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Abstract

The physical mechanisms underlying the dynamic fragmentation of heterogeneous
brittle materials are explored through numerical simulations. The use of compu-
tational facilities, rather than experimental or fundamental sciences, ensures the
accurate tracking of rapidly evolving fields (such as stress field, energies and dam-
age). The numerical framework is based on Galerkin approximations coupled to
the Cohesive Zone model, which addresses the failure response. Depending on the
number of degrees of freedom, serial or parallel simulations are performed. The
finite element method with dynamic insertion of cohesive elements constitutes the
basis of the serial calculations. However, it is replaced by the scalable discontinuous
Galerkin formulation for parallel computing. Both frameworks recover accurately
the physical mechanisms behind dynamic fragmentation.

The thesis is organized to handle gradually increasing complexity. First, the frag-
mentation of a quasi one-dimensional expanding ring, constituted of a heterogeneous
material, is simulated. It involves two major mechanisms: crack initiation and crack
interaction. Fragment sizes are highly dependent upon strain rate, material proper-
ties, and microstructural heterogeneity. Scaling laws of the average fragment size, as
well as of the distribution of fragment masses, are proposed and lead to predictable
laws.

Then, crack propagation mechanisms are investigated through parallel simulations
of the quasi three-dimensional breakage of a thin plate. By analyzing the energetic
response, two regimes are defined: the strength controlled and the toughness con-
trolled. At low strain rates, defects play a key role and govern energy levels. They
correspond to the strength controlled regime and induce disordered responses. At
high strain rates, fragmentation is more organized, fragment masses follow Weibull
distributions, and crack interactions become secondary. This is the toughness con-
trolled regime, governed by energetic arguments. The transition between the two
regimes is derived as a function of material parameters.

Finally, the transition between two- and three-dimensional fragmentation is ana-
lyzed. Massively parallel simulations of the fragmentation of a hollow sphere with
variable thickness are conducted. The effect of dimensionality upon fragment shape
and fragment mass distributions is analyzed.

Interestingly, although these three tests involve distinct mechanisms due to the
specimen geometry, they share common behaviors. Quasi-static loadings lead to
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highly dynamic fragmentation processes, involving extensive stress wave interac-
tions. Defect distributions play a key role. By contrast, dynamic loadings are asso-
ciated to smoother and more deterministic responses. They are primarily controlled
by energy arguments. As suggested by Grady’s energy balance theory, this results
in a predictable dependence of the average fragment size and strain rate, character-
ized by a power law of exponent -2/3. However, we recover more fragments than
Grady because of our ability to reproduce explicitly and accurately time-dependent
mechanisms (dynamics of stress waves and energy transfers).

Therefore, the interpretation of these numerical results sheds light on the complex-
ity of the physics underlying fragmentation. The dynamics of stress waves, energetic
arguments, the loading conditions, the dimensionality of the geometry, and the ma-
terial itself (bulk and defects) must be all evoked to draw a global picture of the
phenomenon. Reproducing such processes requires a high level of accuracy that
novel parallel numerical frameworks are able to provide.

Keywords: dynamic fragmentation, heterogeneous brittle materials, parallel
computing, fragment size distribution, energy conversion, stress release waves
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Résumé

La fragmentation dynamique de matériaux fragiles et hétérogènes s’accompagne
de mécanismes complexes. La simulation numérique d’un tel phénomène offre la
possibilité d’examiner des grandeurs physiques dont l’évolution rapide est difficile-
ment prévisible analytiquement et observable expérimentalement. Dans cette thèse,
le schéma numérique est basé sur le couplage des méthodes de Galerkin, qui four-
nissent une approximation de la réponse structurelle sans endommagement, et de
l’approche cohésive pour modéliser la rupture. Lorsque le nombre de degrés de
liberté n’est pas excessif, la méthode de Galerkin continue (i.e. la méthode des élé-
ments finis) est utilisée sur un processeur. Cependant, lorsque le maillage s’affine, le
calcul parallèle devient nécessaire et la méthode de Galerkin discontinue adéquate.
En effet, aisément parallélisable, scalable et intégrant naturellement des disconti-
nuités telles que les chemins de ruptures, cette dernière rend possible la simulation
parallèle de la fragmentation de structures tridimensionnelles à des hautes vitesses
de déformation.

Cette thèse est construite de manière à accroître graduellement la complexité
des études. Dans un premier temps, la fragmentation d’un anneau constitué d’un
matériau hétérogène est étudiée. Cette géométrie engage deux mécanismes : l’ini-
tiation et l’interaction des fissures. Bien que la taille des morceaux soit fortement
dépendente du chargement et du type de matériau, une normalisation adaptée per-
met de prédire le nombre de morceaux générés ainsi que la distribution de leur
taille.

Ensuite, les mécanismes de propagation de fissures sont analysés. La fragmenta-
tion d’une plaque composée d’un matériau fragile est simulée en parallèle. L’étude
de l’évolution des énergies débouche sur la définition de deux régimes. En quasi-
statique, les défauts jouent un rôle prépondérant ; leurs contraintes à la rupture
contrôlent ce régime désordonné. En dynamique, des critères énergétiques justifient
une réponse ordonnée et prévisible. Les distributions des masses de fragments suiv-
ent alors une loi de Weibull et l’effet des interactions de fissures devient négligeable.
La limite entre les deux régimes est fonction des propriétés matériaux.

Enfin, la transition entre fragmentation en deux et trois dimensions est examinée.
Une sphère creuse d’épaisseur variable est sollicitée en tension. Le nombre de degrés
de liberté peut accroître considérablement, ce qui nécessite des moyens de calcul
conséquents. L’attention est portée sur la forme des fragments et la distribution de
leurs masses qui affichent une forte dépendence à la dimensionalité du problème.
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Par ailleurs, bien que la géométrie de ces trois tests diffère et génère des mécan-
ismes physiques distincts, un point commun se dégage. Dans toutes les simulations,
le régime dynamique est contrôlé par des critères énergétiques, alors que le régime
quasi-statique est dominé par l’effet des ondes dynamiques ainsi que par les con-
traintes à la rupture des défauts. Le modèle énergétique de Grady, qui prédit que la
taille caractéristique des morceaux suit une loi puissance dont l’exposant associé à
la vitesse de chargement est -2/3, est vérifié en dynamique. Cependant, la présence
des ondes de relaxation dans notre modèle numérique est à l’origine de fragments
de taille moindre. Cette constatation souligne le rôle déterminant des ondes dans
le processus de fragmentation, à la fois en quasi-statique et en dynamique, et pour
tout type de géometrie et de matériau.

Ainsi, l’interprétation de ces résultats numériques atteste de la complexité du
phénomene de fragmentation. Les interactions non linéaires des ondes mécaniques,
l’évolution rapide des énergies, l’initiation et la propagation des fissures, l’influence
des conditions aux limites, de la dimensionalité et des propriétés du matériau doivent
être confrontées.

Mots Clés: fragmentation dynamique, matériaux fragiles et hétérogènes, sim-
ulation numérique parallèle, distribution de taille de morceaux, conversion des én-
ergies, ondes mécaniques de décharge.
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Chapter 1

Introduction

Writing a thesis requires profound faith in its usefulness for the scientific com-
munity, the industrial world, and the society as a whole. As an introduction, this
chapter sheds light on the major motivations governing this study. It also describes
the strategy used to answer the two main questions that are the focus of this work:

What are the physical mechanisms governing the
dynamic fragmentation of heterogeneous materials?
Can numerical simulations predict accurately such a

complex phenomenon?

1.1 At any scale and in diverse contexts

Fragmentation is the breakage of a contiguous body into several pieces. Dynamic
fragmentation focuses on mechanical loadings with a strong dependence on time.
It occurs in very distinct contexts and at any scale. For instance, at astronomic
scales, a supernova results from the fragmentation of a giant star; objects through-
out the asteroid belt and other regions of the solar system, as well as spatial debris
orbiting the Earth’s atmosphere are subjected to regular collisions. Observing the
Earth from space also reveals that its surface is covered with various fragments
of rocks. Similarly, at the small scales, DNA fragmentation controls cell replica-
tion [Gudwska-Nowak 2009], nuclear and elementary particle collisions constantly
occur in daily life [Holian 1988].

Numerous human-scale applications have also been used by engineers. In struc-
tural engineering, major technical developments concern mitigating collisions on
thin structures, such as the impact of flying objects on a plane, in car crashes, in
glass breakage. Moreover, in nuclear power plants, since protective shells are ex-
pected to survive the impact loading of an incoming missile, concrete structures are
designed to resist extreme loadings. In the military domain, intensive research is
carried out to strengthen tanks and bullet-proofing for army personnel. Fragmen-
tation also concerns the medical industry: a technique to help with the elimination
of kidney stones without surgical intervention involves sending pressure pulses onto
the stone to break it into smaller pieces, which may then be eliminated naturally.
Again, in mining and crushing processes, rocks are fragmented to the required size.
Finally, objects in daily life are frequently subjected to dynamic fragmentation: a
kitchen plate or a glass dropping onto the ground will naturally break into many
fragments.
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Fragmentation is thus a physical process which occurs at various scales and in
multiple contexts. It is a key issue in the rock industry, military protection, med-
ical surgery, transport safety, and in many other spheres. Its understanding may
thus contribute to the improvement of industrial capabilities, the design of novel
materials, and the development of innovative medical applications. At the most
fundamental level, it may also help to recount the history of our galaxy and the
Earth.

(a) A meteorite collapse
astrosurf.com

(b) Fragmentation of a
glacier
xenomorphic.co.uk

(c) Shattering of a secu-
rity glass
frozen-reality.de

(d) Car crash
koolyaar.wordpress.com

Figure 1.1: Fragmentation of different materials at different scales and for different
loadings
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1.2 Some major contributions of the 20th century

This vast range of applications emphasizes the relevance of the past and current
research on fragmentation. Understanding the physics and controlling fragmenta-
tion were of special interest during the previous century. Because of the violence of
the process, scientists began by studying the results of fragmentation, e.g. the num-
ber of fragments and the distribution of fragment sizes. In the thirties, Rosin and
Rammler [Rosin 1933] who worked in the coal and ore crushing industry, proposed
the first empirical description of fragment sizes. They noticed that all the fragmen-
tation processes they had encountered generated Weibull distribution. Interested in
this empirical result, Lienau [Lienau 1936] published in 1936, a statistical deriva-
tion of the exponential form for one-dimensional bars, governed by the Poisson point
process. In the forties, Schuhmann [Schuhmann 1941] modeled fragmentation as a
fractal process, and thus, the distribution of fragment sizes as a power law.

During the same period, Weibull [Weibull 1939] conducted quasi-static experi-
ments and explained that failure originates at some special locations, where the
material is weakened by the presence of defects. Weibull’s main contribution was to
conclude that every material is inherently heterogeneous and that structural defects
are the origin of failure. Since specimens have different microstructures, their failure
strengths are not properly identical. Weibull introduced the concept of probability
of failure in quasi static, and derived the Weibull distribution, which is only based
on material parameters and specimen size.

During World War II, the Nobel laureate N.F.Mott achieved seminal investiga-
tions on fragmentation resulting from the explosive rupture of cylindrical bombs.
In association with Linfoot [Mott 1943b], he generalized the Lienau distribution to
two-dimensional structures. His deep understanding of the physical process led him
to devise the wave theory of fragmentation [Mott 1947]. The key idea lies in stress
relaxation of the body: when a crack opens, it releases stress waves that protect
the encompassed areas from incurring further damage. For the first time, the no-
tion of time was included. Fragmentation is a non-instantaneous process in which
dynamic effects prevail. His extensive output has had a profound impact on subse-
quent studies. Mott’s theories were the first derivations based both on physics and
statistics.

Later, in the sixties, Gilvarry [Gilvarry 1961a] came back to Lienau’s conclusions
and noted some inconsistencies. He published an elaborate physics-based statistical
development of fragment size distributions. Following Weibull’s ideas, he postulated
the existence of flaws distributed independently within the volume, the surfaces and
the edges of the body. He assigned a Poisson process to each type of flaw. However,
all these substantial developments are based on statistics and none properly includes
the physics underlying fragmentation.
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In the eighties another major contribution was made. Instead of considering frag-
mentation through its dynamics effects, Grady carefully investigated the evolution
of the local energy of an expanding body [Grady 2007]. He formulated an expres-
sion of the characteristic fragment size, based on loading rate and relevant material
properties. His simple law predicts the number of fragments resulting from the
fragmentation of a one-,two-, or three-dimensional structure. He also considered
separately brittle and ductile processes, which until then had been mismatched.

However, although physical and statistical theories help conceptualize complex
processes, they cannot fully account for all the details. In the case of fragmenta-
tion, experiments and numerical simulations strengthen the knowledge associated
with this probabilistic and irreversible phenomenon. Shockey et al. empirically
described the nature of the physical processes occurring during rock fragmenta-
tion [Shockey 1974]. They also implemented a wave propagation code to trace the
stress history in the specimen volume. Following the same tendency, current research
is now using the latest experimental and numerical techniques to obtain an in-depth
insight of the physics underlying fragmentation. New resources are constantly re-
quired to model accurately the real process in order to understand it better.

Our work here is in line with these computational and physically-based consider-
ations. The main objective of the present thesis is the understanding of the mecha-
nisms of dynamic fragmentation. We restrict the study to brittle materials, such as
many types of rocks, ceramics, polymers, and hard metals, which are characterized
by low fracture energy and little tendency to deform before failure. Although this
limitation significantly alleviates the problem, there remain many challenging issues.

1.3 Challenges in fragmentation modeling

Dynamic fragmentation undergone by brittle materials is based on complex pro-
cesses which may be classified in three stages: crack nucleation, crack propagation,
and fragment coalescence. They infer distinct physical mechanisms based on mate-
rial defects, dynamics of stress waves, and energetic arguments.

The nucleation phase determines the number of initiated cracks. It depends both
on the density and size of material defects, and on the rate and duration of the
driving force. The rate of loading has a key effect in determining activated cracks
because of unloading wave effects. Indeed, when a crack is activated, it opens until
failure, which makes the stress decrease locally to zero. This stress drop alters the
surrounding areas through stress waves that propagate from the activated defects
in every direction. In a first stage, the encompassed zones are protected and no
crack activation occurs. If the loading rate is very low, the stress waves have time to
encompass most of the structure; only a few defects are nucleated. For high loading
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rates, stress waves do not have time to propagate which leads to a higher rate of
defect nucleation; a large amount of defects may be activated. The modeling of
the microstructure and the accurate description of the highly non-linear network of
stress waves constitute the main challenges of the nucleation phase.

The second step in dynamic fragmentation of brittle materials is crack propaga-
tion. Many issues then arise. How fast can a crack propagate? How far can it go?
What orientation and what path does it follow? A crack grows until it reaches a
free surface (that a boundary or another crack may constitute), or until the stress
intensity factor at its tip falls below a critical threshold. Predicting crack path is
rather complex due to the high non-linearity of the stress field, affected both by
interacting stress waves and defects. Crack orientation is controlled by the direction
of the maximum tensile stress and may deviate from the nominal path because of
the presence of material heterogeneities. In addition, since the motion of a crack
alters the stress field, crack orientation also depends on surrounding cracks. More-
over, bifurcation is commonly observed in brittle materials: an initial single crack
may branch into two cracks, which in turn may also branch. Energy requirements
have been cited to predict whether bifurcation occurs. Instability at crack tip has
also been detected [Fineberg 1991]. Hence, the propagation and the branching of a
crack depend on the microstructure and on the other crack states.

Finally, cracks coalesce, forming fragments of different sizes and shapes. Under-
standing crack coalescence is crucial in determining the distribution of fragment
sizes. The obvious lack of understanding justifies the large number of empirical and
statistical formulations, which scarcely include the physics underlying fragmenta-
tion. Nonetheless, the biggest challenge overall is the sheer number of fragments,
which may become quickly untractable.

1.4 Objectives and strategy

The present thesis aims at contributing to the research dealing with fragmentation
by providing some answers to the previously described issues. How many fragments
do high rate loadings produce? Can the role of microstructure be quantified in crack
nucleation and crack coalescence phases? What is the effect of stress unloading
waves? What are the physical parameters controlling the process? Are quasi static
and dynamic responses identical? In this manuscript, we attempt to shed light on
the complexity of these matters and to propose some answers.

We choose to use numerical simulations to tackle these questions because of the
inability of analytical derivations to fully account for the inherent complexity of the
phenomenon. The network of stress wave interactions, favored by material defects,
is highly non linear and hardly predictable. Its accurate description requires a level
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of complexity that only computers can provide. As a result, numerical modeling is
an appropriate tool to study fragmentation. Our simulations naturally incorporate
dynamic and energetic aspects. Establishing a numerical framework is generally
based on both modeling the phenomenon and writing efficient algorithms. Physical
and numerical errors can arise. Therefore, a major question raised by numerical
modeling is whether the computed solution is valid: how can one be sure that
this approximate solution is representative of the actual behavior? Does a depen-
dence on the mesh exist? Therefore, convergence is first verified before interpreting
the results. We also emphasize the need for high performance computing. In the
context of dynamic fragmentation, since numerous cracks may nucleate, significant
computational power and adequate parallel codes are required to yield numerical
convergence.

We focus on three different geometries (ring, plate, and hollow sphere) and load
them in tension to reproduce explosion loadings. Materials are mostly brittle and
are thus subjected to the three phases described above. Their response is sensitive to
defects, which concentrate stresses, and since failure dissipates only a small amount
of energy in brittle materials, many cracks nucleate simultaneously. In order to avoid
artificial stress concentration that boundary conditions and geometry may generate,
we load the body uniformly before failure onset by imposing adequate velocities and
displacements. The elastic response is computed by use of general finite element
procedures (continuous and discontinuous Galerkin frameworks), while failure is
modeled with cohesive zone laws. This framework makes it possible to represent
fragments explicitly, and to track the evolution of potential, kinetic and dissipated
energies.

The global strategy of the thesis lies in its gradual increase in complexity. First,
we conduct a simple test. It is quasi one-dimensional and only involves crack initia-
tion. Issues related to crack interactions and material heterogeneity are addressed.
Secondly, a quasi two-dimensional plate is fragmented. Crack propagation, bifur-
cation, and nucleation are included. Finally, the last tests simulate the response
of a three-dimensional structure, a hollow sphere with variable thickness. Besides
physical complexity, technical complexity is also added. Going from one to three
dimensions naturally requires finer meshes and increased computational power. One-
dimensional tests can be simulated using a single processor. However, parallel pro-
gramming is necessary when moving to two and three dimensions. We benefit from
the considerable computational capabilities (Pleiades2, Callisto, and BlueGene clus-
ters) that EPFL provides to access fine meshes and multi-dimensionality. This step-
by-step strategy allows us to convey some simple fundamental concepts and to test
the accuracy of our results.
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1.5 Main physical contributions of the thesis

The expanding ring problem was first defined by Mott when he studied stress
wave healing effect. Because of the simplicity of the ring’s geometry, it has been
widely studied since then. However, in these prior studies, the role of defects has
been insufficiently investigated. In this present research, we are interested in un-
derstanding how defects affect the dynamics of stress wave interactions. We benefit
from the quasi one-dimensional geometry of the ring to focus solely on crack ini-
tiation. Crack propagation and coalescence are of no interest in Mott’s test. This
is clearly an advantage in achieving our objective of quantifying the role of defect
distribution in the overall process. We define a new material parameter dependent
upon the weakest defect, the left tail of the defect distribution as well as its mean
value. It relates the defect distribution to the rate of failure initiation that is shown
to significantly affect the material response. We also propose scaling laws that in-
volve this new parameter, the average fragment size and the loading rate, and that
predict the number of fragments. The main contributions of this study rely on un-
derstanding that defects do play a crucial role during the crack initiation phase, and
on quantifying this role through scaling laws.

In addition, since all the fragments do not have the same size, we also investi-
gate the properties of the distribution of fragment sizes and of the largest fragments
through statistical analyzes. In the ring problem, we show that fragment size dis-
tributions exhibit a predictable shape, irrespective of the loading rate, the length of
the ring and defect parameters. By contrast, an investigation of the largest fragment
behavior highlights a strong dependence upon these quantities. The key information
here is that one-dimensional geometries lead to fragment size distributions that are
independent of material heterogeneity and loading. These only affect fragmentation
response through the number of fragments and the largest fragments.

