has been discontinued since 2000. It uses

an approach fairly similar to that of Flawfinder, in the sense that it also uses text-based pattern

matching to detect potential security-related issues.

Installation and configuration did not cause any problem and could be achieved with standard

Unix installation commands. However, the first run attempted lead to a segmentation fault. Run-

ning ITS4 through valgrind to attempt and pinpoint the error actually seemed to circumvent the

segmentation fault.

Once this error was bypassed, the results obtained were similar to those reported by Flawfinder.

4.1.10 Smatch

Tool Name Installation Configuration Support Reports Errors found Project support

Smatch Average valgrind N/A parsable Common Import

16

Smatch is a project led by the people at http://janitor.kernelnewbies.org. It is uses the

sparse C parser and is mostly oriented at finding bugs in the Linux kernel. The source can be

obtained on the git repository http://repo.or.cz/w/smatch.git. Building the binaries is simple

enough, but the installed version crashed on various of the files it was given, and similarly to ITS4,

when run inside valgrind, the problem would disappear. Since testing it for this project, a new

version has been released, but according to the author himself, it is still buggy and not quite as

reliable as he would like it to be.

While it has some detectors for buffer overflows, it did not detect them in the projects it was

tested on, and the only relevant issue it reported was an array out of bounds error.

4.1.11 Splint

Tool Name Installation Configuration Support Reports Errors found Project support

Splint Easy Complex N/A N/A N/A Import

Splint is a variant of lint, developed at the University of Virginia, concerned mainly with Secure

Programming. Installation is achieved through standard Unix commands.

It can be used with relatively little effort to perform basic checks, but the more advanced func-

tionalities and verifications require the developers to include annotations in their code. This is fine

for projects that will be verified multiple times in the long run, and for which the developers can

afford to spend more time initially to get the testing parameters setup. However it does not suit the

unconvinced developer who wants to just give a try to a Source Code Analysis Tool. Also, Splint

only accepts pure C code and cannot handle C++.

4.1.12 RATS

Tool Name Installation Configuration Support Reports Errors found Project support

RATS Easy Not required N/A readable Uncommon Yes

RATS stands for Rough Auditing Tool for Security. It is an open source tool distributed under

GPL, which can scan C, C++, Perl, PHP and Python source code. It uses text-based pattern

matching to look for potential risks, based on the entries in its language-specific dictionaries. It can

be freely downloaded from http://www.fortify.com/security-resources/rats.jsp.

A Windows executable and a source tarball are available from the site mentioned above, and

packaged binaries are available for many Linux distributions. It can be run directly on the root

directory of a project and will analyze the files written in each of its target languages, based on the

file extension. Its C/C++ dictionary of potentially vulnerable patterns has 334 entries. The results

of an analysis are similar to Flawfinder’s, with the advantage of being faster and the limitation of

missing the source files with unknown extensions, which Flawfinder recognizes using heuristics.

17

http://janitor.kernelnewbies.org
http://repo.or.cz/w/smatch.git
http://www.fortify.com/security-resources/rats.jsp

It was decided to keep this tool because of its ease of use, its speed and the interesting, albeit

not impressive, quality of its results. Furthermore, it has the advantage of being easily extensible.

4.2 Java Source Code Analysis Tools

Aside from the vulnerabilities common to all the languages considered, i.e errors related to file

handling and system calls, Java code is also susceptible to leak improperly secured confidential

information.

Table 4.2 summarizes the results of the evaluation of Source Code Analysis Tools for Java.

Tool Name Installation Configuration Support Reports Errors found Project support
CodePro Easy not required N/A Readable Uncommon Yes
FindBugs Easy Standard N/A Readable Uncommon Yes
Hammurapi Standard Complex N/A Readable Common Yes
JCSC Easy Complex N/A Parsable Common Single Files
IBM Complex Standard Helpful Readable Uncommon Yes
PMD Standard not required N/A Readable Common Yes
QJPro Easy Standard N/A N/A N/A Yes

Table 4.2: Evaluation Results For Java Tools

4.2.1 CodePro Analytix

Tool Name Installation Configuration Support Reports Errors found Project support

CodePro Easy not required N/A Readable Uncommon Yes

CodePro Analytix is a commercial static analysis tool for Java, developed by Instantiations.

It is available as an Eclipse plugin from http://www.instantiations.com/codepro/analytix.

Installation is performed through the Eclipse plugin manager, from a local directory where the

software must be downloaded first.

CodePro Analytix integrates with Eclipse and all the functionalities are available from the IDE.

The list of bugs found was fairly comprehensive and can be expanded through activation of rules not

figuring in the default analysis configuration, either individually or by categories. The “Security”

category includes detectors for faulty authentication, issues with temporary files, missing catches for

exceptions (particularly relevant for Web applications) and usage of tainted input values, amongst

others. Each reported error comes with an explanation of its security implications.

Unfortunately, a major investment would have been necessary to serve CERN’s 200 Java devel-

opers. However, a link to this tool has been provided to CERN developers, so that any group that

would be willing to invest more in software security would have the necessary information.

18

http://www.instantiations.com/codepro/analytix

4.2.2 FindBugs

Tool Name Installation Configuration Support Reports Errors found Project support

FindBugs Easy Standard N/A Readable Uncommon Yes

FindBugs is free software, distributed by the University of Maryland under the LGPL terms.

It is available from http://findbugs.sourceforge.net. It can be installed either as a plugin to

Eclipse (from version 3.3 onwards) or as a standalone application with a Swing interface. The Eclipse

installation is handled by the Eclipse plugin manager. The standalone application contains a jar file

with launchers both for Linux and Windows.

There is a slight subtlety in the configuration of the standalone application, which needs to be

given the path to your compiled classes, libraries and source files – the latter is optional but allows for

viewing the error in context. The Eclipse plugin can be run directly from the IDE. Similarly to Code-

Pro Analytix, FindBugs features an extensible dictionary of vulnerabilities, grouped in categories.

By default, the “Security” category is not activated, nor is the “Malicious Code Vulnerability”. This

can be changed easily though – detailed explanations are available in Appendix A.2. Bugs found

include vulnerabilities to SQL injections or Cross-Site Scripting, ignored exceptional return values,

exposed internal representations and more.

Reports can be exported to XML files, including classification of individual hits as “not a bug”,

“I will fix”, . . .

4.2.3 Hammurapi

Tool Name Installation Configuration Support Reports Errors found Project support

Hammurapi Standard Complex N/A Readable Common Yes

Hammurapi is a platform to review code quality. It has seen a major shift in focus between version

5.7 and 6.1.0. Version 5.7 is available at http://www.hammurapi.biz/hammurapi-biz/ef/xmenu/

hammurapi-group/products/hammurapi/index.html and is usable out-of-the box to analyze Java

source code. Version 6.1.0 is available at http://www.hammurapi.com/ and is more of a framework

rather than a tool per se. It provides interfaces for language modules to parse source code into a

model, for inspector sets to review the model and produces observations, and for waivers to render

the observations in a user readable format. The version evaluated in this project was version 5.7.

The installer is available as an executable file for Windows and as a jar file for cross-platform

compatibility. It can then be used as an Eclipse plugin.

Many of the major security flaws identified by other tools were missed by Hammurapi, which

seems to focus on coding style practices and “code smell”.

19

http://findbugs.sourceforge.net
http://www.hammurapi.biz/hammurapi-biz/ef/xmenu/hammurapi-group/products/hammurapi/index.html
http://www.hammurapi.biz/hammurapi-biz/ef/xmenu/hammurapi-group/products/hammurapi/index.html
http://www.hammurapi.com/

4.2.4 JCSC

Tool Name Installation Configuration Support Reports Errors found Project support

JCSC Easy Complex N/A Parsable Common Single Files

JCSC is a free tool available from http://jcsc.sourceforge.net/. It is available as a stan-

dalone application with a Swing GUI, or as a plugin for IntelliJ. It is inspired by lint and mostly

checks for compliance to a coding style. The default configuration is in line with the Sun Code

Conventions, and has a couple of additional checks for potentially dangerous code, such as empty

catch blocks. It also comes with a rule editor, which can be used to implement detection of custom

patterns.

4.2.5 IBM Rational AppScan

Tool Name Installation Configuration Support Reports Errors found Project support

IBM Complex Standard Helpful Readable Uncommon Yes

AppScan is the static analysis tool of IBM’s Rational line. It is commercially distributed at

http://www-01.ibm.com/software/awdtools/appscan/.

Installation is performed by ad-hoc binaries, which failed to work on the Linux machine used

for the evaluation, because they need to set up a specific user to run the background services upon

which the analyzer is built, using a command not compatible with CERN’s SLC commands to create

users. However, installation could be completed on a Windows platform. It required the installation

of three different binaries and the obtention and configuration of a license key for each of them.

Furthermore, the tool installs to a directory that must then be set as an external Eclipse plug-in

location (which cannot be done anymore from Eclipse 3.4 onwards). Fortunately, support from IBM

was outstanding.

While this tool did find a few more bugs than others of the tools we analyzed, it was not trivial

to sort those bugs according to some sort of risk rating, which would have made it easier for an

average CERN programmer to find out what he should focus on.

The bottom line is that the slightly increased complexity in installing / managing / running the

tool is currently not compensated by some extra features in comparison to other tools.

However, this is a very interesting tool and should be recommended to anyone willing to go the

extra mile and on a budget that can afford it.

4.2.6 PMD

Tool Name Installation Configuration Support Reports Errors found Project support

PMD Standard not required N/A Readable Common Yes

20

http://jcsc.sourceforge.net/
http://www-01.ibm.com/software/awdtools/appscan/

PMD is a fairly popular free Java source code scanner. It is available from http://pmd.

sourceforge.net and integrates with most major IDEs. Installation can be handled directly

through the plugin manager of major IDEs or downloaded from the tool’s homepage.

No additional configuration is required to run the tool, but the reported flaws are mostly related

to usual bad coding practices and not directly related to software security.

4.2.7 QJPro

Tool Name Installation Configuration Support Reports Errors found Project support

QJPro Easy Standard N/A N/A N/A Yes

QJPro is a free tool for Java Source Code Analysis and coding standards enforcement. It is

available from http://qjpro.sourceforge.net either as a standalone application or as a plugin

for Eclipse or other IDEs.

However, its latest version predates Generic Java and code written for Java 1.5 or more recent

will cause it to crash.

4.3 Perl Source Code Analysis Tools

Tool Name Installation Configuration Support Reports Errors found Project support
B::Lint Standard Complex N/A Readable Common Yes
Perl::Critic Easy Standard N/A Readable Uncommon Yes
RATS Easy Not required N/A Readable Common Yes
Taint Mode Easy Not required N/A Readable Uncommon Import

Table 4.3: Evaluation Results For Perl Tools

4.3.1 B::Lint

Tool Name Installation Configuration Support Reports Errors found Project support

B::Lint Standard Complex N/A Readable Common Yes

B::Lint is a Perl module available on CPAN at http://search.cpan.org/~jjore/B-Lint-1.

11/lib/B/Lint.pm. Installation can be carried out through a CPAN shell.

B::Lint can be extended to find more errors, but it is only shipped with some fairly simple

detectors. The errors it finds are some of the most common ones, but are fairly limited.

4.3.2 Perl::Critic

Tool Name Installation Configuration Support Reports Errors found Project support

Perl::Critic Easy Standard N/A Readable Uncommon Yes

21

http://pmd.sourceforge.net
http://pmd.sourceforge.net
http://qjpro.sourceforge.net
http://search.cpan.org/~jjore/B-Lint-1.11/lib/B/Lint.pm
http://search.cpan.org/~jjore/B-Lint-1.11/lib/B/Lint.pm

Perl::Critic is a Perl module that can be used to enforce over 100 policies, most of which come

from Damian Conway’s Perl Best Practices [8]. It is available on CPAN at http://search.cpan.

org/~elliotjs/Perl-Critic-1.105/lib/Perl/Critic.pm. Installation is done via a CPAN shell.

