
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. B. Rimoldi, président du jury
Prof. D. Floreano, Dr J.-C. Zufferey, directeurs de thèse

Prof. A. Ijspeert, rapporteur
Prof. G. Sukhatme, rapporteur
Prof. A. Winfi eld, rapporteur

Evolutionary Synthesis of Communication-Based Aerial
Swarms

THÈSE NO 4900 (2010)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 6 DÉCEMBRE 2010

 À LA FACULTÉ SCIENCES ET TECHNIQUES DE L'INGÉNIEUR

LABORATOIRE DE SYSTÈMES INTELLIGENTS

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2010

PAR

Sabine HAUERT

Acknowledgements

Least known to scientific research are the human discoveries we make along the
way.

This work would not have been possible without the support of Dr. Alain
Jaquier and armasuisse, competence sector Science + Technology for the Swiss
Federal Department of Defense, Civil Protection and Sports.

I am most grateful to Dario Floreano and Jean-Christophe Zufferey for the
opportunity to work on this amazing project that pushed me into unexplored
territories and helped me think out of the box. I have no doubt that their vi-
sionary and ambitious perspective on science will forever influence the way I
approach research. In particular, I thank Dario for his trust and support that
allowed me to follow my own ideas. He has also taught me how to best com-
municate my work. Finally I thank him for the amazing learning experiences
that have had me podcasting, organizing conferences and workshops and writ-
ing research proposals. To Jean-Christophe I am in debt for the huge amount of
time he spent discussing and reading my work. His input was always extremely
valuable and veracious. Furthermore, I thank him for his contagious motivation
to work with flying robots.

Central to this entire project is the work by Severin Leven who made the
flying robots. Over the last four years it has been an immense pleasure working
with him. His patience, engineering skills, and systematic approach at doing
research have lead to the most robust aerial testbed developed to this day and
no aerial experiments would have been possible without this rigor. I also thank
him for his precious support and willingness to discuss ideas.

I am thankful to the referees, Auke Ijspeert, Gaurav Sukhatme and Alan
Winfield and to the president of the jury, Bixio Rimoldi, for taking the time to

i

ii ACKNOWLEDGEMENTS

read this thesis and for their valuable feedback that contributed to improving
this work.

The Laboratory of Intelligent Systems is one of the best places to work and
I love seeing all sorts of robots rolling, jumping and flying around. Central to
this environment are the amazing people working there. In particular, I would
like to thank all my colleagues for the relaxing lunch breaks, coffees and evening
outings. A special thanks to Peter Dürr and Maja Varga who read this thesis.

In addition to friends from the laboratory, I have been able to count on my
friends from Neuchâtel and from chemistry for unforgettable memories.

Finally, this work would not have been possible without the support of my
loving family. Thank you to my parents Sandra and Daniel who always encour-
aged me in my work and provided a nurturing environment. A special thanks
to my brother Christopher for contributing his immense talent to the art that is
presented in this thesis and to my sister Sylvie for being my best friend in all
situations.

Last but not least, I thank Sébastien for standing by me for the past 10 years.
He’s my pillar and balance. Without his love and support, I would no doubt
break.

Abstract

Aerial swarms have the potential to search for forest fires, chemical plumes
or victims and serve as communication and sensor networks in the sky. Fly-
ing robots are interesting for such applications because they are fast, can easily
overcome difficult terrain and provide line-of-sight communication or aerial per-
spectives. However, swarms of flying robots have so far only been demonstrated
in simulation or in few examples in reality. Current simulators typically rely on
unrealistic assumptions concerning robot sensing capabilities and motion. To
bridge this reality gap we propose to address two key challenges.

The first challenge consists in discovering swarm controllers that do not use
position information. Swarm controllers in the literature rely on global or rel-
ative position information which can be obtained using GPS, cameras or range
and bearing sensors. However, position requirements typically entail robots that
are complex, heavy and expensive or that rely on specific environmental con-
ditions to function. Lifting the need for position could instead lead to swarm
controllers that can be deployed in a variety of environments and using very
simple robots.

The second challenge addressed consists in developing swarm controllers
that can accommodate motion constraints of flying robots. In particular, we
consider fixed-wing robots that can not stop or turn on the spot like ground
robots or rotor crafts. Instead they must fly at relatively high speeds to avoid
stalling. Therefore, making the robots advance slowly in average can only be
done by having them turn.

To address these challenges, we consider robot controllers that continuously
react to wireless communication with neighboring robots or people by changing
their turn rate (communication-based behaviors). Using communication as a

iii

iv ABSTRACT

sensor for flying robots is interesting because most robots are equipped with
off-the-shelf radio modules that are low-cost, light-weight and relatively long-
range.

The design of robot controllers that can lead to desired swarm behaviors
is done following a systematic approach. First, artificial evolution is used to
automatically discover simple and unthought-of controllers for swarms of flying
robots. Evolved controllers are then reverse engineered to obtain basic behaviors
that can be modeled and used in a variety of swarm applications.

In order to discover a range of basic behaviors, we consider a challenging
swarm application that requires robots to direct themselves in their environment,
move in groups, cover an area, and maintain a communication relay. Discovered
behaviors are then extended to scenarios with wind.

Overall, this thesis presents the evolutionary synthesis of communication-
based behaviors for swarms of fixed-wing flying robots.

Keywords: flying robot, MAV, UAV, swarm, communication-relay, ad-hoc net-
work, wireless communication, artificial evolution, reverse engineering

Résumé

Des essaims aériens sont capables de détecter des incendies de forêt, des nu-
ages toxiques, ou encore des personnes isolées, et peuvent servir de réseaux
aériens de communications ou de recherche. Dans cette perspective, les robots
aériens sont intéressants grâce à leur faculté à fonctionner même en cas de ter-
rain accidenté, ainsi que par leur capacité à fournir des images d’ensemble par
des prises de vues aériennes. Cependant, il n’existe que très peu de démon-
strations d’essaims de robots volants fonctionnant en réalité. Jusqu’à présent, la
majorité de la recherche dans ce domaine s’est cantonnée à la simulation. De
plus, les simulateurs développés supposent généralement des robots possédant
des capacités de mouvement et de perception irréalisables en pratique. Dans
ce travail, nous poursuivons deux objectifs principaux visant à développer des
essaims de robots volants.

Le premier objectif est le développement de contrôleurs d’essaim qui ne
nécessitent pas d’information quant à la position des robots. Les contrôleurs
d’essaim connus dans la littérature requièrent une connaissance de la position
globale ou relative, qui est en général obtenue par des moyens tels que le GPS,
des caméras, ou encore des capteurs de distance et d’angle. La nécessité de
devoir déterminer leur position augmente la complexité, le poids et le prix des
robots, et peut imposer une limitation concernant les conditions dans lesquelles
ils fonctionnent. En s’affranchissant de la nécessité de déterminer la position,
des contrôleurs d’essaim et des robots simplifiés et adaptables à de nombreuses
situations peuvent être imaginés.

Le second objectif consiste à développer des contrôleurs d’essaim adaptés
aux contraintes propres à des robots volants. Dans notre cas particulier, nous
considérons des robots de type aile volante qui ne peuvent pas s’immobiliser ni

v

vi RÉSUMÉ

tourner sur eux-mêmes comme le feraient des robots au sol ou des hélicoptères.
Au contraire, les ailes utilisées doivent voler à une vitesse suffisante pour éviter
de décrocher. La direction et la vitesse relative au sol des robots ne peuvent donc
être modifiées qu’en faisant tourner les robots.

Les études visant à atteindre ces objectifs sont basées sur des contrôleurs de
robots qui réagissent continuellement à la communication sans fil avec des robots
avoisinants ou avec des utilisateurs au sol (comportement basé sur la commu-
nication). L’utilisation de la communication comme capteur principal pour des
robots volants est intéressante car elle ne nécessite qu’une instrumentation sim-
ple, légère et non coûteuse (modules de radio) qui équipe la majorité des robots
produits aujourd’hui.

Une approche systématique est employée afin de définir des contrôleurs qui
résultent en comportements d’essaims. Premièrement, l’évolution artificielle est
utilisée afin de découvrir des contrôleurs d’essaims de robots volants. Les con-
trôleurs ainsi obtenus sont ensuite étudiés par ingénierie inverse afin d’isoler des
comportements de base. Ceux-ci peuvent ensuite être modélisés et recombinés,
ce qui résulte en une série de comportements pour l’essaim.

Afin de déterminer une série de comportements de base, une ambitieuse
application est présentée, qui implique des robots devant se diriger dans leur
environnement, se déplacer en groupe, explorer une superficie donnée, ainsi
qu’établir et optimiser un réseau de communication. A l’étape suivante, ces
comportements sont adaptés de façon à ce que l’essaim puisse voler en tenant
compte du vent.

En résumé, ce travail présente le développement à partir de l’évolution artifi-
cielle de comportements pour des essaims de robots volants. Ces comportements
sont basés sur la communication, et spécifiquement adaptés à des ailes volantes.

Mots clés: robot volant, communication, réseau ad-hoc, évolution artificielle,
ingénierie inverse

Contents

Acknowledgements i

Abstract iii

Résumé v

Contents vii

1 Introduction 1
1.1 State of the Art . 3
1.2 Challenges . 4

1.2.1 Positionless Swarming . 5
1.2.2 Motion Constraints . 5

1.3 Method . 7
1.4 Contributions . 10
1.5 Structure . 12

2 Evolved Solution 13
2.1 Background . 15
2.2 Method . 15

2.2.1 Experimental Setup . 15
2.2.2 Neural Controller . 16
2.2.3 Genetic Algorithm . 17

2.3 Results . 18
2.3.1 Performance . 18
2.3.2 Behavior . 20

vii

viii CONTENTS

2.4 Limitations . 21
2.5 Conclusion . 24

3 Individual Motion 25
3.1 Background . 27
3.2 Evolved Behavior . 28
3.3 Reverse Engineered Controller . 30
3.4 Model . 33
3.5 Validation . 36
3.6 Extensions . 38
3.7 Conclusion . 40

4 Group Motion 41
4.1 Background . 43
4.2 Evolved Behavior . 43
4.3 Reverse Engineered Controller . 44
4.4 Model . 48
4.5 Validation . 51
4.6 Extensions . 53
4.7 Conclusion . 54

5 Area Coverage 57
5.1 Background . 59
5.2 Evolved Behavior . 60
5.3 Reverse Engineered Controller . 62
5.4 Model . 63
5.5 Validation . 64
5.6 Extensions . 67
5.7 Conclusion . 68

6 Communication Relay 71
6.1 Background . 73
6.2 Evolved Behavior . 73
6.3 Reverse Engineered Controller . 74
6.4 Model . 75
6.5 Validation . 75
6.6 Extensions . 76

CONTENTS ix

6.7 Conclusion . 79

7 Coping with Wind 81
7.1 Background . 83
7.2 Method . 83
7.3 Results . 88
7.4 Conclusion . 91

8 Conclusion 93
8.1 Achievements . 93
8.2 Future Work . 95

A Ant-based Swarming 97
A.1 Introduction . 98
A.2 Experimental Setup . 98

A.2.1 Scenario . 98
A.3 Control Strategy . 99

A.3.1 Army Ant Raid Patterns in Nature 99
A.3.2 Adaptation to Robots . 100
A.3.3 Motion Primitives . 106

A.4 Results . 107
A.4.1 Swarm Behavior . 108
A.4.2 Performance . 110
A.4.3 Robustness . 111

A.5 Discussion . 113
A.6 Conclusion . 115

B Materials 117
B.1 Simulation . 118

B.1.1 2D Simulator . 118
B.1.2 3D Simulator . 121

B.2 Flying Testbed . 124
B.2.1 Platform . 124
B.2.2 Base Station . 126
B.2.3 Experimental Setup . 127

Bibliography 133

x CONTENTS

Curriculum Vitae 147

Publications 149

1 Introduction

"The art of simplicity is a puzzle of complexity." Douglas Horton

Thanks to Christopher Hauert for capturing the essence of the different puz-

zle pieces that make this thesis.

1

2 INTRODUCTION

Abstract

Collective aerial systems can be rapidly deployed in real-life applications to over-
come difficult terrain and provide an aerial perspective of the world or line-of-
sight communication. Most flying robots described in the literature are equipped
with Global Positioning Systems (GPS) or position sensors that tend to make
them expensive, heavy and unusable in certain environments. Furthermore,
their motion constraints are seldom taken into account.

To address these challenges, we propose to design robot behaviors that use
off-the-shelf radio modules for sensory input instead of position sensors (comm-
unication-based behaviors). Robots react to receiving messages from other robots
or people by modulating their turn rate while maintaining a constant speed and
altitude. This leads to motions that are suitable for fixed-wing robots that can
not stop or turn on the spot like ground robots or helicopters.

However, designing swarm controllers is challenging because of the dis-
tributed nature of the system. To this end, artificial evolution is used to automat-
ically find simple, efficient and unthought-of swarm controllers. By analyzing
the best evolved solutions, basic behaviors are extracted to achieve individual
robot motion, group motion, area coverage and communication relay. Each be-
havior is modeled and validated in theory, simulation or reality. Basic behaviors
can then serve as building blocks for the design of a large variety of future aerial
swarm systems.

1.1. STATE OF THE ART 3

1.1 State of the Art

Flying robots are increasingly being considered for real-world applications, in-
cluding search-and-rescue, surveillance, monitoring or reconnaissance [115]. Aer-
ial systems have the advantage of rapidly overcoming difficult terrain typical of
disaster areas or cities, and providing an aerial perspective of the world. Current
flying robots are often controlled by an operator on the ground that either tele-
operates them or determines a sequence of GPS waypoints they have to follow.
However, a single robot has a limited reach and missions would benefit from us-
ing several robots to multiply the performance of the system, share computation,
communication and sensing resources or to provide multiple view points [25].

In particular, groups of flying robots have been envisioned for a wide range of
applications mainly involving exploration and coverage. Examples include de-
tecting and sensing chemical plumes [55,57,77,113], wild fires [36,66], victims [71] and
other targets of interest [4,18,56,88,90,95,111]. More recently, flying robots have been
considered to serve as sensor or communication networks in the sky [6,23,46,47,56,94].

Literature on collective aerial systems mostly covers work done in simula-
tion. Initial work in the field concentrated on centralized solutions where robots
relay mission information to a central planner or human operator that then takes
care of computing optimal deployments for each robot [2,7,9,36,66,84]. With this ap-
proach however, each robot added to the system increases the amount of infor-
mation that needs to be communicated to and treated by the centralized planner,
therefore limiting the amount of robots that can be deployed. In the case of a
human planner, this limit has been shown to be around 5 [22]. Furthermore, the
system is entirely dependent on the correct functioning of the ground operator,
which in the case of a failure would compromise the mission.

To increase the amount of robots in the air and therefore their added value
to a mission, roboticists are concentrating on giving decision power to the in-
dividual robots rather than to a central station on the ground. Inspiration can
be taken from swarming in nature where animals with limited capabilities are
able to cooperate towards a common goal. In these systems, the intelligence of
the group emerges from local interactions among the agents and through the
environment (stigmergy) without any centralized planning or global communi-
cation [11]. These systems have the advantage of being scalable (as many individ-
uals as needed can be added) and robust (the failure of an individual has little

4 INTRODUCTION

effect). As an example, bacteria and ants read and emit chemical signals in their
environment that can then be used to coordinate motility, synchronize actions [98]

and explore an environment [34]. Likewise, birds are able to flock by reacting to
neighboring birds through attraction and repulsion mechanisms [83]. In physics,
particles are able to create self-ordered motion [106]. Recently, principles under-
lying swarming in nature have been extracted and applied to robots [8,89,110].
Making simple robots that are able to achieve complex tasks using only local
interactions is appealing for aerial systems because of limited sensor and com-
putation payload and for practical, safety and economical reasons [115].

Aerial systems imitating bird flocking have been imagined by Reynolds [83],
with extensions implemented in simulation by many researchers [6,21,23,24,53,78].
One noticeable work shows the flocking of indoor blimps in reality [108]. In ar-
tificial physics, local interactions are implemented as forces that allow robots
to be attracted or repulsed, thereby creating regular grids [16,94,114]. Other aerial
swarms take inspiration from ants that self-organize by depositing and sensing
chemical signals (pheromones) in their environment. In these systems, virtual
pheromone is deposited on a map based on the coordinates of the robots [56,90,104].
Broadly speaking, aerial robots can deposit any type of information on a map
and exchange these maps with nearby robots. Using these maps, robots are then
able to follow information gradients to areas of interest while avoiding dan-
ger [57,80,102]. For a complete overview of collective aerial systems, readers may
refer to a recent review [115].

However, assumptions made about flying robots in simulation often undercut
their transfer to reality. This can be seen by the few demonstrations performed
with physical platforms [3,7,36,49,50,108]. In particular, all algorithms developed for
aerial swarming assume robots are able to precisely know their global or relative
position and that of their neighbors. Furthermore, proposed controllers often do
not consider the actual motion constraints of flying robots and rely on simplistic
omnidirectional models [53,94].

1.2 Challenges

In this thesis, we identify two key challenges that, if overcome, would signifi-
cantly facilitate the deployment of large scale aerial swarms in reality.

1.2. CHALLENGES 5

1.2.1 Positionless Swarming

The approach to design aerial swarms has so far been to assume that robots
precisely know their position and that of their neighbors [115]. This means that
they either know their global position (x,y,z) or their relative position (range and
bearing) to objects and robots in their environment. However, inferring posi-
tion in a robust and dependable manner is one of the main challenges in aerial
robotics. Current technologies depend on GPS, vision, radars, infrared or ultra-
sound sensors. Each approach however is subject to shortcomings [46,47]. GPS is
not available in areas which do not have access to at least four satellites, such
as indoors or in cluttered environments [92]. Vision is not usable at night. Range
and bearing sensors based on radars, infrared and ultrasound are often only
usable at short ranges (<10 m) or are too heavy for most flying robots. Finally,
computationally intensive algorithms are often needed to convert the data into
position information (Simultaneous Localization and Mapping, SLAM). The as-
sumption that position is needed, the challenges that entails, and the resulting
controllers have led to rather complex flying robots which are, for the most part,
only demonstrated in tightly controlled environments [103] or with the help of
backup pilots on the ground [3].

Instead, alleviating the need for position can allow for simple, low-cost and
light-weight robots that could be used in a variety of environmental conditions.
Such systems could be used in places typically deprived from GPS such as space,
or on challenging platforms such as insect-sized flyers [31] that will not have the
means to localize themselves. Furthermore, removing position leads to inter-
esting research questions and original swarm controllers. One such question
looks at how to cope with wind that typically causes robots to drift away in
positionless systems.

The first challenge tackled in this thesis is therefore to design aerial swarm
controllers that do not rely on position or complex sensors to function.

1.2.2 Motion Constraints

Fixed-wing robots are interesting platforms for outdoor aerial experiments be-
cause they are safer, lighter, cheaper and more energy efficient than rotorcrafts.
They also have better controllability and wind resistance than lighter-than-air
crafts. However, they have highly constrained motion dynamics [28]. Unlike

6 INTRODUCTION

ground robots or rotorcrafts, fixed-wing robots need to maintain their flight ve-
locity above a certain limit in order not to stall. Slowing down the global speed
of the robots can therefore only be done by having the robots turn. The rate with
which these robots turn is also upper-bounded (robots can not turn on the spot)
depending on the dynamics of the platform. These properties lead to more com-
plex robot trajectories than would typically be observed with holonomic vehicles
as shown in Fig. 1.1.

low speed forward motion turn on the spot

global motion

vector

Figure 1.1: Differences in motion constraints between fixed-wing robots and
wheeled robots.

Literature on controlling swarms of flying robots has often been limited to
assuming robots can move in discrete steps along a grid-like structure [105] or
stop and turn on the spot [23,53,94]. Instead, work considering realistic motion
constraints of fixed-wing robots typically separates swarm control from robot
motion [27,35,57]. In these systems, low-level controllers are responsible for hav-
ing robots follow a virtual point mass by loitering around it. Swarm controllers
then take care of moving this point mass. The individual motion of robots how-
ever can be disruptive to swarm behaviors, for example by causing communica-
tion links between robots to become intermittent. Separating robot motion and
swarm control can therefor be unrealistic.

1.3. METHOD 7

The second challenge in this thesis is therefore to develop controllers that can
cope with the typical motion constraints of fixed-wing robots.

1.3 Method

The aim of the methodology proposed here is to develop swarm controllers for
the deployment of positionless fixed-wing aerial robots.

In order to address the first challenge we focus on communication as the main
sensory input to control flying robots. Fortunately, most flying robots today are
equipped with off-the-shelf radio modules that are cheap, light-weight, relatively
long-range and benefit from years of development in industry. For such robots,
communication can serve a dual purpose. First the content of a message can be
used to relay or exchange sensor data, status information and commands with
humans or other robots. Second, simply receiving a message, independently of
its content, can give information concerning a robot’s ability to communicate
with nearby nodes (situated communication [97]). In addition, the robot can rely
on typical proprioceptive sensors used for flight such as a compass, pressure
sensors and accelerometers.

To fulfill constraints of fixed-wing motion, we focus on controllers that vary
the turn rate of the robot within the possibilities of the platform. All robots are
commanded to fly at a constant flight speed (to avoid stalling) and at the same
altitude. A low level autopilot is responsible for respecting speed, turn rate and
altitude commands [59] as well as avoiding collisions among robots, typically by
briefly changing their altitude as demonstrated in reality with five fixed-wing
robots [60]. Such a controller architecture can be seen in Fig. 1.2.

communication

turn rate

constant

altitude

constant

speed

servo and motor

commands

proprioceptive

sensors

swarm control

autopilot

tu

se

consors

Figure 1.2: Controller architecture suitable for positionless fixed-wing aerial
robots.

8 INTRODUCTION

Controllers that react to communication input by modifying robot motion (in
this case turn rate) are referred to as "communication-based behaviors" through-
out this thesis. Determining what communication-based behaviors can lead to
aerial swarming is challenging because there is usually no obvious relation-
ship between the individual robot behaviors and the emergent behavior of the
group [110]. This issue is exacerbated in systems with limited information (e.g.
no position) and motion constraints of fixed-wing platforms because no existing
algorithms from the literature can be applied.

To overcome these challenges, we propose a systematic approach to develop
communication-based behaviors for swarms of fixed-wing robots. The first
step consists in using artificial evolution [32] to automatically design swarm con-
trollers. Artificial evolution has shown its potential in the past in finding simple,
efficient and original solutions to complex problems [17,74]. This approach has
successfully been used in the literature to evolve controllers for swarms of flying
robots [38,85,88].

However, evolved controllers are often constrained to scenarios for which
they were evolved [32]. Instead, robot controllers for real-world applications must
often operate across different scenarios (different environments, different num-
ber of robots, different tasks, etc.). Furthermore, evolved controllers such as
neural networks, electronic circuits and programs are typically difficult to adapt
to different scenarios. This makes it difficult to evolve robots that are rapidly
and robustly usable out-of-the-box in various unexpected situations. One solu-
tion is to evolve a different controller before each operation which usually is too
time consuming. Moreover, one could imagine evolving a controller that takes
as an input mission parameters. Unfortunately, it is currently challenging to find
optimal controllers for multi-objective systems [101]. Finally, controllers could be
evolved online, provided that robots can be given some time to fail and learn [32].
This is not necessarily obvious for applications involving flying robots where
failure might result in destructive crashes.

Rather than optimizing the evolutionary process to obtain application-ready
controllers for flying robots, we propose to reverse engineer basic behaviors
found by evolution. Reverse engineering consists in systematically analyzing
how an evolved controller works and then capturing its main functionalities in
a hand-designed controller. Resulting controllers have the advantage of being
easier to understand than evolved controllers and can be mathematically pa-

1.3. METHOD 9

rameterized for a variety of scenarios. Reverse engineered controllers are then
implemented in simulation or reality to validate their capacity to reproduce the
desired basic behaviors found by evolution. To show the use of basic behaviors
as building blocks for a wide variety of aerial applications, we extend their use
to scenarios which go beyond the scope of the evolutionary scenario. Possible
mechanisms to combine basic behaviors for swarming have been studied in the
past by Mataric [64]. The methodology from evolution to human-usable building
blocks for the design of aerial swarming is summarized in Fig. 1.3.

This methodology is applied to a test scenario aimed at deploying emergency
communication networks for rescuers using flying robots (as shown in Fig. 1.4).
Communication is essential in the case of a disaster to coordinate relief efforts
and provide connectivity to victims in areas where the communication infras-
tructures have been damaged [29,52,63,76]. Flying robots have the advantage of
rapidly overcoming difficult terrain and providing unobstructed wireless com-
munication by autonomously placing themselves in the environment.

This scenario was chosen because it requires robots to perform a collection
of basic behaviors that can be useful across a wide variety of aerial swarm appli-
cations. Individually, each robot must be able modulate its global direction and
speed based on communication input. Swarms of robots should move coherently
in groups to avoid getting lost, search an area, and maintain a communication
network between themselves and people on the ground.

evolveve

reverse engineer

engineer

m
odel
del

validate
date

extend

Figure 1.3: Methodology to design basic behaviors for the deployment of
swarms of flying robots.

10 INTRODUCTION

Figure 1.4: Artistic view of the use of a group of flying robots for establishing
communication networks between rescuers and victims in a flood scenario.

1.4 Contributions

The main contributions of this thesis are threefold and of equal importance:

Communication-based Behaviors The first contribution is the use of commu-
nication as main input to control swarms of flying robots instead of global or
relative position. Considered robots have challenging motion dynamics since
they can not stop or turn on the spot. Results include basic behaviors to con-
trol the motion of individual robots or perform group motion, area coverage
and communication relay. These behaviors can serve as basic building blocks to
achieve a wide variety of aerial swarm behaviors. A possible extension is then
identified to allow robots to cope with windy environments.

Methodology The second contribution is the systematic approach to develop
swarm controllers for flying robots. Artificial evolution is used to automatically
discover simple, efficient and original controllers for fixed-wing robots. Con-
trollers are then reverse engineered, analyzed, modeled, validated and extended

1.4. CONTRIBUTIONS 11

to new applications.

Crossing the Reality Gap The third contribution is the development of algo-
rithms suitable for the deployment of large aerial swarms in reality. These swarm
controllers are simple, reactive and can be implemented on safe, lightweight and
low-cost robots that do not require position sensors to function.

The feasibility of our approach is demonstrated using a testbed of up to 10
robots developed during the project* (Fig. 1.5). Aiming towards a specific appli-
cation and target platform is essential to design systems that can be transferred
to reality. To the best of our knowledge, this is the largest autonomous aerial
swarm ever demonstrated outdoors.†

Figure 1.5: Aerial testbed composed of 10 fixed-wing flying robots produced
during this project.