As already mentioned, the ring geometry only involves crack initiation. Crack
propagation cannot be analyzed with such a simple geometry. We thus consider a
thin plate submitted to biaxial tension. Naturally, since this geometry has a volume
larger than the ring’s geometry, the number of degrees of freedom may reach exten-
sive values that a single processor cannot handle. Particular attention is thus paid
to parallelization issues. The traditional finite element/cohesive elements frame-
work can hardly be efficiently parallelized because of the substantial inter-processor
communication. We thus use another technique, the discontinuous Galerkin method
coupled to cohesive zone modeling, to reach numerical convergence at high strain
rates for multi-dimensional geometries. Then, we provide insights into the physics of
fragmentation through energy-based arguments. We show that quasi static and dy-
namic regimes are governed by separate mechanisms. In quasi static, fragmentation
is controlled by defect failure strength and failure occurs very rapidly compared
to the loading phase. Stress wave extensively interact leading to irregular frag-
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mentation pattern. The average fragment size is highly dependent upon material
microstructure. The quasi-static regime is thus chaotic (in physics, chaotic sys-
tems are highly sensitive to initial conditions, such as geometry, material, boundary
conditions, etc). By contrast, in dynamics, fragmentation is controlled by energy
arguments. Since they travel approximately at the same speed as material points,
stress waves barely interact. Average fragment size and fragment size distributions
follow more regular patterns. This dynamic regime is thus deterministic (in physics,
determinism is the view that a behavior is governed by causality and may thus be
described by physical laws). The limit between these two regimes is dependent upon
material and defects parameters. The main contribution of this study lies in the
understanding of the physics governing fragmentation. Crack propagation obviously
renders it more complex, and recourse to energy arguments constitutes an efficient
way to deal with it.

Nonetheless, the plate geometry remains quasi two-dimensional and cannot cap-
ture three-dimensional failure mechanisms. Therefore, we study the fragmentation
of a hollow sphere through its energy consumption, the fragment masses, and the
shape of the fragments. By varying its thickness, the transition between two to
three dimensions is investigated. We show that the distribution of fragment masses,
as well as the fragment shapes, are highly dependent upon the dimensionality of the
geometry. Very thin sphere induces flat fragments, whereas when it is very thick,
equally-sized fragments tend to be encountered. During the transition between both
regimes, fragments are more elongated. To the best of our knowledge, this is the
first time that the issue of fragment shapes resulting from three-dimensional frag-
mentation is tackled.

1.6 Outline of the following chapters

In the following chapters, we describe in depth these results. The thesis is divided
into nine chapters:

• Chapter two is a collection of fragmentation models that have been pro-
posed during the past century. Empirical, statistical, energy-based models of
fragmentation are outlined. We emphasize that most of them consider homo-
geneous materials, and that the issue of heterogeneity is increasingly appealing
to researchers. Some experimental devices, as well as numerical tools, are also
reported.

• Chapter three is dedicated to our modeling and implementing. We detail
the finite element and the discontinuous Galerkin methods, which handle the
elastic response. The cohesive zone approach is used to address failure. We
describe the cohesive methodology and ultimately focus on linear irreversible
cohesive law. The question of code parallelization and efficiency is also ad-
dressed. Statistical defect modeling is tackled as well: based on both the
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weakest link theory and statistical arguments, we emphasize that Weibull dis-
tributions are the most appropriate distributions to represent defects in brittle
materials.

• Chapter four is a transitional chapter, which specifies the main physical
mechanisms occurring during a fragmentation process. Dynamic effects related
to stress wave interactions, as well as energy arguments are detailed.

• Chapter five reports the expanding ring results. We quantify the role of
defects via a characteristic parameter, which is afterward used in scaling rela-
tionships. The normalized average fragment size, as a function of normalized
strain rate, is shown to follow a unique law.

• Chapter six concentrates on fragment mass statistics in one dimension. We
show that the shape of the distribution is fully predictable, whereas largest
fragments’ behavior is strongly dependent upon length of the ring, strain rate
and defects.

• Chapter seven presents the results obtained for the plate under biaxial ten-
sion. An enrichment of Grady’s energy-based theory is proposed and yields to
two regimes. Quasi static and dynamic responses are shown to be based on
distinct physical mechanisms.

• Chapter eight provides a glimpse of the mechanisms underlying three di-
mensional fragmentation by focusing on fragment masses and shapes.

• Chapter nine is a summary of the answers provided by this thesis and pro-
poses directions for future work.

Each chapter can be read independently from the others, but a linear reading will
naturally facilitate their understanding.





Chapter 2

A collection of fragmentation
models in dynamics

During the past century, fragmentation has appealed to researchers from diverse
fields. Engineers in mechanics, civil engineering, computer science, as well as statis-
ticians, and physicists have developed a large amount of models that analyze the
breakage of a structure subjected to high loadings. In the thirties, the first empir-
ical observations concerning fragmentation have emerged. In this chapter, we first
introduce these pioneering empirical models, mainly concerned by fragment mass
distributions. Then, we present in the second section, some analytical models based
on statistical and geometrical arguments. The third section is devoted to physics-
based models; it details how energetic and dynamic arguments lead to complex
principles, and rather simple laws. However, these physics-based arguments do not
include material heterogeneity. In section four, the role of defects in fragmentation is
described. Finally, in the two last sections, experimental and numerical techniques
are enumerated.

2.1 Early experimental theories

2.1.1 Rosin-Rammler’s empirical distribution

In the thirties, Rosin and Rammler [Rosin 1933] conducted fragmentation experi-
ments in the fields of coal and ore crushing. They determined empirical fragment size
distributions by separating fragments within a given size range, using a collection of
sieving screens. They noticed that Weibull-type distributions [Weibull 1939] fitted
well their experimental observations. Denoting s the characteristic size of a frag-
ment, the Rosin-Rammler’s distribution can be written as the cumulative fraction
greater than size s:

F (s) = 1− e−(s/s0)β
(2.1)

where s0 is characteristic size and β is the shape parameter. Several attempts have
been made to justify analytically the Rosin-Rammler’s distribution, among which
Lienau [Lienau 1936] and Bennett [Bennett 1936] (see section 2.2.1). They based
their theory on Poisson statistics in one and multiple dimensions.
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2.1.2 Schuhmann’s law and the concept of criticality in fragmen-
tation

Historically attributed to Schuhmann [Schuhmann 1941], the limiting form of
Rosin and Rammler’s distribution for small fragments is a power law:

F (s) = (s/s0)β (2.2)

Defined in the forties, Schuhmann’s distribution has been reused since the sev-
enties to highlight that fragmentation is a self-similar phenomenon. The concept
of self-similarity in fragmentation has appealed to many engineers and physicists
during the past decades [Bershadskii 2000, Bird 2009, Perfect 1997, Bennett 1936,
Moukarzel 2007, Oddershede 1993, Andersen 1997, Johansen 2000]. Their theories
stem from the observation of natural phenomena and of experimental results. As
pointed out by Turcotte in [Turcotte 1986b], this power law is related to the fractal
process:

N(s) ∝ s−D with D > 0 (2.3)

where N is the number of objects whose size is greater than s, and D is the fractal
dimension. If M(s) is the mass of the fragments with size smaller than s, then
N ∝ M/s3 in three dimensions, which directly gives D = 3 − β. Since D > 0, a
necessary condition for the fragmentation to be fractal is β < 3. Examples of objects
whose fragment size distribution is fractal were listed by Turcotte. For any of his
21 cases, Turcotte showed that 0.5 < β < 1.5 [Turcotte 1986a, Turcotte 1986b].

2.1.3 Mott-Linfoot’s distribution

During World War II, Mott and Linfoot [Mott 1943b] carried out experiments on
fragmentation of bomb shells. They gathered the large amount of data on fragment
masses and fitted their results with:

F (m) = 1− e
−
“

m
m0

”1/2

(2.4)

where m is the fragment mass, and m0 is a characteristic mass. They proposed
a theoretical justification of this distribution based on Poisson statistics in two
dimensions. Mott and Linfoot also wrote several reports, which have had a profound
impact on future works. They still constitute the basis of current models and their
distribution is still widely used to describe explosion of ductile materials.

2.2 Geometric distributions

2.2.1 Lienau’s theoretical distribution

Lienau [Lienau 1936] considered an infinite line that is about to collapse into
several fragments. Breakpoints are introduced with an equal probability at any point
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on the line. Lienau aimed at describing statistically the length of the fragments,
demarcated by randomly-placed breakpoints.

Let us thus consider a line in which breakpoints are introduced randomly. If
the failure sequence follows a Poisson point process (events occur continuously and
independently of one another), the probability of finding k breakpoints within a
given length l is:

P (k, l) =

(
l
l0

)k
e
− l

l0

k!
(2.5)

where l0 is the average spacing between breaks. Therefore, the probability of occur-
rence of fragments of length l within a tolerance dl is:

f(l)dl = P (0, l)P (1, dl) = (1/l0) e−l/l0dl (2.6)

f is the probability density function associated to the process. By integrating f , we
compute the cumulative fragment distribution:

F (l) = 1− e−l/l0 (2.7)

Binomial distribution for finite-size lines: If the line has a finite size L, then
the random placement of breakpoints does not follow Poisson statistics anymore but
the binomial probability [Grady 1990]. The cumulative distribution is then:

F (l) = 1−
(

1− l

L

)Nf−1

(2.8)

whereNf is the number of fragments. Naturally, it converges to Lienau’s exponential
distribution when Nf becomes large.

Line lenght L

of total mass M

Nf fragments: 

variable size l, 

variable mass m

Nf-1 breakpoints

Figure 2.1: Finite line, broken at some random places, which results in distinct
fragment lengths [Grady 1990].

Effect of grain sizes: An interesting constraint consists in taking into account
the limiting grain size of a body, which determines the minimum spacing between
two breakpoints [Grady 2007]. Setting this minimum size to δ, the number of break-
points per unit length is N = 1/δ. If Nf is the number of fractured sites, then the
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probability of fracture at any breakpoint is p = Nf/N = δ ∗Nf . The probability of
finding a fragment of length l = n.δ is:

P (l) = (1− p)np (2.9)

This relation converges to the exponential distribution as δ becomes small.

2.2.2 Mott-Linfoot’s random lines model

In an attempt to justify their distribution defined in section 2.1.3, Mott and Lin-
foot pursued geometric study of the two-dimensional fragmentation of a plate sub-
mitted to biaxial tension. Figure 2.2 illustrates the geometric algorithms that they
studied. Grady described accurately their arguments [Grady 2007, Grady 2006b,
Grady 1985]. Depending on the fragmentation pattern, Mott and Linfoot derived
analytical or empirical models of fragment size distribution. They were, however,
not able to deal with all the scenarios in figure 2.2. They simply concluded their
study by observing that the distribution of fragment sizes is strongly dependent
upon the geometric partitioning of the plate.

(a) (b) (c)

(f)(e)(d)

Figure 2.2: Various geometric fragmentation patterns explored by Mott and well
detailed in [Grady 1985]. Picture is taken from [Grady 2006b]. (a) Random hor-
izontal and vertical lines of equal length. (b) Randomly distributed and oriented
lines. (c) Random horizontal and vertical segments. (d) Same algorithm as (c)
with a deterministic condition on the fragment shortest dimension. (e) Randomly
distributed and oriented segments. (f) Voronoi fragmentation.

2.2.3 Voronoi-Dirichlet’s fragmentation

The Voronoi-Dirichlet construction (figure 2.2(f)) has received extensive atten-
tion in diverse fields such as natural sciences, mathematics, as well as computer
sciences. For instance, Voronoi decomposition has been employed in shape analysis
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of giraffe skin and honeycomb [Blum 1973], in cosmology [Coles 1991], in climate
modeling [Ringler 2008], in crystallography [Aurenhammer 1991], in fracture me-
chanics [Bishop 2009]. The two-dimensional construction begins with a random
distribution of points on the plate. Space is then partitioned by construction of
perpendicular bisecting lines.

One dimensional distribution: In one dimension, the Voronoi-Dirichlet con-
struction is the dual of the Lienau distribution (whereas Lienau’s points represented
breakpoints, they are the center of fragments in Voronoi-Dirichlet’s construction).
The probability of finding a length l is given by a Poisson point process:

f(l)dl = (1/l0) e−l/l0dl (2.10)

The probability of finding a length l1 adjacent to a length l2 is:

f(l1)f(l2)dl1dl2 =
(
1/l20

)
e−(l1+l2)/l0dl1dl2 (2.11)

Using the transformation L = (l1 + l2)/2 and ψ = (l1 − l2)/2 leads to the Voronoi-
Dirichlet distribution on a line:

f(L) =
2
l0

2L
l0
e−2L/l0 (2.12)

Multi-dimensional distribution: Equation 2.12 is the gamma function with
shape parameter 2. Kiang [Kiang 1966] offered without proof that symmetrically
higher order gamma functions would provide analytic fragment distributions for
Voronoi-Dirichlet partitioning (of an area or a volume). The general expression of
the fragment distribution, as a function of the fragment mass m is:

f(m) =
1
m0

n

Γ(n)

(
nm

m0

)n−1

e−nm/m0 (2.13)

where m is the fragment mass, and n=2, 4, or 6 for a line, surface, or volume.
More details can be found in [Grady 2006b].

2.2.4 Grady-Kipp’s postulate

Grady and Kipp [Grady 1995] observed that Mott and Linfoot’s distribution,
which has been proved to be valid for exploding steel cylinders, is not necessarily
the best fitting distribution in multiple dimensions. They suggested that, similarly
as Lienau’s assumption in one-dimension, fragmentation is a Poisson point process
in two and three dimensions. It is determined by breakpoints distributed randomly
over the scalar measure of mass. Contrary to Mott and Linfoot’s distribution, Grady
and Kipp’s keeps the same linear exponential functional for both area and volume:

F (s) = 1− e−(s/s0) (2.14)
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2.3 Physics-based fragmentation

2.3.1 Mott’s description of the dynamics of fragmentation

2.3.1.1 Wave propagation and associated characteristic length

The dynamic analysis pursued by Mott was based on the expanding ring test, as
illustrated in figure 2.3. Prior to fracture, the ring undergoes uniform expansion
at a constant strain rate ε̇. Mott considered the material to be perfectly plastic
with yield strength Y . Failure occurs randomly in both time and space. Mott also
assumes that failure is an instantaneous process, relieving stress from Y to 0, in a
negligible amount of time, at the breakpoint location. This sudden drop causes a
non-linearity in the stress field, which results in stress waves, propagating from the
breakpoint to the surrounding areas (figure 2.4). Regions experiencing tensile stress
lower than Y are rigid. The boundary between rigid and perfectly plastic zones is
located at the position x relatively to the breakpoint:

x(t) =

√
2Y t
ρε̇

(2.15)

where ρ is the volumetric mass. The interface velocity thus depends both on material
(Y, ρ) and kinematic (ε̇, t) parameters. Within the regions encompassed by stress
waves, further fracture will not occur, since the stress drops to a value lower than
Y .

Figure 2.3: Mott’s expanding ring.

However, Mott recognized that the rigid-plastic assumption could lead to incon-
sistencies. Years later, Lee [Lee 1967] considered the same problem with an elasto-
plastic material. Waves are propagating at the elastic wave speed c =

√
E/ρ, where

E is the Young’s modulus. He showed that the shock discontinuity decays to zero
at the distance h and time τ :

h =
2Y
ρcε̇

and τ =
h

c
(2.16)
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Grady [Grady 2006b] showed that Mott’s rigid-plastic solution and Lee’s elasto-
plastic solution are in good agreement. Although simple, Mott’s theory offers a
very good approximation to both the position of the interface, and to the stress and
velocity fields behind the interface [Grady 2006b].

Region still loaded Unloaded region

Propagating

front wave Fracture

Figure 2.4: Mott’s unloading waves, propagating from the breakpoint to surrounding
areas. Loaded regions behave with a perfectly-plastic response, while unloaded
regions are rigid. Unloaded regions cannot experience fracture anymore.

2.3.1.2 Statistical description of the occurrence of fracture and average
fragment size

Mott proposed that the occurrence of fracture is governed by the fracture fre-
quency λ(ε), where ε is the strain. λ is also called the hazard function. He focused
on three forms for λ [Mott 1943a] :

λ(ε) = λ0 (2.17)

λ(ε) = n
ε0

(
ε
ε0

)n−1
with n ≥ 1 (2.18)

λ(ε) = Aeγε (2.19)

Equation 2.17 leads to the exponential distribution; equation 2.18 refers to the
Weibull distribution; equation 2.19 induces Gumbel distribution.

The probability that fracture occurs in a length dl at strain ε, within an interval
dε, is λ(ε)dεdl. Let L be the length of the ring, which has not undergone fracture
yet. At strain ε,

dL

L
= −λ(ε)dε (2.20)

The expression of L is not trivial. Mott derived a complex geometrical analysis
involving dynamic activation of breakpoints and subsequent stress release waves.
He defined a function that accounts for stress wave releasing effects to model the
interaction of multiple fractures. After complex developments detailed in length
in [Grady 2006b], the length scale (or equivalently characteristic spacing between



18 Chapter 2. A collection of fragmentation models in dynamics

breakpoints) emerging from the statistical fragmentation theory of Mott is:

µ =

√
2Y
ρε2γ

(2.21)

where γ is the scale parameter in the exponential hazard function 2.19.

2.3.1.3 Statistical description of the fragment masses

Along with deriving a characteristic length scale, Mott was interested in quanti-
fying statistically the sizes of all the fragments. Here is a very brief overview of the
derivation (more details can be found in [Grady 2006b]). Let us consider a body
whose fragmentation has generated fragments of mass m. We define the function
h(m) such that h(m)dm represents the chance to encounter one fragment of mass
betweenm andm+dm. The chance to find a fragment of massm within the interval
dm is the product of finding no breaks within the interval 0 to m, and one break
within the interval m to m+ dm:

f(m)dm = e−
Rm
0 h h(m)dm (2.22)

this leads to the cumulative fragment distribution:

F (m) = 1− e−
Rm
0 h (2.23)

The constant hazard function (h(m) = h0) corresponds to the Poisson process,
and results in the exponential distribution (equation 2.7). In two dimensions, the
mass is proportional to the square root of 2, which directly leads to the Mott and
Linfoot’s distribution (equation 2.4). It is thus equivalent to consider Poisson point
process in two dimensions and the power like hazard function with n = 1/2 (equa-
tion 2.18).

2.3.2 Grady’s model of energy equilibrium

2.3.2.1 Average fragment size and local energy balance

In his key paper [Grady 1982], Grady derived a characteristic length scale based
on the local balance of kinetic and fracture energy. Consider a body breaking into
equally sized fragments. Uniform kinetic energy is introduced in each fragment
that expands very rapidly. This energy is used into local expansion and rigid-body
motion. The only part that contributes to failure is the local kinetic energy.

Let us consider a fragment undergoing rapid uniform expansion at the strain rate:

ε̇ =
ρ̇

3ρ
(2.24)
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.

Figure 2.5: Grady’s expanding fluid model. The large sphere represents the whole
body. The small sphere of radius r limits a region of the fluid that will form a
fragment.

ρ is the density, ρ̇ is the derivative of ρ with time. Grady derived the expression of
the local kinetic energy density for the expanding fluid problem:

T =
27
10
ρε2

A2
(2.25)

where A =
4πr2
4
3πr

3
(2.26)

If Γ is a surface energy, the fracture surface energy density is:

ρes = ΓA (2.27)

The energy driving fragmentation is thus:

U(A) =
27
10
ρε2

A2
+ ΓA (2.28)

Minimizing this energy function leads to the characteristic fragment size:

d =

(√
20KIC

ρcε̇2

)1/3

(2.29)

where KIC is the fracture toughness. This relation exhibits very good qualitative
agreement with dynamic experiments. It is now considered as a reference expres-
sion of the mean fragment size for dynamic loadings. However, it does not fit
quasi-static experimental values. To correct this inconsistency, Glenn and Chud-
novsky [Glenn 1986a, Glenn 1986b] proposed a model that fits well Grady’s model
in dynamics and that adds the effect of potential energy, which is dominating in
quasi-statics. The energy balance:

∆Ekinetic = ∆Epotential + ∆Efracture (2.30)
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leads to the length scale:
d = 2

√
α/3 sinh (φ/3) (2.31)

where φ = sinh−1

(
β

(
3
α

)3/2
)

(2.32)

where α and β depend on material properties and strain rate. Figure 2.12 compares
Glenn and Chudnovsky’s to Grady’s models.

2.3.2.2 Comparison of explosive fragmentation to spall and turbulence
fragmentation

Grady pursued other conceptual theories based on the comparison of explosive
fragmentation to other physical phenomena, such as spall [Grady 1988] and turbu-
lence [Grady 2008]. Grady showed that, in spall fragmentation, potential energy
should not always be neglected. Since brittle and ductile fragmentation involve
distinct mechanisms, he distinguished elastic and plastic responses. The expansion
of an elastic body is governed by potential energy and involves few kinetic energy
(about 15%), while expansion of a rigid-plastic body is driven by kinetic energy and
potential energy contribution is small.