The installation includes an executable, “perlcritic”, on top of the Perl::Critic module.

While some of the security-related checks are disabled by default, if the level of verification is

set to “brutal”, most of the risky Perl idioms will be identified. This setting will also produce many

coding style warnings though, thus increasing the length of the output and making it more difficult

for the developers to identify the most crucial warnings.

4.3.3 RATS

Tool Name Installation Configuration Support Reports Errors found Project support

RATS Easy Not required N/A Readable Common Yes

General information about RATS is available on Section 4.1.12. RATS has 33 entries in its Perl

database. It might trigger more false positives for Perl than for other languages, as some secure

libraries use the same function names as the insecure libraries they intend to replace.

While RATS only really shines for C/C++ code analysis, it is still a very quick and efficient

tool for Perl and can be recommended to programmers wishing to use a single tool for a variety of

languages.

4.3.4 Taint Mode

Tool Name Installation Configuration Support Reports Errors found Project support

Taint Mode Easy Not required N/A Readable Uncommon Import

While Perl’s Taint Mode is not a source code analysis tool strictly speaking, it is a key language

feature as far as security is concerned. When taint mode is activated, through the -T flag, every data

that comes from outside the program itself, including configuration files, user input and environment

variables, will be marked as tainted until it is sanitized. Sanitization is done through pattern

matching. Taint mode will not ensure that the values used are secure, only that they have been

verified, thus it is still up to the programmer to make sure that those values do not contain possibly

harmful data.

This does require some additional effort from the developer, but its benefits are not to be ne-

glected.

4.4 PHP Source Code Analysis Tools

There are not that many source code analysis tools available for PHP. It seems more effort has been

put into “black-box” approaches for Web applications, probably because it puts the analyzer in the

22

http://search.cpan.org/~elliotjs/Perl-Critic-1.105/lib/Perl/Critic.pm
http://search.cpan.org/~elliotjs/Perl-Critic-1.105/lib/Perl/Critic.pm

position of an attacker, thus detecting the same kind of bugs a malicious user is likely to find and

exploit. However, it is always possible for an attacker to find a weakness a vulnerability scanner

missed. Therefore, if some bugs can be caught easily using a “white-box” approach, there is no

reason not to try it!

Tool Name Installation Configuration Support Reports Errors found Project support
Sandcat Easy Not required N/A Readable Uncommon Yes
Pixy Standard Not required N/A Parsable Uncommon Yes
RATS Easy Not required N/A Readable Common Yes

Table 4.4: Evaluation Results For PHP Tools

4.4.1 Sandcat.4PHP

Tool Name Installation Configuration Support Reports Errors found Project support

Sandcat Easy Not required N/A readable uncommon Yes

Sandcat.4PHP is developed and commercialized by Syhunt, as an extension to their “black-box”

testing software, Sandcat. It is available in a rather limited demonstration version from Syhunt’s Web

site at http://www.syhunt.com/?section=sandcat4php. This tool is available only on Windows.

While it does yield some interesting results on simple test cases, the demonstration version is

limited to two source files, thus restricting the usefulness of the tests. At the time of the evaluation

phase of the project, its professional version was publicly priced 1,099 USD per seat. As explained

in Section 1.2, any CERN user is potentially a Web site owner/developer/maintainer. Therefore,

this pricing model would be totally inadequate for CERN.

It seems however that the distribution options have changed in the meantime. Sandcat.4PHP is

now exclusively available in the Hybrid version of the Sandcat software, for which price quotations

are offered on demand.

The pricing of the tool at the time along with the availability being limited to Windows were

considered severely hindering factors.

4.4.2 Pixy

Tool Name Installation Configuration Support Reports Errors found Project support

Pixy Standard Not required N/A Parsable uncommon Yes

Developed in Java by people from the International Secure Systems Lab (http://www.iseclab.

org/), Pixy scans PHP files looking specifically for Cross-Site Scripting and SQL-Injection vulnera-

bilities, two of the most commonly exploited weaknesses in Web applications according to OWASP’s

2005 Top 5 PHP Vulnerabilities list1.
1See http://www.owasp.org/index.php/PHP_Top_5.

23

http://www.syhunt.com/?section=sandcat4php
http://www.iseclab.org/
http://www.iseclab.org/
http://www.owasp.org/index.php/PHP_Top_5

Pixy’s latest version, dating back to July 2007, is available from http://pixybox.seclab.

tuwien.ac.at/. As it is based on Java and packages both a Perl script and a batch file to set the

environment variables properly and invoke the Java application, Pixy can easily be run on Linux

or Windows. The test runs led to the discovery of various vulnerabilities in CERN user Web sites,

which have since then been verified and fixed by the Web site owners. To facilitate the identification

and correction of the vulnerabilities it reports, Pixy outputs call graphs in the DOT language. An

example of a such graph is included in Appendix B.

The main drawbacks of Pixy are that the graphs are created in text format, which would require

additional effort from the developers to understand or to view, and the fact that it only accepts

single files as input. Another issue is the the reports seem to have been designed to be parsed rather

than read.

4.4.3 RATS

Tool Name Installation Configuration Support Reports Errors found Project support

RATS Easy Not required N/A Readable Common Yes

General information about RATS is available on Section 4.1.12. RATS has 55 entries in its PHP

database, many of which are concerned with (possibly) improper retrieval of user input.

However, this does not include the commonly used $_GET[key] shorthand notation, only the

functions used to achieve the same effect.

While RATS only really shines for C/C++ code analysis, it is still a very quick and efficient

tool for PHP and can be recommended to programmers wishing to use a single tool for a variety of

languages.

4.5 Python Source Code Analysis Tools

It seems that the number of source code analysis tools for Python is rather limited. There are a

few possible explanations for this, some of which will be presented below. First and foremost, the

developer community is quite proactive about pushing security patches for Python, thus limiting

exposure of up-to-date systems. However, while Python does not have any exploitable library

function as well-known as C’s gets, some of its functions can be used incorrectly by developers, e.g.

not properly sanitizing user input before using it in a system call. Another possible explanation

being that C and Java have been used in security-critical software for decades, and PHP and Perl

are very commonly used in the development of Web applications, which are very exposed to large

scale attacks. This would explain more effort and attention being put into developing source code

analysis tools for those languages, or vulnerability scanners in the case of PHP.

24

http://pixybox.seclab.tuwien.ac.at/
http://pixybox.seclab.tuwien.ac.at/

Tool Name Installation Configuration Support Reports Errors found Project support
PEP8 Standard Not required N/A Readable None Yes
PyChecker Standard Not required N/A Readable Common Yes
Pylint Standard Not required N/A Readable None Yes
RATS Easy Not required N/A Readable Common Yes

Table 4.5: Evaluation Results For Python Tools

4.5.1 PEP8

Tool Name Installation Configuration Support Reports Errors found Project support

PEP8 Standard Not required N/A Readable None Yes

PEP8 is a community developed source analysis tool for Python. Its source is available on a read-

only git repository: git://github.com/jcrocholl/pep8.git. It checks for compliance to some of

the style conventions in PEP8 2.

PEP8 is written in Python and can thus be run directly from source on any Operating System

for which a Python interpreter is available.

The absence of any security-related checks is clearly an issue in this context.

4.5.2 PyChecker

Tool Name Installation Configuration Support Reports Errors found Project support

PyChecker Standard Not required N/A Readable Common Yes

PyChecker is a community driven source code analysis tool for Python. While PyChecker mainly

targets “problems that are typically caught by a compiler for less dynamic languages”, it also

includes a couple of checks related to security. Its source code is available from SourceForge, at

http://sourceforge.net/projects/pychecker. On Linux, it can be installed by running Python

setup.py directly from the source directory. As it is written in Python though, it is easy to make it

run on a Windows installation with a Python interpreter. Running PyChecker against sample code

permitted the identification of various errors, most of which were not security risks, but included a

vulnerability to arbitrary code execution..

4.5.3 Pylint

Tool Name Installation Configuration Support Reports Errors found Project support

Pylint Standard Not required N/A Readable None Yes

Pylint is an open source static source code analysis tool for Python. It is available as a source

tarball from http://www.logilab.org/857.
2See http://www.Python.org/dev/peps/pep-0008/.

25

git://github.com/jcrocholl/pep8.git
http://sourceforge.net/projects/pychecker
http://www.logilab.org/857
http://www.Python.org/dev/peps/pep-0008/

The installation process is similar to PyChecker’s. However, it does not include any security

related checks and was therefore not considered any further for this project, despite being a quite

popular tool.

4.5.4 RATS

Tool Name Installation Configuration Support Reports Errors found Project support

RATS Easy Not required N/A Readable Common Yes

General information about RATS is available on Section 4.1.12. RATS has 62 entries in its

Python database, many of which are concerned with possible race conditions. It also checks for

insecure random number generators and system calls. Not all dangerous system calls are detected

though, and calls to commands.getstatusoutput, while highly risky, are missed.

While RATS only really shines for C/C++ code analysis, it is still a very quick and efficient tool

for Python and can be recommended to programmers wishing to use a single tool for a variety of

languages.

26

5
Delivering the Results

The end goal of this project was to increase computer security at CERN. In order to ensure a real

usefulness of the results presented so far, it was important to propagate information about static

analysis tools to CERN developers. Due to the organization size and the limited human resources

available to the Computer Security Team, dedicated communication channels are needed. In order to

maximize the visibility and usage of this project, a combination of means have been used. The first

phase consisted of the creation of a reference Web site, containing information about the selected

tools as well as recommendations for the creation of secure source code, both language specific and

with a broader impact. This ensured information availability and persistence.

A talk to which developers and group leaders were invited and an article written for an internal

publication contributed to increase the visibility of the results, which was the objective of the second

step.

5.1 CERN Computer Security Team Web site

The Web site created for this project is available at http://cern.ch/security/codetools. It

contains installation instructions, configuration guidelines and sample execution commands for each

of the selected tools. These are mostly oriented to Linux users, more specifically to users of the

Scientific Linux CERN distribution, since this is the operating system most commonly used by

CERN developers. However, hints are also provided for users of other Linux distributions as well as

for Windows users, whenever applicable. A snapshot of the status of the documentation is available

in Appendix A.

5.1.1 Packaging the Tools

An important part of the process of making the tools available for CERN users was to make their

installation as simple as possible. Scientific Linux CERN, the distribution most widely used by

CERN developers, is based on Red Hat Enterprise Linux and uses yum to manage its packages.

Fortunately, most of the tools were already available as source RPMs, and required very little effort to

27

http://cern.ch/security/codetools

integrate into the CERN software repositories. On the other hand the tool selected for PHP source

code analysis, Pixy, requested slightly more effort. Furthermore, the original Pixy implementation

only accepts single files as input and cannot process a project globally, although it does analyze all

the files included or required by the file it is given. Taking advantage of this feature, a wrapper was

developed, which will create a temporary PHP file, consisting of a call to the include built-in for

each of the PHP files found in the directory given as argument. Also, in its original form, Pixy’s

output can be rather cumbersome to understand for the naked eye. The result is postprocessed by

the wrapper and can be printed in straight text form, in an XML structure or as HTML code. Last

but not least, Pixy creates digraphs providing insight into each of the errors it reports. One such

graph can be found in Appendix B. However, those digraphs are created in DOT (text) format. The

wrapper uses GraphViz to convert those digraphs into PNG files, which can then be directly viewed

and are linked from the HTML-formatted reports.

With the same idea of making the whole process as simple as possible for the users and allowing

them to obtain a quick hands-on experience with the tools, a configuration file for Perl::Critic has

been provided. It creates two custom groups of errors, the first one – cerncert – featuring all the

detectors identified as directly concerned with security while the second set identifies bad-practices

that can lead to vulnerabilities on the longer run, by making the code more difficult to maintain.