*Platforms were developed by Severin Leven. They are now commercialized by SenseFly
LLC.

†Details of our experimental setup can be found in appendix B.2 and in videos on our project
page (http://lis.epfl.ch/smavs/).

12 INTRODUCTION

1.5 Structure

In Chapter 2, artificial evolution is used to discover a variety of swarm behav-
iors suitable for positionless fixed-wing robots. Chapters 3 through 6 then aim
at reverse engineering the best evolved controller with each chapter focusing on
one behavior. In particular, Chapter 3 copes with the problem of modulating the
global motion speed and direction of fixed-wing robots using communication
as an input. Chapter 4 looks at how to make robots move coherently in groups.
Chapter 5 studies solutions to have a swarm cover an area in search applications.
Finally, Chapter 6 focuses on mechanisms to maintain and optimize communica-
tion relays. The structure of these chapters follows the methodology developed
in this thesis and described in Fig. 1.3. Lessons learnt from reverse engineering
evolved controllers are then extended to scenarios where robots need to avoid
being pushed away by wind in Chapter 7. Finally, in Chapter 8 we conclude and
discuss current limitations and future directions of this project.

This thesis contains two appendices. The first looks at an alternative ap-
proach to design controllers for flying robots by taking inspiration from swarm-
ing in nature. More specifically, inspiration is taken from army ants to deploy
communication networks in disaster areas. This approach although promising,
does not fit the evolutionary framework of this thesis. The second appendix
contains information on the software and hardware used during this project and
the experimental setup to deploy 10 autonomous flying robots.

2 Evolved Solution

13

14 EVOLVED SOLUTION

Abstract

The main contribution of this chapter is the use of artificial evolution to dis-
cover novel swarm controllers for positionless fixed-wing flying robots.

Designing swarm controllers is challenging because there is often no obvious
relationship between the behaviors of the individual robots and the emergence
of a desired swarm behavior. Furthermore no precedent exists in designing po-
sitionless controllers for robots with motion constraints of fixed-wing platforms.
To overcome these challenges, artificial evolution is used to automatically dis-
cover simple, efficient and unthought-of swarm controllers in simulation. This
method is successful in discovering basic robot behaviors for a challenging sce-
nario aimed at deploying communication networks for rescuers in disaster areas.
Basic behaviors, including individual robot motion, group motion, area coverage
and communication relay, have the potential to serve as building blocks for the
design of future swarm applications.

This chapter is based on:

• Hauert, S., Zufferey, J.-C. and Floreano, D. (2009) Evolved swarming with-
out positioning information: an application in aerial communication relay.
Autonomous Robots, 26(1) pp. 21-32.

2.1. BACKGROUND 15

2.1 Background

Artificial evolution is at its best when it allows scientists to discover solutions
that had not yet emerged through traditional approaches. Examples include the
evolution of electronic circuits [100], artificial life-forms [62], art or music [87] and
experiments aimed at understanding evolved behaviors in animals [33,68,107].

However, for evolution to be successful it is necessary to have some insight
into the design of evolutionary experiments. For swarm applications, this means
understanding what parameters can lead to the evolution of cooperative behav-
ior [45]. As a starting point, scientists have turned to the biological systems that
inspired evolutionary robotics. Over billions of years, animals have evolved to
solve a variety of collective tasks from navigation to collective hunting, which
evolutionary biologists have studied extensively. By tapping into decades of re-
search in biology, it has recently been discovered what conditions can lead to
the evolution of cooperation in animals and robots. More specifically, Floreano
et al. [33] and Waibel et al. [107] have found that cooperation can evolve either if
robots in a group are clones (homogenous swarms) or if they share their perfor-
mance scores with other members of their group. The highest performance in
cooperative tasks is achieved when both these conditions are true.

Building on this insight, we aim at discovering novel communication-based
controllers for swarms of flying robots that address the particularities of our
system in terms of limited sensing (no position) and motion constraints.

2.2 Method

Artificial evolution requires us to select an experimental scenario, a controller
architecture, a fitness measure and evolutionary parameters.

2.2.1 Experimental Setup

A test scenario in 2D simulation is considered, in which a group of robots must
deploy and maintain a wireless communication network between two rescuers
in a disaster area [47]. Twenty robots are launched by one rescuer at a rate of 1
every 15 s (± 7.5) and the group must then cooperate to find a second rescuer
that is positioned within a ± 30◦ angle of a predefined search direction and a

16 EVOLVED SOLUTION

distance of 500 ± 50 m (Fig. 2.1). Once the communication link between the
two rescuers is established, it must be maintained until the end of the mission,
which lasts a maximum of 30 minutes. The robots are simulated using a physics
engine in which we implement a first-order dynamics model of a fixed-wing
robot that flies at a speed of 14 m/s and turns with a minimum radius of 18
m. The communication range of robots and rescuers is of maximum 100 m with
added noise between 90 m and 100 m. Additional information concerning the
simulator can be found in Appendix B.1.1.

search area

5
0
0
m

1
0
0
m

60° search

direction

N

E

S

W

rescuer

(launching point)

Figure 2.1: Scenario environment as defined in our application. The swarm
should be capable of finding any rescuer placed within a ±30◦ angle of the
desired search direction and within 500 ± 50 m of the launching rescuer.

2.2.2 Neural Controller

Each robot is controlled using a feed-forward neural controller shown in Fig. 2.2
consisting of three inputs, four hidden neurons and one output controlling the
turn rate of the robot (speed and altitude are constant)*. The first input to the
network is the heading of the robot given by a magnetic compass. The second
and third inputs are the number of network hops separating the robot from the
two rescuers (high values indicate that the robot is disconnected), where network
hops can be seen as the number of times a message sent from a rescuer needs
to be forwarded from one robot to another before it reaches the desired robot.

*We sequentially tested neural architectures with zero to four hidden neurons. Architectures
with four hidden neurons were found to yield swarm controllers with the highest fitness.

2.2. METHOD 17

Hop values are calculated in a decentralized fashion as explained in Appendix
B.1.1. These controller inputs were shown to yield best results based on extensive
studies of possible variants in previous work by Hauert et al. [44]. The genome
of each robot consists of the 21 synaptic weights of the neural network, each
represented by 8 bits, making a total genome size of 168 bits.

heading

number of hops from

launching rescuer

number of hops from

second rescuer

turn rate

command

bias

Figure 2.2: Artificial neural network architecture used to control fixed-wing
robots.

2.2.3 Genetic Algorithm

To favor the evolution of cooperation following the findings of Floreano et al. [33]

and Waibel et al. [107], we use homogeneous swarms and apply group-level se-
lection. Evolutionary parameters are taken from work by Floreano et al. [33].
A population of 100 genomes is used, which are cloned 20 times to construct
100 groups of 20 robots each. The performance of each genome is computed
based on the performance of the group of 20 robots. Group performance here
represents the connectivity of the relay between both rescuers, or the minimum
number of robots that need to fail for the communication between the rescuers to
break, averaged over 30 minutes and 10 missions. In order to put additional pres-
sure against the loss of robots, trials during which robots are disconnected from
the launching rescuer for more than 30 s are assigned a fitness of 0. This perfor-
mance measure favors the rapid creation of communication pathways between
rescuers and the robustness of the network over time. After ranking the genomes
according to the measured performance of the group, the 10 best genomes in

18 EVOLVED SOLUTION

the population are copied to the new population (elitism) and cloned to make
groups of 20 robots each. The remaining population is generated by repeatedly
selecting two random individuals from the best 30% of the genomes, applying
one-point crossover to the pair with a probability 0.2 and then mutating the
newly created individual with a probability of 0.01 per bit, and cloning it 20
times.

2.3 Results

The evolutionary run during which the controller with the highest fitness was
found can be seen in Fig. 2.3. Out of 15 evolutionary runs, 2 were able to
find controllers displaying similar strategies as the best individual while the
remaining 12 evolutionary runs converged to a local optimum. This shows that
the evolutionary process is not straightforward. However, the main focus of this
thesis is on transferring good controllers found through evolution to real-world
applications and not on optimizing the evolutionary process. To this end, the
performance of the best controller is quantitatively and qualitatively analyzed.

0

 0.1

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 50 100 150 200 250

fi
tn

e
s
s

generation

 0.2

best individual

Figure 2.3: Maximum individual fitnesses for each generation of the best
evolutionary run. The individual with the highest fitness was found at gen-
eration 228.

2.3.1 Performance

After evolution, the best controller was tested 1000 times on randomly posi-
tioned rescuers within the area described in Fig. 2.1. In the end, 97.5% of the

2.3. RESULTS 19

rescuers were found and only 2.24% of the 20’000 deployed robots (1000 runs
with 20 robots) were permanently disconnected from the swarm. The connectiv-
ity measures of the networks over the 1000 trials are shown in Fig. 2.4 (left). The
connectivity measures equal 0 during the first couple of minutes of a deploy-
ment because few robots have been launched, and the swarm has not traveled
far enough to find the second rescuer. However, once the connection between
the two rescuers is established, it is maintained in a robust manner, which can
be seen by the fact that the connectivity measures remain stable to the end of
the trials. After 30 min, 22.4% of the 1000 trials had a connectivity of zero, 74%
had a connectivity of one and 3.6% had connectivity of two. Over the 1000 trials,
only those where the second rescuer was not found (2.5%) displayed a constant
connectivity of zero. The remaining trials maintained at worst intermittent con-
nections, displaying varying connectivities between zero, one and two. A perfect
(uninterrupted) connection between the rescuers is not required as long as the
swarm remains coherent. Fig. 2.4 (right) shows statistics on the mean connec-
tivity over 30 min trials as described in Sec. 2.2.3. The median fitness over 1000
trials is of 0.68 which is coherent with the performance of the best individual
found through evolution, as shown in Fig. 2.3.

connectivity = 2

connectivity = 0

c
o

n
n

e
c
ti
v
it
y

[
%

]

0 30252015105

time

[min]

3.6 %

74 %

22.4 %

connectivity = 1

 0

0.2

0.4

0.6

0.8

 1

1.2

1.4

m
e

a
n

 c
o

n
n

e
c
ti
v
it
y

Figure 2.4: Left: Connectivity of the best evolved controller when tested one
thousand times on randomly positioned rescuers within the area described
in Fig. 2.1. At each time-step, the proportion of networks (out of the 1000
trials) having connectivities of 0, 1 and 2 is shown. Connectivity values
above 2 were not encountered. Right: Statistics on the mean connectivity
over 1000 trials of 30 min. Each box has lines at the lower quartile, median,
and upper quartile values. The whiskers extend to the farthest data points
that are within 1.5 times the interquartile range. Outliers are shown with a
+ sign.

20 EVOLVED SOLUTION

2.3.2 Behavior

rescuer

communication

range

−400 −200 0 200 400
−300

−200

−100

0

100

200

300

400

500

600

700

X
[m]

Y [m
]

−400 −200 0 200 400
−300

−200

−100

0

100

200

300

400

500

600

700

X
[m]

−400 −200 0 200 400
−300

−200

−100

0

100

200

300

400

500

600

700

X
[m]

−400 −200 0 200 400
−300

−200

−100

0

100

200

300

400

500

600

700

X
[m]

Y [m
]

−400 −200 0 200 400
−300

−200

−100

0

100

200

300

400

500

600

700

X
[m]

−400 −200 0 200 400
−300

−200

−100

0

100

200

300

400

500

600

700

X
[m]

5 minutes 7 minutes 10 minutes

15 minutes 30 minutes last 2 minutes

search area

rescuer

Figure 2.5: Trajectories of 20 robots in simulation with the best evolved con-
troller (over all populations in all generations) during a 30 min mission. In
this mission, the second rescuer is to the North-East of the launching rescuer
to show the full extent of the chain translation displayed by the group. The
trajectory of the robot launched first is shown in light grey.

An example showing the behavior of the best evolved controller can be seen
in Fig. 2.5 or in a video on our website*. The strategy adopted by the swarm con-
sists in forming a tight chain of robots which grows as long as additional robots
are launched. Robots forming the chain are able to slowly move in a common
direction. Once all robots have been launched, they synchronize their heading

*http://lis.epfl.ch/smavs

2.4. LIMITATIONS 21

and the entire chain then shifts along the communication border of the launch-
ing rescuer, covering the search area from West to East until the second rescuer
is found. The communication link between the two rescuers is maintained by
having all robots turn on the spot with the smallest possible radius given the
dynamics of the platform.

As expected, the strategy found through evolution is novel, efficient and
unthought-of given the limited amount of control inputs that were provided
to the system.

2.4 Limitations

Robot controllers for real-world applications must often adapt across different
scenarios depending on the needs of a given operation (different environments,
different number of robots). For this purpose we characterize the limitations of
the obtained swarm controller with respect to variations in swarm size, commu-
nication range, robot launch interval and robot speed.

Fig. 2.6 shows the effect of each parameter variation on the mean connec-
tivity over 30 min trials. Statistics are produced over 1000 trials with rescuers
randomly positioned within the area described in Fig. 2.1. For each set of exper-
iments, only one parameter was changed, the remaining parameters being set to
the original values described in the experimental setup (Sec. 2.2).

Results show a decrease of performance by at most 10% with respect to the
original median performance of 0.68 (Fig. 2.4, right) for any of the following
variations in setup parameters:

• variations in swarm size from 17 to 30 (30 being the maximum tested)

• variations in communication range from 100 m to 200 m (200 m being the
maximum tested)

• variations in launch interval from 10 s to 20 s

• variations in robot speed from 10 m/s to 16 m/s

This shows that the evolved controller is robust to bounded modifications in
scenario. However, certain scenarios result in a large decrease in performance
or even complete failure of the mission. A decrease in performance is to be

22 EVOLVED SOLUTION

expected for scenarios that largely differ from the ones used during evolution.
Such new scenarios would typically require re-evolving a new controller, which
is time consuming and unpractical for systems that must be usable out-of-the-
box in real-world situations.

2.4. LIMITATIONS 23

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

m
e

a
n

 c
o

n
n

e
c
ti
v
it
y

communication range
[m]

0 5 10 15 20 25 30 35 40 45 50 55 60

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

m
e

a
n

 c
o

n
n

e
c
ti
v
it
y

launch interval
[s]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

m
e

a
n

 c
o

n
n

e
c
ti
v
it
y

robot speed
[m/s]

5 6 7 8 9 101112131415161718192021222324252627282930

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

m
e

a
n

 c
o

n
n

e
c
ti
v
it
y

swarm size
[# of robots]

Figure 2.6: Effect of varying a parameter of the experimental setup on the
mean connectivity over 1000 trials of 30 min. The dashed line represents a
10% decrease in performance with respect to the original parameters shown
in bold. Sectors in grey include parameter values which perform above this
limit.

24 EVOLVED SOLUTION

2.5 Conclusion

Artificial evolution is successful in automatically discovering a variety of be-
haviours for simulated swarms of flying robots in complex real-world applica-
tions. Controllers do not use position and are able to harness motion constraints
of fixed-wing robots.

The explored scenario consists in creating a communication relay between
two rescuers in a disaster area. In the best evolved strategy, robots can modulate
the speed and direction of their motions based on heading and communication
input. This allows robots launched by a rescuer to form chains in a specific di-
rection. Robots within these chains are able to synchronize their headings and
move coherently as a single group. Synchronized chains then translate along
the communication border of the launching rescuer, thereby covering a deter-
ministic area in search for a second rescuer. Once a connection is established
between both rescuers it is maintained and optimized by the robots. Individual
robot motion, group motion, area coverage and communication relay are basic
building blocks that could serve a variety of swarm applications.

However, evolved controllers are not able to perform well when tested on
scenarios for which they were not intended. For this reason, the following chap-
ters focus on reverse engineering the best evolved controller so as to capture its
essence in hand-designed controllers that can serve as building blocks for the
design of swarm controllers in the future.

3 Individual Motion

25

26 INDIVIDUAL MOTION

Abstract

The main contribution of this chapter is the identification of basic principles
governing the motion of individual robots.

Swarm behaviors emerge from the motions performed individually by each
robot. To avoid the need for position information and to accommodate motion
constraints of fixed-wing robots, controllers modulate the turn rate of a robot
based on its heading and communication. Designing such motions is done
following the systematic approach proposed in this thesis. Starting from the
evolved controller described in Chapter 2 we focus on analyzing the motion of
individual robots. This analysis leads to reverse engineered controllers that can
be used to change the global direction and advancement speed of robots or have
them translate along the communication border of a ground user in a predictable
manner. We then validate the controllers in theory and reality for a large vari-
ety of controller parameters. Finally we show how discovered principles can be
extended to explore an area around a user or patrol along its communication
border.

This chapter is based on:

• Hauert, S., Zufferey, J.-C. and Floreano, D. (2009) Evolved swarming with-
out positioning information: an application in aerial communication relay.
Autonomous Robots, 26(1) pp. 21-32.

• Hauert, S., Zufferey, J.-C. and Floreano, D. (2009) Reverse-engineering of
Artificially Evolved Controllers for Swarms of Robots. Proceedings of the
IEEE Congress on Evolutionary Computation, pp. 55-61.

3.1. BACKGROUND 27

3.1 Background

Motions of flying robots in the literature typically rely on position information.
More specifically, robots that have access to GPS use waypoint navigation [43,72]

whereas controllers based on relative positioning often rely on attraction or re-
pulsion interactions [6,21,24,53,78]. For the latter, motion constraints of fixed-wing
robots are seldom taken into account.

The most complete controller that accommodates the motion constraints of
fixed-wing robots can be found in work by Lawrence et al. [58]. In this work robot
motions can be modulated to meet any requirement in terms of global speed and
direction. The controller outputs the heading that steers a robot asymptotically
towards the desired robot motion using vector fields. The heading error deter-
mined with a GPS or compass sensor is then used to command the turn rate of
the robot. This approach however requires GPS.

Controllers for flying robots that react to communication information can be
found in work by Basu et al. [6] who studied the use of a flock of robots as an
ad-hoc network in the sky that could adapt to its users on the ground. Robot
motions included attraction and repulsion to neighboring robots as well as at-
traction to good positions above users on the ground and a "random walk" rule
to repair breaches in the network. Other work by Lawrence et al. [57] generates
information energy potentials on a map that capture the quality of measure-
ments made by other robots, their energy loss due to motion and the quality of
the ad-hoc network they form. The resulting gradients are then navigated by the
robots to map toxic plumes while maintaining a coherent communication net-
work to a central processing unit on the ground. Both studies were conducted
in simulation and position information was the dominant sensor used.

Instead, communication-centered motions for flying robots have been inves-
tigated by Dixon et al. [27] who used the signal-to-noise ratio (SNR) of incoming
radio signals to determine if a robot is in an optimal location to communicate
with a user on the ground or with other robots. However, experiments on real
flying robots relied on position information to function [35]. Furthermore, SNR
indications are not always made available by radio modules. Indeed, SNR in-
formation is treated at the driver level and whether or not this information is
passed up to the robot controller depends on which off-the-shelf radio module

28 INDIVIDUAL MOTION

is used. In addition, even if the SNR is given, the source of the signal might not
be specified. This is problematic when multiple emitters are present.

Work by Daniel et al. [23] considers simulated swarms of flying robots that
must cover an area while ensuring connectivity among the robots. To achieve
this, robots react to the RSSI from neighboring robots whose positions are known.
In addition to challenges in using signal strength measurements described above,
considered models do not consider motion constraints of physical flying robots.

Overall, examples of positionless controllers that react to communication in-
formation are scarce. The most noticeable example was designed by Nembrini
et al. to maintain coherent groups of ground robots that could move towards
a beacon [73]. In this work, robots go straight as long as they were connected to
the swarm. When disconnected, robots turn around by 180◦ and then continue
straight to reconnect to the swarm. Such behaviors however do not meet the
motion constraints of fixed-wing flying robots that are not able to stop and turn
on the spot.

By reverse engineering evolved controllers we aim towards novel motion con-
trol for flying robots that addresses challenges in using robots with limited sens-
ing (no position) and constrained motion.

3.2 Evolved Behavior

In the best evolved strategy from Chapter 2, robots do not move straight. Instead,
they adopt different turn rates, depending on their heading and whether they
are connected (even indirectly) to the rescuers.

The first observation is that robots perform trajectories where they are con-
tinuously turning while advancing at a constant speed. The overall trajectory of
the robot can be summarized by a vector which gives its global direction and
speed. Fig. 3.1 shows examples of such trajectories using the best evolved con-
troller from Chapter 2. Fig. 3.2 shows how such trajectories are generated by
modulating the turn rate of the robot based on its heading.

The second observation is that communication impacts the parameters of the
directed trajectories in terms of speed and direction. The effect is that robot
trajectories are steered and speed regulated by communication. This is shown
in Fig. 3.1 where robots that are connected to the launching rescuer (low hop

3.2. EVOLVED BEHAVIOR 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

100m

of hops separating the robot from the launching rescuer

goal

direction

N

EW

S

m
o

ti
o

n

v
e

c
to

r
tr

a
je

c
to

ry

Figure 3.1: Effect of the number of hops which separate the launching res-
cuer from a robot on its trajectory. Here, we plot the trajectories of the best
evolved controller from Chapter 2 over 30 s. Robots were never connected to
the second rescuer during these experiments.

−π −π/2 0 π/2 π
−1

−0.8

−0.6

−0.4

−0.2

heading
[rad]

tu
rn

 r
a

te

[r
a

d
/s

]

Figure 3.2: Effect of the robot’s heading on its turn rate when the other
inputs to the neural controller are maintained constant. Experiments were
conducted in simulation using the best evolved controller from Chapter 2.

counts) are directed to the North whereas robots disconnected (hop count of
N=20) have trajectories directed to the South.

In addition, robots perform trajectories with different average turn rates de-
pending on communication. In Fig. 3.1, robots that are connected to the launch-
ing rescuer display high turn rates while the disconnected robots perform low
turn rates. The effect of this is that robots can translate along communication
borders as shown in Fig. 3.3. A communication-border, in this thesis, is assumed

30 INDIVIDUAL MOTION

 0

 50

 100

 150

-150 -100 -50 0 50 100 150

Y [m
]

X
[m]

launching

rescuer

trajectory of one robot

disconnected connected

−0. 8

−0. 6

−0. 4

tu
rn

 r
a

te

[r
a

d
/s

]

Figure 3.3: The top figure shows the trajectory of the best evolved robot in
simulation moving along the communication border of the launching res-
cuer (the grey area shows the noisy communication zone in simulation).
This translation behavior, along the communication border, is induced by a
change in turn rate when connected and disconnected from the launching
rescuer. A box plot in the bottom figure shows that the turn rates when
connected and disconnected are significantly different (p<0.01).

to be a continuous edge that separates an area where robots and users are within
communication range or not. Notice that this edge can be the result of a filter.

3.3 Reverse Engineered Controller

There is often a tradeoff between designing reverse-engineered controllers that
exactly copy behaviors found through evolution and making controllers that are
easy to implement and understand by a human designer. High-fidelity reverse-
engineering consists in designing controllers that produce near-identical output
for a set of sensory input as the evolved controller.

3.3. REVERSE ENGINEERED CONTROLLER 31

As an example, to produce nearly identical trajectories as those shown in Fig.
3.1, one can use a controller based on prolate cycloids which are trajectories de-
scribed by a fixed point at a radius b > a, where a is the radius of a rolling circle.
The entire prolate cycloid can be rotated by an angle α to suit any directional
needs. To reach high-fidelity reverse-engineering, evolved trajectories are ana-
lyzed to determine parameters a, b and α as a function of the number of hops
separating the robot from the launching rescuer. Results of suitable functions
are given in Fig. 3.4.

0 5 10 15 20
−2

−1

0

1

2

3

α

α = 0.0006689h 3 − 0.01956h2 − 0.08493h + 2.43

0 5 10 15 20
20

21

22

23

24

25

26

27

28

b

b = − 0.001777 h3 + 0.0337 h2 + 0.3801h + 20.27

0 5 10 15 20
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

number of hops separating a robot from the launching rescuer

a

a = 0.002785h 3 − 0.08968h

2
 + 0.9092h + 1.738

Figure 3.4: Controller parameters a, b and α as a function of the number of
hops separating the robot from the launching rescuer h.

However, high-fidelity controllers might be as difficult to understand and use
by a human-engineer as the initial neural controller.

On the other side of the spectrum, low-fidelity reverse-engineering takes in-
spiration from the general behavior of the robot to design new controllers. One
example would be to extract the general behavior "robots can translate along
communication borders" and design a different type of controller to achieve
this. The disadvantage of such an approach is that the challenge of understand-
ing how each robot should move to achieve a desired emergent behavior remains
while good solutions found through evolution are lost.

Instead, throughout this thesis we aim at balancing the need for reverse-
engineered controllers that are usable by human engineers while still capturing
the ingenuity of evolved solutions.

In our mid-fidelity controllers, robot motion is generated by modulating over-
time the turn rate ω of a robot with respect to its heading. For this purpose we
approximate the continuous function shown in 3.2 by the step function shown

32 INDIVIDUAL MOTION

in Fig. 3.5. Following this function, robots perform a fixed turn rate ω1 when
the angle ĥlimh between a predefined heading limit hlim and their current head-
ing h is positive or a fixed turn rate ω2 when this angle is negative (angles are
measured between −π and π) as described in the following controller:

ωω1,ω2,hlim
(h) =

ω1 if ĥlimh > 0

ω2 otherwise
(3.1)

This controller is more intuitive to understand and analyze than the evolved
neural network. Indeed modifying ω1 or ω2 directly translates into a predictable
change in robot motion, whereas changing a weight in a neural network might
have many unpredictable effects.

−π −π/2 0 π/2 π
−1

−0.8

−0.6

−0.4

−0.2

heading
[rad]

tu
rn

 r
a

te

[r
a

d
/s

]

h
lim

ω1

ω2

Figure 3.5: Effect of the controller in Eq. 3.1 represented by a step function
on the turn rate of a robot. The step function is an approximation of the
evolved solution shown in grey.

Furthermore, as seen in Fig. 3.1, communication affects the global speed,
direction and turn rate of trajectories described by Eq. 3.1. For the sake of
simplicity, the large range of hop count values can be summarized by two com-
munication states, namely "connected" (hops between the launching rescuer and
the robot smaller than N=20) or "disconnected" (hop values of N=20). This pro-
duces controllers that are easier to analyze because of the fewer and constant
number of states when compared to states based directly on hops. In this man-
ner, when a robot is connected to the launching rescuer, it performs a controller
of the form ωω1,ω2,h1(h) given by Eq. 3.1. When disconnected, the robot per-
forms a different trajectory described by the controller ωω3,ω4,h2(h). Therefore,

3.4. MODEL 33

for each communication condition c the turn rate ω of the robot can be described
by ω(h, c) given below:

ω(h, c) =

ωω1,ω2,h1(h) if c = 1 (connected)

ωω3,ω4,h2(h) if c = 0 (disconnected)
(3.2)

3.4 Model

A precise understanding of the effect of controller parameters (ω1, ω2, h1, ω3,
ω4, h2) on the motion of robots is needed to adapt reverse engineered controllers
to different real-world scenarios. To this end, we focus on characterizing robot
motions in terms of global direction d of the robot trajectories and their global
speed v.