Interestingly, Grady also relates brittle fragmentation to hydrodynamic turbu-
lence of fluids [Grady 2008]. He explains that turbulence emerges because large
scale laminar flow is not sufficient to dissipate the energy through viscous friction.
Similarly as brittle fragmentation, turbulence is a weakly dissipative process which
occurs on successively smaller length scales. The initial stored energy requires en-
ergy dissipation at successively finer length scales, through a cascade of cracks (self-
similar behavior, see section 2.1.2). To fulfill these physical requirements, Grady
proposes the fragment size distribution to be:

F (s) =
1

1 + (s/s0)m
(2.33)

This functional exhibits power-law dependencies in the two ranges s À s0 and
s¿ s0.

2.3.3 Dynamic models

2.3.3.1 Enrichment of Mott’s model

Dynamic models originated after Mott’s theory of wave propagation. Mott as-
sumed that the material is perfectly plastic and that fracture occurs instantaneously
(which amounts to neglecting fracture resistance). To remedy these physical limi-
tations, several authors enriched Mott’s model by adding some failure duration. As
displayed in figure 2.6(a), each element is surrounded by two damageable springs,
whose gradual opening releases energy. When the spring is fully opened, it is broken
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and has released the toughness Gc. The law governing spring opening is called the
fracture law. Grady assumed a linear decreasing law [Grady 2006b], whereas Dru-
gan [Drugan 2001] used an exponential one. Both laws (figures 2.6(b) and 2.6(c))
are related to the cohesive element approach, developed in length in chapter 3.

σ /σc max

 
δ /δ *c

1

1

s δ

σ σ (δ)max c 1

1

σ /σc max

 
δ /δ *c

(a) (b) (c)

Figure 2.6: (a) Dynamic model representing a fragment of size s and two damageable
springs. σc is the longitudinal stress in the spring, δ is its opening. (b) Linear
fracture law. (c) Exponential fracture law.

Grady’s approach: Grady [Grady 2006b] suggested that stress linearly decreases
from σmax to 0, while crack opens from 0 to a given length δc, releasing the fracture
energy Gc = σmaxδc

2 . He derived the equation of motion and showed that the nominal
spacing between two breakpoints is:

s =
(

24Gc

ρε̇2

)1/3

(2.34)

Note that this expression is very close to equation 2.29 that Grady derived from
energy balance argument.

Drugan’s approach: Drugan [Drugan 2001] derives the classical wave equation
for a homogeneous, isotropic linear elastic solid. He also shows that the material
parameter t0 ( which was first established by Camacho and Ortiz [Camacho 1996])
quantifies the duration of the spring opening.

t0 =
E Gc

σ2
c c

(2.35)

where E is the Young’s modulus, Gc is the toughness, σc is the failure strength,
and c is the elastic wave speed. However, in all those models, wave interactions
cannot be represented analytically. When there is one breakpoint, the solution is
straightforward. When there are numerous breakpoints, the problem becomes more
complex and cannot be solved exactly. Two possibilities arise: making more as-
sumptions and/or using numerical tools. Examples of numerical simulations solving
the wave equation when the bar is constituted of multiple defects are [Zhou 2006a,
Shenoy 2003].
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2.3.3.2 Continuous fragmentation

Some physicists describe theoretically fragmentation through its time evolution,
using continuous models. The name ’continuous’ stems from the time continuity
of the description. Fragmentation occurs through breakup sequences, which may
have of course very distinct characteristics. They are usually classified into three
categories [Åström 2006]: uncorrelated breakup history, cascade fragmentation, and
statistical rate equations.

Uncorrelated breakup history: In the uncorrelated breakup history, each time
a fragment breaks, it is split into D+1 equal size pieces (where D is the dimension
of the problem). If a fragment has undergone i breakups, where i has a Gaussian
probability distribution, then it can be shown that the probability density function
of the fragment size distribution is lognormal:

f(s) ∝ exp
−
“

ln(s)−µ

σ2

”
(2.36)

where µ and σ are two constant parameters. Since the original work of Kol-
mogorov [Kolmogorov 1941], the lognormal distribution has been applied to polymer
fragments, soil particles, tectonic plates, etc. More details on the derivation can be
found in [Delannay 1996].

Cascade fragmentation: A fragment of unit area is broken into a pieces of area
1/a. Each fragment is further split with the probability p. For each fragment that
is not broken, the process is terminated. For the broken ones, it continues. This
pattern leads to the probability density function:

f(s) ∝ s
−D ln(p)

ln(a)
−(D+1) (2.37)

where D is the space dimension. By construction, cascade fragmentation is scale-
invariant [Turcotte 1986b, Botet 1996, Krapivsky 2000, Kadono 2002].

Rate equations for fragmentation: A rate equation generally combines dif-
ferential and integral equations, which determines fragment sizes. A kernel k(s, x)
defines the probability to form a fragment of size s from a fragment of size x. The
breakup rate for a fragment of size s in a time interval dt is a(x, t)dt. The most
general form of the rate equation is:

∂f(s, t)
∂t

= −a(s, t)f(s, t) +
∫ ∞

s
f(x, t)a(x, t)k(x, t)dx (2.38)

where f is the probability density function of the fragment sizes. The first term
on the right-hand size determines the breakup of fragments (loss term), while the
second term represents the formation of fragments (gain term). Although this formu-
lation is very general, it is rather difficult to obtain kernels describing experimental
conditions [Ziff 1985].
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2.3.4 Entropy models

An alternative derivation of fragment mass distribution is based on entropy meth-
ods [Grady 2007, Englman 1991] in which the entropy associated to a fragmenta-
tion event is maximized. Maximizing entropy leads Grady [Grady 2007] to derive
an exponential probability density function. Englman et al. [Englman 1991] include
further constraints and propose a more complex distribution, which behaves as a
power law over a limited range of fragment sizes and accounts for structural finite
size effects.

2.4 Fragmentation of heterogeneous materials

2.4.1 Defects influence failure properties

The idea that defects have a profound impact on failure properties of the mate-
rial first arose with Leonardo Da Vinci during the sixteenth century, and later with
Weibull [Weibull 1939]. Weibull’s main contribution lies in relating quasi static
failure strength to defects. As detailed in chapter 3, he suggests that a bar sub-
jected to quasi static loading breaks at its weakest link, e.g. at the location of the
larger defects. Though, this model only involves one crack and is thus limited to
specific experiments. More complex evaluations in which multiple fractures initi-
ate have later been developed [Alava 2006, Hassold 1989]. For instance, Andersons
et al. [Andersons 2000] investigate the sequential cracking of uniaxial thin brittle
coatings attached to substrates with adhesives, loaded in tension. They propose an
analytical expression relating average fragment length to strain rate and distribution
of the strengths of the coating. Daphalapurkar et al. [Daphalapurkar 2010] perform
two-dimensional simulations of a specimen in biaxial tension with pre-existing micro-
cracks. They quantitatively relate flaw distribution (size, shape, spatial distribution,
and defect failure strength) and overall dynamic failure strength.

Besides analytical and numerical models, experiments have also been conducted.
However, for practical reasons, most are carried out in confined compression rather
than in pure multiaxial tension [Chen 1996, Huang 2003, Momber 2000]. For in-
stance, Lankford [Lankford 1979, Lankford 1981, Lankford 1991] studies the com-
pressive strength of SiC and Al2O3 over a wide range of loading rates and interprets
material response in terms of tensile growth of axial microcracks. He defines two
distinct mechanisms: at relatively low strain rates, thermally activated process op-
erates at defect locations, while at higher loading rates, strain-rate sensitive inertial
process controls failure. More recently, Paliwal et al. [Paliwal 2006] have conducted
dynamic compressive failure tests in transparent brittle materials. They explain
that, under dynamic loads, a part of the defects nucleate into cracks, while the
other is intact. The macroscopic failure strength is the result of the competition
between applied strain rate and kinetics of crack growth.
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Both for tension and compression loadings, defects obviously influence failure. Al-
though the mechanisms might differ, the issues that are at the core of fragmentation
(e.g. crack initiation and stress field interactions) are identical. Both topics are thus
reviewed.

2.4.2 Statistical models with no crack interactions

Among the two mechanisms associated to defects (defect nucleation and stress
field interactions), most statistical theories only account for one: defects are placed
randomly within the materials, but they do not influence each other. Lindborg
approaches the outcome of coalescence of small cracks into larger cracks by statistical
methods [Lindborg 1969] . He neglects stress concentration from existing cracks and
assumes that nucleation of cracks is random and independent from other cracks. He
considers a specimen with N rectangular grains and shows that, if complete fracture
occurs when n cracks aggregate, then the fraction of cracked grains is given by:

p = 0.2
(

2n
N

)1/n

(2.39)

In any case, at least 20% of the grains are cracked before complete fracture. He
applies equation 2.39 to transgranular cleavage cracks, intercrystalline wedge cracks,
and to small intercrystalline pores.

Similarly, Gilvarry enriches Griffith’s investigations [Griffith 1943] and postulates
the existence of uncorrelated edge, surface and volume flaws, where failure may ini-
tiate [Gilvarry 1961a]. He assumes that each type of flaws verifies Poisson statistics,
which amounts to neglecting their interactions. It yields the probability to generate
a new fragment with the edge length, face area and volume in the ranges l to l+ dl,
s to s+ ds, and v to v + dv:

dp(l, s, v) = P (0|l, s, v) P (1|dl, ds, dv) = e−QdQ (2.40)

where Q is the linear form in l, s and v:

Q = γll + γss+ γvv (2.41)

γl, γs,γv are respectively the line, area and volume densities of flaws.
The fragment size distribution is thus defined by its probability density function:

df(Q) = V0v
−1e−QdQ (2.42)

where V0 is the volume of the unbroken body. Integrating f leads to the Gilvarry
distribution expressed as a function of fragment size x:

F (x) = 1− e
−
„

x
γl

+
“

x
γs

”2
+
“

x
γv

”3
«

(2.43)
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This expression is very general since it includes the three possible types of defects.
However, in order to fit Rosin-Rammler’s and Schuhmann’s distributions, Gilvarry
notes that edge flaws dominate instantaneous fragmentation.

In other papers [Gilvarry 1961b, Gilvarry 1962a, Gilvarry 1962b, Gilvarry 1962c],
Gilvarry and Bergstrom present experimental results of the compressive fragmenta-
tion of brittle spheres. By containing the fragments into a gelatin matrix (figure 2.7),
they inhibit secondary fractures (resulting from the contact between two fragments)
and only focus on single fracture. This enables the comparison with Gilvarry’s the-
oretical development on single fracture. This experimental configuration leads to
three large fragments, and a distribution of smaller fragments. Doing so, Gilvarry
and Bergstrom encounter a good agreement between the Poisson theory and their
experiments.

Glass spherical specimen

Tungsten carbide plate

Gelatin matrix

Figure 2.7: Gilvarry and Bergstrom’s brittle spheres, loaded in compression.

2.4.3 Åström’s model accounting for crack interactions

In [Åström 2004b, Åström 2006], Åström showed that Gilvarry’s model of frag-
ment size distribution accurately represents the behavior of the larger fragments,
because cracks barely interact if they are far from each other. On the contrary, if
they are close enough, their interaction cannot be neglected and Gilvarry’s model is
not valid anymore. Åström [Åström 2000, Åström 2004a] argues that in the small
range, crack branching-merging processes prevail and induce scale-invariant size dis-
tribution. He proposes the distribution of fragment mass:

F (m) = a mα f(m) (2.44)

where a and α are constant, and f is a function of the mass. In the small range,
the power law dominates, whereas the large range is controlled by f . The function
f represents the cut-off that the specimen finite size necessarily leads to. Following
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Gilvarry’s derivation and the Oddershede et al.’s [Oddershede 1993] experimental
evidences, Åström recommends f to have an exponential form:

F (m) = a mαe−m/M0 (2.45)

M0 is a system-dependent length. The value of α depends on the loading condition.
In the case of impact loading, both Åström and Oddershede et al. fit α ' 0.5.

2.4.4 Damage evolution laws

The continuous approach is based on the homogeneization of the cracked solid over
a representative volume, and the deterioration of the Young’s modulus [Allen 2001].
Grady and Kipp [Grady 1980] develop a model coupling fracture, fragmentation,
and stress wave propagation. Activation and growth of an initial Weibull distribu-
tion of flaws describes rate-dependent fracture phenomena. The damage variable is
updated, depending on the theoretical determination of the number of activated
flaws. Ashby and Sammis [Ashby 1990] analyze crack initiation at pre-existing
flaws, crack growth under uniaxial compression. They examine the conditions under
which cracks interact. Homogeneization based on discrete damage models (cohesive
zones) has also been developed [Espinosa 1998, Espinosa 2003a, Espinosa 2003b,
Cazes 2009] .

Another interesting model of fragmentation has been proposed by Hild and cowork-
ers [Denoual 2002]. They derive the expression of the damage variable, over a wide
range of loadings (from quasi-static to dynamics). Micro-cracking results from
crack nucleation, which they suppose to emanate at defect locations. The popu-
lation of defects is characterized by Poisson statistics [Brajer 2003, Forquin 2003a,
Forquin 2003b]. Following the idea of Mott, they note that when a defect is ac-
tivated, it generates stress waves, which propagate away, from the location of the
defect to the surrounding areas [Denoual 1997]. The regions encompassed by stress
waves are released and are definitively protected. They cannot break anymore. Fig-
ure 2.8 displays the mechanisms of this obscuration phenomenon. Based on this
obscuration zone concept, they deduce the density of broken defects and a damage
variable, which they inject into a continuous model.

Hild et coworkers also emphasize that there exists a transition delimiting two
mechanisms: for low loading rates, fragmentation is probabilistic, whereas for high
loading rates, it becomes deterministic [Hild 2003].

2.4.5 Fragmentation in compression

Due to the difficulty of controlling brittle fragmentation in tension at high strain
rates, many experiments have been conducted in compression with confinement.
Numerical analyzes have also been performed for such problems. Nemat-Nasser
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Figure 2.8: Hild’s healing wave concept: when a zone is encompassed by Mott’s
wave, it is definitively protected from further damage.

and Deng [Nemat-Nasser 1994] model dynamically interacting wing cracks and sim-
ulate brittle failure under compression. They examine the coalescence of inter-
acting tensile microcracks and focus on the relation between microstructure and
rate dependency of the overall response. Following the same trend, Paliwal and
Ramesh [Paliwal 2008] incorporate pre-existing flaws in an inelastic material, sub-
mitted to compression loading. Inelasticity is attributed to nucleation and growth
of tensile wing micro-cracks and to defects frictional sliding. The authors underline
the role of initial flaw distribution on crack growth dynamics: at low strain rates,
the spread of the distribution is critical, while at high strain rates, density of flaws
is prevailing. The use of numerical simulations allows an explicit representation of
flaws. Kraft et al. [Kraft 2008a, Kraft 2008b] simulate the effects of grain boundaries
(spatial distribution and strength distribution) on the response of a brittle ceramic
in compression, through two-dimensional computations.

2.5 Experimental fragmentation

High rate and impact experiments have required substantial creativity to capture
as precisely as possible the rapidly evolving physics of fragmentation. A review of
the experimental set-ups can be found in [Grady 2006b, Ramesh 2008].

2.5.1 Expanding ring test by electromagnetic loading

Expanding ring experiments to test the dynamic failure at high strain rates, for
both brittle and ductile materials, have been performed by number of authors. Fig-
ure 2.9 details the experimental set-up of Grady and Olsen [Grady 2003]. The
specimen is a ring made of ductile material ( U6Nb or uranium-6%-niobium) and
undergoes radial expansion until failure. Strain rate can reach 104s−1. A contin-
uous current goes through the solenoid, which generates a controllable magnetic
field. This field induces a current in the driver ring that supports the specimen.
Applying electric pulses generates discontinuities that result in the radial expan-



28 Chapter 2. A collection of fragmentation models in dynamics

sion of the driver ring, and a fortiori the sample ring. The arrestor fixture blocks
the driver ring, and the wax cavity recover fragments. Although this experimental
set-up evolves from one author to the other, most are based on electromagnetic
accelerations [Hoggat 1969, Gourdin 1989, Grady 1983, Zhang 2006, Zhang 2007,
Goto 2008].

Recovery �xture

Wax ring

Driver ring
Sample ring

Magnetic solenoid

Arrestor �xture

High speed camera

Figure 2.9: Schematic of the experimental set-up for expanding ring experiment
based on electromagnetic loading [Grady 2003].

2.5.2 Cylinder fragmentation test using gas gun techniques

In order to explore multi-dimensional fragmentation, Winter [Winter 1979] de-
fined a technique in which thin cylinders are loaded with gas guns. In figure 2.10(a),
a projectile impacts the insert. The axial compression of the two elastic and highly
deformable plastic objects results in radial expansion. A pressure is abruptly im-
posed in the inner surface of the specimen that expands symmetrically. Radial and
axial stretchings are related to the velocity of the projectile. High speed photogra-
phy provides deformation history and axial fractures. This test has been adapted
by several authors [Butcher 1975, Mock Jr. 1983, Thornhill 2001]. Thornhill and
coworkers added a soft catch to recover the fragments and analyze their features.
Both Winter [Winter 1979] and Thornhill et al. [Thornhill 2001] both focused on
ductile explosive fragmentation, but gas gun techniques have also been employed to
investigate impact fragmentation [Shockey 1974] (figure 2.10(b)).

2.5.3 Hopkinson’s bar

The Hopkinson pressure bar was first suggested by Bertram Hopkinson as a way
to measure stress pulse propagation in a metal bar [Hopkinson 1914]. The original
experimental set-ups were improved by Kolsky [Kolsky 1949] who added a second
bar to Hopkinsons’s apparatus, naming it the split Hopkinson bar. Instead of at-
taching a billet at the end of a bar, Kolsky sandwiched a specimen between two
instrumented bars (figure 2.11). Strain gages mounted on the incident and trans-
mitter bars enable stress waves measure. After a compression load, the specimen
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Figure 2.10: Schematic of experimental set-up based on gas gun technique: (a) for
cylinder explosion [Winter 1979], (b) for plate impact [Shockey 1974].

experiences a tension load due to the reflection of stress waves [Lindholm 1964,
Lindholm 1968]. Nowadays, this experimental device achieves very high strain rates
reaching 104s−1. It has been employed to measure metal strengths subjected to
shear [Klopp 1985] and compression [Lennon 2000], to investigate glass dynamic
response [Clifton 1997, Bouzid 2001], to study failure and fragmentation proper-
ties of brittle solids, such as natural rocks, minerals and concrete [Green 1968,
Lundberg 1976, Grote 2001]. It has also been used for examining ultra-high strength
ceramics [Chen 1996, Subhash 2000, Lankford 1979].

V

Striker bar Incident bar
Specimen

Tranmitter bar

Strain gage

Figure 2.11: Split Hopkinson bar or Kolsky bar

2.5.4 Other experiments

To reach high loading rates (up to 105 s−1), other experimental set-ups let-
ting fragmentation evolve naturally, have been designed. Examples are multi-
ple: observation of natural phenomena [Capaccioni 1986, Ryan 1998, Housen 1999,
Kiang 1966], arena tests, exploding cylinders [Mott 1947, Taylor 1963, Gurney 1943,
Grady 1992], shock on the edge techniques [Forquin 2003a], specimen drop on the
ground [De Oliveira 2007, Ishi 1992], impact of balls [Ari 1993, Fujiwara 1980] and
shells [Wittel 2005], among others. The large amount of data on distribution of
fragment sizes have helped understanding the physics of fragmentation.
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2.6 Numerical fragmentation

2.6.1 Overview of the numerical methods

The rapid increase in computational power has opened the door to novel possi-
bilities. Researchers can now explore fragmentation through numerical simulations.
General formulations used in the literature fall in one of the two categories: contin-
uous and discontinuous formulations.

2.6.1.1 Continuous problems

Although material microstructure is discontinuous, lots of engineering problems
do not need to account for it. Quantities of interest are defined at a large enough
scale so that the microstructure can be averaged by continuous material proper-
ties. Governing equations are usually given as a set of partial differential equa-
tions (strong formulation) or integral equations (weak formulation). When coupled
with external actions in the form of boundary and initial conditions, they con-
stitute a boundary value problem. The solution of such problems is usually ap-
proximated by numerical solutions. Continuous methods include finite difference
method [Zhang 1996, Zukas 2004], finite volume method [Eymard 2000], finite el-
ement method (see chapter 3). Depending on the referential used, they can be
either Lagrangian (the computational grid follows the material), Eulerian (the com-
putational grid is fixed and the material flows through it) [Belytschko 2000], or
Lagrangian-Eulerian. The most often used is the finite element method (FEM). As
detailed in chapter 3, it is based on discretization of the domain into finite subdo-
mains or elements. Elements share nodes, edges, and surfaces. All together, they
form a finite element mesh. The solution is expressed in terms of displacements at
the nodes of the mesh.