These rules have been identified and categorized in collaboration with members of the Computer

Security Team.

5.2 Post-C5 Presentation / IT Seminar

The C5 is a weekly meeting of managers of main services offered within CERN’s IT Department.

It is attended by representatives of all the IT groups. Sometimes those meetings are followed by a

presentation, where a member of the Department has the opportunity of speaking about a project of

general interest. Another semi-regular set of talks within the IT Department is a series of computing

seminars, often featuring external speakers, which all are welcome to attend.

In order to maximize the impact of the talk, it has been organized as a joint venture and

advertised as both a Post-C5 Presentation and an IT Seminar. As a result, more than a hundred

people attended the talk and not everyone was able to take a seat. The talk was built around three

key points: motivate the attendees to use the tools; show how easy it is to run some of the tools and

to get some results; insist that while Source Code Analysis Tools are a nice way to get some results

quickly, using them will not guarantee security.

The slides used are available at http://documents.epfl.ch/users/t/th/thhofer/public/

C5-CS-presentation.pdf.

28

http://documents.epfl.ch/users/t/th/thhofer/public/C5-CS-presentation.pdf
http://documents.epfl.ch/users/t/th/thhofer/public/C5-CS-presentation.pdf

5.3 Article in the CNL

The last approach used to propagate the results of this project to CERN developers is the writing of

an article in the Computer Newsletter (CNL). The CNL is the internal publication within CERN’s

IT Department. It is however distributed throughout the organization, and outside it as well, and

thus has a wide coverage. It is also available on http://cern.ch/cnl. At the time of writing, the

January-March 2010 issue – the one featuring the article Find your security vulnerabilities before

attackers do – has not yet been released.

This article includes a few paragraphs on source code analysis tools, whose aim is to persuade

developers to use the tools evaluated, packaged and documented during this project. The author’s

contribution to the article was the following:

Finding your bugs before attackers do...!

Another important key point to improving computer security at CERN is to make

the attackers’ job harder by minimizing the exploitable flaws in the software that you

develop. While it is very hard to write perfectly secure software, there are some simple

means allowing you to improve the security of your piece of software. One of the easiest

ways is using Static Source Code Analyzers. Those tools look at your code without

executing it, but point out what they consider to be potential weaknesses. The most

typical example of what those tools can find probably is calls to the gets function in

the C programming language: this function is inherently insecure and can lead to buffer

overflows. Specially crafted user input values can for instance allow an attacker to access

or modify confidential data or even take control of any computer executing that piece of

software. Because these tools need to understand your code, they are necessarily very

language specific. The Security Team has evaluated a number of such tools, for various

programming languages (C/C++, Java, PHP, Perl and Python) and has compiled a

short list of analyzers, selected because of their ease of use, their simple configuration

and their established benefit in pointing out weaknesses.

This list of tools is available at http://cern.ch/security/CodeTools, along with advice

on configuration and recommendations on how to fix the most common errors, as well

as pointers to Web sites and books containing more information on the matter. RATS,

shorthand for Rough Auditing Tool for Security, covers all of the above languages, with

the exception of Java. It targets mainly calls to commonly misused or exploited library

functions. It is a very fast tool, available on Linux and Windows. For C/C++, David

Wheeler, a renowned IT security expert, provides Flawfinder, which will look for risks

of buffer overflows and race conditions. It is unfortunately only available on Linux.

Coverity is a security company with extensive experience in C/C++ static analysis, re-

sponsible for finding many bugs in major open source projects such as the Linux kernel

or implementations of samba and is contracted by the U.S. Department of Homeland

29

http://cern.ch/cnl

Security and Yahoo among others. Currently, the PH/SFT group is arranging an agree-

ment with Coverity, which will allow for CERN to use their tool. For Java, FindBugs

will find various security-related and non security-related errors, vulnerabilities to SQL

injection for instance. It is available both as an Eclipse plug-in and as a stand-alone java

application. Pixy will review your PHP code and warn you against risks of SQL injec-

tion and Cross-Site Scripting. It consists mostly of Java code with a Perl wrapper. It is

therefore cross-platform compatible. The Perl::Critic CPAN module will raise warnings

for many risky Perl idioms, and used in conjunction with Perl’s tainted mode, it should

help to produce secure Perl code. As for Python, the most important thing is simply

to keep your version up-to-date with security patches (for SLC machines, the security

patches are back-ported to older versions, which is why Python still appears to be at

version 2.4!). You can also use rats (see above) to detect some of the potential security

issues. Pychecker and pylint are also nice static analysis tools, even if they do not focus

on security aspects.

30

6
Conclusion

6.1 Results

Though the results obtained when analyzing programs with the tools selected during this project

are not on level with the state of the art methods for static analysis, they constitute a compromise

between completeness of results and investment of resources (i.e. time and effort). This implies

that they are more likely to be used in the context relevant to this project. In practice, the results

seems to have been welcomed by CERN developers, with attendance for the tool presentation talk

upwards of one hundred people and approximately one hundred unique visits to the documentation

webpage over its first three weeks online.

It is difficult to precisely measure the impact of this research because computer security is not

directly quantifiable without proof of absolute security, which is neither currently available nor

expected to be in the future. However, careful and diligent use of those tools will help eliminate

a large number of common errors and to educate the developers by increasing their awareness to

security issues. For instance, the Cross-Site Scripting Vulnerabilities that have been found during

this research could have been entirely avoided with little effort.

6.2 Achievements

The most satisfactory aspect of the results of this projects are the fact that the product delivered to

the CERN Computer Security Team met the highest expectations that had been set for it. Not only

where all of the tools documented and configurations provided where necessary, only one of them

could not be made available on CERN software repositories.

The following two items were not stricly related to the evaluation of the tools, but can be viewed as

interesting by-products of this research. The most closely related to the topic is the wrapper written

for Pixy which is already mentioned in Chapter 5. The second one is a script written to retrieve

pages from a wiki over an HTTPS connection to create a snapshot fit for distribution (detailed in

Appendix C.2. The development of those (rather small) pieces of software were a good opportunity

31

to put secure programming guidelines in practice and to use some of the tools recommended on

familiar code.

6.3 Main Challenges

The primary challenge faced during this project was social, rather than technical, in nature. The

need to adapt to a practical and professional environment with developer deadlines implied finding

a balance between the theoretical optimum and the solution most applicable to practice, rather than

aiming solely for the optimal solution as a purely academic project would require. In the words of

Einstein,

In theory there is no difference between theory and practice, but in practice there is!

The most significant technical challenge of this project concerned the variety of programming

languages targeted. While familiar with some of the languages considered, at the inception of this

research I was by no means a security expert for any of them. Therefore analyzing and identifying

the various categories of security vulnerabilities for each language was a substantial undertaking.

6.4 Outlook and Future Developments

This section will discuss the possible improvements and extensions to this project. These are grouped

in two different subsections. Subsection 6.4.1 will describe what is already being done at CERN as

well as some ideas and suggestions that are envisioned for the near future. Subsection 6.4.2 describes

more global improvements that could be made to Computer Security in general, based upon the

reasoning that Source Code Analysis is not sufficient, at least in its current form.

6.4.1 At CERN

A possible extension for this project consist of running those tools on all of the source code accessible

on the various repositories hosted at CERN and discussing the results with the affected developers.

Running those tools without knowing the internal structure of a project can present a few issues.

For instance, the tools should not be run against the root of a repository, but rather on branches or

on the trunk, or maybe even on a specific source directory. Some of the tools might crash, but will

definitely run erroneously, if they are facing different versions of the same file.

Another point one should be very careful with is the interpretation of the results. Large code

bases will lead to considerable output, and a basic understanding of the code is required to check

whether each of the errors is a false positive or not.

The last thing one should be careful with is in case of multi-language projects. Some of the tools

might ignore files based on extensions, while others might misinterpret a file, because it is not in the

expected language.

32

If good care is taken of these points, it would be interesting to have a thorough analysis of the

code repositories.

6.4.2 Further Improvements to Software Security

While it is good that such simple means as the tools presented in Chapter 4 help to improve software

security, those means are clearly not sufficient to offer any guarantees about software security. There

are many types of errors those tools are unable to detect including, but not limited to, flaws in design

or failure to properly implement a protocol.

There are a few ways one could go further down the path of creating more secure software. First

and foremost, it is vital that developers be made aware of the risks and vulnerabilities inherent to

their programming language. There is an appalling number of posts across developer forums asking

why compilers throw a warning when the gets function is used. This issue can only be resolved

through adequate training.

Another important point is the integration of security into the Software Development Life Cycle.

While some effort has already been made in that direction – e.g. Microsoft uses the ASAP1 process

internally and the U.S. Department of Homeland Security hosts an article by N. Davis [10] – it has

not quite managed to become standard practice in the industry yet.

An option less demanding on the developers would be to have more thorough tools available

than those selected during this project. This is partially achieved already, as some critical pieces

of software have been verified with formal methods. One such example is Airbus verifying its A380

flight system using Astre – the results are alluded to in [21].

All of the above suggestions are, however, only applicable if people can be convinced to put time

and effort into software security. Dan Lohrmann, Michigan State’s CTO, is currently working on

a series of articles entitled Why Do Security Professionals Fail? As of this writing, the first five

articles in this series are available on his CSO Online Blog http://blogs.csoonline.com/blog/

dan_lohrmann. Out of the various issues he mentions, two seem particularly interesting. Firstly, he

mentions that security experts are generally ill-considered, as a consequence of always bringing up

issues no one else wants to hear. There is no simple way around this, but paying attention to the

ways problems are brought up and trying to suggest a solution might go a long way. Secondly, he

encourages to taking a “realistic” approach to security. Instead of trying to push for the pristine,

clean and totally secure option, which would entail a radical increase in costs, a few options should

be studied and suggested, offering various levels of efficiency and implied costs.

It is often difficult for software engineers to grasp how (in)secure their code is. An option some

testing tools or security analysts offer, which seems to be quite popular, is some sort of grading of

the source evaluated. This makes it easier for the non-specialist to get an idea of the improvement

a patch has brought, and for team leaders to set targets for their teams. However, it is not trivial
1Application Software Assurance Program

33

http://blogs.csoonline.com/blog/dan_lohrmann
http://blogs.csoonline.com/blog/dan_lohrmann

to create such a metric in a way that makes sense and is coherent across new versions of a piece of

software.

34

Bibliography

[1] Almeida, J. B., Barbosa, M., Sousa Pinto, J., and Vieira, B. Verifying cryptographic
software correctness with respect to reference implementations. In FMICS ’09: Proceedings of
the 14th International Workshop on Formal Methods for Industrial Critical Systems (Berlin,
Heidelberg, 2009), Springer-Verlag, pp. 37–52.

[2] Alt, M., and Martin, F. Generation of Efficient Interprocedural Analyzers with PAG. In
SAS’95, Static Analysis Symposium (September 1995), A. Mycroft, Ed., vol. 983 of Lecture
Notes in Computer Science, Springer, pp. 33–50.

[3] Bagnara, R., Hill, P. M., Pescetti, A., and Zaffanella, E. On the design of generic
static analyzers for imperative languages. Quaderno 485, Dipartimento di Matematica, Univer-
sità di Parma, Italy, 2008. Available at http://www.cs.unipr.it/Publications/.

[4] Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros,
C., Kamsky, A., McPeak, S., and Engler, D. A few billion lines of code later: using
static analysis to find bugs in the real world. Commun. ACM 53, 2 (2010), 66–75.

[5] Beyer, D., Henzinger, T., and Théoduloz, G. Configurable software verification: Con-
cretizing the convergence of model checking and program analysis. In CAV: Computer-Aided
Verification, Lecture Notes in Computer Science 4590. Springer, 2007, pp. 509–523.