In particular, the controller described in Eq. 3.1 produces trajectories that
advance perpendicular to hlim and in the direction d given by the vector between
points A and B which describe the start and end of the trajectory shown in Fig.
3.6. The trajectory corresponds to a full revolution of the robot. The global speed
v of the robot motion performed by a robot advancing at speed v is then given
by the distance between points A and B (|AB|) over the time it takes to go from
one point to the other (t(AB)).

A

B
d

ω1

r1

r2

ω2

v

hlim

Figure 3.6: Theoretical trajectory performed by a robot implementing the
controller in Eq. 3.1. Symbols are used to analyze the global speed and
direction of the robot trajectory using Eq. 3.3 and 3.4.

34 INDIVIDUAL MOTION

This is summarized in the following equations:

v =
|AB|

t(AB)
(3.3)

d = hlim + sgn(AB)
π

2
(3.4)

where

AB = 2(r1 − r2) (3.5)

t(AB) =
π(r1 + r2)

v
(3.6)

and

ri = | v
ωi
| (3.7)

Communication can impact robot trajectories in two ways. In the first, robots
are connected or disconnected for long periods of time, during which they ad-
vance only based on heading, as described in Eq. 3.1. In these cases, analysis
from Eq. 3.3 and 3.4 apply. In the second, robots oscillate between being con-
nected and disconnected on a short timescale. These frequent changes typically
make robots adopt different average turn rates when connected or disconnected,
thereby producing motions that translate along the border of communication of
the rescuer (Fig. 3.3). For the sake of simplicity, we consider a scenario where
the communication-based controller pushes the robots towards the communica-
tion border. That is, robots that are connected to the rescuer move away from it
while robots that are disconnected move towards it. Assuming a border pointing
in direction dcom (with the connected area to the left of the vector) we have the
following communication-based controller:

ω(h, c) =

ωω1,ω2,dcom(h) if c = 1 (connected)

ωω3,ω4,dcom+π(h) if c = 0 (disconnected)
(3.8)

Robots performing this controller converge to stable trajectories regardless of
their starting heading as will be explained in the next chapter. Stable trajectories
are such that robots return to their initial heading after every connection and
disconnection. Such a trajectory, whose start and end are labeled by symbols A
and B, is shown in Fig. 3.7 (left).

The global speed vcom of the robot motion advancing in direction dcom is then
given by the distance between points A and B (|AB|) over the time it takes to

3.4. MODEL 35

v

π+dcom

A

B

dcom

dcom

ω1

ω2

ω3

ω4

r2

r4

β

α
π−β

π−α

r1

r3

dcom dcom

connected

disconnected

Figure 3.7: Theoretical trajectory performed by a robot implementing the
controller described in Eq. 3.8. Symbols are used to analyze the global speed
and direction of the robot trajectory in Eq. 3.9 through 3.10

go from one point to the other (t(AB)). vcom and dcom can be modeled using the
equations described below and symbols shown in Fig. 3.7 (center and right).

vcom =
|AB|

t(AB)
(3.9)

dcom = hcom +
π

2
− sgn(AB)

π

2
(3.10)

Knowing that stable trajectories are such that the heading at point A must be
identical to the heading at point B, we have that:

AB =− r1sin(π − β)− r2sin(α) + r3sin(π − α) + r4sin(β) (3.11)

t(AB) =|r1(π − β) + r2α + r3(π − α) + r4β

v
| (3.12)

where

r1 + r1cos(β) =r2 − r2cos(α) (3.13)

r3 + r3cos(α) =r4 − r4cos(β) (3.14)

leading to

α =cos−1(
2r1r4 − r1r3 − r2r4

r1r3 − r2r4
) (3.15)

β =cos−1(
2r2r3 − r1r3 − r2r4

r1r3 − r2r4
) (3.16)

and

ri =
v

ωi
(3.17)

36 INDIVIDUAL MOTION

ω1 ω2 hlim

a -0.7 -0.1 −π/2

b -0.6 -0.2 −π/2

c -0.5 -0.3 −π/2

d -0.3 -0.5 −π/2

e -0.5 -0.3 −π/2

f 0.3 0.5 −π/2

g 0.5 0.3 −π/2

h -0.5 -0.3 −π/2

i -0.5 -0.3 π

j -0.5 -0.3 π/2

k -0.5 -0.3 0

Table 3.1: Parameters of the controller described by Eq. 3.1 used in Fig. 3.8
and Fig. 3.9

3.5 Validation

We aim at demonstrating the transfer of reverse engineered controllers to reality
and the adequacy of the developed model. Fig. 3.8 and 3.9 show robot mo-
tions generated using controllers in Eq. 3.1 in theory (trajectories follow exactly
that of the mathematical description) and reality for different sets of parameters
described in Table 3.1 using a single flying robot. Parameters were chosen to
demonstrate the capability of the developed controller in changing the global
speed and direction of robot trajectories. Trajectories in reality lasted 60 s and
were corrected for wind based on wind measurements taken on the platform
(details on wind measurements can be found in Appendix B.2.1). Results from
theory and reality are qualitatively and quantitatively comparable in that chang-
ing controller parameters results in similar changes in motion. More specifically,
predictions are compared to measured results in reality in Table. 3.2.

Finally, motions resulting from communication-based controllers described
in Eq. 3.8 are shown in theory (Fig. 3.10) and reality (Fig. 3.11) using a single
flying robot. As before, trajectories were post-processed to remove the effect
of wind. Communication with a straight border was simulated by artificially
cutting communication based on the heading of the robot. Robot motions in

3.5. VALIDATION 37

v d
theory reality theory reality

a 5.7296 7.8905 π 2.7668

b 3.8197 3.8329 π 2.7326

c 1.9099 2.1651 π 2.7560

d 1.9099 1.8071 0 -0.5923

e 1.9099 2.2743 π 2.8090

f 1.9099 1.5636 0 0.5412

g 1.9099 1.9050 π -2.8409

h 1.9099 2.1862 π 2.7992

i 1.9099 1.5384 π/2 1.1501

j 1.9099 1.9603 0 -0.4248

k 1.9099 1.8820 −π/2 -1.9326

Table 3.2: Comparison of global speed v and direction d of robot trajectories
shown in theory (Fig. 3.8) and reality (Fig. 3.9).

theory and reality are qualitatively comparable although robot dynamics prevent
the robot from rapidly changing from one turn rate to the other, leading to
differences in the overall advancement speed (2.88 m/s predicted versus 4.22
measured) and direction of the trajectory (0 rad predicted versus 0.36 measured).

−200 −100 0 100 200

−200

−100

0

100

200

−200 0 200
−500

0

500

−1000−800 −600 −400 −200 0
−500

0

500

Y [m
]

ω1
ω2

a

b

c

e

f

g

d

h

i

j

k

X

[m]

X

[m]

X

[m]

Figure 3.8: Theoretical trajectories resulting from the controller in Eq. 3.1
with parameters described in Table 3.1. The robot is launched in x=0.

38 INDIVIDUAL MOTION

−200 0 200
−500

0

500

−400 −200 0

Y [m
]

−200 0 200

−200

−100

0

100

200

X

[m]

a

b

c

e

f

g

d

h

i

j

k

−500

0

500

X

[m]

X

[m]

ω1
ω2

Figure 3.9: Trajectories performed in reality by a single flying robot imple-
menting the controller in Eq. 3.1 with parameters described in Table 3.1. The
robot is launched in x=0.

−100 0 100 200 300 400
−100

−50

0

50

X

[m]

Y [m
]

connected

disconnected

Figure 3.10: Theoretical trajectories resulting from the controller in Eq. 3.8
with ω1=0.7, ω2=0.2, ω3=0.3, ω4=0.1 and dcom=0. The robot is launched in
(0,0).

3.6 Extensions

Artificial evolution provides a basis for the design of controllers for fixed-wing
flying robots. These behaviors can be used as an inspiration to create new con-
trollers that go beyond those found through evolution. In particular, we consider
a simplified communication-based controller of the form:

ω(h, c) =

ωω1,ω1,hlim
(h) = ω1 if c = 1 (connected)

ωω2,ω2,hlim
(h) = ω2 if c = 0 (disconnected)

(3.18)

3.6. EXTENSIONS 39

100 300 500

0

100

200

300

X

[m]

Y [m
]

connected

disconnected

Figure 3.11: Trajectories performed in reality by a single flying robot imple-
menting the controller in Eq. 3.8 with ω1=0.7, ω2=0.2, ω3=0.3, ω4=0.1 and
dcom=0. The robot is launched in (0,0).

Using this controller, robots perform turn rate ω1 when connected to a user
on the ground and turn rate ω2 when disconnected. Fig. 3.12 show results in
theory using a single flying robot. Such behavior could be used alone to achieve
simple behaviors such as perimeter patrolling (left and center) or exploration
(right).

−500 0 500

−500

0

500

X
[m]

Y [m
]

−500 0 500

−500

0

500

X
[m]

−500 0 500

−500

0

500

X
[m]

rescuer

explorationperimeter patrolling

Figure 3.12: Theoretical trajectories resulting from the controller in Eq. 3.18
with ω1=-0.5 and ω2=0.3 for the left figure, ω1=0.5, ω2=0.3 for the center
figure and ω1=0, ω2=0.3 for the right figure. The robot is launched on the
border of communication with range r in (0,500) with a heading of 0. Notice
that these behaviors could be used for perimeter patrolling and exploration.

40 INDIVIDUAL MOTION

3.7 Conclusion

By reverse engineering the best evolved controller from Chapter 2, we were able
to identify basic principles governing the motion of individual robots. Discov-
ered controllers do not use position information and are suitable for fixed-wing
robots.

More precisely, robot motion is governed by communication and heading
input. Communication inputs reflect the connection or disconnection of robots
to users on the ground. They are responsible for changing the average speed,
direction and turn rate of robot trajectories. Heading input then modulates the
turn rate of robots so that they follow a desired trajectory.

Overall, developed controllers are able to steer and speed regulate robots and
have them translate along communication borders. Controllers are then charac-
terized in terms of motion speed and direction and validated in theory and
reality using a single flying robot. Finally, to demonstrate the use of basic prin-
ciples described here in a variety of applications, we apply them to a scenario
where robots must explore the area around a user on the ground.

4 Group Motion

41

42 GROUP MOTION

Abstract

The main contribution of this chapter is the identification of basic principles
allowing for the coherent motion of groups of robots.

To avoid getting lost, robots without position information need to move as
a group. In the best evolved controller discovered in Chapter 2, this is done
by having the robots synchronize their headings. Synchrony can allow robots
to move as if they were a single entity, potentially facilitating the sharing of
sensing and communication capabilities. However, synchronizing fixed-wing
robots typically requires position information, and entails frequent sensing and
heavy communication.

Instead, the solution found through evolution relies on heading information
and on on-off beats sent from a robot or a user using wireless communication.
Robots use these beats to synchronize and modulate their speed and direction
in a predictable manner. Group motion is validated in theory and using two to
five physical flying robots. Principles are then extended to an application where
robots in the group can become leaders that steer the swarm.

This chapter is based on:

• Hauert, S., Zufferey, J.-C. and Floreano, D. (2009) Evolved swarming with-
out positioning information: an application in aerial communication relay.
Autonomous Robots, 26(1) pp. 21-32.

• Hauert, S., Zufferey, J.-C. and Floreano, D. (2010) Beat-based synchroniza-
tion and steering for groups of fixed-wing flying robots. Proceedings of the
10th International Symposium on Distributed Autonomous Robotics Systems, in
press.

4.1. BACKGROUND 43

4.1 Background

Synchronizing the heading of robots within a swarm can help them avoid colli-
sions, maintain relative distance among robots for sensor fusion and favor com-
munication [25].

Synchronizing loitering trajectories in real-time across robots while respect-
ing commands in terms of global direction and speed is challenging. Work on
formation path following for unicycle-type vehicles, that have similar motion
constraints as fixed-wing robots, has so far concentrated on mathematical mod-
els and simulations built upon the assumption that robots know the precise rela-
tive position of neighbors (range and bearing) and sometimes their heading and
speed [39,40,61,69]. Using this knowledge, robots continuously align their position
to that of their neighbors and to the trajectory they need to follow. However, so
far no results have been demonstrated with real flying robots. In addition, sim-
ulations only depict scenarios without sensor noise or with low forward speeds
and limited turn rates unrealistic for fixed-wing flying robots.

Another approach for synchronization is inspired from birds flocking, and
the resulting controllers described by Reynolds [6,21,53]. However, the trajecto-
ries of such flocks are typically guided by the need to synchronize. Additional
behaviors, sometimes conflictual, are needed to steer and speed regulate the
swarm. Furthermore, robots are required to continuously exchange their posi-
tion or sense their neighbors, which is not feasible with positionless robots.

Instead, inspired from the best evolved controller presented in Chapter 2, we
present a positionless strategy to synchronize and steer swarms of real flying
robots that does not require memory, computation or high-bandwidth commu-
nication.

4.2 Evolved Behavior

In the best evolved solution from Chapter 2, robots synchronize their heading
over time while translating along the border of the launching rescuer’s com-
munication range (Fig. 3.3). This allows for the coherent motion of groups of
robots. Synchronization starts after all the robots have been launched and the
chain navigates to the edge of the communication range of the launching res-
cuer. The swarm then alternates between being connected to and disconnected

44 GROUP MOTION

from the launching rescuer, which generates a beat on which robots gradually
align (Fig. 4.1).

0 2 4 6 8 10
0

0.5

1

1.5

time
[min]

h
e

a
d

in
g

 s
td

[r
a

d
]

0 2 4 6 8 10
0

5

10

15

20

time
[min]

a
v
e

ra
g

e
 n

u
m

b
e

r
o

f
h

o
p

s

desynchronized

synchronized

desynchronized

synchronized

swarm disconnects

from rescuer

Figure 4.1: Top: standard deviation on the heading of all robots during a
single run of the best evolved controller in simulation. After the swarm dis-
connects from the launching rescuer, the headings of the robots synchronize.
Bottom: Average number of hops separating robots in the swarm from the
launching rescuer. Notice robots oscillate between being connected to and
disconnected from the launching rescuer which generates a rhythmic beat.

4.3 Reverse Engineered Controller

As seen in Chapter 3, communication-based controllers can generate motions
where robots oscillate between being connected to and disconnected from an
emitter while translating along its communication border. More generally, the
notion of "connections" and "disconnections" can be replaced with any beat sig-
nal composed of an "on" phase of duration t1 and "off" phase of duration t2.
These beats can actively be emitted using any actuator and sensor modality. For

4.3. REVERSE ENGINEERED CONTROLLER 45

the purpose of this thesis, beats are emitted using wireless communication from
a user on the ground or one of the robots in the swarm.

Starting from the communication-based controllers described in the previous
chapter, controllers of the following form are considered (Fig 4.2):

ω(h, c) =

ωω1,ω1,hlim
(h) if c = 1 (connected)

ωω2,ω1,hlim
(h) if c = 0 (disconnected)

(4.1)

which can be rewritten as:

ω(h, c) =

ω1, if c=1

ω2, if c=0 ĥlimh > 0

ω1, if c=0 ĥlimh < 0

(4.2)

t1

t2-tlim

hlim

tlim

ω1 (connected)

ω2 (disconnected)

ω1 (disconnected)

Figure 4.2: Theoretical trajectory of a robot using the controller described
in equation 4.2. Here a robot receives a beat composed of an "on" phase of
duration t1 (black) and an "off" phase of duration t2 (grey). Using this, the
robot controller sets the turn rate to ω1 or ω2 depending on the beat and the
heading of the robot with respect to a predefined heading hlim (see dashed
lines).

This controller has the property of having robots converge to identical head-
ings at the beginning of each beat as shown in Fig 4.3. This can be explained
by the fact that the amount of time tlim spent between the moment the beat is
turned off and the robot reaches the heading limit hlim depends on the initial
heading of the robot. If the robot starts at a heading as shown in Fig. 4.4 (left), it

46 GROUP MOTION

−200 0 200 400 600

0

200

400

600

X
[m]

Y [m
]

t1

global speed

and direction

t2

starting

heading

starting

heading

Figure 4.3: Example of synchronized steering in theory. Robots launched
from (0,0) in opposite directions receive a beat composed of an "on" phase
of duration t1 (black) and an "off" phase of duration t2 (grey). Over time,
the robot headings synchronize. This can be seen by the fact that at each
start of a beat, the headings of the two robots are identical. Furthermore, the
trajectories converge to a fixed global velocity (speed and direction).

will perform more than 2π within one beat (t1 + t2), thereby changing its start-
ing heading for the next beat. However, if the robot starts at the heading shown
in Fig. 4.4 (right), it will perform less than 2π within one beat. Instead, once
synchronized, the robot will perform 2π during one beat, meaning that it will
start the next beat with the same heading.

The overall effect is that robots listening to identical beats and using the same
controller parameters will synchronize over time. In the particular case shown
in Fig. 4.5, robots synchronize after 2 beats.

Suitable parameters (t1, t2, ω1 and ω2) that lead to trajectories that perform
2π during one beat must be such that the minimum value for tlim named tlim_min

produces trajectories that perform less than 2π during one beat while the max-
imum value tlim_max produces trajectories that perform more than a full revolu-
tion during one beat. These conditions can be mathematically described as:

4.3. REVERSE ENGINEERED CONTROLLER 47

|ω1| · t1 + |ω1| · tlim_min + |ω2| · (t2 − tlim_min) <2π (4.3)

|ω1| · t1 + |ω1| · tlim_max + |ω2| · (t2 − tlim_max) >2π (4.4)

where

tlim_min =t2 −min(t2,
π

|ω2|
)

tlim_max =min(t2,
π

|ω1|
)

0 100 200 300

0

100

200

300

X
[m]

Y [m
]

0 100 200 300

0

100

200

300

X
[m]

Y [m
]

starting

point

Figure 4.4: Theoretical robot trajectories synchronize over time by converg-
ing to a state where at the beginning of each beat of duration t1 (black) +
t2 (grey), the robot returns to the same heading, thereby performing a full
revolution. Synchronization is achieved independently of the initial head-
ing of the robot. In particular, we show two examples with opposite initial
headings. In the left figure, the robot performs more than one revolution
during the first beat at the start of the trajectory. In the right figure, the
robot performs less than one revolution during the first beat at the start of
the trajectory. Notice that at the end of both trajectories, robot headings are
identical.

As an advantage, this controller is able to compensate for perturbations and
resynchronize. This is shown in Fig. 4.6 where we introduce 8 large perturba-
tions to the system by increasing or decreasing the turn rate ω1 and ω2 by 0.05
rad/s and 0.1 rad/s during an entire beat.

Furthermore, two robots implementing identical turn rate commands and
speed commands will generally not perform identical trajectories due to sensor
noise and hardware differences. The effect of turn rate bias on the synchro-
nization and steering of the robots can be seen in Fig. 4.7 where we show the

48 GROUP MOTION

simulated trajectories resulting from turn rates of value ω1 = [0.6, 0.65, 0.7] rad/s
and ω2 = 0.1 for t1 = 4.488 s and t2 = 17.9520 s. However, robots that display
different turn rates will still perform one revolution during one beat if they meet
requirements described in Eq. 4.3 and 4.4. Therefore, the shift in heading among
the robots is stable over time.

0 100 200

t
[s]

h
e

a
d

in
g

 s
td

[r
a

d
]

0 100 200
0

0.5π

π

1.5π

2π

t
[s]

h
e

a
d

in
g

[r
a

d
]

0

π/4

π/2

Figure 4.5: Headings (left) of 5 simulated robots initialized at headings 0,
2π
5 , 4π

5 , 6π
5 , 8π

5 . Notice that over time, the standard deviation (right) across
robot headings goes down to 0, meaning the robots are synchronized.

0 500 1000

t
[s]

h
e

a
d

in
g

 s
td

[r
a

d
]

0

π/4

π/2

Figure 4.6: Capacity of the robot controller to synchronize after 8 large per-
turbations to its turn rate.

4.4 Model

Once synchronized, swarms of robots can be modeled as a single entity. This is
an advantage compared to systems where the individual motions of robots need
to be considered. In particular, we aim at analyzing the global advancement

4.4. MODEL 49

0 1000 2000
0

1000

2000

X
[m]

Y [m
]

0 500

t
[s]

h
e

a
d

in
g

 s
td

[r
a

d
]

0

π/4

π/2

Figure 4.7: Effect of turn rate bias in simulation on the robot trajecto-
ries (left) and heading (right) of three robots with turn rates equal to
ω1 = [0.6, 0.65, 0.7] rad/s and ω2 = 0.1 for t1 = 4.488 s and t2 = 17.9520
s. Notice that while the robots implement different controllers, their head-
ings still synchronize with a constant shift. The direction and advancement
speed of the swarm is also slightly modified across robots.

speed vsync and direction dsync of the swarm motion. This knowledge is then
used to identify parameters that can be modified to easily steer swarms of robots
while keeping them synchronized. In particular, using symbols in Fig. 4.8 and
knowing that robots with forward speed v will perform 2π during one beat, we
can calculate

vsync =
√

a2 + b2

t1 + t2
(4.5)

and

dsync = hlim + tan−1 a
b
− β +

3π

2
(4.6)

where

a =
v

ω1
sin(β) +

v
ω2

sin(γ) (4.7)

b =
v

ω2
− v

ω2
cos(γ)− (

v
ω1
− v

ω1
cos(β)) (4.8)

β =ω1(t1 + tlim) (4.9)

γ =ω2(t2 − tlim) (4.10)

tlim =
2π − |ω1| · t1 − |ω2| · t2

|ω1| − |ω2|
(4.11)

While these equations allow us to predict in what direction and at what
speed the swarm will move, it is challenging to set the parameters in order to

50 GROUP MOTION

hlim

α

γ

β

a

b

t1

t2-tlim
tlim

Figure 4.8: Symbols used to determine the global advancement speed and
direction of the robot trajectories using Eq. 4.5 and 4.6.

achieve a desired command because the parameters (ω1, ω2, t1 and t2) can not be
isolated analytically. The problem can however be simplified by only considering
trajectories where

β =
3
2

π

γ =
π

2

which can be achieved if

t1 =
π

|ω1|
(4.12)

t2 =
π

2 · |ω1|
+

π

2 · |ω2|
(4.13)

leading to trajectories where

vsync =

√
2| v

ω2
− v

ω1
|

t1 + t2
dsync = hlim +

π

4
(4.14)

(4.15)

Thanks to Eq. 4.14 and 4.15, the parameters can easily be modified to modu-
late the global motion direction and speed of the swarm. In particular, the direc-
tion can be changed by modifying hlim. Furthermore, increasing or decreasing
the global speed of each robot can be done by increasing or decreasing the dif-
ference between ω2 and ω1 respectively within the boundaries set by Eq. 4.3 and
Eq. 4.4. Notice that the same approach can be used with β and γ negative.

4.5. VALIDATION 51

4.5 Validation

To validate the synchronization and steering of swarms of robots we perform
in-flight experiments with two to five physical fixed-wing robots described in
section B.2.1. For these experiments, one of the robots was sending beats by
emitting heartbeat messages at an interval of 5 ms during the "on" phase and
no messages during the "off" phase. This was done to increase the robustness of
beat signals to communication failure. In a more economical mode, only on and
off edges would need to be sent.

h
e

a
d

in
g

 s
td

[r
a

d
]

0

π/4

π/2

0 100 200

t
[s]

0 200 400

−100

0

100

200

X

[m]

Y [m
]

Figure 4.9: Demonstration of synchronization on board two real flying robots
in an outdoor experiment. Left: trajectories of the robots. Right: standard
deviation on the robot headings.

The first experiment shown in Fig. 4.9 is aimed at demonstrating that robots
that start with different initial headings will synchronize over time. Parameters
for this experiment are based on Eq. 4.2 with hlim = 5.4 rad ω1 = −0.7 rad/s
and ω2 = −0.1 rad/s with t1 and t2 set following Eq. 4.12 and 4.13 respectively.
Notice how the standard deviation on robot headings rapidly goes down to
nearly zero, thereby indicating synchronization.

Beyond synchronization, we aim at showing that the robot group can be
steered and speed regulated. In particular, we propose three mission goals. In
the first, robots are directed to go towards the North, hlim is then changed, there-
after directing the group to the South (phase II). In the third phase the turn rate
ω2 is changed to slow down the global progression speed of the group. As a
result, Fig. 4.10 shows how the speed and direction of the robots can be changed
while remaining synchronized. Parameters for this experiment are given in Ta-

52 GROUP MOTION

hlim [rad] ω1 [rad/s] ω2 [rad/s]

phase I 5.8 -0.7 -0.1

phase II 2.7 -0.7 -0.1

phase III 2.7 -0.7 -0.3

Table 4.1: Controller parameters used to achieve trajectories shown in Fig.
4.10.

ble 4.1. Notice that because of wind to the South of around 3.5m/s, the desired
speed and direction of the group in not exact with respect to theoretical calcula-
tions. Good synchronization and group steering is however achieved.

0 100 200

t

[s]

h
e

a
d

in
g

 s
td

[r
a

d
]

0

π/4

π/2

−500 0 500

−400

−200

0

200

X
[m]

Y [m
]

phase I phase II

phase III

Figure 4.10: Demonstration of synchronization and steering of two real fly-
ing robots in an outdoor experiment. Left: trajectories of the robots. Right:
standard deviation on the robot headings. Three phases are shown here, in
phase I, the robot group is directed to the North against the wind. In phase
II, robots are directed to turn around and proceed South. Phase III then
shows how the robots can be slowed down. Notice that the robots remain
synchronized throughout the experiment.

Finally, in Fig. 4.11 we show that this method scales to five flying robots. For
this experiment, we propose two mission goals. In the first, robots are directed
to go towards the West, hlim is then changed, thereafter directing the swarm
to the East (phase II). Fig. 4.11 (right) shows the standard deviation on the
heading of the robots which rapidly decreases over time as robots synchronize.
The five trajectories are summarized by their mean which highly resembles the
individual trajectories because all robots are synchronized. In this experiment

4.6. EXTENSIONS 53

wind between 1 m/s and 2 m/s to the North-East was present. Overall, robots
are able to achieve good synchronization and steering. Because of wind and the
dynamics of the robots, which prevent them from rapidly changing their turn
rate, the actual direction performed by the swarm is slightly shifted with respect
to the initial goal. A demonstration of five synchronized robots can be seen in a
video on our website*.