Conventional finite element methods have been employed for decades to model
impact, penetration, and fragmentation. Simulating failure requires a special treat-
ment. Cracks can be represented explicitly (using the cohesive approach or the ex-
tended finite element method), or they can be embodied by an appropriate damage
number (continuum methods). The cohesive approach is widely used in diverse con-
texts because of its simple implementation and its ability to handle efficiently multi-
ple cracks simultaneously (see chapter 3). For instance, Repetto et al. [Repetto 2000]
investigate fragmentation of glass, Mota et al. [Mota 2003] focus on cranium im-
pact, Espinosa et al. [Espinosa 1998] and Blackman [Blackman 2003] are inter-
ested in fracture of composites. Fragmentation features may be addressed in post-
processing stage [Mota 2008]. Numerous other examples and technical developments
can be found in [Xu 1994, Camacho 1996, Zhou 2005b, Ortiz 1999, Pandolfi 2002,
Cirak 2005]. In practice, cohesive elements are inserted into the mesh between two
edges; they are interface elements and allow two adjacent volumetric elements to sep-
arate. They concentrate failure features (crack opening and energy dissipation) while
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the rest of the mesh behaves as if the structure was not undergoing fracture. The
coupling between the cohesive approach and the finite element method is detailed
in chapter 3, along with its historical origins. However, the main drawback of the
cohesive approach is mesh dependency: cracks follow the element inter-boundaries
and the failure pattern necessarily depends on the mesh.

In order to avoid this numerical restriction, the extended finite element method
(XFEM), which is based on enriching shape functions [Moes 2002], calculates failure
path irrespective to the mesh geometry. Its accuracy can be enhanced by remesh-
ing [Prabel 2007]. Although this technique has the advantage of predicting exactly
crack pattern [Grégoire 2007] and of being energy conservative [Réthoré 2005], it
is computationally very expensive and does not handle easily crack branching and
crack coalescence. In fragmentation problems, when multiple cracks are evolving
simultaneously, using XFEM would be inadequate.

Another approach is based on damage variables [Lemaitre 1985, Chaboche 1988a,
Chaboche 1988b, Ladevèze 2000, Peerlings 1996, Allix 1992, Combescure 1990]. Fail-
ure is represented by a continuous value, commonly called damage, considered as
an internal value of the finite element problem. It can thus easily be implemented
in a finite element code. However, crack path is not computed explicitly (since
damage is a volumetric parameter and cracks open surfaces). The description of a
fragmentation pattern with damage models is thus not obvious.

Nonetheless, in the case of fragmentation, some authors prefer to use discrete
methods that have higher order continuous shape functions, and that naturally
handle discontinuities such as cracks and contact. Indeed, in finite element simula-
tions, even though frictional contact can be accurately modeled [Repetto 2000], the
contact law is less natural than in discrete models. When multiple contacts occur
with large deformations, discrete frameworks may be more adequate.

2.6.1.2 Discontinuous problems

By contrast to continuous description, discontinuous problems take inherent ma-
terial discontinuities into account. For instance, at the smallest scale, elementary
particles, atoms, molecules are represented (atomic simulations and molecular dy-
namics). Since failure occurs at a larger scale, the idea of averaging a representative
amount of molecules into a particle has arisen. In discontinuous representations, the
material is considered as a compact body of representative volumes called particles.
Mathematical description includes the shape, size, and mass of each particle, as well
as their interactions. Typical formulation involves balance principles and interaction
laws. Analytical solutions are rarely available and approximate numerical solutions
are sought.



32 Chapter 2. A collection of fragmentation models in dynamics

Among them, the discrete element method (DEM) and the smooth particle hy-
drodynamics (SPH) have been designed to handle large deformations and contact
between large numbers of irregular particles. In both methods, no fixed connectivity
between particles exists and interaction laws link them. In DEM, particles are re-
lated by beams, which may have complex evolution law including friction, plasticity,
etc. Interactions are thus of one-to-one type. In SPH, an interacting zone of arbi-
trary radius is drawn. All particles falling into this zone interact with the particle
located in its center. This makes the result more accurate but is computationally
more demanding. Developed in the seventies [Gingold 1977, Lucy 1977], DEM and
SPH are now extensively used to simulate dynamic failure of solids and large dis-
tortions [Maurel 2008, Gingold 1977, Belytschko 1994, D’Addetta 2001, Kun 1996,
Libersky 1991, Liu 1997, Magnier 1998, Swegle 1995, Hidalgo 2007, Herrmann 2006,
Wittel 2003].

However, these formulations have major drawbacks. Since the meshfree shape
functions do not satisfy the Kronecker property, we talk about approximation rather
than interpolation. This entails certain difficulties in imposing essential boundary
conditions. Alternatives have been proposed to apply correctly boundary condi-
tions (such as the Element Free Galerkin method [Belytschko 1994]). Coupling with
the finite element method has also been studied [Fahrenthold 2001, Johnson 2001,
Johnson 2003, Munjiza 2004]. However, the major limitation of these methods lies
in its computational cost. Simulations can rapidly be very expensive compared to
the continuum techniques.

2.6.2 Illustration: The Mott’s expanding ring (by Zhou et al.)

In the recent years, numerous analyzes of the expanding ring have been con-
ducted for brittle failure [Shenoy 2003, Zhou 2006a, Elek 2005], and mostly for duc-
tile failure [Guduru 2002, Rusinek 2007, Pandolfi 1999, Goto 2008, Meulbroek 2008,
Gold 2008]. We present here the results from Zhou et al., who used the method
of characteristics coupled to cohesive elements. This framework captures stress
wave propagation and interactions. Zhou et al. considered the material to be ho-
mogeneous and studied the effect of material properties on the average fragment
size [Zhou 2006c]. They proposed an empirical law to predict the evolution of the
average fragment size with strain rate [Zhou 2006b]. Figure 2.12 compares their
law with Grady’s [Grady 1982] and Glenn and Chudnovsky’s [Glenn 1986a] models.
The axes are normalized by the characteristic size s0 and strain rate ε̇0:

s̄ =
s

s0
=

s

c.t0
(2.46)

¯̇ε =
ε̇

ε̇0
(2.47)
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where t0 is defined by equations 2.35, c is the elastic wave speed, and ε̇0 is a char-
acteristic loading rate defined by:

ε̇0 =
σc

E t0
(2.48)

where σc is the failure strength, E is the Young’s modulus.

Zhou et al.’s model behaves as:

s̄ =
4.5

1 + 4.5 ¯̇ε2/3
(2.49)

Zhou et al. explain the differences observed between the models with energetic
arguments. In the quasi-static regime, although Glenn and Chudnovsky supposed
that the totality of the potential energy is converted into fracture energy, Zhou
et al. notice that only half of the potential energy is effectively converted into
fracture energy, the other part accounts for wave propagation. In the high strain
rate domain, they predict smaller average fragment size than energetic models in
closer agreement to experimental data. The reason put forward is that the system
extracts more kinetic energy from the ring’s global motion to create new cracks.

Figure 2.12: Normalized average fragment size in function of the normalized strain
rate in a log-log scale. Grady’s, Glenn and Chudnovsky’s, and Zhou et al.’s models
are displayed.

In addition to their unique law, Zhou et al. [Zhou 2006b] fit the distribution of
fragment sizes with the Rayleigh distribution:

F (s) = 1− e−(s−smin)2/2σ2
(2.50)
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Therefore, Zhou et al.’s calculations emphasize the need for computational simu-
lations. Analytical models cannot predict accurately the response of the material.
Their results, however, only concern very simple geometry and do not account for
material heterogeneity. The present thesis stems from Zhou et al.’s observations and
aims at generalizing them to heterogeneous materials in multiple dimensions.

2.7 Summary

Eighty years are separating us from the first essential experimental study on
fragmentation, achieved by Rosin and Rammler [Rosin 1933]. Since then, several
trends of thoughts have emerged.

First trend presented here concerns fragmentation’s resulting state (e.g. the frag-
ment mass distribution), without considering the physics leading to it. Based on an-
alytical, experimental, and numerical observations, many distributions have arisen.
An exhaustive description would have required more than one chapter of a thesis.
This is why we only selected few of them, which seemed relevant for the understand-
ing of the following chapters.

Most analytical models are based either on the Poisson point process (in which
fragment do not interact, and which leads to exponential distributions), or on the
concept of criticality (which results in power law distributions). However, those an-
alytical predictions do not always represent fragmentation accurately. For instance,
experimental and numerical studies have shown that Weibull distribution may fit
more adequately distribution of fragment sizes.

The second trend focuses on the physics underlying the fragmentation of homoge-
neous materials. By deriving energetic and dynamic equations, these models predict
characteristic length and time scales. Energy models use energy balance or entropy
maximization, while dynamic model are based on Mott’s healing wave principle.

In the last trend of thought, microstructural heterogeneity of the material (e.g.
defects) is included. Analytical, experimental and numerical models have emerged
to understand its role on fragmentation. Using an explicit representation of the
defects, or statistical arguments, or continuum damage approach, researchers have
been able to relate microstructural defects to some interesting failure features. There
remains, however, many misunderstood issues that still needs to be investigated.

Finally, classical experimental and numerical techniques were also reviewed. The
expanding ring/cylinder are appropriate devices to reach strain rate lower than
105 s−1. To go faster, impacts, explosives, as well as the use of Kolksy bar, are more
relevant. Experiments have the advantage of reflecting perfectly the fragmentation
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process, but they are expensive, difficult to handle, and do not give access to the
time evolution of some characteristic physical parameters. By contrast, numerical
simulations are able to track rapidly evolving values. Yet, they remain models and
some errors are necessarily made. In the present thesis, since we are interested in the
physics governing the evolution and in predicting the final state of fragmentation,
numerical simulations appear to be the most appropriate tool.





Chapter 3

Modeling and implementing

As pointed out in chapter 2, studying fragmentation can involve many analytical,
experimental, or numerical methods. Since the main objective of the thesis is the
understanding of the physics underlying fragmentation, the access to time evolving
quantities, such as number of fragments and energies, is required. Numerical simu-
lations are the most appropriate tool to achieve this goal. This chapter is dedicated
to the modeling and the implementing issues, which must be correctly addressed
in order to reflect accurately the physics of the process. The numerical framework
is based on the well-known finite element method (section 3.1.2), and fracture is
modeled by the cohesive approach (section 3.1.3). Moreover, fragmentation simu-
lations may require high performance computing. The mesh needed to resolve the
multiple cracks that might initiate during the fragmentation process, must be very
fine. Serial calculations do not necessarily handle such fine meshes (memory and
efficiency issues). In collaboration with Pr. Raul Radovitzky and coworkers, we are
using the discontinuous Galerkin framework (section 3.2.2) for parallel simulations
and improved scalability. Finally, this chapter also tackles the modeling of material
heterogeneity. It is described macroscopically by a statistical distribution of failure
strengths. As explained in section 3.3, the shape of the distribution has generally a
Weibull type.

3.1 Coupled framework ’finite elements - cohesive ele-
ments’ in dynamics

3.1.1 Motivation

The finite element method (FEM) is a numerical technique that calculates ap-
proximate solutions of partial differential and integral equations [Belytschko 2000,
Hughes 2000, Zienkiewicz 2005a, Zienkiewicz 2005b]. Those equations have a so-
lution but complexities in geometry, material properties, and boundary conditions
make them hard to solve. By discretizing space and time, the FEM generates an
approximate solution in a reasonable time frame.

However, although the FEM may solve a diversity of problems that ranges from
static elastic problems to dynamic large-deformation visco plastic problems, it hardly
tackles fracture. Additional techniques need to be included within the numerical
framework. We are using the cohesive element approach whose main advantages
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are its simplicity and its ability to handle multiple crack initiations simultaneously.
However, it inconveniently leads to mesh dependent solutions (cracks follow the
element boundaries). In this section, we develop the numerical framework coupling
the FEM and the cohesive approach.

3.1.2 The Finite Element framework in continuum mechanics

3.1.2.1 Strong formulation

Let us consider the dynamic motion of a continuum body occupying the initial
configuration B0 ⊂ R3 at time t0 (figure 3.1). At any time t in T = [t0, tfinal], the
position x of the material point X is described by the deformation mapping:

x = ϕ(X, t) (3.1)

Its boundary surface ∂B0 is partitioned into a Dirichlet part ∂DB0 and a Neu-
mann part ∂NB0. Displacements (resp. efforts) are imposed on ∂DB0 (resp. ∂NB0).
The problem has a solution if:

∂B0 = ∂DB0 ∪ ∂NB0 (3.2)
∂DB0 ∩ ∂NB0 = ∅ (3.3)

B0

B(t)

R0

NB

DB

X

x

∂ 

∂ 

t

 

g

Figure 3.1: Schematic of the Lagrangian deformation of the body B0, Neumann
boundary ∂NB0, and Dirichlet boundary ∂DB0.

The deformation gradient, which characterizes the local deformation state is:

F = ∇0ϕ(X, t) ∀X ⊂ B0 ∀t ∈ T (3.4)
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The continuum problem is governed by the equation of motion and the boundary
conditions:

∇0P + ρ0b = ρϕ̈ ∀X ⊂ B0 ∀t ∈ T (3.5)
ϕ = ϕ̄ ∀X ⊂ ∂DB0 ∀t ∈ T (3.6)

Pn = t̄ ∀X ⊂ ∂NB0 ∀t ∈ T (3.7)

where P is the first Piola-Kirchoff stress tensor
b are the body forces
ϕ̄ are the displacement applied on ∂DB0

t̄ are the forces applied on ∂NB0

n is the normal unit vector

Initial conditions in displacement and velocity provide enough conditions:

ϕ(X, t0) = X ∀X ⊂ B0 (3.8)
ϕ̇(X, t0) = V ∀X ⊂ B0 (3.9)

The last equation is the constitutive law of the material, which links P to the
ϕ-dependent free energy A:

P =
∂A

∂F
(3.10)

3.1.2.2 Weak formulation

The momentum equation (eq. 3.5) cannot be discretized directly; a weak form,
often called variational form or principle of virtual work, is needed. The weak form
is equivalent to the momentum equation 3.5 and the Neumann boundary condition
(eq. 3.6). We require trial functions ϕ to satisfy all the displacement boundary
conditions and to be smooth enough so that all the derivatives in the momentum
equation are well defined. The test functions δϕ are kinetically admissible trial func-
tions, meaning that they are independent of time and they vanish on the Dirichlet
boundary. These requirements can be expressed by:

ϕ(X, t) ∈ U where U = {ϕ(X, t) | ϕ(X, t) ∈ C0(X) , ϕ = ϕ̄ on ∂DB0}

δϕ(X, t) ∈ U0 where U0 = {δϕ(X, t) | δϕ(X, t) ∈ C0(X) , δϕ = 0 on ∂DB0}
Equations 3.1 to 3.10 are equivalent to finding ϕ ∈ U such that, ∀δϕ ∈ U0

δW int(δϕ,ϕ)− δW ext(δϕ,ϕ) + δW kin(δϕ,ϕ) = 0 (3.11)

where δW int is the virtual internal work:

δW int =
∫

B0

P : ∇0δϕ dV0 (3.12)
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δW ext is the virtual external work:

δW ext =
∫

B0

ρ0bδϕdV0 +
∫

∂NB0

t̄δϕ dS0 (3.13)

And δW kin is the virtual kinetic or inertial work:

δW kin =
∫

B0

ρ0ϕ̈δϕ dV0 (3.14)

3.1.2.3 Formulation involving an interface

If the continuum body involves a discontinuity ∂IB0, such as a fracture line, the
equations governing the evolution of the continuum bodies B+

0 and B−0 (figure 3.2)
are the same as equation 3.5 to equation 3.7. An additional equation ensures that
the interface is in equilibrium:

JPnK = (P + − P −)n = 0 ∀X ⊂ ∂IB0 ∀t ∈ T (3.15)

n is the normal going from B−0 to B+
0 .

B0

BN

BD

∂ 

∂ 

t

 

+

B0
-

n

Figure 3.2: Schematic of a continuum body with an interface ∂IB0.

The interface equilibrium condition results in an additional term in the weak
formulation (eq. 3.11). The internal work is now:

δW int =
∫

B+−
0

P : ∇0δϕ dV0 +
∫

∂IB0

JPnδϕK dS0 (3.16)

External (equation 3.13) and kinetic (equation 3.14) works do not change.

3.1.2.4 Space discretization

The geometry of B0 is approximated by a mesh, consisting of the union of elemen-
tary entities named elements (figure 3.3). In the present work, they are triangles in
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two dimensions and tetrahedra in three dimensions. The meshed geometry is B0h

and the elements are Be
0:

B0 ≈ B0h =
E⋃

e=1

Be
0 (3.17)

The bounds of the integrals in equations 3.12 to 3.14 are approximated by consid-
ering the meshed volume B0h, rather than the initial volume B0.

t

 

B0h

T6

T10

Figure 3.3: Schematic of a structure meshed with boundary conditions. T6
(quadratic triangle) and T10 (quadratic tetrahedra) are the elements used in this
thesis.

Moreover, the approximated solution ϕh is computed using the following inter-
polation:

ϕh(X) =
Nnodes∑

a=1

Na(X)ϕa (3.18)

where Na is the shape function
ϕa is the nodal approximation of the displacement field

We choose a quadratic interpolation, so that the elements have six (resp. ten) nodes
in two (resp. three) dimensions (figure 3.3). The shape functionsNa are polynomials
of degrees two such that Na(Xb) = δab.

Finally, there remains to compute the integrals of the weak formulation, defined by
equations 3.12 to 3.14, formulated in function of the approximated volume B0h and
the approximated solution ϕh. Gauss integration provides an efficient framework.
It involves quadrature points and weighting functions. First, since we choose a
quadratic approximation, elements have three quadrature points. Secondly, the
Galerkin (or equivalently the Finite Element) approximation is based on weighting
functions equal to the shape functions Na.

Note that changing the number of quadrature points changes the accuracy of
the solution, while changing weighting functions has a deeper impact. Weighting
functions determine the type of numerical method. For instance, in the FEM, they
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are equal to the shape functions. In point collocation methods (comprising the finite
difference method), they are based on Dirac functions at the nodes of the mesh. In
subdomain collocation, the weighted functions are the unity in the subdomain, and
zero elsewhere.

Once taking into account the discretization, equation 3.11 takes the following
simple form:

Mϕ̈h + f int(ϕh) = f ext(ϕh) (3.19)

where M is the mass matrix
ϕ is the displacement vector
f int is the internal forces array
f ext is the external forces array

This framework is implemented in the library SimulPack, an in-house research
code, and which is used in the following chapters to compute the approximations.

3.1.2.5 Explicit time integration

Now, equation 3.19 is discretized in time. The Newmark scheme is a time inte-
gration scheme that consists in approximating an exact time differential equation
by discrete approximated equations. In our case, the time step between two succes-
sive times has a constant value ∆t. If the discrete solution at time n is ϕn, then
equation 3.19 becomes:

At every time tn,Mϕ̈n + fn
int = fn

ext (3.20)

The general expression of the Newmark scheme is:

ϕn+1 = ϕn+1
p + β∆t2ϕ̈n+1 (3.21)

ϕ̇n+1 = ϕ̇n+1
p + γ∆tϕ̈n+1 (3.22)

where ϕn+1
p and ϕ̇n+1

p denote the predictor vectors:

ϕn+1
p = ϕn + ∆tϕ̇n +

∆t2

2
(1− 2β)ϕ̈n (3.23)

ϕ̇n+1
p = ϕ̇n + (1− γ)∆tϕ̈n (3.24)

In the formulation that we have implemented, γ = 1/2 and β = 0, which corre-
sponds to the explicit central difference method. The final formulation is thus:

ϕn+1 = ϕn + ∆tϕ̇n +
1
2
∆t2ϕ̈n (3.25)

ϕ̇n+1 = ϕ̇n +
∆t2

2
(ϕ̈n + ϕ̈n+1) (3.26)
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Parameters β and γ act upon numerical stability. β determines the type of scheme.
β 6= 0 is associated to implicit schemes, while β = 0 constitutes explicit schemes.
The advantage of implicit method over explicit method is that, for linear problems,
suitable implicit integrators are unconditionally stable. For non-linear problems,
unconditional stability is not systematic. In such cases, the parameter γ manages
artificial viscosity to enforce numerical stability. Experience indicates that the time
steps for implicit integrators can be much larger than those for explicit integration.
They are suitable for static problems, or permanent regimes. By contrast, explicit
schemes, which are nice to implement, require a condition to guarantee stability.
They are generally used in dynamic problems, when the time step must be small to
represent all the physical mechanisms; they are especially adapted to fragmentation
type problems which need an accurate time description of the stress field. The
stability condition is expressed by:

∆t = α∆tc (3.27)

∆tc = min
e∈Bh

0

le
ce

(3.28)

α is a security coefficient that softens unsteady effects of non-linearities. le is the
characteristic length of element e, ce is the wave speed in element e.