[6] Clarke, E. M., and Emerson, E. A. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic of Programs, Workshop (London, UK, 1982),
Springer-Verlag, pp. 52–71.

[7] Clarke, E. M., Emerson, E. A., and Sistla, A. P. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8, 2
(1986), 244–263.

[8] Conway, D. Perl Best Practices. O’Reilly Media, Inc., 2005.

[9] David, R. J., and Wagner, D. Finding user/kernel pointer bugs with type inference. In In
Usenix Security Symposium (2004), pp. 119–134.

[10] Davis, N. Secure software development life cycle processes, 2006.

[11] Emerson, E.and Clarke, E. Characterizing correctness properties of parallel programs using
fixpoints. In Automata, Languages and Programming (1980), Springer Berlin / Heidelberg,
pp. 169–181.

[12] Foster, J. S. Type Qualifiers: Lightweight Specifications to Improve Software Quality. PhD
thesis, University of California, Berkeley, 2002.

35

http://www.cs.unipr.it/Publications/

[13] Foster, J. S., Terauchi, T., and Aiken, A. Flow-sensitive type qualifiers. In ACM
SIGPLAN Conference on Programming Language Design and Implementation (2002), ACM
Press, pp. 1–12.

[14] Henzinger, T., Jhala, R., Majumdar, R., and Sutre, G. Software verification with
Blast. In SPIN: Model Checking of Software, Lecture Notes in Computer Science 2648.
Springer, 2003, pp. 235–239.

[15] Khedker, U. P. Data flow analysis. In The Compiler Design Handbook. CRC Press, 2002,
pp. 1–59.

[16] Kupsch, J. A., and Miller, B. P. Manual vs. automated vulnerability assessment: A case
study. In The First International Workshop on Managing Insider Security Threats (2009), West
Lafayette.

[17] Peled, D., Pelliccione, P., and Spoletini, P. Model checking. In Wiley Encyclopedia of
Computer Science and Engineering, B. W. Wah, Ed. John Wiley & Sons, Inc., 2008.

[18] Queille, J., and Sifakis, J. Specification and verification of concurrent systems in CESAR.
In International Symposium on Programming (1982), Springer Berlin / Heidelberg, pp. 337–351.

[19] Shankar, U., Talwar, K., Foster, J. S., and Wagner, D. Detecting format string
vulnerabilities with type qualifiers. In In Proceedings of the 10th USENIX Security Symposium
(2001), pp. 201–220.

[20] Turing, A. On computable numbers, with an application to the Entscheidungsproblem. In
Proceedings of the London Mathematical Society (1936).

[21] Venet, A. A practical approach to formal software verification by static analysis. Ada Lett.
XXVIII, 1 (2008), 92–95.

[22] Viega, J., Bloch, J. T., Kohno, Y., and McGraw, G. Its4: A static vulnerability
scanner for c and c++ code. In ACSAC ’00: Proceedings of the 16th Annual Computer Security
Applications Conference (Washington, DC, USA, 2000), IEEE Computer Society, p. 257.

A
Tools HOWTO

This appendix contains a snapshot of the documentation that was provided to CERN developers.
The documentation was originally provided as a webpage, and converted with html2latex to figure
here for reference purposes only. Despite an effort at cleaning the results up, some formatting issues
might still appear, and all the links have been lost in the conversion.

A.1 Security Analysis Tools - Recommendations for C/C++

Flawfinder

FlawFinder is a simple yet efficient and quick tool that scans your C/C++ source code for calls
to typical vulnerable library functions. It was developed by David Wheeler, a renowned security
expert. It is run from the command line. Its output can easily be customized.

• Typical error types found:

– Calls to library functions creating buffer overflow vulnerabilities (gets, strcpy, sprintf, . . .)

– Calls to library functions potentially vulnerable to string formatting attacks (sprintf,
printf, . . .)

– Potential race conditions in file handling.

Installation

SLC
Run the following as root:

yum install flawfinder

Debian
Available on most Debian based distributions:

sudo apt-get install flawfinder

Others
Check Flawfinder’s webpage, get the sources from there and follow the installation instructions!

Usage

Basic run
To obtain a complete (and possibly lengthy) report on your code, simply run:

flawfinder <path_to_your_source_directory>

I

Note: It doesn’t properly check all files when run on the . directory, just run it on ./ instead.
Alternatively, you can pass a list of files as argument.

Useful options
Setting the –help / -h option will provide a list of the possible options.

$ flawfinder --help

Flawfinder can provide the output in an html format (potentially easier to parse if you need to),
disable header and footer of the report, . . . The following example would only output the hits (of
risk-rating at least 2), in an html format:

$ flawfinder -m 2 --html --quiet --dataonly

Furthermore, if you wish to view only the flaws introduced in a patch, you can save the hit-list
history and run a differential analysis.

$ flawfinder --savehistfile=prepatchhits.ffh <pre_patch_directory_or_files>
$ flawfinder --diffhistfile=prepatchhits.ffh <patched_directory_or_files>

False positive ignoring/reporting
Some times, Flawfinder will report items that are not bugs. In that case, you can avoid having

them reported again as shown below.
Inline comments
Directly on the line which you have identified as a false positive, include:

strcpy(largebuffer, smallconstantbuffer) /* Flawfinder: ignore */

RATS

The Rough Auditing Tool for Security is an open source tool developed by Secure Software Engineers.
Since then it has been acquired by Fortify, which continues to distribute it free of charge (here). It
scans various languages, including C, C++, Perl, PHP and Python.

• Typical errors found (C/C++):

– Buffer overflows

– TOCTOU race conditions

• Typical errors not found (C/C++):

– Design flaws

– . . .

It is very fast and can easily be integrated into a building process without causing noticeable
overhead.

Installation

SLC

yum install rats

Linux

wget http://www.fortify.com/servlet/download/public/rats-2.3.tar.gz
tar xfz rats-2.3.tar.gz
cd rats-2.3
./configure && make && sudo make install

Other systems
The latest version is available here. . .

II

Usage

Basic run

rats --resultsonly <path_to_source_directory>

Advanced config

rats --quiet --xml -w 3 <path_to_source_directory>

• –xml, –html generate output in the specified format

• -w <1,[2] ,3> set the warning level:

– 1 will only include high level warnings (i.e. less false positives, but more false negatives)),

– 2 is the medium and default option,

– 3 will produce more output and miss less vulnerabilities, but might also report many false
positives.

A.2 Security Analysis Tools - Recommendations for Java

FindBugs

FindBugs is written in Java, distributed under LGPL and although not focused on security vulner-
abilities, it does find quite a few of those. It is available both as a standalone application and as an
Eclipse plugin.

• Typical error types found:

– Risks of SQL Injection, Code Injection, . . .

– General Bad practices

– Exceptional return values not checked

– Hard coded database passwords

– Customizable rulesets

Standalone Application

Installation
The following is valid as of Jan 29th 2010, for the current version of FindBugs (1.3.9).

wget http://switch.dl.sourceforge.net/project/findbugs/findbugs/1.3.9/findbugs-1.3.9.tar.gz
tar xfz findbugs-1.3.9.tar.gz

Usage
The standalone version of FindBugs can be started with the following command (from the di-

rectory where you installed it):
Unix

bin/findbugs

Windows

bin\findbugs.bat

Once it is started, you should configure an analysis project:

• Select the File > New Project menu option (Ctrl+N works as well)

• Give the project a name

• Add the location of the classes to be analyzed to the corresponding list. (typically your bin or
class folder, or a jar file.)

III

• (Optional) To improve FindBugs understanding of your code, you can add the required libraries
to the next list (all jars have to be added, including the lib folder containing the jars is not
sufficient)!

• (Optional) For better identification of the errors and to be able to get the line numbers and
code extracts for the reported vulnerabilities, add the root of your source directory to the last
list.

NOTE: To the best of our knowledge, the Wizard for the project creation isn’t fully functional,
the above steps are recommended instead.

You can then save the project configuration and analysis results for later use or evolution analysis.
Configuration
In the stand-alone version you can change the configuration via filters (Preferences –¿ Filters) to

hide those issues which you do not consider relevant to your analysis.
Particular attention should be given to the bugs in the Security or in the Malicious Code Vul-

nerability categories. Also, the BadUseOfReturnValue detector should be activated.

Eclipse Plugin

Installation
NOTE: The version of Eclipse available on SLC5 is Eclipse 3.2, which not supported

by the FindBugs plugin! It requires Eclipse 3.3 (Europa). . .
The url for the Eclipse plugin update site is: http://findbugs.cs.umd.edu/eclipse for the

official releases. From version 3.4 onwards (Ganymede & Galileo), the plugin installation has been
simplified, just go to Help > Install New Software and enter the update site’s address. Once the
features have been loaded, select the one you want. (In our case, simply check the FindBugs box.)
In version 3.3 (Europa), go to Help –¿ Sofware Updates –¿ Find and Install, then select Search for
new features to install. Afterwards, hit the New Remote Site button, enter a name (e.g. FindBugs)
and the update site url.

Usage
Once the plugin is installed, you can right click your project and select FindBugs –¿ Find Bugs.

This will start the analysis of your source and offer you to switch to the FindBugs perspective.
Configuration
In the Eclipse Plugin, the configuration can be done via Window –¿ Preferences –¿ Java –¿

FindBugs.

False positive ignoring/reporting

Reported potential vulnerabilities can be categorized (e.g. I will fix , not a bug , need further study
, etc.) either directly on the stand-alone application or through the Bug User Annotations view
in the Eclipse plugin. Analysis results can be saved to an xml file, which can be shared and then
loaded by collaborators, including the annotations.

CodePro Analytix

CodePro Analytix is a commercial static analyzer, built in Java and available as an Eclipse plugin.
It can import vulnerability dictionaries designed for FindBugs, and comes with a rather complete
set of rules of its own. Its advantages over FindBugs seem to be an increased ease of configuration
and a rather complete set of collaborative features. Since it is a commercial application and CERN
does not have a site wide license, the decision on whether purchase it or not is left to the interested
teams.

• Homepage

• Documentation

• Free trial

IV

http://findbugs.cs.umd.edu/eclipse

A.3 Security Analysis Tools - Recommendations for Perl

Perl::Critic

Perl Critic checks whether your code complies with best practices based on Damian Conway’s Perl
Best Practices. However, it also contains a few policies relevant to security.

Typical errors found:

• Use of backtick operators

• Unsafe open / select calls

• Unchecked exceptional return values. . .

Errors missed:

• Calls to system or exec (those are found by RATS)

• Uncleaned/unverified user input (for detecting this, use Perl’s taint mode --T option)

Installation

SLC5 (sorry, not available on SLC4)

RUN AS ROOT
yum install perl-Perl-Critic

Then download the configuration file and put it into your home directory:

RUN AS REGULAR USER
wget -O $HOME/.perlcriticrc http://cern.ch/security/codetools/files/.perlcriticrc

Other systems
Perl::Critic is available as a CPAN module, so you can use usual installation procedure. For

instance:

RUN AS ROOT
perl -MCPAN -e shell

cpan> install Perl::Critic

Then download the configuration file and put it into your home directory:

RUN AS REGULAR USER
wget -O $HOME/.perlcriticrc \
http://security.web.cern.ch/security/codetools/files/.perlcriticrc

More information on the Perl Critic CPAN page.

Usage

perlcritic <directory_or_file>

• âseverity <1,2,3,4,5> set the severity level (from 5: gentle to 1: brutal)

• âman for a man page

Additional info

It is worth noting that http://www.activestate.com/ distributes perlcritic with a GUI in their
Perl Development Kit (more details here) NOTE: be warned though... if your perlcritic profile has
colors activated, the gui will not recognize any of the colored errors!

For vim users, vim perlcritic compiler script is available. Additionally, perl-support plugin
supports Perl::Critic.

For emacs users, emacsWiki has a script to interface perlcritic.

