Abstract

This article reports the design, synthesis and results of first in vitro model studies of a conceptually novel class of polymer therapeutics in which the cargo is attached to a polymer backbone via a noncovalent, biologically inspired coiled coil linker, which is formed by heterodimerization of two complementary peptide sequences that are linked to the polymer carrier and the cargo, respectively. In contrast with the polymer drug conjugates prepared so far, in which the drug is typically attached via an enzymatically or hydrolytically cleavable linker, the noncovalent polymer therapeutics proposed in this article offer several potential advantages, including facile access to combination therapeutics and rapid production of compound libraries to screen for structure activity relationships. Furthermore, the coiled coil based peptide linkers may not only be useful to bind and release guests but may also play an active role in enhancing and directing intracellular transport and trafficking, which may make these constructs of particular interest for the cytosolic delivery of biomolecular therapeutics.

Details

Actions