3.1.3 Addressing fracture modeling with cohesive crack model

3.1.3.1 Origins of the model

The cohesive crack is the simplest model that describes the progressive fracture
process [Bazant 1998]. When it is still closed, a cohesive crack is a fictitious crack,
able to fully transfer stress from one surface to the other. Then, as the crack
opens, the cohesive zone includes non-linearity and energy dissipation, while the
rest of the body behaves as if no crack had appeared. This model was introduced by
Dugdale [Dugdale 1960] and Barenblatt [Barenblatt 1962] in the sixties, to represent
the crack tip of a preexisting crack.

Barenblatt introduced the cohesive zone to account for the non-linear breaking of
the atomic bonds during crack propagation (figure 3.4). He showed that the cohesive
approach relieves the crack tip singularity of the linear elastic fracture model, and he
related the fracture energy Gc to the interatomic potential. His analysis is limited
to cracks whose size is very large compared to the cohesive zone itself. He focused
only on the onset of crack growth.

Simultaneously, Dugdale proposed a model to deal with plasticity at crack tip. He
assumed that the stress on the crack line, ahead of the crack tip, is limited by yield
strength. The plastic deformation concentrates along the crack line. It generates
a displacement discontinuity similar to a crack because of the flow of dislocations
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Broken link

Damaged link

Intact link

(a) (b)

Figure 3.4: Original microscopic cohesive approach. (a) Barenblatt modeled fracture
as the result of breaking of atomic bonds. (b) Dugdale was interested in flow of
dislocations at crack tip.

gathering around the crack line (figure 3.4). Originally, it was a purely plastic model,
which did not involve any fracture criterion.

In the seventies, in the concrete community, Hillerborg et al. [Hillerborg 1976]
assumed that cohesive cracks can appear everywhere within the body, even without
pre-existing macrocrack. Since then, many researchers have used cohesive cracks to
describe the near-tip zone for cracks in diverse materials, such as metals, polymers,
ceramics, and geomaterials. Hillerborg’s approach is macroscopic; he considered
the cohesive crack to be a constitutive relation of the material. He got two key
ideas. In the first, he noted that after peak load, all the deformation localizes into
the crack. The second is the non-instantaneous description of the evolution of the
crack, from intact to fully broken. Various researchers [Hughes 1966, Evans 1968,
Heilmann 1987] showed that the evolution law is accessible via suitable experiments.
Indeed, if the concrete specimen is small enough and the testing machine is stiff
enough, the crack evolves in a stable manner, making it possible to quantify the tran-
sition. As pointed out by Elices and Planas [Planas 1995, Planas 2003, Elices 2002],
extensions of the cohesive crack model can be very general, including non-linear be-
havior of the bulk, effect of triaxality on the cracking criterion, and crack evolution
law.

The question of the cohesive law has been of interest during the past decades.
Two approaches have been competing: the intrinsic and extrinsic approaches. On
the one hand, the intrinsic approach (figure 3.5) considers that the cohesive law may
include both elastic and softening parts. The cohesive zone belongs intrinsically to
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Figure 3.5: Intrinsic (left) and extrinsic (right) cohesive laws.

Figure 3.6: Cohesive element within (left) a Finite Element mesh and (right) a
Discrete Element mesh.

the specimen, both before and after failure onset. On the other hand, the extrinsic
approach (figure 3.5) is based on the idea that the cohesive zone may be modeled
right after peak stress; it does not exist before and only includes the softening part.

The cohesive approach is now widely used in numerical simulations to model non-
instantaneous and dissipative failure. The basic idea lies in introducing a cohesive
interface between two bulk entities (particles in discontinuous frameworks, elements
in continuum frameworks) between which a crack may appear.

3.1.3.2 Finite Element implementation of the cohesive methodology

The weak formulation with an interface can be easily adapted to the cohesive
element formulation. The cohesive law relates the opening of the crack δϕ to the
traction across the interface T = Pn. Equation 3.16 becomes:

δW int =
∫

B+−
0

P : ∇0δϕ dV0 +
∫

∂IB0

T (JϕK) JδϕK dS0 (3.29)

In practice, the implementation in a FE code involves cohesive elements. A co-
hesive element is an interface element between two adjacent elements of the mesh
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Figure 3.7: Schematic of a crack opening in two dimensions. Normal and tangential
openings.

(figure 3.6). In two dimensions, it is a line constituted of six nodes (figure 3.7). In
three dimensions, it is a surface constituted of twelve nodes (quadratic elements).
The displacement jump across the crack is ϕ and can be decomposed into a normal
δn and tangential δs jump (figure 3.7):

JϕK = ϕ+ −ϕ− = δnn + δtt (3.30)

In order to resolve properly the cohesive zone, the cohesive elements must be small
enough. Derivation of the cohesive zone size lz can be found in the work of Palmer
and Rice [Palmer 1973], Rice [Rice 1980]:

lz =
9πE′

32
Gc

σ2
c

(3.31)

where E′ = E for plane stress and E′ = E
1−ν2 for plane strain. Gc is the toughness,

σc is the failure strength, E is the Young’s modulus, and ν is the Poisson ratio.
Typically, lm ' lz

3 , where lm denotes the mesh size.

3.1.3.3 Needleman’s exponential intrinsic law

The intrinsic approach results from the physical considerations concerning the
delamination processes at material interface under multiaxial loading, in which the
location of the crack is well defined before its initiation. By understanding frac-
ture behavior, Needleman and coworkers developed an exponential energy law for
imperfect metallic interfaces involving the normal and tangential opening of the
crack [Needleman 1990, Miller 1999, Freund 1999].

Let r, q, δn,0 and δt,0 be some characteristic input values. We denote ∆n = δn
δn,0

and ∆t = δt
δt,0

. The exponential cohesive law from Xu and Needleman [Xu 1994]
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Figure 3.8: Exponential cohesive law. Left: normalized normal traction with ∆t = 0.
Right: Tangential traction with ∆n = 0. q = 1 and r = 0.

expresses the normal Tn and the tangential Tt forces at the interface (figure 3.8):

Tn = −σmax e
−∆n

(
∆n e

−∆2
t +

1− q

r − 1

(
1− e−∆2

t

)
(r −∆n)

)
(3.32)

Tt = −2σmax
δn,0

δt,0
∆t

(
q +

r − q

r − 1
∆n

)
e−∆n e−∆2

t (3.33)

From a technical point of view, the insertion of the cohesive elements occurs
before the dynamic loop begins, at the location of the cracks. This procedure has
a main drawback: the non-physical compliance that the initial increasing slope
of the law results in. In dynamics, stress waves are not well transmitted across
the interface elements [Seagraves 2009]. Klein et al. [Klein 2001] quantified this
artificial compliance by studying the effective Young’s modulus of a one-dimensional
body. They showed that it can be made negligible by enforcing the value of the
cohesive law’s initial slope to be very large. However, this requirement leads to
an additional constraint: the time step in the dynamic calculation must be very
low. The loss of efficiency may be considerable. Therefore, the use of the intrinsic
approach requires a compromise between low time step (computational efficiency)
and artificial compliance (physical accuracy).

To limit this non-accuracy, Falk et al. [Falk 2001] suggest a criterion concerning
the mesh size lm, the cohesive zone size lz, and the distance between two cohesive
interfaces ld:

lm < lz < ld (3.34)

This relation guaranties a toughness-controlled failure process. If it is not satisfied,
cohesive zones might not be well described and/or failure might be strength con-
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trolled (controlled by the failure strength σc ). Stability in cohesive zone modeling
has been investigated by Foulk in [Foulk 2010].

3.1.3.4 Ortiz’s linear extrinsic law

The extrinsic approach was motivated by the fact that crack can appear anywhere
within the structure. The use of the intrinsic approach in such problems would lead
to consider a structure whose volume is fully constrained by the cohesive zone, and
the resulting artificial compliance would be penalizing. To face this issue, Ortiz
and coworkers [Camacho 1996, Ortiz 1999, Pandolfi 2002] pioneered the extrinsic
approach in which the cohesive zones appear dynamically within the body. The
main technical difficulty is the dynamic insertion of new cohesive elements. A careful
change in the topology of the mesh is necessary.

Despite this difficulty, and motivated by the fact that, in fragmentation simula-
tions, crack can appear anywhere, we chose to use the extrinsic approach. Although
several laws have been proposed, we decided to keep Ortiz’s original law because of
its simplicity (it is linear).

The insertion criterion is based on a stress threshold: if the stress locally reaches
the failure strength, also called the cohesive strength, then a cohesive element is
inserted. Once inserted, the effective opening is computed at each time step, and
the stress across the interface σcoh is updated.

The effective opening is:

δ =
√
δ2n + β2δ2t (3.35)

β is a coefficient which balances the normal and tangential contributions of the
displacement jump. We denote the cohesive strength σc and the critical opening δc
(figure 3.9). The cohesive stress σcoh is:

σcoh

σc
= 1− δcoh

δc
, for δ̇coh > 0 , δcoh = δmax and D < 1 : opening (3.36)

σcoh

σc
= 1− δmax

δc
, for δcoh < δmax and D < 1 : closing (3.37)

The first equation controls the opening of the crack; the closing is governed by the
second. D is the local damage, whose value is 0 if crack has not opened, and 1 if it
is fully broken:

D = min

(
δmax

δc
, 1

)
(3.38)

The energy that the failure can dissipate is:

Gc =
σc δc

2
(3.39)



3.2. Handling parallelization: the discontinuous Galerkin method 49

When it is partially opened, the dissipated energy is Ediss and it retains the elastic
recoverable energy Erec (figure 3.9):

Ediss = DGc (3.40)

Erec = σcoh.δcoh = (1−D)D
δcoh

δc
(3.41)

When the crack is on the opening path, δcoh = δmax and the recoverable energy is:

Erec = (1−D)DGc (3.42)

δ
δc

σ

σc

(a)

δ
δc

σ

σc

δcoh

σcoh

Dissipated energy

Recoverable energy

(b)

Figure 3.9: (a) Linear irreversible cohesive law and (b) associated energies.

3.2 Handling parallelization: the discontinuous Galerkin
method

3.2.1 Motivation for, and origins of the DGM

This section focuses on technical aspects that parallelization rises. Parallelizing
the code is necessary to simulate fragmentation at high strain rates, which requires
very fine meshes. At some point, the increase in the degrees of freedom cannot
be handled by a single processor, serial calculations are limited by the memory of
the processor. Parallelizing the code and running it on multiple processors increase
available memory and significantly lower the calculation time (c.f. section 3.2.3).

The previous section detailed the numerical framework used to simulate the dy-
namic evolution of a body undergoing multiple crack initiations. It is based on the
FEM coupled to extrinsic cohesive approach, in which elements are inserted into the
mesh dynamically. This operation results in the repetitive update of the mesh topol-
ogy, which is delicate to address in serial codes, and which becomes a challenging
issue when it is question of parallelization. Indeed, the severe changes in the mesh
topology, occurring regularly during the simulation, are hardly parallelizable in an
efficient way. When a cohesive element is inserted by a given processor, it must send
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its connectivity map to the other processors. Communication between processors
drastically alters the efficiency that the parallelization is supposed to provide. As
a result, in order to reduce the communication time between processors, a natural
idea consists in avoiding the numerous topology changes by updating the mesh only
once.

This interesting idea originated in Pr. Radovitzky’s group, in the Massachusetts
Institute of Technology, Boston, USA. Pr. Radovitzky and coworkers developed
the core of a parallel code based on the discontinuous Galerkin method (DGM). At
EPFL, we tested and improved the code in view of fragmentation simulations and
implemented functions related to fragment tracking (see appendix A). This collab-
oration was particularly efficient during the sabbatical year that Pr. Radovitzky
spent in our group at EPFL.

The bases of the code are the following. In order to limit processor communication,
the mesh update occurs only once, at the beginning of the calculation, e.g. before
the dynamic loop begins. The mesh is entirely split during the initialization stage,
which amounts to inserting interface elements at every edge of the mesh (figure 3.10).
Nodes are duplicated, elements are added, and the number of degrees of freedom
naturally increases. Before failure onset, interface elements are controlled by some
flux defined in the discontinuous Galerkin method. After failure, they become linear
decreasing cohesive elements.

7x2=14 dof 3x6x2=32 dof

Figure 3.10: Splitting of a mesh. Interface elements are inserted between two ad-
jacent bulk elements (triangle in two dimensions, tetrahedron in three dimensions).
Each interface is independently governed by either the DG framework (before failure
onset), or the linear cohesive law (after failure onset).

The DGM is a generalization of the usual Galerkin method which constitutes
the basis of the widespread finite element method. In the recent years, the dis-
continuous Galerkin methods have received considerable attention for problems in-
volving advection and diffusion terms [Cokburn 2002]. More recently, it has been
used for problems allowing physical discontinuities such as fracture [Mergheim 2004,
De Borst 2006] and discontinuities based on constitutive models that incorporate
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spatial gradients [Noels 2006, Wells 2004], or numerical discontinuities involving ir-
regular meshes (hanging nodes [Castillo 2000], hp adaptivity [Oden 1998]).

The current formulation of the DGM is the result of a century work during which
mathematicians and physicians have improved the formulation [Zienkiewicz 2003].
The name of discontinuous Galerkin seems to appear first in a paper by Lesaint and
Raviart [Lesaint 1974] who defined a method to link separate domains in a weak
manner. An approximation is computed independently in each domain, weakly con-
nected to the others afterward. Other theories have been derived to link such sepa-
rate domains, among which the method of domain decomposition [Gosselet 2006]. It
adds Lagrange multiplier functions at contiguous interfaces of the various domains
in such a manner that the number of unknown variables increases. The essence of
the DGM lies in the elimination of the Lagrange multiplier functions so that the to-
tal number of unknown variables does not depend on the interfaces. An obvious way
to accomplish this elimination is the direct substitution. This idea was developed by
Nitsche who derived a new variational principle [Nitsche 1971]. He also discovered
that this process could lead to numerical singularities. Hence, he added a further
constraint of least-square type, to avoid numerical indefiniteness. The parameter
that he introduced can be seen as a stabilization term.

Moreover, the DGM has other significant advantages. Stable and high-order con-
servative, it is also able to capture highly complex solutions presenting discontinu-
ities, such as shocks and fragmentation problems. It guaranties the proper represen-
tation of material parameters, such as the Young’s modulus. There is no issue of arti-
ficial compliance with the DGM, stress waves are precisely tracked [Radovitzky 2010,
Seagraves 2009]. In addition, since the method uses a discontinuous approxima-
tion, it produces matrices that are block-diagonal, which renders it highly paral-
lelizable [Noels 2007]. Consequently, the DGM is particularly well suited for our
problem: it is an accurate and stable generalization of the FEM, it describes well
discontinuities (the interface elements inserted during the initial splitting of the mesh
are driven by the DGM), tracks accurately stress waves, and it is highly scalable (it
enables to run quick simulations on large meshes). Nonetheless, the main drawback
of the method lies in the multiplication of the degrees of freedom (figure 3.10). The
memory needed to execute the codes increases. This issue can easily be solved by
running the simulations on multiple processors.

3.2.2 New hybrid formulation ’DG - cohesive’

The strong formulation is the same as in section 3.1.2.3. The weak formulation is
adapted, based on the idea that the DGM relaxes the equilibrium (eq. 3.5) across the
interfaces ∂IB0 (figure 3.2), and the compatibility equations (JϕK = 0 , ∀ϕ ∈ ∂IB0),
by enforcing them weakly rather than strongly. First, we recall the jump operator
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and define the average operator:

J•K = •+ − •− 〈•〉 =
•+ + •−

2
(3.43)

Equation 3.16 involves the jump across the interface :

JP δϕK = JPK 〈δϕ〉+ 〈P 〉 JδϕK (3.44)

The key point consists of addressing the contribution of the interface discontinuity
by introducing a numerical flux h(P +,P −,n), which depends on the limit values of
the stress on the interface surfaces (P +, P −). n the normal vector to ∂IB0 pointing
from B+

0 to B−0 . In the case of elliptic equations, Bassi and Rebay [Bassi 1997]
proposed that h takes the form:

h(P +,P −,n) = 〈P〉n (3.45)

Following the derivations detailed in [Noels 2006], the weak formulation becomes:

δW int =
∫

B+−
0

P : ∇0δϕ dV0 +
∫

∂IB0

JδϕK〈P 〉n dS0 (3.46)

However, experience shows that this formulation is highly unstable. Nitsche
showed that the compatibility on the displacements must be enforced weakly by
using the quadratic penalty term [Nitsche 1971]. An appropriate expression in solid
mechanics involves the tangent moduli C. The final expression of the internal work
becomes:

δW int =
∫

B+−
0

P : ∇0δϕ dV0

+
∫

∂IB0

JδϕK.〈P 〉.n dS0

+
∫

∂IB0

JϕK⊗ n : 〈 β
hs
C〉 : JδϕK⊗ n dS0

(3.47)

where β > 0 is the stabilization parameter and hs is a suitable characteristic length.

The weak formulation of the hybrid discontinuous Galerkin - cohesive method is
thus:

∫

B0

(ρ0 ϕ̈ δϕ + P : ∇0δϕ) dV0 + α

(∫

∂IB0

T (JϕK) JδϕK dS0

)

+ (1− α)
(
−

∫

∂IB0

〈P 〉 JδϕK n dS0 +
∫

∂IB0

JϕK⊗ n : 〈 β
hs
C〉 : JδϕK⊗ n dS0

)

=
∫

∂NB0

T̄ δϕ dS0

(3.48)
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The first term of the left hand-side of equation 3.48 gathers volumetric terms (dy-
namic and internal forces). The right hand-side term involves Neumann boundary
conditions. These two integrals constitute the usual virtual work principle. The two
other terms only apply on interface boundaries ∂IB0. The term, which is multiplied
by α, is related to the cohesive law, while the terms multiplied by 1−α refer to the
DG framework. In the DG parenthesis, the first integral is directly computed from
the equations; it involves a flux and guarantees the consistency of the numerical
scheme. The other integral enforces weakly the interlement compatilibty. It is a
quadratic stabilization term, which has been proved to be necessary to guarantee
numerical stability [Nitsche 1971].

Hence, the value of α governs the state of the interfaces: they are intact when
α = 0 and damaged when α = 1. Initially, α = 0 at each interior boundary. When
the fracture criterion is satisfied, α is locally set to 1. We recall that the failure
criterion is based on a stress threshold: as soon as the stress locally reaches the
cohesive strength σc, the cohesive law is activated.

Space discretization and subsequent derivations (nodal approximation and Gauss
integration) are nearly similar to section 3.1.2.4. The only differences lie in the
expression of the internal forces and in the definition of the interface. Internal
forces now involve a DG term, which can be calculated from equation 3.48. The
interface boundary is defined by:

∂IB0 =

(
E⋃

e=1

∂Be
0

)∖
∂B0h (3.49)

3.2.3 Scalability and efficiency

The performance test of the parallel version of the DG-cohesive implementation
was carried out in a test session on Blue Gene (this type of session limits the number
of available processors and is required by the administrators before running on more
processors). Figure 3.11 represents the time needed to perform the initialization
step (domain decomposition with ParMETIS [Schloegel ], splitting of the mesh,
determination of the lumped mass matrix, of shape functions and of the time step)
for a mesh composed of 18836 tetrahedra, which corresponds to roughly 600000
degrees of freedom. The old code is the one used in all the simulations of this thesis.
The new code is an ongoing improvement of the mesh splitting. The third curve
corresponds to the initialization plus 2545 steps of the dynamic loop.

The log-log plot highlights a power-like dependence of the execution time on the
number of processors. This rapid decrease justifies the use of parallel computing to
gain time. Indeed, the best power-law fit of the curve corresponding to the dynamic
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Figure 3.11: Scalability of the DG code in natural and log-log axis. The efficiency
is closed to one.

loop is tNp = 25718
N0.99

p
, where Np is the number of processors and tNp is the time

required by Np processors to achieve the job. It corresponds to the efficiency:

E =
t1

Np.tNp

→ 1 (3.50)

where t1 is the time required by one processor. The efficiency E = 1 is the best
achievable, it means that the load is perfectly distributed among the processors
and that the communication time tends to be null. Note that, in figure 3.11, the
curve associated to the new code does not rigorously display a power law dependence
because the time needed by the processors to perform the operations is much smaller
than the interprocessor communication time. A mesh constituted of more degrees
of freedom, distributed among the same number of processors, would have led to a
scalable response. The code used in this thesis is thus highly efficient and scalable.

3.3 Statistical representation of volumetric defects

In the previous sections, we have focused on the numerical frameworks used in
this thesis. The FEM and the DGM handle bulk material response, for serial and
parallel simulations. Failure is addressed by the Ortiz’s linear irreversible cohesive
law. The bases of the numerical framework are now set. Characteristic values of
the cohesive law (σc, Gc) are, however, not given yet. The main objective of this
section is to relate microstructure and the value of the cohesive strengths.