V

http://www.activestate.com/

RATS

The Rough Auditing Tool for Security is an open source tool developed by Secure Software Engineers.
Since then it has been acquired by Fortify, which continues to distribute it free of charge (here).
It scans various languages, including C, C++, Perl, PHP and Python. In Perl code, it will mostly
raise a flag when finding calls to risky built-in functions.

It is very fast and can easily be integrated into a building process without causing noticeable
overhead.

Installation

SLC

yum install rats

Linux

wget http://www.fortify.com/servlet/download/public/rats-2.3.tar.gz
tar xfz rats-2.3.tar.gz
cd rats-2.3
./configure && make && sudo make install

Other systems
The latest version is available here. . .

Usage

Basic run

rats -l perl --resultsonly <path_to_source_directory>

Advanced config

rats -l perl --quiet --xml -w 3 <path_to_source_directory>

• –xml, –html generate output in the specified format

• -w <1,[2] ,3> set the warning level:

– 1 will only include high level warnings (i.e. less false positives, but more false negatives)),

– 2 is the medium and default option,

– 3 will produce more output and miss less vulnerabilities, but might also report many false
positives.

LC’s lint

This script, written by Lionel Cons, checks for compliance to his Perl Programming Guide.
It is publicly available on AFS (for example from LXPLUS):

/afs/cern.ch/user/c/cons/public/scripts/lint <path to your script>

For usage information and options type lint -h for the perldoc page, lint -m.

A.4 Security Analysis Tools - Recommendations for PHP

Pixy

Installation

We are providing a wrapper for Pixy that allows handling of multiple files and parsed output.
SLC5 (sorry, not available on SLC4)

VI

yum install pixy

Other systems
Note : This requires Java 1.6, perl and Lionel Cons’ perl modules. Also, GraphViz is required

to be able to view / convert the generated dependency graphs.

wget http://pixybox.seclab.tuwien.ac.at/pixy/dist/pixy_3_03.zip
unzip pixy_3_03.zip
cd Pixy
rm -rf run-all.pl run-all.bat scripts testfiles test src
wget http://cern.ch/security/codetools/files/pixy
sed -i "s|/media/thomas/tools/php/Pixy|.|" pixy
chmod u+x pixy

The latest version of Pixy can also be obtained from Pixy download page.

Usage

Warning Unfortunately, Pixy may sometimes throw a Java exception. These errors are not deter-
ministic, so don’t get discouraged and just try again running Pixy with exactly the same arguments
as before.

Basic Usage
Just point Pixy to the directory with your PHP code.

pixy <path_to_directory>

Advanced Usage

pixy -c --xml -o report.xml -t report_directory <path_to_directory>

Run pixy -h for help.

RATS

The Rough Auditing Tool for Security is an open source tool developed by Secure Software Engineers.
Since then it has been acquired by Fortify, which continues to distribute it free of charge (here).
It scans various languages, including C, C++, Perl, PHP and Python. Unfortunately its utility is
rather limited for PHP as it does not find Cross-Site Scripting or SQL Injection vulnerabilities.

* Typical errors found (PHP): * TOCTOU race conditions * Calls to system functions (warning)
* Typical errors not found: * Design flaws

It is very fast and can easily be integrated into a building process without causing noticeable
overhead.

Installation

SLC

yum install rats

Linux

wget http://www.fortify.com/servlet/download/public/rats-2.3.tar.gz
tar xfz rats-2.3.tar.gz
cd rats-2.3
./configure && make && sudo make install

Other systems
The latest version is available here. . .

VII

Usage

Basic run

rats --resultsonly <path_to_source_directory>

Advanced config

rats --quiet --xml -w 3 <path_to_source_directory>

• –xml, –html generate output in the specified format

• -w <1,[2] ,3> set the warning level:

– 1 will only include high level warnings (i.e. less false positives, but more false negatives)),
– 2 is the medium and default option,
– 3 will produce more output and miss less vulnerabilities, but might also report many false

positives.

A.5 Security Analysis Tools - Recommendations for Python

RATS

The Rough Auditing Tool for Security is an open source tool developed by Secure Software Engineers.
Since then it has been acquired by Fortify, which continues to distribute it free of charge (here). It
scans various languages, including C, C++, Perl, PHP and Python. As far as python is concerned,
RATS is fairly basic and will only check for risky built-in/library function calls.

It is very fast and can easily be integrated into a building process without causing noticeable
overhead.

Installation

SLC

yum install rats

Linux

wget http://www.fortify.com/servlet/download/public/rats-2.3.tar.gz
tar xfz rats-2.3.tar.gz
cd rats-2.3
./configure && make && sudo make install

Other systems
The latest version is available here. . .

Usage

Basic run

rats --resultsonly <path_to_source_directory>

Advanced config

rats --quiet --xml -w 3 <path_to_source_directory>

• –xml, –html generate output in the specified format

• -w <1,[2] ,3> set the warning level:

– 1 will only include high level warnings (i.e. less false positives, but more false negatives)),
– 2 is the medium and default option,
– 3 will produce more output and miss less vulnerabilities, but might also report many false

positives.

VIII

pychecker

Pychecker is a lint-like tool for python, which will mostly find bugs that would be found by compilers
for less dynamic languages. However, it has very few checks concerning security.

Installation

SLC

yum install pychecker

Others
Check the pychecker homepage or

wget http://surfnet.dl.sourceforge.net/project/pychecker/\
pychecker/0.8.18/pychecker-0.8.18.tar.gz
tar xfz pychecker-0.8.18.tar.gz
cd pychecker-0.8.18
python setup.py install

Usage

Basic run

pychecker --quiet file1.py file2.py ...

Advanced config

pychecker --quiet -# 100 -e warning file1.py file2.py ...

By default, pychecker will only report the 10 first hits. This can be changed with the -# option.
The -e options allows you to set the minimal level of errors that will be reported, i.e. internal errors
will always be reported and style checks will only be performed if you ask for them. The available
levels are (in decreasing order): internal, error, security, warning, unused, deprecated, style. We
recommend using the warning level. Many options are configurable for pychecker, such as toggling
on or off some of the detectors, managing output, . . . It is probably best to have a look at pychecker
-h and decide for yourself which ones suit you best.

IX

B
Sample Output

The figure below presents an example of a graph output by Pixy. It clearly shows how an untrusted
value controlled by the user, a GET / POST value, is returned by a function (getarg), stored in a
local variable $q and after two concatenations “.” is then used in the body of the page rendered.

Figure B-1: An example Pixy graph

X

C
Additional contributions

C.1 Wrapper for Pixy

1 #!/ usr/bin/perl -T
2

3 use strict;
4 use warnings;
5 use English;
6 use LC:: Secure qw(environment);
7 use LC:: Exception;
8 use LC:: Process qw(execute);
9 use LC:: Option;

10 use LC::Util qw($ProgramName);
11 use LC::Find qw(:FIND);
12 use HTML:: Entities;
13 use File::Find;
14 use File::Temp qw(tempfile);
15 use Cwd qw(abs_path);
16

17 use Carp qw(croak);
18

19 #
20 # Constants
21 #
22

23 use constant JAVA_OPT1 => "-Xms256m";
24 use constant JAVA_OPT2 => "-Xmx1024m";
25 use constant PIXY_HOME => "/usr/lib/pixy";
26 use constant CLASSPATH => PIXY_HOME."/lib:".PIXY_HOME."/build/class";
27

28 use constant DESC => {
29 SQL => "possible SQL injection vulnerability",
30 XSS => "possible Cross -site scripting vulnerability",
31 File => "possible remote file inclusion vulnerability"
32 };
33

34

35 #
36 # Global variables
37 #
38

39 our ($OS , @files , $dir , $tmpdir , $tmpfile , $targetdir , $outfile , $ignore);
40

41 #
42 # Initialize it all
43 #
44

45 sub init () {
46 $| = 1;
47 LC:: Exception ::Context ->new()->will_report_all ();
48 $OS = LC:: Option :: define("$ProgramName [OPTIONS] [--] [File or Directory]",
49 ["help=h", undef , "show this help"],
50 # ["manual=m", undef , "show the manpage"],
51 ["targetdir=t:string", undef , "directory to store the report and graphs"],
52 ["context=c", undef , "print the faulty line"],
53 ["xml", undef , "output in xml format"],
54 ["html", undef , "output in html format"],
55 ["output=o:string", undef , "file for output"],
56 ["ignore=i:string", undef ,

XI

57 "files to ignore (unless included by other PHP scripts): e.g. \"test.inc ,bluecat
*.php\""]

58);
59 LC:: Option :: parse_argv($OS);
60

61 $OS ->handle_help($ProgramName , q$Rev: 14 $, q$Date: 2010 -02 -17 17:23:58 +0100 (Wed , 17 Feb
2010) $);

62 # $OS -> handle_manual ();
63

64 if (scalar(@ARGV) > 1) {
65 print "Wrong arguments , or wrong order of arguments .\n\n", $OS ->usage ();
66 exit (1);
67 } elsif (scalar(@ARGV) == 1) {
68 ($dir) = $ARGV [0] =~ m|^([-\w\./]+)$|;
69 } else {
70 $dir = ".";
71 }
72

73 $targetdir = "";
74 if ($OS ->value("targetdir")) {
75 $targetdir = $OS ->value("targetdir");
76 $targetdir = LC::File:: path_for_open($targetdir);
77 $targetdir = abs_path($targetdir);
78 ($targetdir) = $targetdir =~ m/^([-\w.\/]+)$/;
79 LC::File:: makedir($targetdir , 0700) or
80 croak("Unable to create report directory: $!");
81 } else {
82 $targetdir = LC::File:: random_directory("/tmp/pixy_report_XX", 0700);
83 }
84

85 $outfile = "";
86 if ($OS ->value("output")) {
87 $outfile = $OS ->value("output");
88 $outfile = LC::File:: path_for_open($outfile);
89 $outfile = abs_path($outfile);
90 ($outfile) = $outfile =~ m/^([-\w.\/]+)$/;
91 }
92

93 $ignore = "";
94 if ($OS ->value("ignore")) {
95 my ($ignoreitems) = $OS ->value("ignore") =~ m/^([-\w.\/* ,]*)$/;
96 $ignoreitems =~ s/\./\\\./g;
97 $ignoreitems =~ s/*/.*/g;
98 my @ignorelist = split(",", $ignoreitems);
99 $ignore = "(".join("|", @ignorelist).")";

100 }
101 }
102

103 #
104 # Find matching files (called by $finder ->find ...
105 # See find_php_files below!
106 #
107

108 sub findfiles () {
109 my ($name , $path) = ($LC::Find::Name , $LC::Find::Path);
110 if ($name =~ m/^.*\.(php [3 -5]?| inc)$/i) {
111 if ($ignore eq "" or $path !~ m/$ignore$ /) {
112 push(@files , $path);
113 }
114 }
115 }
116

117

118 #
119 # Recursively find the php files at the given directory
120 #
121

122 sub find_php_files ($) {
123 my ($directory) = @_;
124 my ($finder);
125

126 $directory = abs_path($directory);
127

128 @files = ();
129

130 $finder = LC::Find ->new();
131 $finder ->flags(FIND_FORGIVING);
132 $finder ->file_callback (\& findfiles);
133

134 $finder ->find($directory) or
135 croak("Error running the find command: $!");
136 }
137

138 #

XII

139 # Create the one file to import them all!
140 #
141 sub create_import_file () {
142 my (@lines , $contents);
143 $tmpdir = LC::File:: random_directory("/tmp/pixy_tmp_XX", 0700);
144 (undef , $tmpfile) =
145 File::Temp:: tempfile("pixy_wrap_XXXX", SUFFIX => ".php", DIR => $tmpdir);
146 $tmpfile = abs_path($tmpfile);
147 ($tmpfile) = $tmpfile =~ m|([-\w./]+)|;
148