I: 0.77 -0.7 -0.1

−200 0 200

0

100

200

300

0 100 200
0

0.25π

0.5π

t
[s]

h
e

a
d

in
g

 s
td

[r
a

d
]

X

[m]

Y [m
]

II: 3.92 -0.7 -0.1

Figure 4.11: Demonstration of synchronization and steering of five real flying
robots in an outdoor experiment. Left: mean trajectory of the robots. Right:
standard deviation on the robot headings. Two phases are shown here, in
phase I, the robot swarm is directed to the West. In phase II, robots are
directed to turn around and proceed East. Parameters represent hlim, ω1 and
ω2. Notice that the robots remain synchronized throughout the experiment
which is why it is possible to plot such a mean trajectory.

4.6 Extensions

The synchronized steering of swarms of robots can serve as an essential building
block towards deploying multiple flying robots in real-world applications. One
option to extend this behavior consists in implementing an outer-loop respon-
sible for issuing commands for the steering and speed regulation of the robots.
This outer-loop can reactively increase or decrease the speed of the swarm and
make it turn more or less based on sensory input from the robots. As an ex-
ample, we consider a scenario where the swarm must remain connected to a
user on the ground. Each time a robot loses its connection to the user, it records

*http://lis.epfl.ch/smavs

54 GROUP MOTION

its heading and broadcasts a new set of controller parameters to all robots that
make them pursue a global direction opposite from its disconnection heading.
In that manner it becomes the "leader" of the swarm. Results in Fig. 4.12 show
that robots starting from different headings are able to synchronize and move in
groups while remaining connected to the user. Notice that rather than relying
on leaders, swarms could also collectively decide on new controller parameters.

−500 0 500

−500

0

500

X

[m]

Y [m
]

−500 0 500

−500

0

500

X

[m]

−500 0 500

−500

0

500

X

[m]

Figure 4.12: Simulated swarms synchronize and move in groups while re-
maining connected to a user on the ground. The grey area represents the
communication range of the user in (0,0). The figure to the left shows the
starting position and heading of the robots, the center image shows all tra-
jectories over a 30 min trial and the figure to the right shows the end of the
trial and the synchronized heading of the robots.

4.7 Conclusion

By reverse engineering the best evolved controller from Chap. 2, we were able
to identify basic principles governing the coherent motion of groups of robots.

Group motion of fixed-wing platforms can be achieved by synchronizing
the heading of the robots. In this manner, the group can be considered as a
single entity whose motion can be controlled. Rather than relying on complex
controllers based on position, frequent sensing, or memory, we propose basic
principles to modulate the turn rate of robots based on their current heading and
a beat signal received from a user on the ground or a robot. Beats are generated
by sending heartbeat messages using communication. The designed controller

4.7. CONCLUSION 55

has the property of synchronizing the robot headings to the beats, regardless
of their initial headings. Furthermore, it can easily be parameterized to steer a
swarm of robots and change its global speed in a predictable manner. Results are
validated theoretically and using two to five fully autonomous physical flying
robots. Finally, discovered principles are used in an application where robots
must move in groups while remaining connected to a user on the ground.

In the future, efforts should be made to describe our controller in terms of
synchronized oscillators [67,96]. Such a venue would allow for stability proofs,
more formal mathematical models and a large range of extensions based on
different forms of synchronization states found in the literature.

56 GROUP MOTION

5 Area Coverage

57

58 AREA COVERAGE

Abstract

The main contribution of this chapter is the identification of basic principles for
the deployment of robot chains that perform area coverage.

Area coverage is one of the most commonly used behaviors in aerial systems
to search an environment for areas of interest. Current strategies typically rely
on position information to do this. Instead the solution found through evolution
in Chapter 2 focuses on covering the area by forming a chain of synchronized
robots that can move from side to side. Following the systematic approach pro-
posed in this thesis, we reverse engineer a controller that can easily be parame-
terized to obtain a desired area coverage. Controllers are validated in simulation
and in preliminary experiments with 9 flying robots in reality. Principles are
then extended to scenarios where chains perfom more complex behaviors.

This chapter is based on:

• Hauert, S., Zufferey, J.-C. and Floreano, D. (2009) Evolved swarming with-
out positioning information: an application in aerial communication relay.
Autonomous Robots, 26(1) pp. 21-32.

• Hauert, S., Zufferey, J.-C. and Floreano, D. (2009) Reverse-engineering of
Artificially Evolved Controllers for Swarms of Robots. Proceedings of the
IEEE Congress on Evolutionary Computation, pp. 55-61.

5.1. BACKGROUND 59

5.1 Background

Groups of flying robots are often envisaged to rapidly explore large environ-
ments. Several strategies have been devised to search an environment for areas
of interest with applications in the detection of chemical plumes [55,57,77,113], wild
fires [36,66], victims [71] and other targets of interest [4,18,56,88,90,95,111].

The straightforward way to coordinate an exploration task using multiple
flying robots is to divide the environment into regions that will each be as-
signed to a separate robot [36,55,66]. An example involving five fixed-wing robots
was demonstrated outdoors [3]. As an extension, centralized controllers are used
to plan the trajectories of the robots so that the correct robot visits the correct
search areas at the correct time while avoiding collisions. The problem is de-
scribed using mixed-integer linear programming (MILP) that can be solved op-
timally [2,9,84]. One noticeable example of optimal path planning in reality was
conducted outdoor with three fixed wing platforms by Beard et al. [7].

In another approach that is instead distributed, robots use maps to keep a
history of events (position, sensory data, etc.) concerning their neighbors and
themselves. In work by Yang et al. [111], flying robots search for targets in an
unknown and uncertain environment based on the sensor measurements and
position of all the robots in the swarm (evidence). Using this data, robots build
evidential maps based on probabilistic methods and then use these maps to plan
their trajectories so as to maximize their chances of finding the target. In another
method loosely inspired from ants, Parunak et al. [90,104] have robots search for
targets by coordinating their actions through a map containing virtual chemicals
(pheromone). Attractive and repulsive pheromones can be deposited on a map
or withdrawn from it by a robot and its neighbors. Furthermore, pheromone
evaporates over time meaning that it gradually disappears from the map. It can
also diffuse to nearby areas thereby creating a pheromone gradient. Robots fol-
low attractive pheromone gradients to areas of interest in the environment while
depositing repulsive pheromone to prevent robots from monitoring overlapping
areas [56].

Quite similarly to pheromone maps, Peng et al. [80] have been using flying
robots to search an environment by using hormone maps where the attractive
and repulsive pheromones are replaced by activator and inhibitor hormones. Fi-
nally, Lawrence et al. [57] create information energy potentials that capture the

60 AREA COVERAGE

quality of the measurements made by other robots, their energy loss due to mo-
tion and the quality of the ad-hoc network they form. The resulting gradients are
then navigated by the robots to map toxic plumes while maintaining a coherent
communication network to a central processing unit on the ground.

Beyond maps, researchers have been looking at flocking algorithms and ar-
tificial physics to allow robots to create regular grids above an environment by
spacing out with equal distance using attraction and repulsion rules [6,21,24,53,78].

However, the question of how to solve this problem without GPS remains
open. As a solution, previous work performed during this thesis and presented
in Appendix A looked at how robots themselves can replace maps by serving
as a substrate on which information can be deposited and read from using local
communication. In particular we took inspiration from ants foraging for food
to create controllers for flying robots that must search an area for users and
create an ad-hoc network between them. Like in nature, robots decide on where
to go based on the amount of pheromone present in their environment. To
achieve this, robots are separated into two categories, namely "nodes" that form
a physical grid and serve as a substrate for virtual pheromone and "ants" that can
navigate through this grid by reading the pheromone information on the nodes
while depositing pheromone on them (Fig. A.7). Using this pheromone-based
system, robots create dynamic grid structures that reach out from a launching
rescuer in search for a user without the need for global or relative positioning.

However, ant-based controllers were not as simple as those discovered through
evolution and parameters could not be analytically determined. We therefore fo-
cus on reverse engineering evolved controllers for the deployment of chains of
flying robots that can cover a large area by moving from side to side.

5.2 Evolved Behavior

An example showing the behavior of the best evolved controller from Chapter
2 can be seen in Fig. 5.1. The strategy adopted by the swarm consists in form-
ing a tight chain of flying robots which grows as long as additional robots are
launched. Once all robots have been launched, the robot chain shifts along the
communication border of the launching rescuer, sweeping the area from West to
East in search for the second rescuer.

5.2. EVOLVED BEHAVIOR 61

−400 −200 0 200 400
−300

−200

−100

0

100

200

300

400

500

600

700

X
[m]

rescuer

comm

range

search area

rescuer

Figure 5.1: Trajectories of 20 simulated robots with the best evolved con-
troller (over all populations in all generations) performing chain formation
and translation. The trajectory of the first launched robot is shown by a light
grey line.

Through a systematic analysis of the effect of each input of the best evolved
neural controller on the turn rate of the robots, we identify two simple behaviors
performed by the individual robots:

• Robots that are connected to the launching rescuer, even indirectly, move
away from it (Fig. 5.2, low hop values) while loitering.

• Robots that are disconnected from the launching rescuer, move towards it
with a different average turn rate than when connected (Fig. 5.2, high hop
values).

The effect of these communication-based behaviors on the entire group can
be hypothesized as follows. Loitering trajectories allow robots to move slowly,
so as to adapt to the pace at which robots are launched. As a result, each
newly launched robot becomes a new link in a growing chain of robots that
ensures that the swarm remains connected to the launching rescuer (at least
indirectly). The swarm therefore advances in a common direction away from
the launching rescuer. Once all robots have been launched, the chain continues
to advance until it disconnects from the launching rescuer. To reconnect, the
robots change direction and move towards the launching rescuer. Notice that
this "reconnection" behavior is also useful for individual robots that have been

62 AREA COVERAGE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

100m

of hops separating the robot from the launching rescuer

goal

direction

N

EW

S

m
o

ti
o

n

v
e

c
to

r
tr

a
je

c
to

ry

Figure 5.2: Effect of the number of hops which separate the launching res-
cuer from a robot on its trajectory. Here, we plot the trajectories of the best
evolved controller from Chapter 2 over 30 s. Robots were never connected to
the second rescuer during these experiments.

separated from the swarm. The oscillation of the swarm between connections
and disconnections allows the robots to synchronize and translate along the
communication range of the launching rescuer. As seen in the previous chapters,
translation is due to the different turn rates performed by the robots depending
on heading and communication input.

5.3 Reverse Engineered Controller

We translate behaviors observed in the best evolved solution into communication-
based controllers for flying robots. As previously, we simplify the strategy found
through evolution by only considering if a robot is receiving messages from the
rescuers (i.e., whether it is connected to the rescuers rather the number of hops
separating it from the rescuers).

Based on the individual robot motions presented in the previous chapter we
consider controllers of the following form:

ω(h, c) =

ωω1,ω2,haway(h) if c = 1 (connected)

ωω3,ω4,htowards
(h) if c = 0 (disconnected)

(5.1)

5.4. MODEL 63

Where haway is the heading limit that will make the robots navigate away from
the launching rescuer. Likewise, htowards is the heading limit that will produce
trajectories where robots go towards the launching rescuer.

5.4 Model

We aim at quantifying the area coverage achieved by a swarm for a given set
of controller parameters. Models of area coverage can then be used to rapidly
optimize parameters for a desired scenario which is important for real-world
applications.

Our model considers the maximum length l of the robot chain that extends
from the launching rescuer and the width w of the area covered due to the chain
translating along the communication border of the launching rescuer. Missions
have a duration tmission and N robots are launched at a rate of 1 every ∆tlaunch

seconds. The area coverage is then given by the rectangular area of size l x w.

Chain extension During chain formation, N robots are launched at a rate of
1 every tlaunch seconds. Each robot performs the same controller ωω1,ω2,haway(h)
when connected to the launching rescuer. This controller generates trajecto-
ries with global advancement speed v analyzed in Eq. 3.3 in the chapter on
individual robot motions (Sec. 3.4). Therefore, the length l of the chain can be
approximated as the distance covered by a newly launched robot with global ad-
vancement speed v before a new robot is launched, times the number of robots.
This leads to:

l = v · ∆tlaunch · N (5.2)

If the robots advance too fast, they will disconnect from the launching rescuer
before a new robot has been launched. Because of their controller, these robots
then turn around to reconnect. The maximum distance that separates two robots
can then be approximated by the communication range rcom of the launching
rescuer such that:

l = min(N · v · ∆tlaunch, N · rcom) (5.3)

64 AREA COVERAGE

Finally, considering that the chain will navigate to the edge of the communica-
tion range of the rescuer, the maximum reach of the chain can be given as:

l = min(N · v · ∆tlaunch, N · rcom) + rcom (5.4)

Chain translation Once the chain has navigated to the communication border of
the launching rescuer, it will oscillate between being connected to and discon-
nected from it. This beat will synchronize the robots as shown in Chapter 4. We
can therefore model the synchronized chain as a single robot. The translation
speed vcom of a robot along the communication border of a user was analyzed
in Eq. 3.9 in the chapter on individual robot motions (Sec. 3.4). Therefore, the
width w that the chain translates along the communication range of the launch-
ing rescuer for a mission of duration tmission is given by the global translation
speed of a robot times the duration of the mission once the chain has deployed.
This leads to:

w = vcom · (tmission − tchain) (5.5)

where

tchain = N · ∆tlaunch +
rcom

v
(5.6)

5.5 Validation

Experiments are run in a realistic event-based simulator which implements 802.11-
b communication models, physics-based wave propagation and a first order
model of a robot platform which flies at 10 m/s, has a minimum turn radius
of 10 m and is affected by sensor and actuator noise as described in Appendix
B.1.2.

In the evolved scenario, area coverage is limited by the range of the launching
rescuer. To fully explore the possibilities of area coverage we consider a scenario
where rescuers arriving by road, deposit several wireless beacons along the way
at a small enough interval for the beacons to be directly or indirectly intercon-
nected. Here, beacons with a communication range of 100 m are dropped from
a rescue vehicle, every 50 m, along a straight road which extends from West to

5.5. VALIDATION 65

East (Fig. 5.3). A rescuer will then sequentially launch 20 robots every 15±7.5 s
by throwing them into the air from the West-most beacon. Notice that robots
connected to beacons are also connected to the launching rescuer (indirectly).
The swarm must then cover an area l x w to the North of the launching rescuer
during a mission of 30 min.

w

beacons

l

Figure 5.3: The swarm composed of 20 robots must cover an area of l x w to
the North of the launching rescuer. The beacons that extend the range of the
launching rescuer have a communication range of 100 m and are positioned
every 50 m along a straight road. Robots are launched from the West-most
beacon.

As a first step, Figure 5.4 shows that the communication-based controller
described in Eq. 5.1 effectively leads to chain extension and translation.

The area coverage model is then used to quickly adapt swarm controllers
to new scenarios. In particular, we determine optimal parameters ω1, ω2, ω3

and ω4 so as to achieve desired area coverages l x w. The remainder of the
parameters are set by the scenario specifications (here haway = π and htowards =
0). To optimize the parameters, we compute the summed square error e =
(l − lpred)2 + (w− wpred)2 for each combination of r1, r2, r3, r4 in the range of
natural numbers from rmin to rmax with the constraint that r1 < r2 and r3 < r4.
Here ri corresponds to the turn radius performed by a robot when applying
turn rate ωi with ωi = v/ri and v is the speed of the robot. The value of
rmin reflects the smallest possible radius performed by the robot, in this case 10
m. To ensure that the turn radius of the robot remains small with respect to

66 AREA COVERAGE

chain extension chain translation

Figure 5.4: Trajectories of all the robots performing chain extension and
translation in simulation. The trajectory of the first launched robot is shown
by a light grey line.

the communication range, we define the maximum turn radius as equal to 25
m. The combination of parameters with the smallest error e is selected as the
optimized parameter set. We test our approach on five different coverages with
the corresponding parameters listed in Table 5.1. Fig. 5.5 shows the distances
lsim and wsim reached in simulation for each desired area coverage. As can be
seen, the optimized robot controllers are successful since the simulated swarms
are able to achieve the desired area coverages. Small shifts between the desired
and obtained coverages are due to the fact that the time needed for the robots
to synchronize and stabilize their trajectories is not taken into account in the
model.

l x w r1 r2 r3 r4

[m x m] [m] [m] [m] [m]
250 x 500 11 13 12 15

500 x 750 14 22 23 24

500 x 500 16 25 23 25

750 x 500 10 21 10 25

500 x 250 14 22 16 22

Table 5.1: Optimized parameters for varying area coverages l x w

5.6. EXTENSIONS 67

l

Figure 5.5: Chain length lsim and sweep translation wsim along the communi-
cation range of the launching rescuer (Fig. 5.3) reached in simulation by the
swarm over 100 trials for desired area coverages of 250 m x 500 m, 500 m x
500 m, 750 m x 500 m, 500 m x 250 m and 500 m x 750 m. For each of the five
desired area coverages, we plot the mean coverage obtained in simulation
with a point and the standard deviations as bars extending from this point.

Finally, Fig. 5.6 (left) shows preliminary results with 9 real flying robots
launched every 5 s around the position (0,0). Robots run controllers described
in Eq. 5.1 with controller parameters ω1 = 0.7, ω2 = 0.4, ω3 = 0.25, ω4 = 0.1,
haway = 2.0, htowards = 2.0 + π. Notice that the robots start by forming a chain to
the north until all robots disconnect from the launching rescuer. At which point
the robots start translating to the left.

5.6 Extensions

Behaviors related to area coverage can be extended to a variety of scenarios that
could be useful in real-world applications. In particular, controller parameters
could easily be changed during a mission to reverse the translation direction of
the chain or redeploy the chain to the opposite side of the launching rescuer.
One such mission is shown in Fig. 5.7.

Likewise, parameters haway and htowards could be adapted during a mission
to better follow the curvature of the communication border of the launching
rescuer. Indeed robots sensing connections and disconnections while loitering

68 AREA COVERAGE

−600 −400 −200 0 200 400 600
−200

0

200

400

600

800

1000

X
[m]

Y [m
]

mean trajectory

launching

rescuer

chain extension

chain translation

Figure 5.6: Preliminary results with 9 real flying robots showing chain ex-
tension and translation. The line in bold shows the mean trajectory of the
robots.

could produce statistics on the predicted direction of the launching rescuer and
use that to change parameters accordingly.

5.7 Conclusion

By reverse engineering the best evolved controller from Chapter 2, we were able
to identify basic principles to cover an area using a group of robots. Discov-
ered controllers do not use position information and are suitable for fixed-wing
robots.

More precisely, controllers build on individual robot motions discovered in
Chapter 3 and group motions discovered in Chapter 4. When launched sequen-

5.7. CONCLUSION 69

...

−100 0 100 200 300
−600

−400

−200

0

200

400

600

X

[m]

Y [m
]

Figure 5.7: Trajectories of all the robots performing chain extension and
translation in simulation. The trajectory of the first launched robot is shown
by a light grey line. The entire trial lasts 30 min. After 15 min, the controller
parameters are changed to make the robots translate along the opposite side
of the launching rescuer.

tially from a user on the ground, robots deploy in a common direction to form
a chain. Chains eventually disconnect from the launcher and start oscillating
between being connected to and disconnected from it. This generates a beat on
which robots can synchronize their heading to move in coherent groups. Syn-
chronized chains then translate along the communication border of the launcher,
thereby deterministically covering an area of predictable size. Controllers and
area coverage predictions are validated for a variety of scenarios demonstrated
in simulation and with preliminary results using 9 physical robots. Discovered
controllers are then extended to scenarios where chains can change their deploy-
ment direction during a mission.

70 AREA COVERAGE

6 Communication Relay

71

72 COMMUNICATION RELAY

Abstract

The main contribution of this chapter is the identification of principles to main-
tain and improve communication relays using flying robots.

Swarms of aerial robots can be used to relay wireless messages between users
who are not within direct communication range. The placement of these robots
in the environment affects the amount of messages they relay. By reacting to re-
ceived messages, robots can close the loop between motion and communication.
Following the systematic approach proposed in this thesis, we reverse engineer a
controller that allows robots that are in a good position for wireless relay to circle
while other robots continue to move until a better location is found. Discovered
behaviors are then validated in simulation and in preliminary experiments out-
doors with 10 flying robots. Behaviors are finally extended to scenarios where
robots are able to reposition themselves so as to largely improve the throughput
and lower the latency of a simulated wireless relay between two users.

This chapter is based on:

• Hauert, S., Zufferey, J.-C. and Floreano, D. (2009) Evolved swarming with-
out positioning information: an application in aerial communication relay.
Autonomous Robots, 26(1) pp. 21-32. d

6.1. BACKGROUND 73

6.1 Background

In communication relay applications, people equipped with wireless devices are
unable to directly transmit packets to one another because they are not within
transmission range. Instead they must communicate via a network of wireless
relay nodes capable of forwarding a packet to its final destination.

Robotic relay nodes are interesting because they can rapidly be positioned in
novel environments in an autonomous manner [99]. Furthermore, robots have the
possibility to continuously move so as to improve the performance of the com-
munication relay [19,41] for example by changing the topology of the network [81].

In current research, aerial robotic relay nodes are typically positioned at equal
distance from one another [53,94]. However, deployments based on the geomet-
rical position of robots usually do not translate to a good performance of the
communication relay since the quality of wireless transmissions is highly de-
pendent on the environment (e.g. weather, terrain).

Interesting work by Dixon et al. [27] has been looking to have robots posi-
tion themselves in an environment based on the signal-to-noise ratio (SNR) of
transmissions from neighboring robots and ground users rather the geometrical
position. Using this information, they were able to optimize a relay between
two ground users in reality by having a robot navigate SNR gradients to optimal
positions [35]. SNR information however suffers shortcomings described in the
Sec. 3.1.

Instead, we look to improve communication by having robots move follow-
ing communication-based behaviors that directly reflect the quality of the relay
which they serve.

6.2 Evolved Behavior

In the best evolved strategy from Chapter 2, robots that are connected to both
the launching rescuer and a second rescuer in the environment turn with the
highest possible turn rate so as to maintain the communication link active as
shown in Fig. 6.1.

However, robots are typically not immediately in positions that allow them
to continuously relay packets between the two rescuers. Instead when discon-
nected from the second rescuer, robots continue performing area coverage de-

74 COMMUNICATION RELAY

scribed in Chapter 5. This oscillation between performing area coverage and
communication relay persists until the robots are stably connected to the two
rescuers.

−400 −200 0 200 400
−300

−200

−100

0

100

200

300

400

500

600

700

X
[m]

communication relay

rescuer

comm

range

rescuer

Figure 6.1: 20 robots in simulation with the best evolved controller perform-
ing a communication relay between two rescuers by turning with the highest
possible turn rate.

6.3 Reverse Engineered Controller

Communication-based controllers capturing the behavior found through evolu-
tion simply display their maximum turn rate ωmax when connected to both the
launching rescuer (clr = 1) and the second rescuer (csr = 1). When disconnected
from either rescuers, the robot continues to perform area coverage as given in
the controller below:

ω(h, clr, csr) =

ωω1,ω2,haway(h) if clr

∧¬csr

ωω3,ω4,htowards
(h) if ¬clr

ωmax if clr
∧

csrotherwise

(6.1)

6.4. MODEL 75

6.4 Model

The behavioral analysis presented here stems from the fact that robots stabilize
their trajectories only when fully connected to both rescuers, at which point they
will turn on the spot. Any other connection configuration will lead to robots
performing alternative behaviors, which will push the robot to change position
until a stable connection is found. This amounts to a local search behavior.

One simple example of this phenomenon is shown in Fig. 6.2. Assuming
there is an area where a robot is connected to both rescuers (grey zone) we can
see that any trajectory starting from outside this area will converge to a stable
circling behavior within the connection area given the controller described in Eq.
6.1.

400 600 800 1000 1200 1400

−200

−100

0

100

200

X

[m]

Y [m
]

connected

disconnected

Figure 6.2: Simulated robots with controller parameters ω1 = 0.5, ω2 = 0.3,
ωmax = 0.7, haway = π and htowards = 0 are launched from the different points
marked by a full black circle. Over time, robot trajectories converge to the
connection area marked in grey.

6.5 Validation

As in the previous chapter, experiments are run in a realistic event-based simu-
lator that is described in Appendix B.1.2.

Fig. 6.3 shows the behavior of 20 robots converging to a stable position for
communication relay in simulation.

Moreover, we aim at quantifying the quality of the communication between
the two rescuers. To do so, we consider a swarm designed to cover an area of

76 COMMUNICATION RELAY

......

0 100 200 300 400

0

100

200

300

400

500

600

X
[m]

Y [m
]

communication relay

last 2 min

0 100 200 300 400

0

100

200

300

400

500

600

X
[m]

Y [m
]

communication relay

30 min

Figure 6.3: Simulated trajectories of all the flying robots during a 30 min
trial. The user is located in (400, 400). The trajectory of the first launched
flying robot is shown by a light grey line. Notice the behavior of robots once
the connection has been established between the two rescuers.

500 m x 500 m in which the second rescuer is randomly positioned over a 30
min trial. Once a connection between the two rescuers is established, the prob-
ability of the second rescuer receiving a data packet sent every second from the
launching rescuer is given in Fig. 6.4. Results show that the median probability
is of 81% which is sufficient to achieve usable communication networks. The
probability is not maximal because it takes time for robots to create a stable con-
nection. Finally, although sometimes intermittent, the communication links are
maintained in 100% of the cases to the end of the trial durations.

Finally, Fig. 6.5 shows preliminary results with 10 real flying robots. Robots
run controllers described in Eq. 6.1 with controller parameter ω1 = 0.7, ω2 =
0.25, ω3 = 0.3, ω4 = 0.2, ωmax = 0.7, haway = 2.8, htowards = 2.8 + π. As can be
seen, the robots are able to receive and relay messages from both rescuers.

6.6 Extensions

The basic principle behind the communication relay developed so far is that
robots that are useful for communication should try to remain at their current

6.6. EXTENSIONS 77

Figure 6.4: Probability of transmitting a data packet between the two res-
cuers, when tested in simulation over 100 trials with users randomly posi-
tioned in a 500 m x 500 m area as shown in Fig. A.1. Data packets are only
sent after the swarm has created a first connection from the two rescuers.
The box has lines at the lower quartile, median, and upper quartile values.
The whiskers extend to the farthest data points that are within 1.5 times the
interquartile range. + symbols denote outliers.

−1000 −500 0

−200

0

200

400

600

800

X

[m]

Y [m
]

launching

rescuer

second

rescuer

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

t
[min]

p
ro

b
a

b
ili

ty
 o

f
re

c
e

iv
in

g

a
 m

e
s
s
a

g
e

launching rescuer

second rescuer

Figure 6.5: Preliminary results with 10 real flying robots showing commu-
nication relay. Left: trajectory of the robots circling during the last minute
of the trial. Right: probability of receiving a message from the launching
rescuer and from the second rescuer averaged over all the robots.

position while other robots should search for a better position. This idea can be
extended to a variety of communication relay scenarios by either changing the
definition of "usefulness" or changing the manner in which robots search for a
better position.