Since every material is imperfect, it contains defects, which may constitute the
location for failure initiation. A defect is a region where stresses are concentrated by
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the microstructure. Under the action of an external loading, stress locally increases
and may lead to structural damage. As a result, identifying accurately material
flaws is a key issue to predict the failure behavior. However, since most flaws are
located within the structure, they are not visible and their explicit description is
not obvious. To bypass this difficulty, scientists have been using statistics to give a
quantitative representation of the material microstructure.

In the following of the thesis, failure strength and cohesive strength are con-
founded. A defect is associated to a cohesive element, and they share the same
parameters (failure strength and toughness).

3.3.1 Defects in ceramics

Ceramics usually exhibit a dense population of defects, and are thus adequate
candidates to list the most probable defects in brittle materials. A ceramic is an
inorganic, mostly crystalline, non-metallic solid. It is prepared by the action of heat
and subsequent cooling. To highlight some outstanding properties, they have low
density, high mechanical strength, high hardness, high working temperature; they
are resistant to wear and corrosion, and have excellent electric properties. However,
they have a major drawback: their low reliability. Even though substantial advances
have been made to improve the quality of the manufacturing process, there remain
numerous defects, which cause the ceramic failure.

As illustrated in figure 3.12, ceramics are characterized by many types of de-
fects spanning a wide range, from atomic (in the tenth to the nanometer order) to
specimen (in the centimeter order) range. All these defects contribute to the final
complex mechanical properties of the material. Naturally, defects differ not only in
their size, but also in their shape, orientation, and distribution [Kanzaki 1997]. To-
day, experimental instruments make the visualization of almost all of these features
possible. The pictures exposed in this section are taken from the work of Dusza and
Steen [Dusza 1999]. In situ observation of fracture behavior in ceramics has also
been carried out by Ii [Ii 2005].

The most common defects can be classified into four categories [Lamon 2007]:

• Microstructural defects have a characteristic length lower than the grain size.
They are generally triple joints, grain boundary decohesion sites, inclusions.

• Processing defects appear during the processing stages. Pores of various sizes
and shapes are the most frequently observed defects in ceramics. They have
different origins [Telle 1995]: poor powder packing, and impurities in the start-
ing powder. Clusters of reinforcing phases are also commonly observed in
composite ceramics, and usually arise as a result of poor mixing. Abnormally
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Figure 3.12: Schematic of the characteristic defects in ceramics and their associated
length scale [Lamon 2007].

large grains are also often present, their origin is related to inhomogeneous
densification during sintering.

• Machining defects stem from inaccurate forming procedure.

• Wear defects, due to corrosion, cavitation, chemical transformation, arise dur-
ing usage.

These defects strongly influence fracture [Ainscough 1976, Becher 1998]. To il-
lustrate the effect of the microstructure on quasi static failure, figure 3.13 shows
a fracture line in silicon nitride which follows predominantly intergranular fracture
modes.

Nowadays, it seems obvious to relate microstructural flaws and failure. A cen-
tury ago, it was not. In the thirties, Weibull got the idea to interpret failure as a
mechanism originating at the defects’ location.

3.3.2 Weibull’s approach of statistical failure in quasi-static

The Weibull theory is by far the world’s most popular statistical model for life
data. Waloddi Weibull was born on June 18, 1887. His family originally came from
Schleswig-Holstein, at that time closely connected with Denmark. His first paper
was on the propagation of explosive wave in 1914. He also published many pa-
pers on strength of materials, fatigue, rupture in solids, bearings, and of course, on
the Weibull distribution. Let us first come back to his original empirical idea (sec-
tion 3.3.2.1), and then justify theoretically the expression of the Weibull distribution
by use of the weakest link theory [Pierce 1936, Wolstenholme 1995] (section 3.3.2.2)
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Figure 3.13: Fracture line in silicon nitride to highlight the effect of the microstruc-
ture on crack path [Dusza 1999].

and of the extreme value statistics (section 3.3.3.2) [Coles 2001, Leadbetter 1983,
Bazant 2007].

3.3.2.1 Empirical distribution

Weibull considered a set of specimens, constituted of the same material, geometry,
and loaded in the same configuration. He noted that the same quasi static tensile
loading can lead to distinct failure strengths [Weibull 1939]. Following his idea, Abe
et al. [Abe 2003] performed four-point bending tests of alumina bulk ceramics to
determine fracture strengths of three commercially available alumina bulk ceramics.
Their properties are detailed in table 3.1.

Sample Purity Density Average Weibull
Sample (%) kg/m3 strength(MPa) modulus

A 99.7 3.91 260 28
B 99.9 3.91 315 35
C 99.7 3.92 359 33

Table 3.1: Properties of commercial alumina ceramics. Purity quantifies the pro-
portion of defects, density is the proportion of pores. [Abe 2003]

Thirty to forty equally sized and equally shaped specimens, made of materials
A, B and C, were broken in tensile quasi statics. For each material, figure 3.14
lists the failure strengths in terms of probability of failure. Taking a logarithmic
y-axis reveals that the inverse of the probabilities of failure follow affine functions.
Their slopes are identical; the common value is a material parameter called Weibull
modulus (table 3.1). Since identical sample geometry and loading condition lead to
distinct values of failure strengths, the relation between failure and strength is not
deterministic. This is why Weibull developed the concept of probabilistic failure.
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Figure 3.14: Inverse of the probability of failure at a given strength [Abe 2003].

In the thirties, Weibull proposed a macroscopic phenomenological model, which
includes the effect of heterogeneities in the failure process. In 1939, he defined
the well-known Weibull’s distribution. Materials of volume V , with a homogeneous
volume-defect density submitted to the homogeneous uniaxial stress state σ, undergo
failure with the probability:

Pf = 1− e−N(σ,V ) (3.51)

N(σ, V ) is a material function assumed to be independent of the position in the
specimen and of the direction of the stress σ. Weibull mentioned that N(σ, V ) is
necessarily a monotonically increasing function of σ. He noted that power laws are
more representative of life data analysis:

N(σ, V ) =

{
V
V0

(
σ−σmin

σ0

)m
ifσ > σmin

0 otherwise
(3.52)

where V is the specimen volume,
V0 is an arbitrary normalizing volume,
σmin is the lower bond of strength,
σ0 is the scale factor,
m is the Weibull modulus.

m and σ0 are material parameters. To give a quantitative understanding, m is
usually comprised between 1 and 20 for ceramics. It is around 30 for composites,
and it reaches values between 50 and 100 for steels.
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Figure 3.15: Effect of the parameters m and σ0 on the Weibull distributions. The
normalizing volume is such that V0 = V , and σmin = 0.

3.3.2.2 The weakest link theory

The shape of the Weibull’s distribution can be justified by the weakest link theory
that we present in this section.

Hypothesis:

First, let us precise the hypothesis of the weakest link theory, which is a funda-
mental concept of brittle fracture modeling. The material is constituted of a series
of elementary volume dV [Pierce 1936, Wolstenholme 1995]. Each dV embodies a
defect, and is characterized by a failure strength. Depending on the loading, failure
may initiate in the volume dV (figure 3.16).

• Hypothesis 1: The gradient of the stress field is low enough so that each
element dV is submitted to a uniform load.

• Hypothesis 2: Failure strengths are independent random variables. This hy-
pothesis guarantees the heterogeneity of the material and assumes that there
is no interaction between defects.

• Hypothesis 3: The failure of one elementary volume dV leads to the failure of
the whole volume V .

Selection of the probabilistic law

The Poisson point process is a stochastic process in which events occur continu-
ously and independently of one another. Here, an event is the activation of a defect.
In the volume V , the population of defects is modeled by the parameter λ, which
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Failure of the

   structure

Failure of the

weakest link

Figure 3.16: Schematic representing the weakest link theory.

corresponds to the density of defect activation. The Poisson process predicts that
the probability that k defects are activated is:

Pk(V ) = e−λ V (λ V )k

k!
(3.53)

k=0 means that no defect is activated, the structure is intact. k=1 represents the
activation of one volume dV , which is equivalent to failure of the whole structure V
in one dimension. The probability of failure, which is the inverse of the probability
of survival can be thus written:

Pf (V ) = 1− P0(V ) = e−λ V (3.54)

Equation 3.54 underlines that defect density λ fully determines the probability
of failure. λ can be expressed in terms of either defect failure strength (σ), or the
size of the defect (a). Size and strength are indeed related through the toughness
KIc [Anderson 2005, Einav 2006]:

KIc = Y.σ.
√
a (3.55)

where Y is a dimensionless constant that depends on the geometry and the mode
of loading.

Figure 3.17: Probability density functions (pdf) of a Weibull distribution in the (a)
strength approach and (b) size approach.
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Influence of the volume: strength approach (figure 3.17(a))

Defect density is described with a function λ that represents the probability
density function (pdf) of the probability P . Let us consider the random variable
X : B → R associated to the event {σ ∈ B : X(σ) = σ̄}, where σ̄ is an elementary
strength. Let also P = PX(σ) be the associated probability. The probability density
function λ(σ) verifies:

P (σ < X < σ + dσ) = λ(σ)dσ (3.56)

The cumulative density function (cdf) is then

F (σ) = P (X ≤ σ) =
∫ σ

0
λ (3.57)

Therefore, the probability of finding a critical defect at σ is the probability that
the elementary strength associated to a defect has a value inferior to σ. Thus, the
probability of failure of a volume Velem, loaded in a uniform stress field σ is:

Pf (σ, Velem) = Velem · P (X ≤ σ) = Velem

∫ σ

0
λ (3.58)

For a volume V , composed ofN identical elementary volume Velem, the probability
of failure at a given uniform stress σ is derived from the probability of survival of
each elementary volume:

Ps(σ, V ) = (Ps(σ, Velem))N (3.59)

this leads to the probability of failure:

Pf (σ, V ) = 1− (1− Pf (σ, Velem))N = 1−
(

1− Velem

∫ σ

0
f

)N

(3.60)

When the number of elementary volumes N is high, this equation leads to :

Pf (σ, V ) = 1− e−V
R σ
0 λ (3.61)

where V = N · Velem This expression is valid for a uniform and uniaxial stress field.

Influence of the volume: size approach (figure 3.17(b))

The size approach is similar to the strength approach. Defect density is described
with a function g that represents the probability density function (pdf) of the prob-
ability P . Let us consider the random variable X : B → R associated to the event
{a ∈ B : X(a) = ā}, where σ̄ is an elementary strength. Let also P = PX(a) be the
associated probability. The probability density function g(a) verifies:

P (a < X < a+ da) = g(a)da (3.62)
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The cumulative density function (cdf) is then

G(a) = P (X ≤ a) =
∫ ∞

a
g (3.63)

Therefore, the probability of finding a critical defect of size a is the probability that
the characteristic size associated to a defect has a value greater than a. Thus, the
probability of failure of a volume Velem is:

Pf (a, Velem) = Velem · P (X ≤ a) = Velem

∫ ∞

a
g (3.64)

Following the same steps as in the first approach, the probability of failure can be
written:

Pf (a, V ) = 1− e−V.
R∞

a f (3.65)

3.3.3 Expressions of the defect density

A large panel of defect density has been proposed since Weibull’s weakest link the-
ory [Danzer 1992, Graham-Brady 2010, Jayatilaka 1977, Jeulin 1993, Bazant 1998,
Lamon 2007]. We selected two of them.

3.3.3.1 De Jayatilika’s model

Jayatilaka proposed an expression of the defect density as a function of failure
strength [Jayatilaka 1977]. He based his derivation on the experimental results of
Poloniecki et al. [Jeulin 1993, Chudnovsky 1987], who expressed the defect density
with a complex function of the defect size. After non trivial developments, Jayatilaka
deduced the probability of failure for N cracks, N sufficiently large:

Pf = 1− e
−N cn−1

n!

„
πσ2

K2
IC

«n−1

(3.66)

where c and n are characteristic constants. This expression is similar to Weibull’s
prediction, which is not surprising when noticing that the tail of the distribution is
only considered (N is taken large) and that the Poloniecki’s density function involves
a power law.

3.3.3.2 Bazant’s theory based on the fracture process zone concept: ex-
treme value statistics and central limit theorem

Bazant’s main area of interest is quasi-brittle failure (typically concrete-like ma-
terials), which behavior is at the frontier of brittle and ductile failure [Bazant 1998,
Bazant 2007, Bazant 2002, Bazant 1999, Bazant 2004]. Brittle fracture designates
a group of fracture processes, which occur with absence of plastic deformation. On
the contrary, ductile materials can be deformed plastically without fracture. Bazant
uses the fracture process zone concept (FPZ) to describe the transition between the
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two mechanisms. The FPZ is a zone surrounding the crack-tip damaged by crack-
bridging and micro-cracking activities. Depending on the sizes of the specimen and
the FPZ, the material failure behavior is guided by its brittleness or by its ductility
(see figure 3.18).

The body is modeled by a combination of representative volume elements (RVE).
Bazant defined the RVE to be the smallest material element whose failure causes
the failure of the whole structure (this is the weakest link hypothesis). In the case of
brittle failure, FPZ does not interact with the boundary of the specimen. For failure
in mode I, the RVE is composed of a single elementary volume. The failure of one
element leads to the failure of one RVE and consequently of the structure. The mini-
mum value of the failure strengths thus determines when the structure is broken. Ex-
treme value statistics [Coles 2001, Leadbetter 1983] show that there exist only three
types of distributions, which satisfy the weakest link hypothesis [Fisher 1928]: the
Fréchet [Fréchet 1927], the Weibull [Weibull 1939] and the Gumbel [Gumbel 1958]
distributions. Since it is bounded by a minimum value, Bazant suggests that the
Weibull distribution is the only distribution mathematically acceptable for brittle
structures [Bazant 1998, Bazant 2007, Bazant 2004].

By contrast, in the case of ductile failure, FPZ does interact with the boundary
of the specimen. For failure in mode I, the RVE is a series of elementary volumes
in parallel (figure 3.18). The failure of one RVE occurs when all the elements in
parallel are broken. The average value of the failure strengths controls the behavior.
The central limit theorem applies, which leads to normal distribution.

To summarize, depending on the material properties, one should either consider
a Weibull distribution (brittle-like failure) or a normal distribution (ductile-like fail-
ure). Doremus [Doremus 1983] confirmed theoretically these distributions, along
with other extreme-value type distributions.

LS<LFPZ LFPZ<<LS

LS
(a) (b)

Figure 3.18: Effect of the specimen size (Ls) and the FPZ size (LFPZ) on the failure
mechanisms. (a) Ductile process: the RVE is constituted of several elementary
volumes in parallel. (b) Brittle process: the RVE is constituted of one elementary
volume.
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3.4 Summary

In this chapter, the numerical methods used in this thesis were detailed. The
serial code is based on the traditional FEM, while the parallelized version is based
on the DGM. Both methods are coupled to the cohesive element methodology. In the
FEM case, cohesive elements are inserted dynamically into the mesh, which results
in regular updates of the mesh. In parallel, since they occur repeatedly, topological
changes penalize the communication between processors and the efficiency of the
parallelization. This is the reason why the DGM was selected. Indeed, the DG-
cohesive framework avoids the dynamic insertion of cohesive elements by inserting
interface elements everywhere, during the initialization stage. As long as failure has
not initiated, interface elements behave following the DGM. Then, when a critical
strength is reached, they switch to the linear irreversible cohesive law. Domain
decomposition based on the DGM is highly scalable.

Finally, we modeled the heterogeneity of the material with distribution of cohe-
sive strengths, which corresponds to failure strengths. For brittle materials, the
Weibull distribution is the most appropriate. It has been validated by experiments
and theoretical analysis (weakest link theory and extreme value statistics). In con-
trast, normal distributions seem to represent more accurately the behavior of ductile
materials.



Chapter 4

General physical concepts

This chapter 1 may be considered as a transition between chapter 3, which exposed
the physical and numerical modeling employed in numerical simulations, and the
following chapters (chapter 5 to chapter 8) that present the main contributions
of the thesis. Fragmentation phenomenon is based on non-linear complex physics
and its understanding may naturally not be straightforward. As a result, in this
chapter, in order to facilitate the reader’s understanding, we detail qualitatively two
principles: crack interactions that occur through non-linear stress wave interactions,
as well as energy balance between potential, kinetic, and fracture energies. Material
properties and boundary conditions are shown qualitatively to affect both. The
following chapters will detail quantitatively the ideas developed here.

4.1 How stress release waves govern crack interactions

4.1.1 One-dimensional bar

Let us consider a bar of given length L loaded uniformly in tension. The mate-
rial has a linear elastic response with Young’s modulus E, volumetric mass ρ and
longitudinal wave speed c =

√
E/ρ. It is heterogeneous and failure may initiate at

defect locations. The defect i, characterized by its failure strength σc,i, undergoes
at time t the longitudinal stress σi(t). We order the defects depending on their fail-
ure strengths such that ∀i, σc,i ≤ σc,i+1. Boundary conditions involve controlled
displacements on the extremities of the bar. Initial conditions consist of a velocity
ramp such that the bar is subjected to uniform loading at the strain rate ε̇.

In a first stage, stress is uniform and increases linearly until reaching the value
of the weakest link strength σc,min = σc,1 at time t = t0. Then, failure begins at
the weakest link. For clarity purpose, we first consider a bar with only one defect.
Secondly, the bar has two defects, and finally any number of defects.

The bar is here constituted of the elastic bulk and one defect (figures 4.1 and 4.2).
Failure can be modeled through two approaches: instantaneous and non instanta-
neous failures. In the case of instantaneous failure (figure 4.1), stress at the defect
location drops instantaneously from σc,min to 0. Since failure is effective as soon as

1The first part of the chapter will be the topic of a short communication in a physics journal,
co-authored by S.Levy, J.F.Molinari, R.Radovitzky
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σ = σc,min, the crack takes no time to open and does not dissipate energy. This
failure modeling is associated to an instantaneous drop in stress, which generates a
discontinuity in the stress field. To compensate it, two stress waves propagate from
the defect in opposite directions. On the one side of the wave front, the stress is
null, while on the other side, the stress continues increasing and reaches at time t
the value σ = σc,min + E ε̇ (t − t0). The boundaries, where displacements are
applied, do not see that failure has occurred yet. As a result, there exists a non null
time necessary to broadcast failure information, which depends on the location of
the weakest link, the length of the bar, the Young’s modulus E, and the strain rate
ε̇.

Defect

t=t
0

-

t <t<L/2c
0

+

0
tt0

min
minσ=σ

σ

σ(defect)

minσ=σ

minσ=σminσ=σ σ=0σ=0

Figure 4.1: Instantaneous fracture. Discontinuous drop in stress and associated
propagating waves, with no energy dissipation.

In the case of non-instantaneous failure (figure 4.2), the defect is also activated
as soon as σ = σc,min but does not drop instantaneously to zero. Failure is effective
after some time: the crack opens continuously, the bar is partially damaged until
the crack reaches a critical opening. This opening distance is associated to energy
dissipation. A traction-separation law governs the evolution of the stress at the
defect location as a function of the crack opening. In figure 4.2, we model crack by
a spring whose stress decreases when it opens. Let us suppose that this traction-
separation law is linear decreasing and reaches zero when crack opening is δc. The
energy dissipated by failure is the toughness Gc = σc,min.δc

2 . Large (resp. small)
values of the toughness are associated to ductile (resp. brittle) behavior. The time
needed to broadcast the information that failure is effective is larger in the non-
instantaneous than in the instantaneous case.

Let us now consider a bar with two defects and assume that defects 1 and 2
are far enough so that they both initiate (figure 4.3). While defect 1 initiates and
gets damaged, the stress increases in the regions of the bar that have not been
encompassed yet by stress waves. Stress rises and reaches σc,2. If it has been
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Defect

t=t
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0
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0
tt0

minσ

σ(defect)

σ>σminσ<σminσ<σminσ>σmin

σ=σminσ=σmin

Figure 4.2: Non-instantaneous fracture. Continuous drop in stress governed by a
traction-separation law and associated propagating waves, with energy dissipation.

encompassed by stress waves, a region is unloaded. Assuming that defect 2 has not
been released, it undergoes the same failure process as defect 1, and it releases its
own propagating stress waves. At some point, the waves generated by defects 1 and 2
join and interact. Wave physics show that, depending on the value of their amplitude
and phase, two interacting waves may either be constructive or destructive. This
means that, when they cross, the two stress waves may generate new wave front
with either larger or smaller amplitude. The resulting waves propagate along the
bar, reflect on the bar boundaries, and interact again in a constructive or destructive
way. This process continues and waves repeatedly go through the two defects. This
multiple wave passing is at the origin of the progressive damage of the defects: a
defect usually does not break instantaneously, but requires several wave passings
to fully break. Naturally, since the location and the value of the failure strength
are defined statistically, we cannot predict the behavior of the resulting wave. The
solution of such a problem is not obvious, and cannot be calculated analytically when
more defects come into play. Numerical simulations are thus required to represent
accurately stress wave interactions.