149 @lines = ();
150 push(@lines , " <?");
151 foreach my $file (@files) {
152 push(@lines , "\tinclude_once (\" $file \");");
153 }
154 push(@lines , "?>");
155

156 $contents = join("\n", @lines);
157

158 LC::File:: file_contents($tmpfile , $contents);
159 }
160

161 #
162 # Run Pixy
163 #
164

165 sub run_pixy ($) {
166 my ($input) = @_;
167 my (@cmd , $stdout);
168 @cmd = ();
169 $stdout = "";
170

171 push(@cmd , "java");
172 push(@cmd , JAVA_OPT1);
173 push(@cmd , JAVA_OPT2);
174 push(@cmd , "-Dpixy.home=".PIXY_HOME);
175 push(@cmd , "-classpath");
176 push(@cmd , CLASSPATH);
177 push(@cmd , "at.ac.tuwien.infosys.www.pixy.Checker");
178 push(@cmd , "-a");
179 unless ($targetdir eq "") {
180 push(@cmd , "-o");
181 push(@cmd , "$targetdir");
182 }
183 push(@cmd , "-y");
184 push(@cmd , "xss:sql:file");
185 push(@cmd , $input);
186

187 execute (\@cmd , "stdout" => \$stdout);
188

189 return \$stdout;
190 }
191

192 #
193 # Make the .dot file a .png!
194 #
195

196 sub convert_graph ($) {
197 my ($graph_ref) = @_;
198 my ($ori_path , $type , $num , @cmd , $stdout , $name , $dest_path);
199

200 if ($graph_ref =~ m/^(sql|xss|file)(\d+)$/) {
201 $type = $1;
202 $num = $2;
203 } else {
204 croak("Unexpected graph reference.");
205 }
206

207 (undef , undef , $name) = File::Spec ->splitpath($tmpfile);
208

209 $ori_path = "$targetdir/$type_$name_$num_min.dot";
210 unless (-e $ori_path) {
211 $ori_path = "$targetdir/$type_$name_$num_dep.dot";
212 }
213

214 unless (-e $ori_path) {
215 croak ("Couldn ’t open the .dot graph file: $ori_path");
216 }
217

218 $dest_path = "$targetdir/$type -$num.png";
219 @cmd = ();
220 push(@cmd , "dot");
221 push(@cmd , "-Tpng");
222 push(@cmd , $ori_path);

XIII

223 push(@cmd , "-o");
224 push(@cmd , $dest_path);
225

226 execute (\@cmd) or croak ("Failed to convert the graph file: $ori_path");
227

228 return $dest_path;
229 }
230

231 #
232 # Extract the relevant information for a SQL injection vulnerability report.
233 #
234

235 sub extract_sql_vuln (@) {
236 my (@lines) = @_;
237 my ($file , $line , $graph , $cond , %vuln);
238 unless (scalar(@lines) == 3) {
239 croak ("Incorrect sql slice!")
240 }
241 foreach my $info (@lines) {
242 if ($info =~ m/^- ([-\w.\/]+) :(\d+)$/) {
243 $file = $1;
244 $line = $2;
245 } elsif ($info =~ m/^- Graphs: (sql\d+)$/) {
246 $graph = $1;
247 } elsif ($info =~ m/^- (.* conditional .*)$/) {
248 $cond = $1;
249 } else {
250 croak ("Unexpected sql output from Pixy.");
251 }
252 }
253

254 if ($file !~ "" and $line != 0 and $graph !~ "" and $cond !~ "") {
255 $vuln{"file"} = $file;
256 $vuln{"line"} = $line;
257 $vuln{"graph"} = convert_graph($graph);
258 $vuln{"cond"} = $cond;
259 $vuln{"type"} = "SQL";
260 return \%vuln;
261 }
262

263 croak ("Pixy vulnerability sql report is lacking information.");
264 }
265

266 #
267 # Extract the relevant information for a XSS vulnerability report.
268 #
269

270 sub extract_xss_vuln (@) {
271 my (@lines) = @_;
272 my ($file , $line , $graph , $cond , %vuln);
273 unless (scalar(@lines) == 3) {
274 croak ("Incorrect xss slice!")
275 }
276 foreach my $info (@lines) {
277 if ($info =~ m/^- ([-\w.\/]+) :(\d+)$/) {
278 $file = $1;
279 $line = $2;
280 } elsif ($info =~ m/^- Graph: (xss\d+)$/) {
281 $graph = $1;
282 } elsif ($info =~ m/^- (.* conditional .*)$/) {
283 $cond = $1;
284 } else {
285 croak ("Unexpected xss output from Pixy.");
286 }
287 }
288

289 if ($file !~ "" and $line != 0 and $graph !~ "" and $cond !~ "") {
290 $vuln{"file"} = $file;
291 $vuln{"line"} = $line;
292 $vuln{"graph"} = convert_graph($graph);
293 $vuln{"cond"} = $cond;
294 $vuln{"type"} = "XSS";
295 return \%vuln;
296 }
297

298 croak ("Pixy xss vulnerability report is lacking information.");
299 }
300

301 #
302 # Extract the information from a file injection vulnerability report.
303 #
304

305 sub extract_file_vuln (@) {
306 my (@lines) = @_;

XIV

307 my ($file , $line , $graph , $cond , %vuln);
308 unless (scalar(@lines) == 3) {
309 croak ("Incorrect file slice!")
310 }
311 foreach my $info (@lines) {
312 if ($info =~ m/^- File:\W+([-\w.\/]+)$/) {
313 $file = $1;
314 } elsif ($info =~ m/^- Line:\W+(\d+)$/) {
315 $line = $1;
316 } elsif ($info =~ m/^- Graph: (file\d+)$/) {
317 $graph = $1;
318 } else {
319 croak ("Unexpected file output from Pixy.");
320 }
321 }
322

323 if ($file !~ "" and $line != 0 and $graph !~ "" and $cond !~ "") {
324 $vuln{"file"} = $file;
325 $vuln{"line"} = $line;
326 $vuln{"graph"} = convert_graph($graph);
327 $vuln{"type"} = "File";
328 return \%vuln;
329 }
330

331 croak ("Pixy file vulnerability report is lacking information.");
332 }
333

334

335 #
336 # Parse the output from Pixy and make it and array of vulnerabilities .
337 #
338 sub parse_output ($) {
339 my ($output_ref) = @_;
340 my ($output , @lines , @vulnerabilities , $errortype , $counter);
341 $output = $$output_ref;
342

343 @lines = split("\n", $output);
344 @vulnerabilities = ();
345 $errortype = "";
346

347 $counter = 0;
348

349 while (defined($lines[$counter])) {
350 my ($msg , $file , $line , $graph , $cond , $inline);
351 $msg = $file = $graph = $cond = "";
352 $line = 0;
353 $inline = $lines[$counter];
354

355 if ($inline =~ m/^(\w+) Analysis BEGIN$/i) {
356 $errortype = $1;
357 $counter ++;
358 next;
359 }
360

361 if ($inline =~ m/^(\w+) Analysis END$/i) {
362 if ($1 !~ m/^\ Q$errortype\E$/i) {
363 croak ("Ill -formated report.");
364 } else {
365 $errortype = "";
366 $counter ++;
367 next;
368 }
369 }
370

371 if ($errortype =~ m/^SQL$/i and $inline =~ m/directly tainted/i) {
372 if ($lines[$counter +3]) {
373 push(@vulnerabilities ,
374 extract_sql_vuln(@lines[$counter +1.. $counter +3]));
375 }
376 $counter = $counter +4;
377 next;
378 }
379

380 if ($errortype =~ m/^XSS$/i and $inline =~ m/^ Vulnerability detected \!$/i) {
381 if ($lines[$counter +3]) {
382 push(@vulnerabilities ,
383 extract_xss_vuln(@lines[$counter +1.. $counter +3]));
384 }
385 $counter = $counter +4;
386 next;
387 }
388

389 if ($errortype =~ m/^File$/i and $inline =~ m/^Line:\W+\d+$/i) {
390 if ($lines[$counter +2]) {

XV

391 push(@vulnerabilities ,
392 extract_file_vuln(@lines[$counter .. $counter +2]));
393 }
394 $counter = $counter +3;
395 next;
396 }
397

398

399 $counter ++;
400 }
401

402 return \@vulnerabilities;
403 }
404

405 #
406 # Get the line accused by Pixy
407 #
408

409 sub get_context ($$) {
410 my ($file , $line) = @_;
411 my @lines;
412 $file = LC::File:: path_for_open($file);
413 @lines = split("\n", LC::File:: file_contents($file));
414 if ($lines[$line -1]) {
415 return $lines[$line -1];
416 } else {
417 return "";
418 }
419 }
420

421 #
422 # Print the contents in a xml structure
423 #
424

425 sub print_xml ($) {
426 my ($ref) = @_;
427 my (@lines);
428 unless(ref($ref) eq "ARRAY") {
429 croak ("Not an array reference!");
430 }
431

432 @lines = ();
433

434 push(@lines , " <?xml version =\"1.0\"? >");
435 push(@lines , "<pixy_output >");
436 push(@lines , "<stats >");
437 push(@lines , "<vuln_count >".scalar(@$ref)."</vuln_count >");
438 # TODO: do we want / need more stats? time , vulnerabilities per category?
439 push(@lines , " </stats >");
440

441 # TODO: output the vulnerabilities ... sorted?
442 foreach my $vuln_ref (@$ref) {
443 my %vuln = %$vuln_ref;
444 if (exists($vuln{"file"}) and exists($vuln{"line"}) and
445 exists($vuln{"graph"}) and exists($vuln{"type"}) and
446 DESC ->{$vuln{"type"}} and
447 (exists($vuln{"cond"}) or $vuln{"type"} =~ m/^ File$/)) {
448 push(@lines , "<vulnerability >");
449 push(@lines , "\t<type >".$vuln{"type"}."</type >");
450 if (exists($vuln{"cond"})) {
451 push(@lines , "\t<condition >".$vuln{"cond"}."</condition >");
452 }
453 push(@lines , "\t<file >");
454 push(@lines , "\t\t<name >".$vuln{"file"}." </name >");
455 push(@lines , "\t\t<line >".$vuln{"line"}." </line >");
456 push(@lines , "\t</file >");
457 push(@lines , "\t<message >");
458 push(@lines , "\t\t".DESC ->{$vuln{"type"}});
459 push(@lines , "\t</message >");
460 push(@lines , "\t<graph >".$vuln{"graph"}." </graph >");
461 if ($OS ->value("context")) {
462 my $html = get_context($vuln{"file"}, $vuln{"line"});
463 encode_entities($html);
464 push(@lines , "\t<context >");
465 push(@lines , "\t\t$html");
466 push(@lines , "\t</context >");
467 }
468 push(@lines , " </vulnerability >");
469 } else {
470 croak ("Unexpected data in list of vulnerabilities.");
471 }
472 }
473

474 push(@lines , " </pixy_output >");

XVI

475 return \@lines;
476 }
477

478 #
479 # Print the contents in a html structure
480 # Parameters :
481 # - the contents to output
482 # - boolean flag: make the links relative , for the creation of an html file
483 # in the target repository (in order to make it easier to zip the output into
484 # an independant archive)
485 #
486

487 # TODO:
488 # - $dir is often . - use something more meaningful
489

490 sub print_html ($$) {
491 my ($ref , $make_links_rel) = @_;
492 my (@lines , $longline);
493 unless(ref($ref) eq "ARRAY") {
494 croak ("Not an array reference!");
495 }
496

497 @lines = ();
498

499 push(@lines , " <\!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01 Transitional //EN\"");
500 push(@lines , " \"http :// www.w3.org/TR/html4/loose.dtd\">");
501

502 push(@lines , "<html lang =\"en\">");
503

504 push(@lines , "<head >");
505 push(@lines , "\t<meta http -equiv =\" Content -Type\" content =\" text/html; "
506 ."charset=utf -8\">");
507 push(@lines , "\t<title >Pixy Report for $dir </title >");
508