78 COMMUNICATION RELAY

As an example we focus on a simulated scenario in which a swarm of 20
flying robots cooperatively improve the throughput and latency of the wireless
network they form between two rescuers positioned 500 m apart at positions
(0,0) and (0, 500). Initially, the robots are randomly distributed in the environ-
ment within a rectangle of 500 m x 200 m delimited by coordinates (-100, 0),
(100, 0), (100, 500), (-100, 500). Rescuers and robots have a communication range
of approximately 100 m. Only robot placements which allow for the relay (at
least intermittently) of messages between the two rescuers are considered. From
the start of the scenario, rescuers talk to each other using voice over IP (VOIP)
for a duration of 15 minutes which is the length of the trial.

More specifically, VOIP uses the G.711 codec to encode the audio as 160 byte
messages to be sent every 20 ms by each user. An additional 40 byte payload is
added for the header and 5 bytes that include additional information are piggy-
backed to the message. As a result, messages of 205 bytes are sent by each
rescuer. Successful wireless relay leads to 80 kbps received by each rescuer or a
total of 160 kbps over the entire network. If only the audio data is considered to
compute the throughput, then 125 kbps are relayed over the network.

Robots are able to detect if they are "useful" to the wireless network by mea-
suring the number of messages they relay over a predefined time window of
duration ∆twin while positioned on the shortest path between users. This mea-
sure of "usefulness" directly reflects the throughput (relay rate) and latency (hop
count) capabilities of the network. Robots then compare their "usefulness" u to
the average "usefulness" of neighboring robots u. Robots for which u < c · u
reposition themselves in the environment. Here c is a predetermined constant
which determines when a robot is not deemed useful for the network with re-
spect to its neighbors.

By default, robots turn with the highest possible turn rate. When they detect
that they are not useful for the wireless relay, they navigate throughout the
network by performing straight lines until disconnected from the swarm and
then spiraling to reconnect. Using this strategy, robots zig-zag throughout the
network and reposition themselves so as to maximize the communication relay
as shown in Fig. 6.6.

Furthermore, the throughput and latency of the network over a trial of 15
minutes and averaged over 100 trials can be seen in Fig. 6.7. The throughput
here is defined by the added amount of audio data received by the two users over

6.7. CONCLUSION 79

start position
trajectories over

a 15 minutes trial
trajectories during

the last 2 minutes

−200 0 200
−300

−100

100

300

500

700

Y [m
]

X
[m]

rescuer

communication

range

−200 0 200 −200 0 200

rescuer

Figure 6.6: Trajectories of the 20 simulated flying robots over an entire trial
duration of 15 min.

1 s. Notice that initially, the robots are randomly distributed in the environment
and provide poor relay performance. As a baseline we show the performance of
the system when the robots never change their position (c = 0). On the other
hand, with c = 0.7 and ∆twin = 2π (the time it takes a robot to perform a full
revolution when considering a turn rate of 1 rad/s) the throughput is improved
up to nearly the maximum value of 125 kbps and the latency is reduced by
nearly one hop.

0 5 10 15
0

25

50

75

100

125

time
[min]

b
a

n
d

w
id

th
[K

b
p

s
]

c = 0.7

c = 0

0 5 10 15
6.5

7

7.5

8

time
[min]

la
te

n
c
y

[h
o

p
s
]

c = 0.7

c = 0

Figure 6.7: Mean network throughput and latency over 100 trials of 15 min
in simulation.

6.7 Conclusion

By reverse engineering the best evolved controller from Chapter 2, we were able
to identify basic principles to maintain and improve communication relays using
flying robots.

80 COMMUNICATION RELAY

In the evolved solution, robots are used to relay wireless messages between
two users who are not directly within communication range. As an advantage,
robots can autonomously move in their environment and in doing so, improve
the performance of the wireless relay which they serve. Discovered principles
are based on the fact that robots should remain on the spot when they are re-
ceiving messages from both users since they are in a useful position to relay
messages. To remain on the spot, robots adopt the highest possible turn rate.
However, before being stably connected to both users, robots oscillate between
turning on the spot and searching the environment. As seen in Chapter 5, search
behaviors can be performed by deterministically covering an area. Overtime,
robots converge to a position in the network that allows for stable communica-
tion.

Controllers for communication relay are validated in simulation and with
preliminary results using 10 physical robots. Discovered controllers are then
extended to a simulated scenario in which 20 robots must maintain a commu-
nication network between two users in the environment conversing using voice
over IP. Robots detect if they are useful for the communication relay and search
for a better position otherwise. Results show that robots are able to optimize the
throughput and latency of communication relay.

7 Coping with Wind

81

82 COPING WITH WIND

Abstract

The main contribution of this chapter is the identification of principles to
mitigate the effect of wind on flying robots.

Controllers discovered in Chapter 2 were evolved in a simplified simulator
without wind. Models developed throughout this thesis can be expanded to
predict the effect of wind on the swarm when its direction and speed is known.
However, unknown wind sources can lead robots to be pushed away from users
on the ground which would cause them to get lost in a positionless system. To
mitigate this effect we propose to extend individual robot motions discovered in
Chapter 3 to allow robots to compensate for displacements due to wind. Rather
than applying fixed turn rates, robots perform spiral trajectories that can expand
in all directions at constant speed. The motion is modeled to determine the max-
imum amount of wind it can withstand in an application aimed at maintaining
a flying robot within the communication range of a user (leashing). Experiments
in theory and reality with a single flying robot show successful leashing in the
case of wind or other sources of displacement such as mobile users.

This chapter is based on:

• Hauert, S., Leven, S., Zufferey, J.-C. and Floreano, D. (2010) Communication-
based Leashing of Real Flying Robots. Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 15-20.

7.1. BACKGROUND 83

7.1 Background

To demonstrate challenges related to noisy environments on the deployment of
communication-based controllers for flying robots, we focus on a simple scenario
where robots are required to remain leashed to a user on the ground in situa-
tions with wind, unreliable communication or mobile users. Ensuring wireless
communication between a flying robot and a user is an intrinsic requirement to
receive commands, transmit sensor data or relay information [6,27,35,53,56]. Leash-
ing can also be used as a safety mechanism to ensure that a robot does not get
lost by flying too far away from the user. This is especially interesting for testing
new research algorithms on a robot or for learning how to pilot.

Previous research aimed at maintaining a flying robot within communication
range of a user by setting a predetermined limit to the distance from the user
at which the robot can fly [6,94]. However, distance has been shown to correlate
poorly with the quality of successful radio transmissions because the propaga-
tion of radio signals depends on the environment (weather, reflections, interfer-
ences) [54].

Instead, we aim at developing a generic controller that allows fixed-wing
robots to mitigate the effect of wind without the need for any position informa-
tion.

7.2 Method

Following behaviors presented in Section 3.6, we propose a simple communication-
based controller whereby a robot can move freely as long as it is connected to a
user on the ground, and is pulled back towards the user when the extent of the
leash has been reached (disconnected) as shown in Fig. 7.1. Similar controllers
have been proposed in the past for ground robots [73].

The manner in which the leashing is performed highly depends on the dy-
namics of the platform and the noise present in the environment. Real-life con-
ditions are such that there are often disturbing relative displacements between
the user and robot due to wind, noisy communication or mobility. The most
obvious reconnection behavior would be to have the robot turn-around by per-
forming a circular trajectory with a constant turn rate as proposed in certain

84 COPING WITH WIND

reconnect

perform task S
robot

control

communication

quality

< threshold

Figure 7.1: Communication-based leashing controller for a robot using the
subsumption architecture [12]. Here, the reconnection behavior takes priority
over the robot’s task when the communication quality is too low.

previous communication-based behaviors (Sec. 3.6). However, in the case of
wind, the robot might be continuously pushed away from the user (Fig. 7.2).

user

w
in

d

communication

range

circular trajectory

logarithmic

spiral trajectory

Figure 7.2: The effect of wind on the theoretical trajectory of a robot per-
forming a circular trajectory and a logarithmic spiral. Notice that the robot
performing the spiral is able to reconnect to the user while the one perform-
ing a circular trajectory drifts away.

To counter this effect, we propose to use logarithmic spirals as reconnection
trajectories. Indeed, by expanding these spirals can compensate for displace-
ments between the user and robot. As an example, Fig. 7.3 shows how a robot
following a spiral trajectory will behave with strong wind in different directions.
Rather than being pushed away from the spiral starting point, the robot remains
anchored. Other spirals such as Archimedean curves have been studied in the
literature as random search patterns for robots [48]. However, these spirals are
not able to compensate a constant amount of wind in all directions and are thus
unsuited as a reconnection trajectory.

We propose to theoretically determine the parameters of the spiral to be per-
formed by the flying robot and the amount of wind that it can tolerate. The

7.2. METHOD 85

spiral start

wind direction

a b c

Figure 7.3: The theoretical trajectory of a robot performing a logarithmic spi-
ral when no wind is present (a) or under the influence of wind to the South
(b) or North (c). Notice that the spirals remain anchored to one position
rather than drift away.

θ
0

r dθ

v dtdr

v

r

θ
0+2π

θ

ψ

Figure 7.4: Theoretical logarithmic spiral trajectory where θ is the angle and
r is the distance traveled from its origin. θ0 is the angle at which the robot
starts its trajectory and v is the speed of the robot.

theoretical wind tolerance vwind is measured by the spiral expansion, which is
defined as the distance between two points on the spiral which are spaced by
∆θ = 2π divided by the time t(θ) needed for traveling between these points (Fig.
7.4). Starting from the polar equation of a logarithmic spiral with coefficients a
and b and symbols defined in Fig. 7.4,

86 COPING WITH WIND

r(θ) = a · ebθ , (7.1)

we can define the wind tolerance of the spiral as being

vwind =
r(θ0 + 2π)− r(θ0)
t(θ0 + 2π)− t(θ0)

. (7.2)

To solve this equation, we need to determine t(θ). Considering the local rela-
tionship of spiral variables (Fig. 7.4), we derive with Eq. 7.1

tanψ =
dr

r · dθ
= b (7.3)

r · dθ = v · cosψ · dt . (7.4)

For the general initial condition of a logarithmic spiral, t = 0 s ⇒ θ = −∞, we
obtain by integration of Eq. 7.4

a
b
· ebθ = v · cosψ · t , (7.5)

leading to

t(θ) =
a
b
· ebθ

v · cosψ
, (7.6)

with Eq. 7.3 we obtain

cosψ =
1√

1 + tan2ψ
=

1√
1 + b2

, (7.7)

and finally, based on Eq. 7.1, 7.2, 7.6 and 7.7 we find

vwind =
b · v√
1 + b2

. (7.8)

Theoretically, one could parameterize the spiral with a large b, resulting in a
tolerance to wind speeds near the speed of the robot. However, large values of b
lead to spirals that take too long to perform and could be too big to allow for a
reconnection to the user (Fig. 7.5). For this reason, we impose that the distance
between the initial point at which the robot starts the spiral at θ0 and the point
at θ0 + 2π be equal to the communication range of the user rcom. This condition
ensures that the robot is not more than 2 · rcom away from its disconnection

7.2. METHOD 87

user

rcom

Figure 7.5: The size of the spiral is constrained by the communication range
of the user rcom to avoid that the reconnection behavior fails, as shown here.

point, even if wind is displacing the robot by rcom between t(θ0) and t(θ0 + 2π).
Therefore, the parameter b must satisfy the condition

rcom = r(θ0 + 2π)− r(θ0) (7.9)

= a · ebθ0 · (e2bπ − 1) . (7.10)

To solve this equation, we first need to obtain the initial condition θ0, which is
given by the maximum turn rate ω0 of the considered platform. Based on Eq.
7.6 we derive

θ(t) =
1
b
· ln
(

b
a
· v · cosψ · t

)
(7.11)

such that

dθ

dt
= ω =

1
b · t ⇒ ω0 =

1
b · t0

. (7.12)

Then, using Eq. 7.7, 7.11 and 7.12 we obtain

θ0 =
1
b
· ln
(

v
a ·ω0 ·

√
1 + b2

)
. (7.13)

This yields with Eq. 7.10

rcom =
v · (e2bπ − 1)
w0 ·
√

1 + b2
, (7.14)

which must be solved numerically for b.

88 COPING WITH WIND

Given the time ts that elapsed since the robot started the spiral at t0, and the
maximum turn rate w0 of the robot, we can define a turn rate controller for the
robot as:

ω(ts) =
1

b · (t0 + ts)
(7.15)

where, using Eq. 7.12,

t0 =
1

ω0 · b
. (7.16)

Using these theoretical developments, each robot controller is designed for
a regime that describes the conditions for which the behavior will function. In
particular, the regime here is described as the minimum communication range
of the user and maximum amount of wind in the environment. Note that, the
faster the robot and the larger the communication range of the user, the higher
the wind tolerance. While the focus here has been on wind, other sources of
displacements such as a moving user or noisy communication can directly be
addressed in the same manner.

7.3 Results

We hereby show the parameterization of robot controllers and their use to leash
robots to a user in reality. We progress by first identifying the minimal com-
munication range of the user. We then use it to parameterize the reconnection
behavior (by setting b of the spiral in Eq. 7.1) and identify the amount of wind
the behavior can tolerate. Within this regime, we then demonstrate that the
robot is able to remain leashed to the user over long periods of time and even
in different locations than where the communication was characterized. This is
demonstrated in scenarios with noisy communication, wind and a mobile user.

There are many different approaches to estimating the minimum communi-
cation range of the user. This can be done by making a conservative guess based
on knowledge of the radio module, or by relying directly on the value given in
the data-sheet. Because of changes made to our radio module driver, we chose
to characterize the radio environment experimentally. This was done using a
flying robot that followed the predefined pattern shown in Fig. 7.6 (top) so as to
cover a sufficiently large area around the user. Every 50 ms, the robot recorded

7.3. RESULTS 89

the number of messages it received from the user and its position. The area was
then segmented into bins of 10 m x 10 m and the average number of messages
received per bin over 3 separate flights was recorded. Only bins over which the
robot navigated were considered for statistics. We then plot the median, mini-
mum and maximum number of messages recorded by the bins as a function of
distance. As shown in Fig. 7.6 (bottom), the minimum communication range
for our experiments equals 135 m and corresponds to the first bin with a mes-
sage rate of zero. This is thought to be a very conservative estimate since most
messages are still transmitted for greater distances.

Using Eq. 7.14, we calculated b = 0.3732. The resulting controller can thus
resist relative displacements up to a speed of 4.1957 m/s (Eq. 7.8). These con-
straints define the regime in which we use our controller for the remaining ex-
periments.

Fig. 7.7 shows the trajectory of our aircraft performing autonomous commun-
ication-based leashing. During an entire 20 min flight, the robot was successful
at spiraling towards the user when disconnected*. All of the 137 disconnections
were successfully countered even though wind between 0.5 m/s and 2.4 m/s
was present. Interestingly, there is an unusual point in (-10 m, 150 m) where the
robot does not receive messages. This point was situated exactly above the only
house within that experiment environment. Abrupt changes in the communica-
tion landscape have the same effect as a relative displacement of the robot with
respect to the user and therefore need to be mitigated by the logarithmic spiral
trajectories. Overall, disconnections from the user have a median value of 0.8
seconds (Fig. 7.8). Long disconnections of up to 26 seconds were recorded on
rare occasions, followed by successful reconnections.

Moreover, it is interesting to see the large range of disconnection distances
which is between 120 m and 258 m, further backing the case that one can not rely
on distance to predict communication quality. In addition, the median communi-
cation radius is around 180 m which is, as expected, larger than our conservative
measurement of 135 m.

Finally, to show that logarithmic spirals can be used to mitigate the effect of
different sources of environmental noise, we present a scenario where an addi-

*Robots are considered disconnected as soon as they stop receiving messages and are consid-
ered reconnected when the number of messages received during 50 ms, low-pass filtered with a
time constant of 2 s, surpasses 5 (10 being the maximum).

90 COPING WITH WIND

−200 0 200

−300

−200

−100

0

100

200

300

Y
 [
m

]

X [m]

0 50 100 150 200 250
0

2

4

6

8

10

12

n
u

m
b

e
r

o
f
m

e
s
s
a

g
e

s

re
c
e

iv
e

d
 b

y
 t
h

e
 r

o
b

o
t

distance from user [m]

conservative

communication

range of 135m

Figure 7.6: Characterization of the communication between the user (star)
and a real flying robot. The top graph shows the trajectory of the robot
performing the characterization. The bottom graph shows the minimum,
median and maximum number of messages received by the robot over 50
ms as a function of distance from the user.

tional displacement is caused by a mobile user. Fig. 7.9 presents the trajectory of
the robot when the user moves for 9 min along a road at a speed of 1 m/s with
front wind between 1.1 and 1.8 m/s. As before, the robot was able to mitigate
disconnections and therefore follow the user.

7.4. CONCLUSION 91

0.5 m/s

2.4 m/swind

progression

Y
 [
m

]

X [m]

−300 −200 −100 0 100 200 300
−300

−200

−100

0

100

200

300

Figure 7.7: 20 min trajectory of a real flying robot leashed to a user (star)
in an outdoor experiment. Here the robot flies at constant speed and 70 m
altitude. Light grey lines indicate sections of the trajectory where the robot
is reconnecting using the spiraling behavior while black lines indicate that
the robot is performing its assigned task, in this case, straight flight.

0

5

10

15

20

25

d
is

c
o

n
n

e
c
ti
o

n
 d

u
ra

ti
o

n
 [
s

]

150

200

250

d
is

c
o

n
n

e
c
ti
o

n
 d

is
ta

n
c
e

 [
m

]

Figure 7.8: Boxplot showing the duration of disconnections between a real
flying robot and a static user and the 2D distance from the user at which
they occur over 137 samples.

7.4 Conclusion

By extending individual robot motions discovered in Chapter 3, we are able to
mitigate unwanted robot displacements due to wind.

92 COPING WITH WIND

−400 −200 0 200 400
−800

−600

−400

−200

0

200

X [m]

Y
 [
m

]

1.1 m/s

1.8 m/s
wind

progression

Figure 7.9: 9 min trajectory of a real flying robot leashed to a user (star)
moving to the South at 1 m/s along a road in an outdoor experiment with
wind pushing the robot to the North-East at a speed between 1.1 m/s and
1.8 m/s. Here the robot flies at constant speed and 70 m altitude.

More precisely, we identify logarithmic spiral trajectories as a suitable motion
for fixed-wing robots because it is able to expand in all directions at a constant
speed. The speed with which the spiral expands determines its wind resistance.
Because of this property, spirals can easily be parameterized for a variety of
situations.

Developed controllers are validated in reality using a single flying robot in
a scenario aimed at maintaining a robot within the communication range of a
user on the ground. Experiments are conducted in the case of moderate wind
and mobile users.

In the future, spiral motions can be added as a safety mechanism to allow lost
robots to reconnect to the swarm. Furthermore, it is worth exploring whether
spiral trajectories can systematically be envisaged as a replacement for fixed turn
rates in behaviors developed throughout this thesis.

8 Conclusion

8.1 Achievements

Swarms of flying robots have the potential to serve tomorrow’s real-world appli-
cations. Their main advantage resides in being above obstacles, which makes it
easier to rapidly overcome difficult terrain, provides an aerial perspective of the
world and enables line-of-sight communication. However, aerial swarms have to
this day only been demonstrated in simulation or in limited numbers in reality.

To bridge this reality gap, we identify two key challenges that need to be
addressed. The first considers how to alleviate the need for global or relative
position information for robots. Most swarm controllers rely on unreasonable
assumptions concerning the capacity of robots to precisely determine their po-
sition. Furthermore, position sensors such as GPS, cameras and other range and
bearing sensors result in robots becoming complicated, expensive, and unusable
in certain environments that are for example deprived from GPS or from light.
Instead, positionless robot controllers could be used in a large variety of envi-
ronments on minimal platforms such as those developed during this project.

The second challenge considers how to harness the motion constraints of
fixed-wing robots. Indeed, most literature on aerial swarming considers robots
as omnidirectional vehicles that can stop and turn on the spot like ground robots
or rotorcrafts. Instead, fixed-wing platforms are required to fly at relatively high
speeds to avoid stalling. Slowing down their trajectory can therefore only be
done by continuously turning. The minimum radius with which they can turn
is bounded, meaning they can not turn on the spot.

To address these challenges, we propose to use communication rather than
position as the main sensory input. Conveniently, flying robots are usually

93

94 CONCLUSION

equipped with off-the-shelf radio modules that are low-cost, light-weight, and
relatively long-range. Communication hardware can serve a dual function. Their
usual function is to transmit data to other robots or users. A second function
exploited in this thesis looks at how flying robots can react to the reception of
a message, rather than its content, by changing their behavior (communication-
based behavior). Such behaviors must accommodate the challenging motion
constraints of fixed-wing robots. We therefore propose to develop controllers
that modulate the turn rate of flying robots while maintaining their speed and
altitude constant.

No swarm controllers addressing both challenges exist in the literature. To
this end, we propose a systematic approach aimed at discovering swarm con-
trollers for flying robots. The approach uses artificial evolution for its potential to
automatically discover simple and unthought-of solutions. Evolved controllers
are then reverse engineered, modeled, validated and extended to a variety of
swarm scenarios.

This methodology was applied to a scenario that had high potential in result-
ing in a variety of basic behaviors that could be useful for other swarm appli-
cations. In particular, we considered an application aimed at creating commu-
nication networks for rescuers in disaster areas. Discovered behaviors include
controlling the motion of individual robots by modulating their global speed
and direction based on communication and heading input. Swarms of robots
can then move together in coherent groups. This is achieved by synchronizing
the headings of robots over time. Synchronization is guided by messages that are
emitted at regular intervals, thereby producing a beat on which robots can align.
Robots are then able to form chains of synchronized robots that can translate
along the communication borders of users on the ground, thereby deterministi-
cally covering a specific area. Finally, robots can maintain communication relays
by circling. Individual robot motion, coherent group motion, area coverage and
communication relay are the basic behaviors discovered using our methodology.
Independently, each behavior can be used in a variety of scenarios that go be-
yond the initial evolutionary scenario presented this thesis. Examples include
behaviors to allow robots or groups of robots to remain connected to a user on
the ground or patrol along its communication border. Lessons learnt from the
evolved controllers were extended to controllers that are able to compensate for
robot displacements due to wind.

8.2. FUTURE WORK 95

By developing positionless controllers that respect motion constraints of fixed-
wing robots we aimed towards bridging the gap between simulation and reality.
In order to validate this approach and the basic behaviors developed throughout
this thesis, we perform experiments in reality using up to 10 safe, lightweight
and low-cost platforms.

8.2 Future Work

Improvements should be made before we see aerial swarming used in real-world
applications. Current shortcomings and bottlenecks to achieve this include scal-
ability, robustness and usability issues.

Ad-hoc networks in general suffer from scalability issues since it has been
shown that it is challenging to relay data over many hops [1]. It is therefore
unrealistic to assume this approach can be extended to systems where large
numbers of robots are needed to relay information between users. To increase
the scalability of the system, robots should be able to only consider users that
are closest to them to deploy local communication networks without having to
relay data through a large scale network.

To validate our work, demonstrations were conducted on actual physical
platforms which allows for proof-of-concept of the developed approaches. How-
ever, robustness of the system could further be ensured by verifying that swarms
fulfill safeness and liveness conditions. This means checking that the swarm
does what it is supposed to (liveness) while avoiding catastrophic failures (safe-
ness) [110]. Swarm engineering principles proposed by Winfield et al. provide
insight into how this can be done. Furthermore, models developed throughout
this thesis are useful tools to move in this direction since they allow users to
understand how the swarm should function. Additional work is also needed
to control swarms of aerial robots in an intuitive manner [5,37], including using
hand-held devices [82].

Generally, to increase robustness of the proposed behaviors, more work is
needed to consider challenging environments with wind and noisy communi-
cation. Challenges due to wind can be addressed at three levels. First, sensing
displacements due to wind could allow for robots to correct their behaviors. Sec-
ond, individual behaviors such as spiral-based controllers developed in Chapter
7 can provide an essential building block to mitigate the effect of wind. Finally,

96 CONCLUSION

the swarm as a whole can strive to compensate for displacements due to wind
by continuously self-organizing.

In order to study the effect of noisy communication, more realistic simulators
could be considered that take into account terrain irregularities, robot motion,
antenna orientation, weather and obstacles. A large body of work on modeling
communication environments of robots has been done by Mostofi et al. [70], al-
though for ground robots. In the shorter term, robustness could be increased
by combining communication with other simple omnidirectional sensors such
as sound or cameras [51] to know if robots are "within range" of each other.

Beyond the communication quality, work on routing in highly dynamic ad-
hoc networks could be considered. One solution would be to merge robot simu-
lators with simulators commonly used in the wireless community (NS-2, NS-3,
QualNet or OMNeT++) [112].

Along these lines, additional efforts can be made to reduce the difference
between the performance of swarm systems in reality and predictions made by
theoretical models. This can be done by refining communication and motion
assumptions or by improving the sensory information used by the robots.

The usability of the swarm in real-world applications will depend on the
discovery of behaviors for more complex scenarios with many mobile rescuers
and controllers to retract the swarm to a landing position. These behaviors can
be extended from basic behaviors discovered in this thesis, or can be evolved.
However, engineering evolutionary experiments is not necessarily straightfor-
ward. Rather than having to decide on a controller architecture, algorithms such
as AGE might be suitable to do this automatically [65]. Complexifying the sce-
nario might make finding any interesting controller challenging. Possible solu-
tions can be found with incremental evolution to slowly complexify the scenario
along the evolutionary generations [42].

Furthermore, reverse engineering complex controllers might be intractable
by hand. One direction worth exploring consists in requiring evolution to build
on easy to understand basic behaviors that have been predesigned. This ap-
proach however might limit the potential of the evolutionary approach in finding
unthought-of solutions.

Finally, in addition to applications that us flying robots, one could imagine
using artificial evolution to discover new swarm controllers for challenging plat-
forms such as nanosystems, space robots or underwater robots.

A Ant-based Swarming

Abstract

The main contribution of this appendix is the development of a positionless con-
troller inspired from army-ant foraging for the deployment of communication
networks using swarms of fixed-wing robots.