When there are more than two defects, the process is identical. The weakest
link is first initiated. Stress waves are propagating and release the encompassed
defects. In the regions that have not been encompassed by the weakest link’s wave,
the stress is rising and other defects initiate. They generate their own stress waves,
and a highly non-linear network of stress waves establishes. Their interactions are
mostly destructive and sometimes constructive. Some defects are thus initiated,
others remain intact.

In quasi statics, the strain rate ε̇ is low compared to the ratio c/L. When the
weakest link is activated, stress waves propagate and release the encompassed areas.
Since they are propagating fast, in comparison to the increase in stress of the non-
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Figure 4.3: Non-instantaneous fracture with two defects. Continuous opening of the
cracks, propagating and interacting stress waves.

encompassed areas, no more defect nucleates. Failure only occurs at the weakest
link. On the contrary, in dynamics, the strain ratio ε̇ is much higher than the
rate c/L. In this case, the waves released by the failure of the weakest link are
propagating slowly in comparison to the increase in stress of the non-encompassed
areas. Other defects are initiated. Consequently, in quasi-static, the bar fragments
at one location, while it fails at multiple points in dynamics. Purely qualitative
considerations of the dynamics of stress waves in a one-dimensional problem thus
justify that at high strain rates, more fragments are generated than at low strain
rates. In the following, we will see that energetic arguments may as well be evoked
to justify this intuitive result.

In addition to these wave interaction considerations, another mechanism may take
place. When multiple fragments are generated, they are moving: part of the kinetic
energy is used for the global motion of the body, the rest locally evolves to ensure
energetic equilibrium with potential energy. Fragments may thus impact each other,
which leads to additional compression forces. Applied on the fragment’s boundaries,
these forces generate compressive waves that affect the global response. As shown by
Zhao and coworkers [Cai 2000, Zhao 2006b, Zhao 2006a], the interactions between
compressive waves and fractures are complicated. Although analytical solutions
have been proposed for simple test case, they can hardly handle more complex
cases. Once more, numerical simulations seem to be the most appropriate tool to
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predict such mechanisms.

In multiple dimensions, the mechanisms are the same although they are more
difficult to visualize. Mechanical waves are propagating in every direction around the
defects and interact with other waves. Both crack initiation and crack propagation
are influenced by the wave network. Some time is necessary for the information to
broadcast to boundaries. In quasi static, the fragmentation pattern involves few
cracked lines, while it is denser in dynamics.

4.1.2 Quantification of the secondary wave effect

As highlighted in the previous paragraph 4.1.1, when two stress wave fronts inter-
act, the resulting wave has a magnitude that may be either higher or lower than the
initial wave magnitudes. However, since they require some restricting conditions,
constructive waves are generally less accessible, and wave interactions mostly result
in lower magnitudes. Hild and coworkers [Brajer 2003, Denoual 1997, Denoual 2002,
Forquin 2003b, Forquin 2003a, Hild 2003] have developed a theory in which con-
structive waves are neglected. This amounts to assuming that a region of the bar
that has been encompassed once is definitively protected from further damage.

However, this strong hypothesis has already been proved to be approximate. Dru-
gan [Drugan 2001] derived the stress field of a bar with three defects and showed
that secondary waves play a key role in fragmentation. In order to quantify their
effect, we conduct numerical simulations on various brittle materials, at strain rates
ranging from ε̇ = 103 s−1 to ε̇ = 105 s−1. Since Hild et al.’s model assumes highly
heterogeneous and brittle materials, we selected four materials:

• Mat.1: Highly brittle and homogeneous (Weibull distribution with Weibull
modulus 20 and scale parameter 5 MPa) with toughness Gc = 1 N/m

• Mat.2: Highly brittle and heterogeneous (Weibull distribution with Weibull
modulus 2 and scale parameter 500 MPa) with toughness Gc = 1 N/m

• Mat.3: Brittle and homogeneous (Weibull distribution with Weibull modulus
20 and scale parameter 5 MPa) with toughness Gc = 50 N/m

• Mat.4: Brittle and heterogeneous (Weibull distribution with Weibull modulus
2 and scale parameter 500 MPa) with toughness Gc = 50 N/m

For each material and each strain rate, we conduct two simulations. One employs
the numerical model presented in chapter 3, which accounts for secondary waves.
The other is based on Hild et al.’s theory. In practice, for the second type of
simulation, a cohesive element can be in two stages: breakable or unbreakable.
Initially, all the cohesive elements may break. Then, at each time step, we verify
whether a given cohesive element has a mean effective stress σeff lower than it was



70 Chapter 4. General physical concepts

at previous time (implying that the stress has been unloaded by a propagating stress
wave):

If (cohesive element i is breakable &
σeff (ti) < σeff (ti−1) − tolerance)

then (cohesive element i becomes unbreakable)

where the tolerance is set to 1 MPa. In one dimension, this effective stress is the
principal stress in the direction of the bar. This framework allows neglecting the
effect of secondary waves.

First, strain rate is set to ε̇ = 104 s−1. For each material, we plot the cohesive
energies for the two simulations and quantify the difference by focusing on their final
values Ecoh,fin through the ratio:

∆ =
Ewith

coh,fin − Ewithout
coh,fin

Ewith
coh,fin

(4.1)

where with stands for ’with secondary wave effect’ (usual model), and without

stands for ’without secondary wave effect’ (Hild et al.’s approach).
Figure 4.4 presents the result for material Mat.2. Naturally, since some defects
become unbreakable in the second type of simulation, the cohesive energy ’without’
can only be smaller than the ’with’ secondary waves.

Figure 4.4: Evolution of the cohesive energies at strain rate ε̇ = 104 s−1, for Mat.2
(very brittle and heterogeneous) in two cases: with and without accounting for the
secondary waves. Note that cohesive energy fluctuates because it involves recover-
able energy.

As highlighted by table 4.1, we observe that the materials selected lead to distinct
responses.

In other words,

• Mat.1 and Mat.3: ∆ ' 0. When the material is homogeneous, secondary
waves have a negligible effect at ε̇ = 104 s−1.
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Strain rate (s−1) 103 2.103 104

Mat.1 0.0573 <0.005 <0.005
Mat.2 0.7243 0.6175 0.333
Mat.3 <0.005 <0.005 <0.005
Mat.4 >0.95 >0.95 0.4173

Table 4.1: Computed values of ∆ for several strain rates.

• Mat.2 and Mat.4: 0 < ∆2 ≤ ∆4. When material is heterogeneous,
secondary waves affect failure response at ε̇ = 104 s−1. The less brittle the
material is, the more significant the secondary waves effect is.

In order to verify that these observations remain valid at other strain rate, we
ran simulations from ε̇ = 103 s−1 to ε̇ = 105 s−1. The trends are identical and
accentuated. Indeed, Mat.1 and Mat3. still lead to very close responses (∆ ' 0),
while Mat.2 and Mat.4 become more sensitive to secondary waves while strain rate
decreases. Figure 4.5 plots the evolution of the rate ∆ (equation 4.1) for Mat.2,
as a function of the strain rate. At very high strain rates, there is at most 2%
difference between both cases, while it reaches 80% at the intermediate strain rate
ε̇ = 2.103 s−1. ∆ displays a logarithmic decay.

Figure 4.5: Evolution of the ratio ∆ that measures the effect of secondary waves in
one-dimensional fragmentation, with strain rate. x-axis is logarithmic

In conclusion, secondary stress waves have insignificant effect at very high strain
rates for all the studied materials. It is also negligible for the homogeneous materi-
als at every strain rate. However, at intermediate (and low) strain rates, secondary
wave effect becomes consequential, as the material becomes more ductile and more
heterogeneous. These observations highlight the necessity of taking wave interac-
tions into account. They may change considerably the structural responses. As an
illustration, in car crashes, strain rate ranges 100 s−1 and materials are highly het-
erogeneous (because of the diverse components of the car and the complex geometry)
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and ductile (the carter is made of steel): 95% of the damage may stem from wave
interactions. Similarly, the most rapid bullets can reach ε̇ = 105 s−1 and gradually
slow down and stop. During the beginning of the impact, stress wave interactions
may have negligible effect. However, as the bullet penetrates the structure, they
may become significant. Since most impacts occur at small or intermediate strain
rates, and since most materials are heterogeneous or ductile, neglecting secondary
stress waves amounts to underestimating damage by a factor that can reach 95%.
Naturally, these observations are only the result of the study of four materials and
the bar geometry. More simulations will be run to confirm (or invalidate) them in
more complex problems.

4.2 Energy balance arguments

In this section, we focus on the energy evolution during fragmentation. We con-
centrate on the kinetic, potential, and cohesive energies. If energy is balanced, the
variation of external work is equal to the sum of the variations of kinetic, potential,
and cohesive energies:

ϕ(Wext) = ϕ(Ekin + Epot + Ecoh) (4.2)

In any of the simulations presented in this thesis, energy balance has been verified.
Moreover, all the following results in this section concern the fragmentation of a
rectangular plate of length 0.01 meters and thickness is generally set to 0.15 mm
(this value may change; it is chosen to be as small as possible and to ensure the
mesh quality). It is constituted of a brittle heterogeneous material (Weibull modulus
two, scale parameter 50 MPa, toughness Gc = 50 N.m−1) with Young’s modulus
E = 370 GPa, Poisson ratio ν = 0.22, and volumetric mass ρ = 3900 kg.m−3.
Strain rate is ε̇ = 104 s−1. In the following, we vary these parameters one after the
other, to study their effect on the energy evolution.

4.2.1 Effect of boundary conditions

We first compare two types of tensile loading conditions: the impulse and the
uniform expansion.

Impulse: The impulse boundary conditions consist of applying a velocity ramp
before the dynamic explicit calculation begins (figure 4.6(a)). The body is thus
loaded uniformly at onset and released. Thus, initially, kinetic energy is injected,
while potential and cohesive energies are null (figure 4.6(b)). Then, kinetic energy
is converted into potential energy. Since we assume a linear elastic response of the
bulk, the body expands and the potential energy increases quadratically with time:

Epot =
V

2
Eε̇2t2 (4.3)

where V is the volume of the specimen. Two cases arise:
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• With no failure: The body stretches and stress reaches a peak when kinetic
energy is null. Nonetheless, the peak stress does not extend to the minimum
value required for fragmenting the body. There is not enough input energy
(kinetic energy) in the system to initiate failure. Then, potential energy de-
creases quadratically, while kinetic energy increases. The conversion of energy
only involves kinetic and potential energies.

• Leading to failure: Strain rate is high enough to initiate failure. The body
stretches, and the stress reaches a value larger than the one required for frag-
menting the body (figure 4.6(b)). Then, potential energy is converted into
failure; cohesive energy increases. This conversion generates a loss in poten-
tial energy, which is compensated dynamically by kinetic energy. After peak
stress, two mechanisms are competing: first, potential energy is directly con-
verted into failure; second, kinetic energy is converted into potential energy,
which is in turn converted into cohesive energy. Since these two mechanisms
occur simultaneously, they cannot be distinguished easily. We will, however,
see that depending on strain rate and material properties, the indirect conver-
sion (involving kinetic energy) may dominate.

(a) (b)

Figure 4.6: Impulse loading: (a) The dashed arrows indicate the amplitude of the
velocities applied initially within the whole body. (b) Evolution of the variation of
the kinetic, potential, and cohesive energies. Strain rate is ε̇ = 104s−1, parameters
are detailed in the text.

Uniform expansion: The uniform expansion conditions consist of applying ini-
tially an impulse, and of pulling on the boundaries during the explicit dynamic loop
(figure 4.7(a)). The advantage is, whatever the strain rate is, the body will break.
Quasi static regime is thus accessible. Moreover, as shown in [Zhou 2006a], in the
dynamic regime, impulse and uniform expansion lead to the same response. The
only drawback lies in the understanding of the results; they are less obvious to inter-
pret. First, potential energy increases quadratically (figure 4.7(b)). Kinetic energy
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is constant since we impose a uniform expansion. The sum of both (which is equal
to the external work) thus increases quadratically. Then, when the stress is high
enough to damage some defects, cohesive energy increases. Failure energy is supplied
by potential energy conversion, which is governed by the two mechanisms detailed
previously (direct conversion of potential energy and indirect conversion based on
kinetic energy). As a result, since we keep pulling, kinetic energy increases, poten-
tial energy decreases and cohesive energy increases until the body is fully broken
(e.g. when stress waves have fully released the body). Note that the final value
of the potential energy is not necessarily zero because failure stops as soon as the
stress is low enough in comparison to the failure strengths, and not necessarily when
it is null. Each fragment independently possesses global kinetic energy that makes
it flies, local kinetic energy that is constantly converted into potential energy, and
internal damage. In comparison to the impulse loading, the final cohesive energy is
slightly larger because of the constant supply of kinetic energy (Ecoh,fin ' 0.0556 J
for the impulse, Ecoh,fin ' 0.0604 J for the uniform expansion).

4.2.2 Effect of the input parameters

4.2.2.1 Strain rate

Let us consider two extreme cases: ε̇ = 10 s−1 (quasi-static to intermediate)
and ε̇ = 105 s−1 (dynamic). We select the same specimen plate as in the previous
paragraph, and material parameters are detailed at the beginning of the section.
Naturally, the mesh is fine in the dynamic case (to ensure convergence) and coarse
in the quasi-static case (to ensure reasonable simulation time). In order to maintain
the good quality of the mesh, the plate thickness was adjusted. The specimen is
loaded in uniform expansion to unable the small velocities imposed by the quasi-
static test to reach failure.

Figure 4.8 compares the energetic responses generated by quasi-static and dy-
namic experiments. Before peak potential energy, the behavior of the potential is
slightly identical. The response is not rigorously quadratic because of the activa-
tion of some defects. Indeed, in two dimensions, the failure of one defect does not
lead to the failure of the whole structure. Crack must propagate through the en-
tire structure. The plate can undergo diffuse damage while potential energy still
increases. At some time, the damaged locations interact, cracks are forming and
fragmentation process occurs. The transition between diffuse damage and fragmen-
tation is not well-defined. Note, however, that diffuse damage before peak stress is
nearly negligible since the cohesive energy remains quasi null. We can thus assume
an elastic response before peak stress, which ensures that the value of the peak
potential energy is proportional to ε̇2 (eq. 4.3). We emphasize that the values of
peak potential energy in figures 4.8(a) and 4.8(b) cannot be compared directly. The
specimen thicknesses are different (0.15 mm at high strain rate and 0.22 mm at
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(a)

(b)

Figure 4.7: Uniform expansion: (a) The dashed arrows indicate the amplitude of
the velocities applied initially within the whole body, the plain arrows represent the
displacements imposed on the plate boundaries during the whole simulation. (b)
Evolution of the variation of the kinetic, potential, and cohesive energies. Strain
rate is ε̇ = 104s−1, parameters are detailed in the text.
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low strain rate), which leads to distinct specimen volumes. From equation 4.3, Epot

(and a fortiori peak potential value) involves the specimen volume.

After peak, dynamic and quasi-static behaviors are distinct. In the quasi-static
case (figure 4.8(a)), wave velocity is large compared to strain rate (c/Lplate À ε̇).
The ’elastic’ phase takes thus much more time than the failure phase. The majority
of the cohesive energy comes from potential energy. The increase in kinetic results
from the external work, which is constantly applied.

On the contrary, in dynamics (figure 4.8(b)), wave velocity is small compared
to strain rate (c/Lplate ' ε̇). The ’elastic’ phase occurs rapidly compared to
the failure phase. Therefore, failure occurs ’slowly’, which offers some time to use
kinetic energy. Indeed, in dynamics, not only peak potential energy is directly
converted into failure, but kinetic energy (which is supplied by external work) is
also transferred into potential energy, which is in turn employed in failure. Both
direct and indirect conversions are significant. The indirect conversion is made
possible because of the time required by the waves to reach the boundaries (see
section 4.1.1). While the information that failure has occurred within the body and
broadcasts via stress waves, we keep pulling and inserting energy into the system.

To summarize, the number of activated defects is an increasing function of the
strain rate for two main reasons: the amount of available energy, and the time
needed by stress waves to broadcast information that the specimen is fragmenting.
This double effect contributes to generating more cracks in dynamics than in quasi-
statics.

4.2.2.2 Young’s modulus

The Young’s modulus mostly affects the behavior before peak stress. Figure 4.9
displays the potential energy evolution for several Young’s modulus (same mesh,
same other material parameters). Strain rate is 104 s−1. Assuming a linear elastic
response, time to failure evolves as 1/E:

tf =
σpeak

E.ε̇
(4.4)

and the rate of increase in potential energy is proportional to E, while peak potential
energy is inverse proportional to E (eq. 4.3).

The behavior after peak stress is also affected by the Young’s modulus through
the wave speed (that is proportional to

√
E). Large Young’s moduli result in more

rapid response than small Young’s moduli.
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(a)

(b)

Figure 4.8: Evolution of the kinetic, potential, and cohesive energies (a) in quasi-
statics (ε̇ = 10 s−1) ,(b) in dynamics (ε̇ = 105 s−1). The left (resp. right) scale is
associated to the potential and cohesive energies (resp. kinetic energy).

Figure 4.9: Effect of Young’s modulus on potential energy. It mostly affects the
value of the peak potential energy, and a fortiori, the time needed to reach it.
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4.2.2.3 Brittleness/ductility

The mechanisms in brittle and ductile failure are distinct. By varying the tough-
ness Gc, we can simulate both fragmentation responses. Figure 4.10 (identical mesh,
other material properties, and strain rate as in previous paragraph) highlights the
effect of the toughness on potential energy. Naturally, since it is only related to
failure energy dissipation, toughness does not influence pre-peak behavior. Post-
peak behavior is, however, highly dependent upon toughness. For ductile materials,
the process is ’slow’, while it is ’rapid’ for brittle materials. This trend is pre-
dictable when referring to the characteristic time scale defined by Camacho and
Ortiz [Camacho 1996]:

t0 =
Gc E

c σ2
c

(4.5)

t0 is a material parameter, which embodies the time needed by a cohesive element
to fully open. Large toughnesses are associated to high values of t0 and thus to slow
responses. The demonstration of the expression of t0 is based on energy balanced
and addressed in chapter 7.

Figure 4.10: Effect of toughness on potential energy. It is mostly significant after
peak stress.

In addition, we compare in figure 4.11 the evolutions of potential, kinetic, and
cohesive energies for brittle (Gc = 5N/m) and ductile (Gc = 500N/m) materials.
Figure 4.11(a) highlights that brittle failure dissipation equally originates at direct
and indirect conversions of potential energy. We recall that direct refers to the
conversion of stored potential energy into failure, while indirect means that external
work is converted into kinetic energy, which is in turn converted into potential
energy, and into failure. Reversely, in the ductile case, dissipated energy is mostly
due to indirect conversion. Kinetic energy mostly supplies failure because ductile
process is ’slow’ enough to allow this process. Moreover, since each crack may
dissipate ten times more energy in ductile than brittle failure, the final value of the
cohesive energy is larger in ductile fragmentation (Ecoh,fin = 3 mJ for the brittle
material, and Ecoh,fin = 38 mJ for the ductile material). In order to counter this
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lack of energy dissipation, brittle fragmentation generally leads to more fragments,
but this is insufficient to compensate the difference in energy.

(a)

(b)

Figure 4.11: Evolution of the kinetic, potential, and cohesive energies (a) for a
brittle material (Gc = 5 N/m), (b) for a ductile material (Gc = 500 N/m). The left
(resp. right) scale is associated to the potential and cohesive energies (resp. kinetic
energy).

4.2.2.4 Microstructural heterogeneity

Studying extensively the effect of microstructural heterogeneity on fragmentation
will require several full chapters. In this section, we only give a glimpse at the
influence of heterogeneity on potential and cohesive energies. One possible way
of controlling heterogeneity is to select a Weibull distribution of cohesive strengths,
with given minimum value σc,min, Weibull modulus m, and variable scale parameter
σc,0:

F (σ) = 1− e
−
„

σc−σc,min
σc,0

«m

(4.6)

For instance, let us select σc,min = 260MPa, m = 2, and two values of the scale
parameter, σc,0 = 50 MPa and σc,0 = 500 MPa. This results in two distinct distri-
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butions of defects, as highlighted by figure 4.12. To simplify comparison, we name
thereafter ’homogeneous’ and ’heterogeneous’ (although the ’homogeneous’ material
is not strictly homogeneous). Since they have the same weakest link, fragmentation
initiates at the same time in both cases.