509 #TODO: Improve style ...
510

511 push(@lines , "<STYLE type =\" text/css\">");
512 push(@lines , "body { background: #F1F1F1; color: #0C0C0C;}");
513 push(@lines , "#vuln_list {");
514 # push(@lines , "\ twidth: 640 px ;");
515 push(@lines , "}");
516 push(@lines , "#vuln_list ol {");
517 push(@lines , "\tlist -style: decimal inside;");
518 push(@lines , "\tfont -size: 15pt;");
519 push(@lines , "}");
520 push(@lines , "#vuln_list ol li {");
521 push(@lines , "\tpadding: 5px 5px 5px 5px;");
522 push(@lines , "\tmargin -left: -10px;");
523 push(@lines , "\tmargin -bottom: 10px;");
524 # push(@lines , "\ tbackground : #666;");
525 push(@lines , "}");
526 push(@lines , "#vuln_list ol li ul {");
527 push(@lines , "\tlist -style: disc;");
528 push(@lines , "\tfont -size: 12pt;");
529 push(@lines , "}");
530 push(@lines , "#vuln_list ol li ul li {");
531 # push(@lines , "\ tcolor: #669933;") ;
532 push(@lines , "\tpadding: 0 0 0 0;");
533 push(@lines , "\tmargin -left: 10px;");
534 push(@lines , "\tmargin -bottom: 0px;");
535 push(@lines , "}");
536 push(@lines , " </STYLE >");
537

538 push(@lines , " </head >");
539

540 push(@lines , "<body >");
541

542 push(@lines , "<h1>Pixy’s reported vulnerabilities </h1 >");
543 push(@lines , "<h3>Ran on $dir </h3>");
544 push(@lines , "\tGenerated ".LC::Util:: timestamp(time()));
545

546 $longline = "<p>Found ".scalar(@$ref)." vulnerabilities in ";
547 $longline .= "total ...</p>";
548 # TODO: Do we want more complete stats?
549 push(@lines , $longline);
550

551 push(@lines , "<div id=\" vuln_list \">");
552

553 push(@lines , "");
554 foreach my $vuln_ref (@$ref) {
555 unless (ref($vuln_ref) eq "HASH") {
556 croak ("Unexpected value in vulnerabilities array.");
557 }
558 push(@lines , "");

XVII

559 my %vuln = %$vuln_ref;
560 if(exists($vuln{"type"}) and DESC ->{$vuln{"type"}}) {
561 $longline = "";
562 $longline .= DESC ->{$vuln{"type"}};
563 $longline .= "";
564 push(@lines , $longline);
565 }
566 push(@lines , "\t\t");
567 if(exists($vuln{"file"})) {
568 $longline = "\t\t\tFile: ";
569 $longline .= $vuln{"file"};
570 if(exists($vuln{"line"})) {
571 $longline .= ", Line: ";
572 $longline .= $vuln{"line"};
573 }
574 $longline .= "";
575 push(@lines , $longline);
576 }
577 if ($OS ->value("context")) {
578 my $html = get_context($vuln{"file"}, $vuln{"line"});
579 encode_entities($html);
580 push(@lines , "\t\t\tCode snippet:");
581 push(@lines , "<pre ><code class =\" php\">");
582 push(@lines , $html);
583 push(@lines , " </code ></pre >");
584 }
585 if(exists($vuln{"cond"})) {
586 $longline = "\t\t\t";
587 $longline .= $vuln{"cond"};
588 $longline .= "";
589 push(@lines , $longline);
590 }
591 if(exists($vuln{"graph"})) {
592 $longline = "\t\t\tGraph file: ";
593 my $graph = $vuln{"graph"};
594 if ($make_links_rel) {
595 $graph =~ s/$targetdir /./g;
596 }
597 $longline .= "";
598 $longline .= $graph."";#
599 $longline .= "";
600 push(@lines , $longline);
601 }
602 push(@lines , "\t\t");
603 push(@lines , "\t");
604 }
605 push(@lines , " ");
606

607 push(@lines , " </div >");
608

609 push(@lines , " </body >");
610 push(@lines , " </html >");
611

612 return \@lines;
613 }
614

615 #
616 # Print the contents in a plain text structure
617 #
618

619 sub print_text ($) {
620 my ($ref) = @_;
621 my (@lines);
622 unless(ref($ref) eq "ARRAY") {
623 croak ("Not an array reference!");
624 }
625

626 @lines = ();
627

628 foreach my $vuln_ref (@$ref) {
629 my %vuln = %$vuln_ref;
630 if (exists($vuln{"file"}) and exists($vuln{"line"}) and
631 exists($vuln{"graph"}) and exists($vuln{"cond"}) and
632 exists($vuln{"type"}) and DESC ->{$vuln{"type"}}) {
633 my $line = $vuln{"file"}.":".$vuln{"line"};
634 push(@lines , $line);
635 $line = " ".DESC ->{$vuln{"type"}};
636 push(@lines , $line);
637 $line = " graph: ".$vuln{"graph"};
638 push(@lines , $line);
639 if ($OS ->value("context")) {
640 push(@lines , "==>".get_context($vuln{"file"}, $vuln{"line"}));
641 }
642

XVIII

643 } else {
644 croak ("Unexpected data in list of vulnerabilities.");
645 }
646 }
647

648 return \@lines;
649 }
650

651

652 #
653 # Select the output function
654 #
655

656 sub print_output ($) {
657 my ($output_ref) = @_;
658 my ($contents , $lines_ref , @lines);
659 if ($OS ->value("xml")) {
660 $lines_ref = print_xml($output_ref);
661 } elsif ($OS ->value("html")) {
662 $lines_ref = print_html($output_ref , 0);
663 } else {
664 $lines_ref = print_text($output_ref);
665 }
666 unless (ref($lines_ref) eq "ARRAY") {
667 croak ("Not an array reference.");
668 }
669

670 @lines = @$lines_ref;
671

672 $contents = join("\n", @lines);
673

674 if ($outfile eq "") {
675 print "$contents\n";
676 } else {
677 LC::File:: file_contents($outfile , $contents);
678 }
679 }
680

681 #
682 # Create an html report in the target dir.
683 #
684

685 sub html_to_target_dir($) {
686 my ($output_ref) = @_;
687 my ($report_file , $lines_ref , @lines , $contents);
688

689 $report_file = $targetdir."/index.html";
690

691 $lines_ref = print_html($output_ref , 1);
692

693 @lines = @$lines_ref;
694

695 $contents = join("\n", @lines);
696

697 LC::File:: file_contents($report_file , $contents) or
698 croak ("Coulnd ’t write report.html in \" $targetdir \".");
699 return $report_file;
700 }
701

702

703 #
704 # Main
705 #
706

707 init();
708 find_php_files($dir);
709 if (scalar(@files) == 0) {
710 printf("No file matching *.(php [3 -5]?| inc) found in \"%s\".\n\n", $dir);
711 print $OS ->usage();
712 exit (1);
713 }
714 create_import_file ();
715 my $output_ref = run_pixy($tmpfile);
716 my $clean_out_ref = parse_output($output_ref);
717 print_output($clean_out_ref);
718

719 my $report_html = html_to_target_dir($clean_out_ref);
720 if (!$OS ->value("xml") && !$OS ->value("html")) {
721 print "\nFull report in $report_html\n\n";
722 }
723

724 LC::File:: destroy($tmpdir) or croak ("Couldn ’t erase temporary dir.");
725

726 __END__

XIX

727

728 =head1 NAME
729

730 pixy_wrapper - run Pixy on all php files found at the given location
731

732 =head1 SYNOPSIS
733

734 B<pixy_wrapper > [I<OPTIONS >] [DIRECTORY]
735

736 =head1 DESCRIPTION
737

738 Pixy is a static source code analysis tool for PHP. It specifically targets
739 risks of SQL injection and Cross -Site Sciprting vulnerabilities. Its default
740 distribution is limited to analysing single php files and needs to be run
741 individually on each file in your project. However , Pixy does scan all the files
742 required or included by the file it is given.
743 Taking advantage of this construction , pixy_wrapper will create a temporary php
744 file that include all of the php files in the directory given in argument.
745 Then it will run Pixy on that file , thus effectively scanning your whole
746 project.
747 As Pixy does crash on some files though , we also provide an option to ignore
748 given files. Parameters to the ignore option can be a list of comma separated
749 filenames and allow globbing.
750

751 Use pixy_wrapper -h to view the available options and man pixy_wrapper to display
752 this page.
753

754 =head1 AUTHOR
755

756 Thomas Hofer <Thomas.Hofer@cern.ch>
757

758 =head1 MAINTAINER
759

760 Sebastian Lopienski <Sebastian.Lopienski@cern.ch >
761

762 =head1 VERSION
763

764 $Id: pixy_wrapper , v. 1.0 2010/02/12 17:05 thofer Exp $
765

766 =cut

C.2 Script to Retrieve Wiki Pages

The documentation in Appendix A was created with DokuWiki (http://www.dokuwiki.org), be-
cause the Computer Security Team at CERN uses this software to keep versioned information for
general purposes. One additional advantage was the ability to have the documentation reviewed
and commented upon by the other people in the team. However, this could not be used directly to
present the results publicly, as some of the information on the wiki is confidential and thus none of
the wiki pages is world-readable, by decision of the team. Therefore, the simplest way to have an
up-to-date version of the documentation, while retaining the dynamic aspect of the wiki, without
making any of the wiki public, is to create a static copy of the wiki contents and update it as neces-
sary. I have thus created a script that can be configured to retrieve any set of pages from the wiki,
using the user supplied credentials to access the corresponding webpages over HTTPS. It then filters
out the unnecessary headers and footers of the HTML document thus obtained, replacing it with
user defined templates. It also removes all of the editing links and transforms the wiki internal URL
anchors into relative paths, corresponding to the names of the files it creates. The configuration of
the script is handled by internal constants, this way it only needs to be configured once for a given
set of pages and whenever those pages have been updated the user only has to confirm the copying
process by entering his password.

1 #!/ usr/bin/perl -T
2 # Imports
3

4 use strict;
5 use warnings;
6 use English;
7 use LC:: Secure qw(environment);
8 use LC:: Exception;
9 use LC::File;

10 use LC:: Option;
11 use LC:: Process qw(execute);
12 use LC::Util qw($ProgramName);
13 use Term:: ReadKey;
14

15 use CAF:: FileWriter;
16

XX

http://www.dokuwiki.org

17 use Carp qw(croak);
18

19 # Constants
20 # TODO: Modify to fit your needs
21

22 use constant PROJECT_ROOT => "projects:source_code_security_tools";
23 use constant HREF_BASE => "/service -cert/wiki/doku.php?id=".PROJECT_ROOT;
24 use constant REMOTE_ROOT => "https :// service -cert.web.cern.ch".HREF_BASE;
25 use constant TARGET_DIR => "target/";
26 use constant COOKIES_FILE => "cookies";
27 use constant CSS_BASE_FILE => "dokuwiki.css";
28 use constant CSS_FILE_NAME => "wikipage.css";
29

30 # Global variables
31

32 our ($OS , $path , %pages , %refs , $user , $passwd , $title);
33

34 #
35 # Adds all the pages to the hashes ,
36 # TODO: Modify to fit your needs
37 #
38

39 sub populate_pages () {
40 add_page("documentation", "documentation", "index.html");
41 add_page("c_tools", "documentation:c_tools", "c_tools.html");
42 add_page("c", "documentation:c", "c.html");
43 add_page("cpp", "documentation:cpp", "cpp.html");
44 add_page("java_tools", "documentation:java_tools", "java_tools.html");
45 add_page("php_tools", "documentation:php_tools", "php_tools.html");
46 add_page("perl_tools", "documentation:perl_tools", "perl_tools.html");
47 add_page("perl", "documentation:perl", "perl.html");
48 add_page("python_tools", "documentation:python_tools", "python_tools.html");
49 add_page("general", "documentation:general", "general.html");
50 }
51