As an alternative to artificial evolution we turn to biology for inspiration
in the design of swarm controllers for fixed-wing flying robots aimed at cre-
ating emergency communication networks in disaster areas. More specifically,
inspiration is taken from army ants which are capable of laying and maintain-
ing pheromone paths leading from their nest to food sources in nature. This
is analogous to the deployment of communication pathways between multiple
rescuers. However, instead of being physically deposited in the air or on a map,
pheromone is virtually deposited on the robots using local communication. This
approach is investigated in 3D simulation in a simplified scenario with two res-
cuers.

Material for this chapter was taken from the following paper:

• Hauert, S., Winkler, L., Zufferey, J.-C. and Floreano, D. (2008) Ant-based
Swarming with Positionless Micro Air Vehicles for Communication Relay.
Swarm Intelligence, 2(2-4) pp. 167-188.

97

98 ANT-BASED SWARMING

A.1 Introduction

Determining the local interactions responsible for the emergence of any swarm
behavior is challenging and no methodology currently exists to deterministi-
cally solve this task. The approach presented here consists in taking inspiration
from studies conducted on biological swarms to design the robot controllers.
Specifically, inspiration is taken from army ants, which are capable of deploying
to search for and maintain paths leading to food sources in nature by deposit-
ing and sensing pheromone in their environment [13]. Similarly, we show in
simulation that we can deploy and maintain communication pathways between
rescuers and then retract the swarm to its initial launching point. Finally, the
developed algorithm is scalable in swarm size and reasonably robust to robot
failures.

A.2 Experimental Setup

A.2.1 Scenario

The scenario consists in having a swarm of 15 robots search for a second rescuer
positioned on the ground while maintaining radio connection to the rescuer
from which the robots are launched. Robots must directly or indirectly (by
means of other robots) remain connected to the launching rescuer in order to
ensure that they do not get lost and that the swarm as a whole remains coherent.
At the beginning of each deployment, a common search direction is broadcasted
to each robot in the swarm which must find a randomly positioned rescuer in
the area described in Fig. A.1. This area was designed to be clearly out of
the communication range of the launching rescuer and is located in the North
sector with respect to the launching rescuer. Robots are launched every 15 ±
7.5 seconds within a 5 m radius from the launching rescuer to model the fact
that they will be launched by hand by a single human operator. The swarm is
given 30 minutes to establish and maintain a communication link between the
two rescuers. Communication is then interrupted and the robots must retract to
the launching rescuer as rapidly as possible and land.

A.3. CONTROL STRATEGY 99

search

direction

N

E

S

W
communication

range

(100 m)

possible location of

second rescuer

rescuer

(launching point)

100 m

Figure A.1: The swarm composed of 15 robots must be able to find any
rescuer positioned in the area in grey. Here, the search area is located to the
north of the rescuer from which the robots are launched.

A.3 Control Strategy

There currently exists no methodology to deterministically design the local in-
teractions responsible for the emergence of a desired swarm behavior. The ap-
proach presented here consists in taking inspiration from natural systems to
design efficient swarm controllers for robots. Similar approaches have inves-
tigated foraging tasks with ground robots based on the trophallactic behavior
performed by honey-bees [14,20,91] or the formation of robot chains between ob-
jects in the environment inspired by the observation of ant colonies foraging for
food [75]. Foraging in nature has also inspired work by Campo et al. [15] for the
design of robot controllers. We take inspiration from army ant colonies which
are able to lay and maintain pheromone paths leading to food sources in nature,
analogous to the deployment and maintenance of communication networks.

A.3.1 Army Ant Raid Patterns in Nature

Army ant colonies display complex foraging raid patterns involving thousands
of individuals communicating through chemical trails (pheromone). These struc-
tures are thought to reflect an optimized mechanism to explore and exploit food
resources in nature [93]. Different army ant species display different raid patterns
(Fig. A.2), allowing them to adapt to different distributions of food. For ex-
ample, the E. Hamatum hunt for sparse and large sources of food while the E.
Burchelli can rely on uniform distributions of small food sources [34].

100 ANT-BASED SWARMING

Figure A.2: Foraging pattern of three army ants Eciton Harnatum, E. Rapax,
and E. Burchelli (from left to right) each covering some 50 m x 20 m [26].

In work by Deneubourg et al. [26], a model capable of capturing the self-
organizing mechanism used for the formation of army ant raid patterns is pre-
sented. In this model, ants leave the nest at a constant rate and navigate through
a binary grid of Y-junctions while depositing pheromone. At each bifurcation,
the amount of pheromone on each branch influences the ant’s choice to turn left
or right. The speed at which the ants advance increases sigmoidally as a func-
tion of the strength of the trail’s pheromone. Ants which have found food carry
it back to the nest while depositing larger amounts of pheromone to reinforce
successful paths. The deposited pheromone then evaporates over time.

A.3.2 Adaptation to Robots

By taking inspiration from the foraging mechanism found in army ants, we want
to create and maintain communication pathways between rescuers. However, in
application-oriented swarms, it is often undesirable to modify the environment
in which robots deploy (by physically depositing chemicals or objects) and the
deploying substrate is often unstable (e.g., air, water and quickly modifiable en-
vironments). Also, depositing virtual pheromone on a map [56,105,90] is not pos-
sible when no global positioning is available. To solve this issue in our system,
pheromone is virtually deposited on the robots (pheromone robotics [79]). The
approach proposed here consists of separating the robots into two types, namely
nodes and ants. Nodes constitute the environment on which pheromone can be
virtually deposited and read from. Ants are capable of navigating through a grid

A.3. CONTROL STRATEGY 101

of nodes while depositing virtual pheromone through the use of local wireless
communication.

Ideally, nodes should position themselves following the Y-junction grid shown
in Fig. A.3, where the length of each branch is approximately equal to the mean
communication range of robots and rescuers (≈ 100 m) and the junction angle
is approximately of 60◦1. Coordinates (i, j) are assigned to each node in the
grid where i and j are the number of left and right branches followed to reach a
desired position relative to the launching rescuer. This directional positioning is
possible because robots have a magnetic compass and a fixed launching point at
the root of the grid.

0,11,0

0,0

2,0 1,1 0,2

1
0
0
 m

60°

launching

rescuer

Figure A.3: Ideal positioning of the launching rescuer and nodes in the Y-
junction pheromone grid. Coordinates are relative to the launching rescuer
and correspond to the number of left and right branches needed to reach a
position.

The ant-based swarm algorithm described here and presented in Fig. A.4
results in the deployment, maintenance and retraction of communication net-
works. Robots can either explore the environment as an ant or direct ants when
in node state (using pheromone information) while ensuring that all robots re-
main connected to both rescuers.

In detail, at launch a robot is of type ant and its initial reference node is
the launching rescuer positioned at the root of the pheromone grid. The refer-

1To the benefit of our ad-hoc network, 60◦ Y-junctions have the advantage of generating
redundant communication pathways while maximizing the area coverage of the grid. More
precisely, the chosen angle presents the advantage of generating a grid where all the nodes are at
equal distance from one another. Because this distance corresponds to the mean communication
range, two robots at the extremity of a Y-junction can directly communicate (unlike deployments
with larger angles). Smaller angles would also have this property, however, the coverage of the
deployed grid would be reduced.

102 ANT-BASED SWARMING

launching

rescuer

launching rescuerlaunching

 rescuer

ant state

node state

Figure A.4: Schematic representation of the behavior of a robot in our ho-
mogenous swarm. Robots, can either be in node or ant state. Initially, ants
are launched from a rescuer which communicates pheromone information
concerning its left and right branches. Based on this information, ants will
choose a "destination node". The node which is communicating pheromone
information to an ant is its "reference node". Ants navigate from "reference
nodes" to "destination nodes" until the "reference node" is out of range, at
which point the "destination node" becomes the ant’s new "reference node"
and a further "destination-node" is chosen. If the "destination node" is not
within communication range, ants change state to become nodes. Finally,
when a node does not store any more pheromone (evaporation) it returns
to the ant state and navigates back to the launching rescuer using a similar
"reference node" to "destination node" navigation, it then lands or redeploys.

A.3. CONTROL STRATEGY 103

ence node broadcasts the pheromone strengths of its left φi+1,j and right φi,j+1

branches.2 On reception, this information allows the ant to probabilistically
choose a given branch following equations (A.1) to (A.5) where πL and πR are
the probabilities to choose the left or right branches respectively. These equations
were determined on the basis of the original equations describing the probability
pL to choose a left or respectively right pR branch in the natural model developed
by Deneubourg et al. [26]. As a result, ants favor branches with higher amounts
of pheromone. The parameter µ represents the attractivity of unexplored direc-
tions and affects the amount of exploration versus path following displayed by
the robots (e.g., with µ = 0 ants have a probability of 0 of favoring an unexplored
path over one with pheromone, whereas µ = ∞ yields nearly equal probabilities
of choosing a given branch over another). However, in the natural model, areas
in the center of the grid had a higher probability of being explored than areas
on the sides (Fig. A.5, left). For example, a robot performing a sequence of two
turns had a 50% chance of reaching the position (1,1) by performing a left then
right turn or a right then left turn. Reaching the positions (0,2) or (2,0) however
is not as likely (25% chance of reaching any of these positions). To ensure a uni-
form search of the environment (Fig. A.5, right) a correction factor c is applied
to adjust the probabilities described by pL and pR.

1/21/2

1

1/4 1/2 1/4

1/21/2

1

1/3 1/3 1/3

Figure A.5: Original (left) and corrected (right) probability to reach a given
node in the pheromone grid given an equal amount of pheromone on each
branch.

πL(i, j) =
pL(i, j) · cL(i, j)

pL(i, j) · cL(i, j) + (1− pL(i, j)) · (1− cL(i, j))
(A.1)

πR(i, j) = 1− πL(i, j) (A.2)

2Initially, the pheromone strengths sent by the launching rescuer are equal to zero.

104 ANT-BASED SWARMING

cL(i, j) =
i + 1

i + j + 2
(A.3)

pL(i, j) =
[µ + φi+1,j]2

[µ + φi+1,j]2 + [µ + φi,j+1]2
(A.4)

pR(i, j) = 1− pL(i, j) (A.5)

Once a left or right branch is chosen, the coordinates of the node to which
the ant should navigate (destination node) are stored and the ant will advance in
the corresponding direction. While advancing, the ant virtually deposits ∆φant

amounts of pheromone on its reference node.

Eventually, the ant will break the communication link with its reference node
and briefly wait for a message from its destination node. If no message is re-
ceived, the destination node is assumed nonexistent and the robot changes its
type from ant to node with coordinates corresponding to the aimed destina-
tion and an initial amount of pheromone φinit. However, if the destination node
exists, it becomes the reference node for the ant and a new destination is cho-
sen based on received pheromone information. Subsequently, the ant navigates
through the grid until it reaches a position which is not yet occupied by a node.

Nodes maintain information concerning their own pheromone strength φi,j

and the pheromone strength of adjacent nodes (φi+1,j, φi,j+1, φi−1,j, φi,j−1). This
allows them to continuously update their knowledge concerning the amount of
pheromone on their left and right branches in the forward and backward direc-
tions. Once the grid has formed a pathway between the rescuers, the pathway
is used to relay data packets between the two. Nodes can detect if they are on a
communication pathway requiring the smallest number of network hops (least-
hop routes) to go from the launching rescuer to the second rescuer (see appendix
B.1.1). Analogously to the mechanism whereby ants reinforce successful paths
by depositing additional pheromone when carrying prey to the nest, nodes will
receive an increase in pheromone (∆φconn) when positioned along the least-hop
routes.

In addition, pheromone saturates at a maximum value φmax. To model evap-
oration, nodes decrease their emitted pheromone strength every time-step, fol-
lowing a subtractive decay rate ∆φdecrement.

A.3. CONTROL STRATEGY 105

Once the pheromone is entirely evaporated, nodes become ants and return
to the launching rescuer. No exploration is done during this retraction phase
whose sole purpose is to bring the ants to the launching rescuer in a rapid
and dependable manner so that it can redeploy as if newly launched. There-
fore, during retraction ants always navigate along paths with highest amounts
of pheromone and they never change to node state. As before, the choice of
left or right branching is made based on pheromone information broadcasted by
nodes (i.e., the amount of pheromone on left φi−1,j and right φi,j−1 branches in
direction of the launching rescuer). To avoid splitting the network, only nodes
whose added coordinates are higher or equal to the added coordinates of neigh-
boring nodes should become ants3. To enforce this, nodes which are required
to maintain a communication link between the launching rescuer and further
nodes in the grid receive ∆φinternal amounts of pheromone at each time-step.
Maintaining a direct or indirect connection between all nodes and the launching
rescuer is essential in a system without positioning. Equations A.6 through A.9
summarize the evolution of pheromone present on nodes over time.

∆φa =

∆φinternal if nodei,j is connected to nodek,l

with coordinates such that i + j < k + l
0 otherwise

(A.6)

∆φb =

{
∆φconn if nodei,j is on the least-hop route between rescuers
0 otherwise

(A.7)

∆φc = n · ∆φant where n the number of ants within communication
range having as a reference-node nodei,j

(A.8)

φi,j(t) = max[φmax, φi,j(t− 1)− ∆φdecrement + ∆φa + ∆φb + ∆φc] (A.9)

Triggering the retraction of the robots is done by ending the communica-
tion between the rescuers. Because the nodes no longer receive an increase in
pheromone for being on a least-hop route between the rescuers, their pheromone
decreases until entirely evaporated. They then become ants and retract to the

3As an example, a node in (1,1) should retract after the one in (1,2) because it might be serving
as communication relay between the first node and the remainder of the swarm.

106 ANT-BASED SWARMING

launching rescuer. Once arrived, they are signaled to land through a message
broadcasted by the launching rescuer. This mechanism allows for the retraction
and landing of the swarm.

Finally, in case an ant loses connection with the grid for a duration greater
than ∆tlost, it performs a spiral trajectory and eventually reconnects and proceeds
to the nest.

Parameters of the ant-based algorithm used in our scenario are listed in Table
A.1.

Table A.1: Parameters of the ant-based controller

Parameter Value

φinit 0.7 [units]

φmax 1 [units]

µ 0.75 [units]

∆φant 0.002 [units per communication]

∆φconn 0.01 [units per time-step]

∆φinternal 0.001 [units per time-step]

∆φdecrement 0.001 [units per time-step]

∆tlost 2 [s]

A.3.3 Motion Primitives

The following motion primitives describe the actual behaviors of the robots in
terms of physical movement of the platforms with respect to a given high-level
command such as launch, land, orbit, turn left and right or avoid robots.

Launching and landing Robots perform a helicoidal trajectory until they reach
a relative altitude of 20 m or the ground respectively.

Heading maintenance Allows the ant to turn following the smallest turn ra-
dius until the desired heading is met and continue straight following this
heading. This is used to follow left and right Y-junction paths.

Orbiting Unlike hovering aircrafts or ground robots, fixed-wing robots must
constantly remain in motion to produce lift. The motion primitive of nodes

A.4. RESULTS 107

consists in performing the smallest possible circular trajectory. In our sys-
tem, this corresponds to a circle of approximately 10 m radius.

Robot avoidance Robot avoidance is done through altitude differentiation to
avoid changing the turning behaviors of the robots. Nodes fly at an alti-
tude of 20, 25 or 30 m depending on their coordinate in the grid, as can
be seen in Fig. A.6. This ensures that neighboring nodes do not fly at the
same altitude. Ants on the other hand must verify the target altitude of
neighboring ants received through local communication and decide either
to maintain their current altitude in the case where no conflicts are de-
tected, or to adopt the lowest possible non-conflicting target altitude start-
ing from 35 m and going up with steps of 5 m. While this constraint does
not exclude all collisions (robots can collide while trying to reach their tar-
get altitude), it largely reduces them to a suitable level for a swarm system
robust to failures of single nodes.

20 25 30

3025

0

30 20 25

1
0
0
m60°

20

launching

rescuer

Figure A.6: Altitude assignment for node based on grid coordinates. This
distribution ensures that neighboring node are at different altitudes.

A.4 Results

Here we present the qualitative behavior of the swarm, its performance in terms
of search, communication, and retraction capacities and the robustness of the
network to robot failures or varying swarm sizes. Experiments we run using the
simulator described in Appendix B.1.2.

108 ANT-BASED SWARMING

A.4.1 Swarm Behavior

An example of the behavior of the swarm in simulation can be seen in Fig.
A.7 and in a video on our website*. Observed behaviors include the formation
of grids composed of several short branches deployed in multiple directions
or longer chain-like grids capable of searching in a single direction for distant
rescuers. The overall network changes between different configurations until
a rescuer is found. The paths requiring the least amount of hops between the
rescuers are then maintained and nodes which are not positioned along these
paths eventually retract and redeploy, often in more suitable positions for the
communication network. Retractions are done in a wave-like manner, starting
from the nodes furthest away from the launching rescuer. The rate at which
the network retracts depends on the time needed to evaporate the pheromone
present on the furthest nodes of the network. Retraction times could thus greatly
be reduced by lowering the maximum amount of pheromone present at each
node (φmax).

Obviously, the grid formed by the nodes does not precisely follow the 60◦

branches of constant length envisioned in the ideal grid presented in Fig. A.3.
The discrepancy between the positions of robots with respect to the envisioned
pheromone grid was expected considering the noise present in the sensors and
actuators of the simulated robots, the noisy communication links which control
the behavior of the robots and finally, the fact that robots are not able to navigate
precisely above emitting nodes but rather "loosely" within their communication
range. Despite this, the swarm system is able to deploy, maintain and retract the
swarm. This is due to the fact that highly precise trajectories are unnecessary
when the range at which a piece of information is sensed is largely superior to
the uncertainty in robot motion. Therefore instead of having robots navigate fol-
lowing a precise trajectory, it is more suitable to ensure that they remain within
the communication range of the nodes forming the grid. In the case where a
robot leaves the communication range of the grid, additional behaviors such
as spiraling allow them to reconnect. Of interest is the case of the lost robot
which can be seen disconnected from the swarm in Fig. A.7 and subsequently
reconnected to the swarm in the following images.

*http://lis.epfl.ch/smavs

A.4. RESULTS 109

100m

rescuer

100m

deployment

maintenance

retraction

rescuer

Figure A.7: Simulator screenshots showing a successful deployment, main-
tenance and retraction. Screenshots are temporally sequenced from left to
right and from top to bottom. Towards the beginning of the trial, robots
randomly favor the left of the area. The swarm is then successfully able to
re-organize to search the right of the search area, find the second rescuer,
maintain the connection and then finally retract and land. Nodes are white
with black borders, ants in solid black and lines represent local communi-
cation links. The circle around the rescuers represents their communication
range with noise.

110 ANT-BASED SWARMING

Finally, the dynamics of the platforms and the altitude differentiation mech-
anism can be seen in Fig. A.8 which shows the altitude behavior of the 15 robots
from the moment the first robot is launched to the landing of the last robot. As
can be seen there is a clear separation in altitude between nodes (orbiting at
lower altitudes of 20, 25 and 30 m) and ants (navigating above the grid).

0 100 200 300 400 500
0

10

20

30

40

50

60

Y [m]

Z
 [
m

]

user

Figure A.8: Side view of the simulated trajectories of each robot in the swarm
over the deployment, maintenance and retraction trial shown in Fig. A.7.
The robots, are launched and land around Y=0. Nodes navigate at altitudes
of 20, 25, and 30 m which can be seen by the compact orbiting trajectories at
these altitudes, the ants on the other hand fly above the grid.

A.4.2 Performance

When tested on 500 trials with rescuers randomly positioned within the search
area (Fig. A.1), the swarm was capable of finding more than 91% of the rescuers
as seen in Fig. A.9. The mean probability of successfully delivering a packet
sent from the launching rescuer to the second rescuer is measured each second
and averaged over the 500 trials (Fig. A.10). In the first couple of minutes of
a trial, there are typically no connections established between the rescuers be-
cause swarms have not had time to sufficiently deploy. Over time, an increasing
number of trials are able to establish a connection between the rescuers. The
increasing performance of the swarms indicates that established connections are
maintained and improved to the end of the 30 minute trials Fig. A.10 (left). Fig.
A.10 (right) presents statistics on the mean successful packet delivery probability

A.4. RESULTS 111

over 30 minutes for 500 trials. Trials where no rescuers are found have a proba-
bility 0 of delivering a packet to the rescuer, while trials in which the swarm is
able to rapidly create and further maintain connections between rescuers have
a probability close to 1. Finally, a median packet delivery probability of around
0.7 is largely sufficient to achieve simple communication between the rescuers.

−400 −200 0 200 400
−100

0

100

200

300

400

500

600

X
[m]

Y [m
]

launchig rescuer

Figure A.9: Rescuers successfully connected to the launching rescuer in sim-
ulation. The search area is grey, the found rescuers are represented by points
and the unfound rescuers by crosses.

Over the 500 trials, 2.6% of the 7500 robots launched were implicated in a
collision with another robots and subsequently destroyed. During the retraction
phase, more than 98.5% of the deployed robots (not taking into account those
destroyed in collisions) were able to return to the launching rescuer. The mean
retraction time is 342 s (std. dev. 81 s). Less than six minutes is reasonable for
the retraction of fifteen robots as it represents 1 robot landing every 22 s.

A.4.3 Robustness

Experiments were conducted to test the robustness of the network to robot fail-
ures and to emphasize the scalability of the proposed algorithm. The scalability
of the swarm is tested by deploying swarms composed of 5 to 20 robots. As
seen in Fig. A.11, deploying swarms larger than 15 robots increases the perfor-

112 ANT-BASED SWARMING

0 10 20 30
0

0.2

0.4

0.6

0.8

1

time
[min]

s
u

c
c
e

s
s
fu

l
p

a
c
k
e

t
d

e
liv

e
ry

 p
ro

b
a

b
ili

ty
(5

0
0

 t
ri
a

ls
)

0

0.2

0.4

0.6

0.8

1

m
e

a
n

 s
u

c
c
e

s
s
fu

l
p

a
c
k
e

t
d

e
liv

e
ry

 p
ro

b
a

b
ili

ty

o
v
e

r
3

0
 m

in
u

te
s

(5
0

0
 t
ri
a

ls
)

Figure A.10: Left: Mean probability of successfully delivering a packet sent
from the launching rescuer to the second rescuer, measured each second
and averaged over the 500 trials. Right: Mean successful packet delivery
probability over 30 minutes over 500 trials.

mance of the swarm while lowering the number decreases it. This is due to the
fact that small swarms have difficulties reaching rescuers positioned far from
the launching rescuer and the limited amount of explorers means it would take
more time to explore the same area than with larger swarms. Furthermore, it is
more challenging with small swarms to create redundant communication path-
ways between the rescuers, thus often decreasing the quality of the connections.
However, even swarms with only 5 robots are able to find nearly 50% of the
rescuers over 500 trials and in some cases, maintain excellent connections with
up to 98% packet delivery success. This also shows that our algorithm doesn’t
rely on a specific swarm size to function.

To test the robustness of the swarm to node failure, we randomly removed 0
to 10 robots from an initial swarm composed of 15 robots at sequentially random
moments in the 30 minute trials. In Fig. A.12, we qualitatively show that swarms
with 1 or 2 failures perform comparably to systems with no failures while the
performance with more failures degrades gracefully, with examples of swarms
which can even withstand 10 robot failures. Notice that the probability of finding

A.5. DISCUSSION 113

a rescuer decreases with the number of failures, which is similar to the effect seen
when deploying small swarms, as mentioned previously.

5101520
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
e

a
n

 s
u

c
c
e

s
s
fu

l
p

a
c
k
e

t
d

e
liv

e
ry

 p
ro

b
a

b
ili

ty
 o

v
e

r
3

0
 m

in
u

te
s

(5
0

0
 t
ri
a

ls
)

swarm size

5101520
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

swarm size

p
ro

b
a

b
ili

ty
 o

f
fi
n

d
in

g
 t
h

e
 r

e
s
c
u

e
r

o
v
e

r
3

0
 m

in
u

te
s

(5
0

0
 t
ri
a

ls
)

Figure A.11: Left: Mean successful packet delivery probability over 30 min-
utes when swarms of 5 to 20 robots are deployed. Each box represents data
from 500 trials. Right: Probability of finding the rescuer over 500 trials of 30
minutes when swarms of 5 to 20 robots are deployed.

A.5 Discussion

While our swarm algorithm works robustly in cases of robot failures or vary-
ing swarm size deployments, additional measures must be taken to mitigate
the problem of windy environments. Here we discuss challenges due to wind
and propose three directions in which solutions can be found without requir-
ing profound changes to the basic control strategy. Challenges arise from the
fact that wind translates the individual robots following a random direction and
strength. For example, one can imagine constant global wind pushing the robots
away from the launching rescuer which is fixed. Ultimately, the swarm would
disconnect from the launching rescuer and get lost. To counteract the effects of
wind the following approaches could be investigated:

114 ANT-BASED SWARMING

• Mitigation at the autopilot level: The low-level autopilot is responsible
for controlling a robot based on commands sent from the motion primi-
tives described in section A.3.3. Typical commands include setting the de-
sired turn rate, pitch rate and speed of the robot. To reliably execute these
commands, autopilots could reactively adapt the attitude of a robot with
respect to measurements provided by a wind sensor (e.g., based on optic
flow, [86]) . Because the effect of wind is compensated at the lower-levels of
control, no modifications are needed at the level of swarm control.

• Mitigation at the individual level: Each robot attempts to counteract the
effect of wind by sensing that it is not at its intended "position" in the
pheromone grid. This detection can be derived from information concern-
ing the robots within its neighborhood. For example, orbiting robots can
sense if they are fully connected, mostly connected to or disconnected from
a neighbor or the launching rescuer and comparisons can be made on its
intended position with respect to the grid-coordinates of neighbors over
time. Once a displacement has been sensed robots should perform local
search patterns, possibly spirals, allowing them to improve their position
with respect to neighbors.

• Mitigation at the swarm level: Instead of mitigating the effect of wind
on the individual level, the swarm as a whole can strive to fix robot dis-
placements. Unpublished initial results show for example that frequently
replacing the node in the network by newly-deployed ones largely reduces
the drift of the swarm. This is due to the fact that newly-deployed robots
have drifted for a shorter amount of time than node already present in
the network. Because the swarm can withstand imprecisions in the po-
sition of its robots (section A.4.1) small displacements due to wind over
a short time are assimilated by the swarm. In our algorithm this "refresh"
mechanism can be implemented by systematically swapping roles between
newly launched ants and nodes. As a result, ants involved in a swap would
change state to node and receive the coordinates and pheromone levels dis-
played by the swapping node which would continue as if it were a passing
ant.

A.6. CONCLUSION 115

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
e

a
n

 s
u

c
c
e

s
s
fu

l
p

a
c
k
e

t
d

e
liv

e
ry

 p
ro

b
a

b
ili

ty
 o

v
e

r
3

0
 m

in
u

te
s

(5
0

0
 t
ri
a

ls
)

number of robot failures

0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of robot failures

p
ro

b
a

b
ili

ty
 o

f
fi
n

d
in

g
 t
h

e
 r

e
s
c
u

e
r

o
v
e

r
3

0
 m

in
u

te
s

(5
0

0
 t
ri
a

ls
)

Figure A.12: Left: Mean successful packet delivery probability over 30 min-
utes when 0 to 10 robots are removed sequentially at random times from
the initial swarm composed of 15 robots. Each box represents data from 500
trials. Right: Probability of finding the rescuer over 500 trials of 30 minutes
when 0 to 10 robots are removed sequentially at random times.

A.6 Conclusion

This work provides insight into the design of positionless aerial swarms based
on army-ant foraging.

The deployment, maintenance and retraction of a swarm of robots for the cre-
ation of wireless communication networks in disaster areas is demonstrated in
3D simulation with trajectories realistic for fixed-wing robots. Because the devel-
opment of local interactions responsible for swarming is an unsolved problem,
inspiration is taken from the biological models of the deployment, maintenance
and retraction of pheromone paths deposited by army ants between their nest
and varying distributions of food sources in nature. When adapted to a swarm
of 15 robots, the system is capable of deploying an efficient communication net-
work between two rescuers and subsequently retracting robots to their initial
launching point. In addition we show that the swarm is scalable and robust to
robot failures. Because robots do not rely on sensors which are dependent on

116 ANT-BASED SWARMING

the environment or expensive in terms of weight, energy and monetary cost,
this work paves the way towards minimalist aerial swarms applicable in most
environments in a rapid, inexpensive, scalable and simple manner.

B Materials

In this appendix we present the software and hardware used throughout this
thesis including both robot simulators and the aerial testbed.

117

118 MATERIALS

B.1 Simulation

Two simulators implemented in c++ were sequentially developed during this
thesis. The first simulator in 2D was used for evolutionary experiments. The
simulator was then extended to make it more realistic for all other experiments
in simulation.

B.1.1 2D Simulator

Flight model

The fixed-wing robots follow a first-order flight model based on experiments run
on the actual robot platforms. Equations B.1 through B.6 modify the position
(x, y) of the platforms after each time-step of duration dt based on a constant
speed v and turn rate ω .

x(t) = x(t− dt) + v · cos(ω · dt) · dt (B.1)

y(t) = y(t− dt) + v · sin(ω · dt) · dt (B.2)

Robots fly at a speed of 14 m/s affected by uniform noise in the range [-5,5] m/s
and are unable to hover or make sharp turns, their minimum turn radius being
of 18 m. Uniform noise in the range [-5,5] ◦/s is added to their turn rate. A
smoothing function ensures that the turn rate can not be modified abruptly (the
maximum change in turn rate is of 100 ◦/s). Such physical constraints enforce a
more complex controller with respect to ground robots or hovering platforms.

The only internal sensor used for swarming was a heading measurement
sensor affected by Gaussian noise with a standard deviation of 5◦.

Communication

Robots can communicate with other robots and users. The communication
model assumes that communication between two robots is perfect if the indi-
viduals are less than 90 m apart, noisy from 90 m to 100 m and inexistent when
separated by 100 m or more. The probability of entirely dropping a message
increases linearly between 90 m and 100 m from 0 to 1. Similar disc models have
been used in robotic swarm simulators [73] based on assumptions introduced in
work by Winfield et al. [109].

B.1. SIMULATION 119

rescuer

{1,4}

{2,3}

{3,2}

{4,1}

{4,2}{3,3}

{20,20}

rescuer

Figure B.1: Topology of the swarm determined using local communication.
The rescuers are represented by black circles, the robots by white ones and
the local communication links by the lines connecting them. Tags above
each robot represent the number of hops from the launching rescuer and the
second rescuer respectively. Robots that are isolated from the swarm receive
the default values N = 20.

Robots and users can send two types of messages, control messages and data
messages. Control messages are only used for the coordination of the swarm
and are broadcasted by each robot every 50 ms. Data messages are related to the
application of the swarm (e.g. video relay, voice relay, etc.), and are sent between
the rescuers every 50 ms (the direction of the message flow is non-relevant). A
data message is assumed to have reached its destination if there exists, at that
given time-step, at least one communication pathway between the rescuers.

Information about the topology of the swarm or the connection status of a
robot to the rescuers can be acquired using local wireless communication. More
specifically, robots can determine the minimum number of network hops needed
for a message to go from a rescuer to themselves using only local communication
(Fig. B.1). Furthermore, robots can approximate their hop count (h) to any
rescuer using equation B.3.

120 MATERIALS

rescuer rescuer

{1,4}

{2,3}

{3,2}

{4,1}

{4,2}{3,3}

{1,4}

{2,3}

{3,2}

{4,1}

{4,4}{5,3}

{1,4}

{2,3}

{3,2}

{4,1}

{6,4}{5,5}

{1,4}

{2,3}

{3,2}

{4,1}

{6,6}{7,5}

{1,4}

{2,3}

{3,2}

{4,1}

{20,20}{20,20}

{1,4}

{2,3}

{3,2}

{4,1}

{20,20}{20,20}

time = t time = t+Δt time = t+2Δt

time = t+3Δt time = t+18Δt time = t+19Δt

Figure B.2: Effect of the disconnection of a group of robots from the swarm.
The rescuers are represented by black circles, the robots by white ones and
the local communication links by the lines connecting them. Tags above
each robot and the launching rescuer represent the number of hops from the
launching rescuer and the second rescuer respectively. Messages are sent
every time-step (∆t=50 ms).

h(s, i, t) =

N t = 0
N n(i) = �
1 s ∈ g(i)
min(argmin

ni∈n(i)
(h(s, ni, t− 1)) + 1, N) otherwise

s = rescuer index
i = robot index
t = timestep of 50 ms duration
n(i) = robots in the neighborhood of i
g(i) = rescuers in the neighborhood of i
N = maximum number of hops between a

robot and the rescuer
(N=20 in a scenario with 20 robots)

(B.3)

While this approach tends towards the correct topology of the network when
the swarm is stable, it can obviously be momentarily locally inexact because of

B.1. SIMULATION 121

the dynamics of the network and because hop information needs to propagate
throughout the network at a speed of 1 hop per 50 m/s. Another possibility
would be to have rescuers broadcast a notification message which would then
flood the network and almost instantaneously update the hop count of all robots
with respect to the initiating rescuer. We believe however that our solution has
several advantages over this solution. First of all, it is scalable in the number
of rescuers (additional ground stations increase slightly the size of messages
sent between robots but do not increase the number of messages which need
to be sent). Also, our approach is truly decentralized and dynamic in that it
does not rely on the rescuers to initiate a flooding mechanism but only on local
communication between robots.

In addition, robots can detect if they are connected to the rescuers either
directly or indirectly thanks to the mechanism described in Fig. B.2. This mech-
anism is derived from equation B.3, which pushes the hop information of robots
disconnected from the rescuers to increment until the cutoff value N. Robots
that have reached the cutoff value are assumed disconnected.

Finally, rescuers can also compute their hop count to other rescuers (path
length), this information can be propagated throughout the network. Robots
can then determine if they are positioned along the shortest communication
pathway between two rescuers by comparing this path length to the addition of
their hop count to both rescuers. If there is an equality, then the robot is on the
shortest path between the two rescuers.

B.1.2 3D Simulator

The 2D simulator was extended to model robot trajectories and communication
in a more realistic manner. Unlike the previous simulator, this one is event-
based in order to model the fact that each robot has its own internal clock and
that communication is in general asynchronous. Only modifications from the
2D simulator are given here.

Flight model

The flight model of the robot from the 2D simulator is extended to the third
dimension as shown in equations B.4 through B.5 which modify the position
(x, y, z) of the platforms every dt seconds based on a desired speed v, turn rate

122 MATERIALS

ω and altitude change rate ḣ.

x(t) = x(t− dt) + v · cos(ω · dt) · dt (B.4)

y(t) = y(t− dt) + v · sin(ω · dt) · dt (B.5)

z(t) = z(t− dt) + ḣ · dt (B.6)

In this model, robots fly at a speed of 10 m/s affected by uniform noise in the
range [-1,1] m/s and are unable to hover or make sharp turns, their minimum
turn radius being around 10 m. Uniform noise in the range [-5,5] ◦/s is added to
the turn rate of the robot. A smoothing function ensures that the turn rate can
not be modified abruptly (the maximum change in turn rate is of 90 ◦/s). The
altitude change rate is of maximum 5 ◦/s. This rate is affected by uniform noise
in the range [-1,1] ◦/s and its maximum change is of 5 ◦/s.

Communication

This simulator implements lower layers of the open systems interconnection
(OSI) model, namely the network layer, data-link layer and physical layer for
802.11b wireless communications.

Network Layer The network layer is responsible for implementing the routing
protocols for relaying data messages to users. Routing consists in flooding
data messages throughout the network. To do so, each router re-broadcast
received packets only the first time they are received.

Data-link Layer In the data-link layer we implement the medium access con-
trol (MAC) data communication protocol which takes care of coordinating
access to the physical medium. More specifically, we implemented the car-
rier sense multiple access with collision avoidance (CSMA/CA) protocol
described in IEEE specifications for 802.11b1. Based on the CSMA/CA
protocol, wireless modules sense the physical medium before transmitting
a packet. If the medium is busy, the module chooses a random back-off
time after which a retransmission will be attempted. While being able to

1http://standards.ieee.org/

B.1. SIMULATION 123

avoid collisions between fully connected neighbors, it can not avoid hidden
node terminals which might be a source of collisions in our network.

Physical Layer The shadowing propagation model [30] was used to probabilisti-
cally determine the range of inter-robot transmissions and transmissions
with users on the ground following equation B.7. Packets sent a distance
d are assumed received if the Pr(d) is greater than the receiver’s sensitiv-
ity threshold Sr. When a node receives multiple packets simultaneously,
it calculates the signal-to-noise ratio of the strongest received signal to the
sum of other received signal strengths and the ambient noise n. If this ra-
tio is larger than SNRthresh, the packet is correctly received. Otherwise, all
packets collide and are discarded.

Pr(d)[dBm] = Pt[dBm]− 10 · β log
(

d
d0

)
+ X[dB] (B.7)

where X is a Gaussian random variable with zero mean and standard de-
viation σdB.

Parameters of the model were set to achieve a communication range of
approximately 100 m. A summary can be found in Table B.1. The received
signal strength as a function of the distance between transmitter and re-
ceiver can be seen in Fig. B.3.

Parameter Value

transmit output power Pt 16 dBm

receive sensitivity Sr -82 dBm

path loss exponent β 4.9

shadowing deviation σdB 2 dB

signal-to-noise threshold SNRthresh 10 dB

ambient noise n -102 dBm

Table B.1: Parameters of the communication model.

124 MATERIALS

0 20 40 60 80 100 120 140 160 180 200
−100

−80

−60

−40

−20

0

20

distance
[m]

re
c
e
iv
e
d
 p
o
w
e
r

[d
B
m
]

receiver sensitivity

(-82 dBm)

Figure B.3: Wireless signal propagation with log-normal shadowing.

B.2 Flying Testbed

All the necessary software and hardware to perform experiments with 10 flying
robots was developed in the scope of this project. To the best of our knowledge,
this setup is the one with the most outdoor aerial robots to this day.

Deploying large aerial swarms requires significant technological develop-
ments which are presented here.

B.2.1 Platform

Swarm systems are generally composed of large numbers of simple individuals
that are eventually disposable. Furthermore, swarm algorithms often do not en-
sure the correct functioning of each individual in the swarm. For these reasons,
flying robots aimed towards real-world applications must be low-cost, easy to
transport and deploy, easy to build and maintain, and safe.

To fulfill all these conditions, a flying testbed composed of 10 fixed-wing
aerial robots was developed specifically for this project by Severin Leven. The
robots runs on a LiPo battery and have an autonomy of 30 min.

In particular, the flying platform shown in Fig. B.4 is light weight (420 g)
and has an 80 cm wingspan. It is built out of Expanded Polypropylene (EPP)
with an electric motor mounted at the back and two control surfaces serving
as elevons (combined ailerons and elevator). The robot is equipped with an
autopilot for the control of altitude, airspeed and turn rate that provides an
interface for receiving commands from a navigation controller [59]. Embedded in
the autopilot is a micro-controller that runs a minimalist control strategy based

B.2. FLYING TESTBED 125

on input from only 3 sensors: one gyroscope and two pressure sensors. The
robot is further equipped with a compass.

The swarm algorithms presented in this thesis were implemented on a Tora-
dex Colibri PXA270 CPU board running Linux, connected to an off-the-shelf
USB WiFi dongle (Fig. B.5). The output of this high-level computer, namely
a desired turn rate, is sent as control command to the autopilot. Altitude and
airspeed commands during experiments remained constant at a value between
50 m and 150 m and 12 m/s, respectively. In order to log flight trajectories,
the robot was further equipped with a u-blox2 LEA-5H GPS module and an
XBee PRO transmitter. GPS is also used to estimate wind for reporting in aerial
experiments.

80 cm

Figure B.4: Safe flying wing for outdoor experiments made out of soft ma-
terial and with a back-mounted propeller. The robot is equipped with an
autopilot, embedded Linux, WiFi dongle, magnetic compass and GPS+XBee
(only for logging purposes).

For the WiFi communication, Netgear3 WNDA3100 dongles were used that
implement the 802.11n standard and transmit in the 5 GHz band. This is in-
teresting with respect to transmissions in the 2.4 GHz band because it allows
for less interference with the considerable number of devices currently used in
this band. Dongles are configured for ad-hoc mode and have a communication
range of nearly 500 m line-of-sight. For the purpose of certain experiments, the
range of communication could be reduced by modifying the driver of the WiFi
module. Drivers were further simplified to prevent modules from scanning the

2http://www.u-blox.com
3http://netgear.com

126 MATERIALS

1 cm

WiFi module computer autopilot

Figure B.5: Control electronics including the autopilot and the adapter-card
interfacing to the Colibri Linux board and the USB WiFi dongle.

network for alternative connections. Instead, the network cell for the swarm was
hardcoded in every robot as were the IPs.

Finally, rescuers on the ground are connected to the ad-hoc network using
identical wireless hardware as the robots.

B.2.2 Base Station

During experiments, the swarm is operated and monitored from a computer
on the ground using an intuitive graphical interface developed by Beyeler et
al. [10] and extended during this thesis to accommodate swarm experiments (see
Fig. B.6 for a screenshot). The base station is connected to 3 XBee receivers to
accommodate data from 10 robots.

The interface allows a user to connect to the robots using XBee PRO modules,
monitor the behavior of all robots on a large map of the environment and select
individual robots to monitor their parameters and sensor values individually.
Using this interface, the user can interact with individual robots or the entire
swarm. To help the user cope with the large number of robots, each robot is
painted in a different color. This color is used to draw the robot on the map
or select the robot in the interface. Finally a single click is sufficient to log all
the data being received from the robots in separate time-stamped files that are
named after the colors of the robots.

B.2. FLYING TESTBED 127

Figure B.6: User interface for the control of swarms of flying robots.

B.2.3 Experimental Setup

To perform successful swarm experiments in a safe and efficient manner, an ex-
perimental protocol needs to be designed. The protocol presented here follows
years of experience with nearly 200 flights and can be adapted to most swarm
systems. The result is a setup where a single operator can perform swarm
experiments, although those performed during this thesis were usually done
with the help of Severin Leven. This simple setup allows for experiments of
around 30 min with at least 10 robots and minimal interactions from the oper-
ator. A video of the entire setup developed within this project can be seen at
http://lis.epfl.ch/smavs/.

Location

The location for aerial experiments is important since it should be relatively
uninhabited and should allow good visibility.

For these reasons, experiments were conducted over mostly flat farm land in
Bioley-Orjulaz in Switzerland (see Fig. B.7) which is a 20 min drive from the

128 MATERIALS

EPFL. Authorization was given by the Swiss Federal Office for Civil Aviation4 to
perform swarm experiments below 150 m in this area.

Figure B.7: Experimental area. The launch location is marked by "SMAVNET
office".

Transporting material to and from the experiment site is burdensome and
can cause damage to all the hardware involved. Therefore, the office shown in
Fig. B.8 was installed in the experimental terrain with authorization from the
village. The office used as shelter during difficult weather conditions was also
used to store all 10 robots, a power generator, tools, a table and chairs.

Planting an orange office in farmland and flying ten robots above the area is
considered odd and sometimes disturbing by the inhabitants. It is therefore nec-
essary to make information visible by the experiment cite. In our case, this was
done with posters on the office explaining the project and encouraging inhabi-
tants to come ask questions. As a result, the project was very often presented
and demonstrated to the people from the surrounding villages. Public relations
is no doubt key to the success of these types of experiments.

4http://www.bazl.admin.ch/index.html?lang=en

B.2. FLYING TESTBED 129

Figure B.8: Office used for shelter and to store material.

Experimental Protocol

First, the base station is setup with one computer connected to three XBee re-
ceivers (for 10 robots) and wifi hardware to join the robots’ ad-hoc network.
The computer runs the swarm interface for the operation and monitoring of the
swarm.

Robots are set on the ground at the position from which they will be launched.
The robots are then equipped with batteries and propellers. Once ready, all the
robots are booted on the floor. It typically takes one minute for the robots to
boot and around two minutes for the robots to have a GPS fix. During this time,
the operator connects to the robots one after the other, always checking that the
connection was successful. The robots are then launched one after the other.
This is done by tilting the nose of the robot to the sky. Robots react to this action
by taking off. This is much easier than having to click a button on the interface

130 MATERIALS

Figure B.9: Experimental setup for operation and monitoring of robots.

for every robot and allows the operator to move away from the computer. Af-
ter take-off, robots navigate to a "stand-by" way-point which they continuously
circle. Robots are spaced out from 50 m to 150 m altitude with steps of 10 m
to avoid any collisions. Notice that this requires launching the robots in the
correct order, with the highest altitude first. Alternative methods for inter-robot
collision avoidance have been studied within this project in simulation [46] and
in reality [60].

Swarm experiments are launched by sending a swarm command called "swa-
rm" from the interface. On reception of this message, robots adopt turn rates
sent from swarm algorithms implemented on the linux board to the autopilot.
Experiments can be stopped at any time by sending the swarm command "stand-
by" at which point the robots return to the previous way-point. This allows for
quick swarm experiments that can be stopped at any time. The interface can also
be used to change controller parameters on-line, updates can be made at the level
of the swarm or the individual. When experiments are finished, the operator can
initiate landing by sending the swarm command "land". The robots then need
to be retrieved around the landing site.

B.2. FLYING TESTBED 131

Safety

Many things can go wrong during aerial swarm experiment, robots can break,
fly away or crash. One of the main challenges in performing swarm experiments
is reaching the level of trust necessary in the system to increase the number of
robots in the air. This is acquired through safety mechanisms implemented
for every possible failure imaginable. Safety mechanisms presented here were
useful in ensuring robust operation of flying robots during nearly 200 flights.

One of the main challenges for which almost nothing can be done relates
to hardware breakdowns. Possible solutions include checking the material fre-
quently and having extremely robust and simple platforms such as ours. To
make sure that robots don’t lose their propellers, two rubber-bands are used.

Otherwise, GPS is used for most safety operations. The first safety mecha-
nisms therefore is to ground the robot if GPS is lost. Such landings are called
emergency landings and the robot simply turns off its motor and glides in cir-
cles until it reaches the ground, thereby landing softly. Emergency landings are
the most inconvenient because they require the operator to retrieve the robot
wherever it has landed.

Furthermore, to prevent robots from flying away, a virtual safety box is set
up around the experimental area. When robots leave the box, their state is set
to "stand-by" and they return to the corresponding waypoint. Finally, normal
landing is initiated automatically when the robot’s battery is low.

Notice that thanks to these safety mechanisms, experiments could be con-
ducted entirely without an operator since the robots take-off, go into stand-by
and land on their own when needed. Furthermore, even though GPS is used for
the experimental protocol, it is never used during swarming and can be entirely
removed once the system has been thoroughly tested using controllers proposed
in this thesis.

132 MATERIALS

Bibliography

[1] Abdelzaher, T., Prabh, S., and Kiran, R. (2004). On real-time capacity limits
of multihop wireless sensor networks. pages 359–370, Piscataway. IEEE Press.

[2] Alidaee, B., Wang, H., and Landram, F. (2009). A note on integer program-
ming formulations of the real-time optimal scheduling and flight path selec-
tion of UAVs. IEEE Transactions on Control Systems Technology, 17(4):839–843.

[3] Allred, J., Hasan, A. B., Panichsakul, S., Pisano, W., Gray, P., Huang, J., Han,
R., Lawrence, D., and Mohseni, K. (2007). SensorFlock: an airborne wireless
sensor network of micro-air vehicles. In Proceedings of the 5th International
Conference on Embedded Networked Sensor Systems, pages 117–129, New York.
ACM Press.

[4] Altshuler, Y., Yanovsky, V., Wagner, I., and Bruckstein, A. (2008). Efficient
cooperative search of smart targets using UAV swarms. Robotica, 26(4):551—-
557.

[5] Bashyal, S. and Venayagamoorthy, G. (2008). Human swarm interaction for
radiation source search and localization. In IEEE Swarm Intelligence Sympo-
sium, pages 1–8.

[6] Basu, P., Redi, J., and Shurbanov, V. (2004). Coordinated flocking of UAVs
for improved connectivity of mobile ground nodes. In Proceedings of the IEEE
Military Communications Conference, volume 3, pages 1628–1634, Piscataway.
IEEE Press.

133

134 BIBLIOGRAPHY

[7] Beard, R. W., Mclain, T. W., Nelson, D. B., Kingston, D., and Johanson, D.
(2006). Decentralized cooperative aerial surveillance using fixed-wing minia-
ture UAVs. Proceedings of the IEEE, 94(7):1306–1324.

[8] Beni, G. (2004). From swarm intelligence to swarm robotics. In 8th Interna-
tional Conference on Simulation of Adaptive Behavior, pages 1–9.

[9] Bertuccelli, L., Alighanbari, M., and How, J. (2004). Robust planning for
coupled cooperative UAV missions. In IEEE Conference on Decision and Control,
volume 17, pages 2917–2922, Piscataway. IEEE Press.

[10] Beyeler, A., Magnenat, S., and Habersaat, A. (2008). Ishtar: a flexible and
lightweight software for remote data access. In Proceedings of the European
Micro Air Vehicle Conference.

[11] Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm Intelligence: From
Natural to Artificial Systems. Oxford University Press.

[12] Brooks, R. A. and Connell, J. (1986). Asynchronous distributed control sys-
tem for a mobile robot. In Proceedings of SPIE’s Cambridge Symposium on Optical
and Optoelectronic Engineering, pages 77–84.

[13] Burton, J. L. and Franks, N. R. (1985). The foraging ecology of the army ant
Eciton rapax: an ergonomic enigma? Ecological Entomology, 10(2):131–141.

[14] Camazine, S., Crailsheim, K., Hrassnigg, N., Robinson, G. E., Leonhard, B.,
and Kropiunigg, H. (1998). Protein trophallaxis and the regulation of pollen
foraging by honey bees (Apis mellifera L.). Apidologie, 29(1):113–126.

[15] Campo, A. and Dorigo, M. (2007). Efficient multi-foraging in swarm
robotics. In Advances in Artificial Life, volume 4648 of Lecture Notes in Arti-
ficial Intelligence, pages 696–705. Springer, Berlin.

[16] Chang, D., Shadden, S., Marsden, J., and Olfati-Saber, R. (2003). Collision
avoidance for multiple agent systems. In Proceedings of the 42nd IEEE Confer-
ence on Decision and Control, pages 539–543, Piscataway. IEEE Press.

[17] Cliff, D., Husbands, P., and Harvey, I. (1993). Explorations in evolutionary
robotics. Adaptive Behavior, 2:73–110.

135

[18] Cole, D., Goktogan, A., and Sukkarieh, S. (2006). The demonstration of a
cooperative control architecture for UAV teams. Experimental Robotics, 39:501–
510.

[19] Cortés, J., Martínez, S., Karatas, T., and Bullo, F. (2004). Coverage con-
trol for mobile sensing networks. IEEE Transactions on robotics and automation,
20(2):243–255.

[20] Crailsheim, K. (1998). Trophallactic interactions in the adult honeybee (Apis
mellifera L.). Apidologie, 29(1):97–112.

[21] Crowther, B. (2004). Rule-based guidance for flight vehicle flocking. Pro-
ceedings of the Institute of Mechanical Engineers, Part G: Journal of Aerospace En-
gineering, 218(2):111–124.

[22] Cummings, M., Nehme, C., Crandall, J., and Mitchell, P. (2007). Predicting
operator capacity for supervisory control of multiple UAVs. Innovations in
Intelligent UAVs: Theory and Applications, 70:11–37.

[23] Daniel, K., Rohde, S., Goddemeier, N., and Wietfeld, C. (2010). A communi-
cation aware steering strategy avoiding self-separation of flying robot swarms.
In 5th IEEE International Conference on Intelligent Systems, pages 254–259.

[24] De Nardi, R. (2004). Flocking of UAVs Software model and limited vision simu-
lations. PhD thesis, University of Essex.

[25] De Nardi, R., Holland, O., Woods, J., and Clark, A. (2006). SwarMAV: A
swarm of miniature aerial vehicles. In Proceedings of the 21st International UAV
Systems Conference.

[26] Deneubourg, J. L., Goss, S., Franks, N. R., and Pasteels, J. M. (1989). The
blind leading the blind: modeling chemically mediated army ant raid pat-
terns. Journal of Insect Behavior, 2(5):719–725.

[27] Dixon, C. and Frew, E. W. (2009). Maintaining optimal communication
chains in robotic sensor networks using mobility control. Mobile Networks and
Applications Journal, 14(3):281–291.

[28] Etkin, B. and Reid, L. D. (1996). Dynamics of flight - Stability and control. John
Wiley & Sons, New York.

136 BIBLIOGRAPHY

[29] Fantacci, R., Marabissi, D., and Tarchi, D. (2009). A novel communication
infrastructure for emergency management: the In.Sy.Eme. vision. Wireless
Communications and Mobile Computing.

[30] Fenton, L. (1960). The sum of log-normal probability distributions in scatter
transmission systems. Proceedings of the IEEE Transactions on Communications
Systems, 8(1):57–67.

[31] Finio, B. M. and Wood, R. J. (2010). Distributed power and control actuation
in the thoracic mechanics of a robotic insect. pages 2755–2762. in press.

[32] Floreano, D. and Mattiussi, C. (2008). Bio-Inspired Artificial Intelligence: The-
ories, Methods, and Technologies. MIT Press, Cambridge.

[33] Floreano, D., Mitri, S., Magnenat, S., and Keller, L. (2007). Evolutionary
conditions for the emergence of communication in robots. Current Biology,
17:514–519.