52 #
53 # Initialize everything
54 #
55

56 sub init () {
57 $| = 1;
58 LC:: Exception ::Context ->new()->will_report_all ();
59 $OS = LC:: Option :: define("$ProgramName [OPTIONS] [--] [path ...]",
60 ["help=h", undef , "show some help"],
61 ["manual=m", undef , "show the man page"],
62 ["inURL=i:path!", undef , "URL to copy from"],
63 ["outPath=o:string", undef , "path to the output file"],
64 ["update=u:boolean", 1, "Deactivate to destroy and recreate"]
65);
66 LC:: Option :: parse_argv($OS);
67 $OS ->handle_help($ProgramName , q$Revision: 0.2 $,
68 q$Date: 2010/01/19 $);
69 $OS ->handle_manual ();
70

71

72 if (!$OS ->value("update")) {
73 LC::File:: destroy(TARGET_DIR) or croak $!;
74 }
75

76 LC::File:: makedir(TARGET_DIR , 0700);
77 LC::File::copy(CSS_BASE_FILE , TARGET_DIR.CSS_FILE_NAME);
78

79 %pages = ();
80 %refs = ();
81 }
82

83 #
84 # Add a page to be processed
85 #
86

87 sub add_page ($$$) {
88 my ($name , $remote , $localurl) = @_;
89 $pages{$name} = {
90 remote => $remote ,
91 localurl => $localurl
92 };
93 $refs{$remote} = $localurl;
94 }
95

96 #
97 # Retrieve the user name to use for cURLing the data
98 #
99

100 sub user () {

XXI

101 if (! defined($user)) {
102 $user = getpwuid($EUID);
103 }
104 return $user;
105 }
106

107 #
108 # Ask the user for his password , to be used when cURLing
109 #
110

111 sub pass () {
112 if (! defined($passwd)) {
113 print "Enter host password for user ’", user(), "’: ";
114 ReadMode ’noecho ’;
115 $passwd = ReadLine 0;
116 chomp $passwd;
117 $passwd =~ m{^([[: print :]]*)$} or croak "Weird password ...";
118 $passwd = $1;
119 ReadMode ’normal ’;
120 print "\n";
121 }
122 return $passwd;
123 }
124

125 #
126 # Retrieve page title and store it
127 #
128

129 sub get_title ($) {
130 my ($page) = @_;
131

132 if ($page =~ m/<h1 >(.+) <\/h1 >/) {
133 $title = $1;
134 } elsif ($page =~ m/<h2 >(.+) <\/h2 >/) {
135 $title = $1;
136 } else {
137 $title = "";
138 }
139

140 $title =~ s/<[^>]*>//g;
141 }
142

143 #
144 # Retrieve a page as an array of lines
145 # and look for a title ...
146 #
147

148 sub curl_page ($) {
149 my ($page) = @_;
150 my ($pageurl , @cmd , $stdout , $stderr , @lines);
151 $stdout = $stderr = "";
152

153 $pageurl = &REMOTE_ROOT.":".$page;
154

155 @cmd = ("curl");
156 push(@cmd , "-u".user().":".pass());
157 # Don ’t want to show the progress info ...
158 push(@cmd , "-s");
159 push(@cmd , $pageurl);
160

161 execute (\@cmd , "stdout" => \$stdout);
162

163 get_title($stdout);
164

165 @lines = split (/\n/, $stdout);
166

167 return @lines;
168

169 }
170

171 #
172 # Process a page , remove wiki header and footer ,
173 # Adapt the internal links ...
174 #
175

176 sub extract_page (@) {
177 my (@filecontents) = @_;
178 my (@pagecontents , $write , $startpattern , $stoppattern , $editbutton);
179 @pagecontents = ();
180 $startpattern = " <\!-- wikipage start -->";
181 $stoppattern = " <\!-- wikipage stop -->";
182 $editbutton = "class =\" secedit \"";
183 $write = 0;
184 foreach my $line (@filecontents) {

XXII

185 $line =~ s/<acronym [^ >]* >(.*?) <\/acronym >/$1/gi;
186 $line =~ s/title=\"\w*(:\w*) *\"//g;
187 if (! $write and $line =~ m/$startpattern/i) {
188 $write = 1;
189 } elsif ($write and $line =~ m/$stoppattern/i) {
190 return @pagecontents;
191 } elsif ($write and $line =~ m/class =\" wikilink [12]\"/) {
192 my $regex = qr/href =\"\Q${\(HREF_BASE)}\E:([^\"]*) \"/;
193 while ($line =~ $regex) {
194 my ($href , $link , $anchor);
195 $href = $1;
196 $link = "";
197 $anchor = "";
198 if ($href =~ m/([^#]*) (#.*) /) {
199 ($link , $anchor) = ($1 , $2);
200 } else {
201 $link = $href
202 }
203 if (exists($refs{$link})) {
204 $link = $refs{$link};
205 } else {
206 $link =~ s/^([^:]*:) *([^:]*)$/$2.html/;
207 }
208 $line =~ s/$regex/href =\" $link$anchor \"/;
209 }
210 push(@pagecontents , $line);
211 } elsif ($write and $line =~ /\w/ and $line !~ m/$editbutton/i) {
212 push(@pagecontents , $line);
213 }
214 }
215 }
216

217 #
218 # Set the html header ..
219 # TODO: Modify according to your needs ...
220 #
221

222 sub preamble () {
223 my (@header) = ();
224

225 push(@header , " <\!DOCTYPE html PUBLIC \" -//W3C//DTD XHTML 1.0 Transitional //EN\"");
226 push(@header , " \"http :// www.w3c.org/TR/xhtml1/DTD/xhtml1 -transitional.dtd\">");
227

228 push(@header , "<html xmlns =\" http ://www.w3c.org /1999/ xhtml\" xml:lang"
229 ."=\"en\" lang =\"en\">");
230

231 push(@header , "<head >");
232 push(@header , "\t<meta http -equiv =\" Content -Type\" content =\" text/html; "
233 ."charset=utf -8\" />");
234 push(@header , "\t<title >$title </title >");
235 push(@header , "\t<link rel=\" stylesheet \" media =\" all\" type =\" text/css\" "
236 ."href =\"".CSS_FILE_NAME."\" />");
237

238 push(@header , " </head >");
239

240 push(@header , "<body >");
241

242 push(@header , "<div class =\" dokuwiki\">");
243 push(@header , "<div class =\" page\">");
244 push(@header , "");
245

246 return @header;
247 }
248

249 #
250 # Set the html footer ...
251 # TODO: Modify according to your needs ...
252 #
253

254 sub postlude () {
255 my (@footer) = ();
256

257 push(@footer , "");
258 push(@footer , " </div >");
259 push(@footer , " </div >");
260

261 push(@footer , " </body >");
262 push(@footer , " </html >");
263

264 return @footer;
265 }
266

267 #
268 # Print the new page to a local file

XXIII

269 #
270

271 sub output($@) {
272 my ($outfile , @lines) = @_;
273 my ($fh);
274

275 # Open/Create file and write to it ...
276 $fh = CAF:: FileWriter ->open(TARGET_DIR.$outfile);
277 print $fh join("\n", preamble ());
278 print $fh join("\n", @lines);
279 print $fh join("\n", postlude ());
280 $fh ->close();
281 }
282

283 # Main
284

285 init();
286 populate_pages ();
287 foreach my $key (keys(%pages)) {
288 my (@lines , @contents);
289 @lines = curl_page($pages{$key}{ remote });
290 @contents= extract_page(@lines);
291 output($pages{$key}{ localurl}, @contents);
292 }
293

294 __END__
295

296 =head1 NAME
297

298 get_wiki - Copy wiki pages from dokuWiki to local html files
299

300 =head1 SYNOPSIS
301

302 B<get_wiki > [I<OPTIONS >]
303

304 =head1 DESCRIPTION
305

306 This program retrieves pages from a dokuwiki installation and creates local html
307 files. It uses curl over HTTPS to get the pages’ content , which is why it
308 requests your password.
309

310 The internal dokuwiki links are converted to relative links , using the I<%refs >
311 hash , which is populated by the I<populate_pages > sub. Adapt its contents as
312 necessary. Whenever a link points to an item not defined in the hash , it will be
313 replaced by a link to an html file whose name is the last element of the
314 dokuwiki id (I<i.e.>, the element after the last semi -column.
315

316 This program also gets rid of heading and trailing dokuwiki -specific html and
317 replaces it with a custom header and footer , defined in I<preamble > and
318 I<postlude > respectively.
319

320 The I<constants > declared at the beginning of the program allow further
321 customization.
322

323 Use "get_wiki -h" to see the list of options and "get_wiki -m" to see this
324 documentation.
325

326 =head1 AUTHOR
327

328 Thomas Hofer C<mailto:thomas.hofer@cern.ch>, (C) CERN C<http ://www.cern.ch >
329

330 =head1 VERSION
331

332 $Id: get_wiki ,v 0.2 2010/01/19 16:51 thofer Exp $
333

334 =cut

XXIV

	1 Introduction
	1.1 Current State of Research
	1.2 Current Status at CERN
	1.3 Goals and Deliverables
	1.4 Organization of this Thesis

	2 Understanding the Tools
	2.1 Model Checking
	2.2 Control and Dataflow Analysis
	2.3 Text-based Pattern Matching

	3 Defining the Metrics
	3.1 Basic Considerations
	3.2 Metrics Used
	3.2.1 Installation
	3.2.2 Configuration
	3.2.3 Support
	3.2.4 Reports
	3.2.5 Errors Found
	3.2.6 Handles Projects?

	4 Presenting the Results
	4.1 C(++) Source Code Analysis Tools
	4.1.1 Astree
	4.1.2 BOON
	4.1.3 C Code Analyzer
	4.1.4 Code Advisor (HP)
	4.1.5 Cppcheck
	4.1.6 CQual
	4.1.7 Csur
	4.1.8 Flawfinder
	4.1.9 ITS4
	4.1.10 Smatch
	4.1.11 Splint
	4.1.12 RATS

	4.2 Java Source Code Analysis Tools
	4.2.1 CodePro Analytix
	4.2.2 FindBugs
	4.2.3 Hammurapi
	4.2.4 JCSC
	4.2.5 IBM Rational AppScan
	4.2.6 PMD
	4.2.7 QJPro

	4.3 Perl Source Code Analysis Tools
	4.3.1 B::Lint
	4.3.2 Perl::Critic
	4.3.3 RATS
	4.3.4 Taint Mode

	4.4 PHP Source Code Analysis Tools
	4.4.1 Sandcat.4PHP
	4.4.2 Pixy
	4.4.3 RATS

	4.5 Python Source Code Analysis Tools
	4.5.1 PEP8
	4.5.2 PyChecker
	4.5.3 Pylint
	4.5.4 RATS

	5 Delivering the Results
	5.1 CERN Computer Security Team Web site
	5.1.1 Packaging the Tools

	5.2 Post-C5 Presentation / IT Seminar
	5.3 Article in the CNL

	6 Conclusion
	6.1 Results
	6.2 Achievements
	6.3 Main Challenges
	6.4 Outlook and Future Developments
	6.4.1 At CERN
	6.4.2 Further Improvements to Software Security

	A Tools HOWTO
	A.1 Security Analysis Tools - Recommendations for C/C++
	A.2 Security Analysis Tools - Recommendations for Java
	A.3 Security Analysis Tools - Recommendations for Perl
	A.4 Security Analysis Tools - Recommendations for PHP
	A.5 Security Analysis Tools - Recommendations for Python

	B Sample Output
	C Additional contributions
	C.1 Wrapper for Pixy
	C.2 Script to Retrieve Wiki Pages