[34] Franks, N. R., Gomez, N., Goss, S., and Deneubourg, J. L. (2001). The
blind leading the blind in army ant raid patterns: Testing a model of self-
organization (Hymenoptera: Formicidae). Journal of Insect Behavior, 4(5):583–607.

[35] Frew, E. W., Dixon, C., Elston, J., and Stachura, M. (2009). Active sensing by
unmanned aircraft systems in realistic communication environments. In IFAC
Workshop on Networked Robotics.

[36] Gancet, J., Hattenberger, G., Alami, R., and Lacroix, S. (2005). Task plan-
ning and control for a multi-UAV system: architecture and algorithms. In
IEEE International Conference on Intelligent Robots and Systems, pages 1017–1022,
Piscataway. IEEE Press.

[37] Gancet, J., Motard, E., Naghsh, A., Roast, C., Arancon, M., and Marques, L.
(2010). User interfaces for human robot interactions with a swarm of robots
in support to firefighters. In IEEE International Conference on Robotics and Au-
tomation, pages 2846–2851.

[38] Gaudiano, P., Bonabeau, E., and Shargel, B. (2005). Evolving behaviors for a
swarm of unmanned air vehicles. In Proceedings of the IEEE Swarm Intelligence
Symposium, pages 317–324, Piscataway. IEEE Press.

137

[39] Ghabcheloo, R., Pascoal, A., Silvestre, C., and Kaminer, I. (2007). Non-linear
co-ordinated path following control of multiple wheeled robots with bidirec-
tional communication constraints. International Journal of Adaptive Control and
Signal Processing, 21(2-3):133–157.

[40] Ghommam, J., Saad, M., and Mnif, F. (2008). Formation path following
control of unicycle-type mobile robots. In IEEE International Conference on
Robotics and Automation, pages 1966–1972, Piscataway. IEEE Press.

[41] Goldenberg, D. K., Lin, J., Morse, A. S., Rosen, B. E., and Yang, Y. R. (2004).
Towards mobility as a network control primitive. In Proceedings of the 5th
international symposium on mobile ad hoc networking and computing, pages 163–
174, New York. ACM Press.

[42] Gomez, F. and Mikkulainen, R. (1997). Incremental evolution of complex
general behavior. Adaptive Behavior, 5(3-4):317–342.

[43] Guglieri, G., Quagliotti, F. B., and Speciale, G. (2008). Optimal trajectory
tracking for and autonomous uav. Automatic Control in Aerospace (online jour-
nal), 1:1–9.

[44] Hauert, S. (2006). Simulation of swarming mavs for communication relay.
Master’s thesis, École Polytechnique Fédérale de Lausanne.

[45] Hauert, S., Mitri, S., Keller, L., and Floreano, D. (2010). Evolving cooper-
ation: From biology to engineering. In The Horizons of Evolutionary Robotics.
MIT Press, Cambridge, USA.

[46] Hauert, S., Winkler, L., Zufferey, J.-C., and Floreano, D. (2008). Ant-based
swarming with positionless micro air vehicles for communication relay. Swarm
Intelligence, 2(2–4):167–188.

[47] Hauert, S., Zufferey, J., and Floreano, D. (2009). Evolved swarming with-
out positioning information: an application in aerial communication relay.
Autonomous Robots, 26(1):21–32.

[48] Hayes, A. T., Martinoli, A., and Goodman, R. M. (2003). Swarm robotic odor
localization: Off-line optimization and validation with real robots. Robotica,
21(4):427–441.

138 BIBLIOGRAPHY

[49] Hoffmann, G., Rajnarayan, D., Waslander, S., Dostal, D., Jang, J., and Tom-
lin, C. (2004). The Stanford testbed of autonomous rotorcraft for multi agent
control (STARMAC). In Proceedings of the 23rd Digital Avionics Systems Confer-
ence, volume 2, pages 1–10, Piscataway. IEEE Press.

[50] How, J., King, E., and Kuwata, Y. (2004). Flight demonstrations of coopera-
tive control for uav teams. In AIAA Unmanned Unlimited Technical Conference,
Workshop and Exhibit, Reston, VA. AIAA Press. AIAA paper AIAA-2004-6490.

[51] Hrabar, S. and Sukhatme, G. S. (2009). Vision-based navigation through
urban canyons. Journal of Field Robotics, 26(5):431–452.

[52] Jang, H., Lien, Y., and Tsai, T. (2009). Rescue information system for earth-
quake disasters based on MANET emergency communication platform. In
Proceedings of the International Conference on Wireless Communications and Mobile
Computing Connecting the World Wirelessly, pages 623—-627, New York. ACM
Press.

[53] Kadrovach, B. A. and Lamont, G. B. (2001). Design and analysis of swarm-
based sensor systems. In Proceedings of the IEEE Midwest Symposium on Circuits
and Systems, volume 1, pages 487–490, Piscataway. IEEE Press.

[54] Kim, K.-H. and Shin, K. G. (2006). On accurate measurement of link quality
in multi-hop wireless mesh networks. In Proceedings of the 12th Annual Interna-
tional Conference on Mobile Computing and Networking, pages 38–49, New York.
ACM Press.

[55] Kovacina, M., Palmer, D., Yang, G., and Vaidyanathan, R. (2002). Multi-
agent control algorithms for chemical cloud detection and mapping using
unmanned air vehicles. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and System, volume 3, pages 2782–2788, Piscataway. IEEE
Press.

[56] Kuiper, E. and Nadjm-Tehrani, S. (2006). Mobility models for UAV group
reconnaissance applications. In Proceedings of the IEEE International Conference
on Wireless and Mobile Communications, page 33, Piscataway. IEEE Press.

[57] Lawrence, D., Donahue, R., Mohseni, K., and Han, R. (2004). Information
energy for sensor-reactive UAV flock control. In Proceedings of the AIAA "Un-

139

manned Unlimited" Technical Conference, Reston, VA. AIAA Press. AIAA paper
AIAA-2004-6530.

[58] Lawrence, D. A., Frew, E. W., and Pisano, W. J. (2008). Lyapunov vector
fields for autonomous unmanned aircraft flight control. Journal of Guidance,
Control and Dynamics, 31(5):1220–1229.

[59] Leven, S., Zufferey, J.-C., and Floreano, D. (2009). A minimalist control
strategy for small UAVs. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2873–2878, Piscataway. IEEE Press.

[60] Leven, S., Zufferey, J.-C., and Floreano, D. (2010). Mid-air collision avoid-
ance in dense collective aeiral systems. Journal of Field Robotics. in press.

[61] Li, Q. and Jiang, Z. P. (2008). Formation tracking control of unicycle teams
with collision avoidance. In Conference on Decision and Control, pages 496–501,
Piscataway. IEEE Press.

[62] Lipson, H. and Pollack, J. (2000). Automatic design and manufacture of
robotic lifeforms. Nature, 406(6799):974–8.

[63] Manoj, B. and Baker, A. H. (2007). Communication challenges in emergency
response. Communications of the ACM, 50(3):51–53.

[64] Mataric, M. J. (1994). Interaction and Intelligent Behavior. PhD thesis, MIT.

[65] Mattiussi, C. and Floreano, D. (2007). Analog genetic encoding for the evo-
lution of circuits and networks. IEEE Transactions on Evolutionary Computation,
11(5):596–607.

[66] Merino, L., Caballero, F., Martínez-de Dios, J. R., Ferruz, J., and Ollero, A.
(2006). A cooperative perception system for multiple UAVs: application to
automatic detection of forest fires. Journal of Field Robotics, 23:165–184.

[67] Mirollo, R. E. and Strogatz, S. H. (1990). Synchronization of pulse-coupled
biological oscillators. SIAM Journal on Applied Mathematics, 50:1645–1662.

[68] Mitri, S. (2009). The evolution of communication in robot societies. PhD thesis,
Ecole Polytechnique Fédérale de Lausanne, Lausanne.

140 BIBLIOGRAPHY

[69] Moshtagh, N., Jadbabaie, A., and Daniilidis, K. (2005). Vision-based dis-
tributed coordination and flocking of multi-agent systems. In Proceedings of
Robotics: Science and Systems.

[70] Mostofi, Y., Gonzalez-Ruiz, A., Gaffarkhah, A., and Li, D. (2009). Character-
ization and modeling of wireless channels for networked robotic and control
systems–a comprehensive overview. In Proceedings of the International Confer-
ence on Intelligent Robots and Systems, pages 4849–4854. IEEE.

[71] Murphy, R. R., Pratt, K. S., and Burke, J. L. (2008). Crew roles and opera-
tional protocols for rotary-wing micro-UAVs in close urban environments. In
Proceedings of the 3rd International Conference on Human Robot Interaction, pages
73–80, New York. ACM Press.

[72] Nelson, D., Barber, D., McLain, T., and Beard, R. (2007). Vector field path
following for miniature air vehicles. IEEE Transactions on Robotics, 23(3):519–
529.

[73] Nembrini, J., Winfield, A., and Melhuish, C. (2002). Minimalist coherent
swarming of wireless networked autonomous mobile robots. In From Ani-
mals to Animats 7, Proceedings of the 7th International Conference on Simulation of
Adaptive Behavior, pages 273–382. MIT Press, Cambridge.

[74] Nolfi, S. and Floreano, D. (2000). Evolutionary Robotics. The Biology, Intelli-
gence, and Technology of Self-organizing Machines. MIT Press, Cambridge.

[75] Nouyan, S., Campo, A., and Dorigo, M. (2008). Path formation in a robot
swarm. Swarm Intelligence, 2:1–23.

[76] Oh, E. S. (2003). Information and communication technology in the ser-
vice of disaster mitigation and humanitarian relief. In Proceedings of the IEEE
9th Asia-Pacific Conference on Communications, volume 2, pages 730–734, Piscat-
away. IEEE Press.

[77] Oyekan, J. and Huosheng, H. (2009). Toward bacterial swarm for envi-
ronmental monitoring. In Proceedings of the IEEE International Conference on
Automation and Logistics, number August, pages 399–404, Piscataway. IEEE
Press.

141

[78] Park, C. S., Tahk, M. J., and Bang, H. C. (2003). Multiple aerial vehicle
formation using swarm intelligence. In Proceedings of the AIAA Guidance, Nav-
igation, and Control Conference and Exhibit, Reston, VA. AIAA Press. AIAA
paper AIAA-2003-5729.

[79] Payton, D., Daily, M., Estowski, R., Howard, M., and Lee, C. (2001).
Pheromone robotics. Autonomous Robots, 11:319–324.

[80] Peng, H., Li, Y., Wang, L., and Shen, L. (2008). Hormone-inspired coop-
erative control for multiple uavs wide area search. In Proceedings of the 4th
international conference on Intelligent Computing: Advanced Intelligent Comput-
ing Theories and Applications-with Aspects of Theoretical and Methodological Issues,
volume 5226 of Lecture Notes in Computer Science, pages 808–816. Springer,
Berlin.

[81] Poduri, S., Pattem, S., Krishnamachari, B., and Sukhatme, G. S. (2009). Us-
ing local geometry for tunable topology control in sensor networks. IEEE
Transactions on Mobile Computing, 8:218–230.

[82] Quigley, M., Goodrich, M., and Beard, R. (2004). Semi-autonomous human-
UAV interfaces for fixed-wing mini-UAVs. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2457–2462.

[83] Reynolds, C. W. (1987). Flocks, herds and schools: a distributed behavioral
model. In SIGGRAPH Computer Graphics, volume 21, pages 25–34, New York.
ACM Press.

[84] Richards, A., Bellingham, J., Tillerson, M., and How, J. (2002). Co-ordination
and control of multiple UAVs. In Proceedings of the AIAA Guidance, Navigation
and Control Conference, Reston, VA. AIAA Press. AIAA Paper AIAA-2002-4588.

[85] Richards, M. D., Whitley, D., and Beveridge, J. R. (2005). Evolving cooper-
ative strategies for UAV teams. In Proceedings of the Genetic And Evolutionary
Computation Conference, volume 2, pages 1721–1728, New York. ACM Press.

[86] Rodriguez, A., Andersen, E., Bradley, J., and Taylor, C. (2007). Wind esti-
mation using an optical flow sensor on a miniature air vehicle. In Proceedings
of the AIAA Conference on Guidance, Navigation, and Control, Reston, VA. AIAA
Press. AIAA paper AIAA-2007-6614.

142 BIBLIOGRAPHY

[87] Romero, J. and Machado, P., editors (2007). The Art of Artificial Evolution: A
Handbook on Evolutionary Art and Music. Natural Computing Series. Springer
Berlin.

[88] Ruini, F., Cangelosi, A., and Zetule, F. (2009). Extending the evolutionary
robotics approach to flying machines: An application to mav teams. Neural
Networks, 22(5-6):812–821.

[89] Şahin, E. (2005). Swarm robotics: from sources of inspiration to domains
of application. In Swarm Robotics, volume 3342 of Lecture Notes in Computer
Science, pages 10–20, Berlin. Springer.

[90] Sauter, J. A., Matthews, R., Parunak, H. V. D., and Brueckner, S. A. (2005).
Performance of digital pheromones for swarming vehicle control. In Proceed-
ings of the International Joint Conference on Autonomous Agents and Multi-Agent
Systems, pages 903–910, New York. ACM Press.

[91] Schmickl, T. and Crailsheim, K. (2007). Trophallaxis within a robotic swarm:
bio-inspired communication among robots in a swarm. Autonomous Robots,
25(1-2):171–188.

[92] Siegwart, R. and Nourbakhsh, I. R. (2004). Introduction to autonomous mobile
robots. Bradford Book, MIT Press, Cambridge.

[93] Solé, R., Bonabeau, E., Fernàndez, P., and Marìn, J. (2000). Pattern formation
and optimization in army ant raids. Artificial Life, 6(3):219–226.

[94] Spears, W. M., Spears, D. F., Heil, R., Kerr, W., and Hettiarachchi, S. (2005).
An overview of physicomimetics. In Simulation of Adaptive Behaviour, Workshop
on Swarm Robotics, volume 3342 of Lecture Notes in Computer Science, pages 84–
97, Berlin. Springer.

[95] Stirling, T., Wischmann, S., and Floreano, D. (2010). Energy-efficient in-
door search by swarms of simulated flying robots without global information.
Swarm Intelligence, 4(2):117–143.

[96] Strogatz, S. H. and Stewart, I. (1993). Coupled oscillators and biological
synchronization. Scientific American, 269(6):102–109.

143

[97] Støy, K. (2001). Using situated communication in distributed autonomous
mobile robotics. In Proceedings of the 7th Scandinavian Conference on Artifcial
Intelligence.

[98] Surette, M. G., Miller, M. B., and Bassler, B. L. (1999). Quorum sensing in
escherichia coli, salmonella typhimurium, and vibrio harveyi: A new family
of genes responsible for autoinducer production. Proceedings of the National
Academy of Sciences, 96(4):1639–1644.

[99] Tekdas, O., Yang, W., and Isler, V. (2010). Robotic routers: Algorithms and
implementation. International Journal of Robotics Research, 29(1).

[100] Thompson, A., Layzell, P., and Zebulum, R. S. (1999). Explorations in
design space: unconventional electronics design through artificial evolution.
IEEE Transactions on Evolutionary Computation, 3(3):167–196.

[101] Urzelai, J. and Floreano, D. (2001). Evolution of adaptive synapses: Robots
with fast adaptive behavior in new environments. Evolutionary Computation,
9(4):495–524.

[102] Uzol, O. and Yavrucuk, I. (2008). Collaborative target tracking for swarm-
ing MAVs using potential fields and panel methods. In Proceedings of the 2008
AIAA Guidance, Navigation and Control Conference, Reston, VA. AIAA Press.
AIAA paper AIAA-2008-7167.

[103] Valenti, M., Bethke, B., Dale, D., Frank, A., McGrew, J., Ahrens, S., How,
J. P., and Vian, J. (2007). The MIT indoor multi-vehicle flight testbed. In Pro-
ceedings of the International Conference on Robotics and Automation, pages 2758–
2759, Piscataway. IEEE Press.

[104] Van Dyke Parunak, H., Brueckner, S., and Sauter, J. (2002). Digital
pheromone mechanisms for coordination of unmanned vehicles. In Proceed-
ings of the 1st International Joint Conference on Autonomous Agents and Multiagent
Systems, pages 449–450, New York. ACM Press.

[105] Van Dyke Parunak, H., Brueckner, S. A., and Sauter, J. (2005). Digi-
tal pheromones for coordination of unmanned vehicles. In Environments for
Multi-Agent Systems, volume 3374 of Lecture Notes in Computer Science, pages
246–263. Springer, Berlin.

144 BIBLIOGRAPHY

[106] Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., and Sochet, O. (1995). Novel
type of phase transition in a system of self-driven particles. Physical Review
Letters, 75(6):1226–1229.

[107] Waibel, M., Keller, L., and Floreano, D. (2009). Genetic team composition
and level of selection in the evolution of cooperation. IEEE Transactions on
Evolutionary Computation, 13:648–660.

[108] Welsby, J. and Melhuish, C. (2001). Autonomous minimalist following in
three dimensions: A study with small-scale dirigibles. Proceedings of Towards
Intelligent Mobile Robots. Technical Report Series, Manchester University, Depart-
ment of Computer Science.

[109] Winfield, A. F. T. (2000). Distributed sensing and data collection via bro-
ken ad hoc wireless connected networks of mobile robots. In Proceedings of
Distributed Autonomous Systems 4, pages 273–282, Berlin. Springer.

[110] Winfield, A. F. T., Harper, C. J., and Nembrini, J. (2005). Towards depend-
able swarms and a new discipline of swarm engineering. In Proceedings of
the SAB Swarm Robotics Workshop, volume 3342 of Lecture Notes in Computer
Science, pages 126–142. Springer, Berlin.

[111] Yang, Y., Minai, A. A., and Polycarpou, M. M. (2005). Evidential map-
building approaches for multi-UAV cooperative search. In Proceedings of the
IEEE American Control Conference, pages 116–121, Piscataway. IEEE Press.

[112] Ye, W., Vaughyan, R. T., Sukhatme, G. S., Heidemann, J., Estrin, D., and
Matarić, M. M. (2001). Evaluating control strategies for wireless-networked
robots using an integrated robot and network simulation. In Proceedings of
the IEEE International Conference on Robotics and Automation, pages 2941–2947,
Piscataway. IEEE Press.

[113] Zarzhitsky, D. and Spears, D. (2005). Swarm approach to chemical source
localization. In Proceedings of the IEEE International Conference on Systems, Man
and Cybernetics, pages 1435––1440, Piscataway. IEEE Press.

[114] Zou, Y., Pagilla, P., and Ratliff, R. (2009). Distributed formation flight
control using constraint forces. Journal of Guidance, Control, and Dynamics,
32(1):112–120.

145

[115] Zufferey, J.-C., Hauert, S., Stirling, T., Leven, S., Roberts, J., and Floreano,
D. (2010). Handbook of Collective Robotics, chapter Aerial collective systems.
Pan Stanford Publishing.

146 BIBLIOGRAPHY

Curriculum Vitae

I was born on the 16th of July 1983 in the USA from Swiss parents. After living
in Rochester NY for 10 years, I moved to Switzerland, where I completed all
my studies. After choosing a scientific curriculum in middle school and high
school, I entered the Ecole Polytechnique Fédérale de Lausanne in 2001 to study
Computer Science. As a student, I won 2nd place at the Swiss Programming
Contest "Logiquest" for the development of applications for mobile phones. I
also worked as a student researcher at the Laboratory of Software Engineering
on making Aspect Oriented programs under the supervision of Prof. Strohmeier.

Thanks to my excellent grades during my first 3 years at EPFL, I was awarded
a scholarship in 2004 to study abroad at Carnegie Mellon University (CMU) in
the USA. At CMU I received the highest grades, owing me the honors of entering
that year’s Dean’s list. During my stay at CMU, I discovered a passion for
robotics through a course on making autonomous AIBO robots (small robot dogs
made by Sony). I then joined the MultiRobot Lab under the supervision of Prof.
Veloso to work on AIBO odometry towards the robocup soccer competitions. In
2005, our team won the first place at the Robocup US Open.

Upon my return to Switzerland in 2005 I immediately started an Internship,
then Master project, on the "Simulation of Swarming MAVs for Communication
Relay" at the Laboratory of Intelligent Systems at the EPFL under the supervision
of Prof. Floreano and Dr. Zufferey. This work initiated the PhD thesis presented
here. During my time at the Laboratory of Intelligent Systems, I published
2 journal papers, 2 book chapters, 3 conference papers, and 4 peer-reviewed
abstracts and posters. Two additional papers are in preparation as listed in
Chapter B.2.3. These publications led me to give a presentation at several high-
profile international venues including two invited full talks.

147

148 CURRICULUM VITAE

In parallel to my research, I was on the organization committee of the Interna-
tional Flying Insects and Robots Symposium, which attracted 150 participants.
I also co-organized the workshop on Evolutionary Robotics at the IEEE Inter-
national Conference on Evolutionary Computation. Finally, I was also heavily
involved in writing a research proposal which was accepted and will allow two
PhD students to continue work done during my thesis.

Finally, I gave great importance to disseminating knowledge about robotics
to students and the general public. In particular, I have supervised 14 student
projects and presented the LIS to innumerable prospecting students. More vis-
ibly, I have been active with the two best known podcasts on robotics, Talking
Robots* and ROBOTS † which I preside. Over the years, these podcast have
accounted for nearly 750’000 downloads. Through these podcasts, I have inter-
viewed nearly 100 high-profile researchers in robotics. This work has given me
huge insight into today’s and tomorrow’s research in robotics. I am now also
Media Editor for one of the best known journals in robotics named "Autonomous
Robots" and published by Springer US. As such, I am responsible for presenting
the latest research in robotics in a fresh and interactive way on the Autonomous
Robots Blog‡. Finally, I am also interested in producing quality video support to
explain science. Along this line I have produced a video on "Bio-inspired Flying
Robots" that won the best video award at the AI Video competition in 2008. Our
latest video on the flight of 10 autonomous robots has also received wide media
attention.

In the future, I hope to apply my knowledge on making simple robots work
together towards the development of cooperative nanoparticles for medical ap-
plications.

*http://lis.epfl.ch/podcast
†http://www.robotspodcast.com/
‡http://www.autonomousrobotsblog.com/

Publications

Journal Papers

• Hauert, S., Leven, S. Zufferey, J.-C. and Floreano, D. (2011) Evolutionary
Synthesis of Communication-based Aerial Swarms. in preparation.

• Leven, S., Hauert, S., Zufferey, J.-C. and Floreano, D. (2011) Bringing Swarms
of Flying Robots into Reality. in preparation.

• Hauert, S., Zufferey, J.-C. and Floreano, D. (2009) Evolved Swarming with-
out Positioning Information: an Application in Aerial Communication Re-
lay. Autonomous Robots, 26(1) pp. 21-32.

• Hauert, S., Winkler, L., Zufferey, J.-C. and Floreano, D. (2008) Ant-based
Swarming with Positionless Micro Air Vehicles for Communication Relay.
Swarm Intelligence, 2(2-4) pp. 167-188.

Conference Papers

• Hauert, S., Leven, S., Zufferey, J.-C. and Floreano, D. (2010) Beat-based Syn-
chronization and Steering for Groups of Fixed-wing Flying Robots. Pro-
ceedings of International Symposium on Distributed Autonomous Robotics
Systems, in press.

• Hauert, S., Leven, S., Zufferey, J.-C. and Floreano, D. (2010) Communication-
based Leashing of Real Flying Robots. Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 15-20.

• Hauert, S., Zufferey, J.-C. and Floreano, D. (2009) Reverse-engineering of
Artificially Evolved Controllers for Swarms of Robots. Proceedings of the
IEEE Congress on Evolutionary Computation, pp. 55-61.

149

150 PUBLICATIONS

Book Chapters

• Hauert, S., Mitri, S., Keller, L. and Floreano, D. (2010) Evolving Coop-
eration: From Biology to Engineering. in The Horizons of Evolutionary
Robotics, MIT Press, in press.

• Zufferey, J.-C., Hauert, S., Stirling, T. Leven, S., Roberts, J. and Floreano, D.
(2010) Aerial Collective Systems. in Handbook of Collective Robotic, Pan
Stanford Publishing, in press.

Peer-reviewed Abstracts & Posters

• Hauert, S., Leven, S., Zufferey, J.-C. and Floreano, D. (2010) Communication-
based Swarming for Flying Robots. Proceedings of the Workshop on Net-
work Science and Systems Issues in Multi-Robot Autonomy, IEEE Interna-
tional Conference on Robotics and Automation.

• Hauert, S., Leven, S., Zufferey, J.-C. and Floreano, D. (2010) Communication-
based Swarming for Flying Robots. Proceedings of the International Work-
shop on Self-Organized Systems.

• Hauert, S., Winkler, L., Zufferey, J.-C. and Floreano, D. (2007) Pheromone-
based Swarming for Position-less MAVs. Proceedings of the International
Symposium on Flying Insects and Robots.

• Floreano, D., Hauert, S., Leven, S. and Zufferey, J.-C. (2007) Evolutionary
Swarms of Flying Robots. Proceedings of the International Symposium on
Flying Insects and Robots.

151

	Title
	Acknowledgements
	Abstract
	Résumé
	Contents
	Introduction
	State of the Art
	Challenges
	Positionless Swarming
	Motion Constraints

	Method
	Contributions
	Structure

	Evolved Solution
	Background
	Method
	Experimental Setup
	Neural Controller
	Genetic Algorithm

	Results
	Performance
	Behavior

	Limitations
	Conclusion

	Individual Motion
	Background
	Evolved Behavior
	Reverse Engineered Controller
	Model
	Validation
	Extensions
	Conclusion

	Group Motion
	Background
	Evolved Behavior
	Reverse Engineered Controller
	Model
	Validation
	Extensions
	Conclusion

	Area Coverage
	Background
	Evolved Behavior
	Reverse Engineered Controller
	Model
	Validation
	Extensions
	Conclusion

	Communication Relay
	Background
	Evolved Behavior
	Reverse Engineered Controller
	Model
	Validation
	Extensions
	Conclusion

	Coping with Wind
	Background
	Method
	Results
	Conclusion

	Conclusion
	Achievements
	Future Work

	Ant-based Swarming
	Introduction
	Experimental Setup
	Scenario

	Control Strategy
	Army Ant Raid Patterns in Nature
	Adaptation to Robots
	Motion Primitives

	Results
	Swarm Behavior
	Performance
	Robustness

	Discussion
	Conclusion

	Materials
	Simulation
	2D Simulator
	3D Simulator

	Flying Testbed
	Platform
	Base Station
	Experimental Setup

	Bibliography
	Curriculum Vitae
	Publications