Figure 4.12: Weibull distribution of defects for ’homogeneous’ and ’heterogeneous’
materials.

Figure 4.13 displays the evolution of the potential and cohesive energies for these
two materials. Since the simulations were run for the same mesh and same input
parameters (except σc,0), the values of these energies can be directly compared to
each other. Peak potential energy is higher for the ’heterogeneous’ material since
its distribution of cohesive strengths reaches larger values. Moreover, the value of
the cohesive energy is rather close. It indicates that, in the case of ’heterogeneous’
material, dissipation is supplied by potential energy (direct conversion), whereas for
’homogeneous materials’, kinetic energy mostly contributes to it (indirect dissipa-
tion).

Moreover, the number of broken edges at the end of the simulation is about the
same for both material (about 22000), whereas the number of damaged edges is
higher for the ’homogeneous’ material. For the ’homogeneous’ (resp. ’heteroge-
neous’) material, there are 81993 (resp. 42655) damaged but not broken edges.
More generally, for a given set of parameters (bulk, strain rate, and toughness),
the number of broken edges is roughly independent from the heterogeneity of the
material, while the number of damaged edges decreases if scale parameter increases
(e.g. if heterogeneity increases). As a result, ’heterogeneous’ materials lead to fewer
damaged edges but have a larger final cohesive energy than the ’homogeneous’ ma-
terials (Efin

coh = 6 mJ for the homogeneous material, while Efin
coh = 9 mJ for the

heterogeneous material). This apparent contradiction suggests that the rate of de-
fect initiation is higher for ’homogeneous’ materials (among which many defects are
activated simultaneously), and that those initiated defects are barely damaged.
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(a)

(b)

Figure 4.13: Evolution of the kinetic, potential, and cohesive energies (a) for a
homogeneous material (σc,0 = 50 MPa), (b) for a heterogeneous material (σc,0 =
500 MPa). The left (resp. right) scale is associated to the potential and cohesive
energies (resp. kinetic energy).
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4.3 Summary

To understand fragmentation mechanisms, both dynamic and energetic arguments
must be accounted for. The dynamics of stress waves are highly non-linear and
cannot be calculated analytically. We have shown, via numerical simulations and
qualitative explanations, that stress wave effects are dependent upon multiple pa-
rameters, among them strain rate, wave speed, specimen geometry, toughness, and
defects. Stress waves are the vector of crack interactions. They broadcast informa-
tion concerning the stress field state. Since they need some time to travel, there
exists a delay between the time of occurrence of a given event, and the time at which
information has been actually transmitted to the rest of the structure. This delay
is significant in dynamics and negligible in quasi-statics.

Two interacting waves lead to new waves whose amplitudes can either be larger
or smaller than the initial ones. These new waves constitute the secondary wave
network. They propagate, interact, and passes several times through the defects.
We quantified the role of this multiple passing, e.g. of secondary waves in the frag-
mentation of a bar. For homogeneous materials at any strain rate, as well as at
very high strain rates for any materials, secondary waves have negligible effects.
They are significant at intermediate and low strain rates, for heterogeneous materi-
als, though. Consequently, it is essential to include wave mechanics into numerical
codes. Obscuration zone models cannot capture the full amount of dissipated energy.

Finally, we also focused on energy conversion. For every boundary conditions,
potential energy first increases, reaches a peak, and decreases. Some material pa-
rameters mostly affect pre-peak response (Young’s modulus), some influence post-
peak (toughness), others have clearly an effect on both (strain rate, heterogeneity).
When studying energy transfers, two types of response arise. In the first, stored
potential energy is sufficient to fragment the body (direct conversion for low strain
rate, brittle, ’homogeneous’ materials, etc.). In the second, part of the stored po-
tential energy is employed in failure, but the major contribution stems from kinetic
energy (indirect conversion for high strain rate, ductile, ’heterogeneous’ materials,
etc.).



Chapter 5

Signature of defects in
one-dimensional fragmentation

As pointed out in the previous chapters, defects play a critical role in the dynamic
fragmentation of brittle materials. Cracks initiate at seemingly random locations,
propagate and coalesce to form fragments. The process is accompanied by stress
release waves, whose influence is difficult to account for without numerical analysis.
In this chapter 1, we are using the coupled Finite Element - cohesive elements capa-
bility detailed in chapter 3 to relate the defect distribution contained in a material
with the resulting number of fragments. In order to simplify the problem and focus
solely on crack initiation, we consider a one-dimensional geometry. We select Mott’s
ring, in which contacts between fragments are limited and which periodicity facil-
itates physical understanding. We show how the left tail of the cohesive strength
distribution, e.g. the number of large defects, determines the rate at which cracks
are initiated and how it strongly controls the generation of stress release waves and
fragmentation process. Our numerical calculations yield a new factor, which we
label communication factor. It is used to normalize the average fragment size and
to define a new scaling function of material properties, defect statistics and loading
rate.

5.1 Synopsis of the study

5.1.1 Objectives

As detailed in chapter 2, a range of phenomenological, theoretical and numeri-
cal models have been pursued during the last decades to describe fragmentation.
However, most of them consider fragmentation as a macroscopic process, without
including the effect of the microstructure. In brittle fragmentation, defects play a
key role: fracture sites are usually structural flaws. A defect is activated when the
stress is locally high enough to destroy the cohesion of the material.

In quasi statics, the weakest link theory applies (see chapter 3): the weakest
flaws initiate and slowly lead to failure with few crack interactions. In dynamics,

1This chapter has given rise to the journal article S.Levy, J.F.Molinari, Dynamic fragmentation
of ceramics, signature of defects and scaling of fragment sizes, Journal of the Mechanics and Physics
of Solids, 58(1), 12-26, 2010
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numerous flaws are activated and interact through a complex network of stress
waves. Each damaged defect opens and generates stress release waves that protect
the encompassed neighboring regions. When many defects open, stress waves are
generated simultaneously, propagate, and interact. The behavior is then highly non
linear (see chapter 4).

Hild and coworkers [Hild 2003] derived the expression of the tensile strength-rate
corresponding to the transition quasi-statics to dynamics. However, they made a
strong assumption: when an area is encompassed by stress waves, it is definitely
protected from further damage. We underlined in chapter 4 the importance of the
secondary waves. In some cases, they constitute the essential source of damage.
The framework used here does account for these wave interactions. It allows us to
investigate the role of defects within this network of stress release waves, as well as
on fragment sizes.

Our objective is to extend the work of Zhou et al. [Zhou 2006a] by including
defect distributions. We wish to analyze how defects influence the average fragment
size in an idealized system, consisting of a ceramic ring under uniform expansion.
The ring material is initially elastic, and is controlled by cohesive failure as soon as
the stress field locally exceeds the strength of local flaws. The adopted numerical
framework is the finite element method (chapter 3). The underlying question will be
whether or not, despite the statistical complexity, our results can be synthesized in a
simple normalized form, in which fragment statistics are made explicitly dependent
upon material properties, flaw population, and loading parameters.

The chapter is structured as follows. First, we describe the expanding ring test.
We also detail the randomly spaced defect characteristics. Then, we verify the
numerical convergence of our results and discuss the influence of the population
of defects (density and representative distribution). A full section is devoted to
building a theoretical model which aims at describing the communication between
microcrack sites. Finally, we propose new scaling parameters for heterogeneous
fragmentation.

5.1.2 Description of the test and energy evolution

We study the fragmentation of a ring whose motion is imparted by some radial
impulse or strain rate (fig.5.1):

ε̇ =
radial velocity
ring radius

(5.1)

During the process, the input energy is converted into fracture energy, and into
elastic and kinetic energies (due to the propagation of stress waves and to the global
motion). In quasi statics, the elastic energy dominates and the weakest link theory
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applies. On the contrary, the dynamic regime is governed by kinetic effects, which
are arguably more challenging to understand. Therefore, our applications concen-
trate on strain rates ranging from 103s−1 to 106s−1. Moreover, we have chosen
this test for its simplicity. The radial and periodic geometry limits boundary ef-
fects and contacts between fragments. The small thickness of the ring restricts the
fragmentation process to crack initiation. Since crack propagation makes the phys-
ical understanding more complex, focusing on initiation rather than propagation is
clearly an advantage to complete our objectives (crack propagation will be discussed
in chapter 7).

Figure 5.1: Schematic of the expanding ring test showing the development of a
complex network of stress wave interactions.

Before fracture, the behavior is linear elastic and controlled by a finite element
simulation. When the weakest defects are initiated, cohesive elements are inserted
and stress release waves begin their propagation and interactions. Depending on
the local stress, cracks may nucleate, grow, or close (chapter 3). As soon as one
link is completely broken, the expansion of the ring is not constrained anymore:
inertial effects govern the evolution of the fragmentation. While the ring continues
expanding, cracks keep evolving and interacting until the fragmentation process is
stabilized.

5.1.3 Modeling the initial distribution of defects

Every material is inherently imperfect; defects are distributed among its volume.
Each defect is naturally associated to a failure strength, which we refer to as its
cohesive strength σc (see chapter 3). It designates the stress activation threshold
required to initiate fracture, and its value depends on its shape, size and orientation.
A defect with low failure strength is weak, while a defect with large failure strength
has a low probability of failure. Since each defect is affiliated to a value of σc,
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Figure 5.2: Some realizations of cohesive strengths (p.d.f.).

statistical heterogeneity is introduced with a distribution of σc. A population of
defects is thus characterized by:

1. the number of defects Ndef , or the defect density Lring/Ndef

2. the type of the distribution of defects (normal, uniform, ...)

3. the mean µ and the standard deviation υ of the distribution

Choosing an adequate distribution is not obvious. We have focused on the uniform
distribution which is not realistic, but whose simple shape helps build a physical
understanding. Then, we have compared our results to Gaussian and Weibull dis-
tributions, which have been shown to be a physical representation of the defects
(chapter 3). These choices were made in respect to the weakest link theory and to
extreme value statistics [Leadbetter 1983]. The cumulative density function of the
Weibull distribution is defined by:

F (σc) = 1− e
−
“

σc−σc,min
λ

”m

(5.2)

where λ is the scale parameter, m is the shape parameter or Weibull modulus, and
σc,min is the minimum value of the cohesive strengths.

In this chapter, several distributions of defects are thus tested. Table 5.1 details
their mathematical characteristics. Figure 5.2 illustrates some of the probability
density functions (p.d.f.). The chosen Weibull distributions, which are considered
by the community to be realistic mathematical models for defects, cover a wide
range of standard deviations and Weibull moduli.
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Distribution Gauss2 Weibull2-1 Weibull2-2 Weibull10 Weibull20 Uniform1 Uniform20

Mean

µ 345 345 327 347 348 345 348
Standard

deviation υ 23.2 23.2 95.7 5.7 3.0 140.0 3.0
Minimum

value x 300 150 300 300 102.5 342.8
Weibull

modulus m x 2 2 10 20 x x
Scale

parameter λ x 5 200 5 5 x x

Table 5.1: Theoretical characteristics of the defect distributions. Stresses are ex-
pressed in MPa.

5.2 Brief review of prior theories

In this section, we recall the theory derived by Grady [Grady 1982], extended by
Glenn and Chudnovsky [Glenn 1986a], and the recent numerical results of Zhou et
al. [Zhou 2006c]. Other models are detailed in chapter 2. The three selected models
propose a law relating the number of fragments and the strain rate in the case of the
fragmentation of a homogeneous material. The fracture energy Gc and the cohesive
strength σc are thus independent from the spatial coordinates, and each fracture
site dissipates the same amount of energy Gc.

Grady, and Glenn and Chudnovsky had recourse to an energy argument to de-
rive the expression of the average fragment size. Employing the cohesive method-
ology, Zhou et al. detailed the effect of wave interactions and normalized their
results, making implicit the dependence on material parameters in a simple equa-
tion [Zhou 2006c]. The normalization involves three relevant parameters: s0, t0
and ε̇0. The characteristic length s0 represents the size of a fragment in quasi stat-
ics, when the applied potential energy is fully converted into fracture energy. This
length s0 is directly related to the characteristic time t0 defined by Camacho and
Ortiz [Camacho 1996]. This time t0 expresses the time needed by the waves, released
by a cohesive element, to fully encompass s0. Another relevant parameter is the
characteristic strain rate ε̇0 defined by Drugan [Drugan 2001]. A possible inter-
pretation relates ε̇0 and t0: t0 is the time needed by the cohesive element to fully
open when submitted to ε̇0. The analytical expressions of these three representative
parameters are:

t0 =
E Gc

σ2
c c

(5.3)

s0 = c t0 (5.4)
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ε̇0 =
σc

E t0
(5.5)

Note that t0 has the same expression as in equation 2.35. Figure 5.3 represents
Grady’s , Glenn and Chudnovsky’s, and Zhou et al.’s models with normalized axes.
The normalized strain rate and the normalized average fragment size are defined
in [Zhou 2006c] by:

s̄ =
s

s0
and ¯̇ε =

ε̇

ε̇0
(5.6)

Using this notation, our reference equations are the two theoretical models based
on energy conservation (eq.5.7 and eq.5.8) and the numerical model, which includes
wave propagation and dynamic effects (eq.5.9):

Grady’s model : s̄G =
(

24
¯̇ε2

)1/3

(5.7)

Glenn and Chudnovsky’s model : s̄GC =
4
¯̇ε
sinh

(
1
3
sinh−1

(
3
2

¯̇ε
))

(5.8)

Zhou et al.’s model : s̄ZMR =
4.5

1 + 4.5 ¯̇ε2/3
(5.9)

Figure 5.3: Reference models for homogeneous fragmentation.

Nevertheless, these normalizations only address the homogeneous case. Since we
are dealing with a distribution of fracture toughnesses and a distribution of cohesive
strengths, the parameters Gc and σc are not clearly defined anymore. In order
to simplify the problem, we have constrained the parameter t0 to be identical for
every cohesive element. This implies that all the cohesive elements have the same
intrinsic opening time. This choice facilitates the understanding of the phenomenon
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without a too severe loss of generality. We still account for a distribution of σc and
a distribution of Gc; the only difference is that they are linked to one another by:

σc =
√
E

s0
Gc (5.10)

To determine s0, we have chosen the reference values σc0 = 300 MPa and
Gc0 = 100 N.m−1.

5.3 Numerical convergence and defect density

5.3.1 Influence of the number of elements NFE

Our finite elements discretization is controlled by two independent parameters:
the number of elements of the finite element computation NFE , and the number of
defects Ndef . Contrary to the number of defects Ndef which is a physical parameter
standing for the density of defects, the number of elements NFE is purely numerical.
It determines the numerical convergence of the simulations. In this section, we focus
on the effect of NFE . The next section is dedicated to studying the effect of Ndef .

Verifying the numerical convergence usually consists in setting the number of
defects Ndef to given values and varying the number of elements NFE . This conver-
gence issue has already been addressed for homogeneous materials in [Gao 2004,
Raghupathy 2006], but, as far as we know, has not be dealt for heterogeneous ma-
terials. The following figure 5.4 underlines that, for a given number of defects Ndef ,
the number of fragments Nfrag is a slightly decreasing function of the number of
elements, as long as the mesh is fine enough. For instance, when Ndef = 8000, the
number of fragments varies from 1485 (NFE = 20000) to 1461 (NFE = 35000). Each
point corresponds to one simulation carried out at the strain rate 106s−1 for a Gaus-
sian distribution with mean µ = 345 MPa and standard deviation υ = 23.2 MPa

(Gauss2 in table 5.1).

As a result, we have set the number of elements NFE to 30000, which guarantees
the convergence for every strain rate lower than 106s−1. Besides, one should note
that, when the number of elements NFE and the number of defects Ndef have close
values, the numerical simulations are very unstable and generally lead to the full
explosion of the ring, breaking all the cohesive elements. In general, it is advised to
set:

NFE > 2.5 Ndef

Convergence can also be verified by varying the number of elements NFE , while
keeping the ratio Ndef/NFE constant. Figure 5.5 underscores that the convergence
is guaranteed for the four tested ratios. The rate of convergence is lower for small
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Figure 5.4: Numerical convergence of the number of fragments Nfrag for a constant
number of defects Ndef . For every Ndef , if NFE is not large enough, Nfrag depends
on NFE .

ratios because the number of defects increases slower. As explained in the following
section 5.3.2, the converged number of fragments depends on the ratio because of
defect density effect.

Figure 5.5: Numerical convergence of the number of fragments Nfrag for a constant
ratio Ndef/NFE . If the proportion of the defects (in comparison to the elements)
is low, the increase in Nfrag is slow. To have a sufficiently rapid convergence, we
suggest to take NFE > 2.5 Ndef .

5.3.2 Influence of the number of defects Ndef

5.3.2.1 Proportion of the broken defects N broken
def

In this section, we look at the influence of the number of defects on the frag-
mentation process. We set the number of elements to 30000, and the p.d.f. of the



5.3. Numerical convergence and defect density 91

initial distribution to be Gaussian, with mean µ = 345 MPa and standard deviation
υ = 23.2 MPa (Gauss2 in table 5.1). We let the number of defects Ndef vary, and
we count the number of fragments Nfrag. If there are few initial defects in the ring,
they will all break. However, if we consider a higher defect density, only a part of
the defects will break while the rest will get partially damaged or will remain fully
intact.

Figure 5.6 plots the number of fragments Nfrag versus the number of defects Ndef .
As there is only one element in the thickness, we can easily relate the number of
fragments and the number of broken defects:

Nfrag = N broken
def + 1 (5.11)

Figure 5.6: Evolution of the number of fragments with the number of defects.

Figure 5.7 represents the evolution of the ratio Ediss
Ediss+Erec

with the number of
defects. The total cohesive energy stands for the sum of dissipated and recoverable
energies (Ediss + Erec). Obviously, the curves in figure 5.6 are monotonically in-
creasing, while they are monotonically decreasing in figure 5.7. The proportion of
the dissipated cohesive energy with respect to the total cohesive energy gets smaller
as the number of defects, or number of potential dissipative links, increases. Three
phases arise:

i. All the defects break: Ndef ' N broken
def . The total cohesive energy takes mainly

the form of dissipated energy, which means that there are only a few cohesive
elements that store recoverable energy, or that only a few defects are partially
damaged. Most of them are fully broken.

ii. Defects are either broken or damaged: Ndef ' N broken
def + Ndamaged

def . The
cohesive energy is divided into recoverable and dissipated energies.

iii. Defects are either broken, damaged, or intact: Ndef = N broken
def +Ndamaged

def +
N intact

def . Rising Ndef does not affect significantly N broken
def anymore. Figure 5.7
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underlines that the proportion of the recoverable and the dissipated energies
is also stable. This steady value depends on the strain rate, which appears to
be a decreasing function of the strain rate. For instance, when ε̇ = 104s−1,
it is about 0.70, while ε̇ = 106s−1 leads to a value of 0.62. At a given strain
rate, it guarantees that raising the number of defects in the ring has no effect
neither on N broken

def nor on Ndamaged
def .

The steady regime iii is a consequence of stress wave relaxation. Indeed, each
damaged fracture site releases a wave that unloads partially the encompassed re-
gions. The fragmentation process reaches its final state when the waves have suf-
ficiently unloaded the body. As a result, with increasing number of defects, more
sites possibly become damaged and release stress waves. This amounts to a faster
fragmentation process. Since it cannot be infinitely short, the process characteristic
time reaches a lower value, irrespective to the number of defects. Hence, in this
regime, increasing the number of defects does not alter the final stage.

In practice, working on the steady phase iii requires to have enough defects on the
ring. The transition value between phase ii and phase iii depends on the strain rate.
In phase iii, any rise in the number of initial defects will have no consequence in
the results, in terms of number of fragments and cohesive energies. In the following
sections, the number of defects is set such that we are certain to work in phase iii,
keeping in mind that the simulation duration increases with the number of initial
defects.

Figure 5.7: Evolution of the rate of the dissipated cohesive energy and the total
cohesive energy, with the number of fragments.

5.3.2.2 Representation in terms of average fragment size

In order to compare our results to Grady’s and Zhou et al.’s models, we have
normalized the axes following section 5.2, considering that the material is homo-
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geneous. This hypothesis is evidently wrong, but is a priori necessary to compare
results. The issue of normalization for heterogeneous materials is handled in section
5.5. Figure 5.8 represents the evolution of the normalized average fragment size
versus the normalized strain rate, for different values of Ndef .

Figure 5.8: Normalized representation of the average fragment size for several num-
bers of defects.

We underline the influence of Ndef by computing the average slope of each plot,
and compare it to Grady’s model. Figure 5.9 illustrates that it is a monotonically
decreasing function with an asymptotic limit. For Ndef = 100, the slope is close to
zero which expresses that all the defects are broken (phase i). As Ndef increases,
the slope decreases (phase ii) until it reaches the steady region for Ndef ≥ 10000
(phase iii). Although this asymptotic value is slightly different from Grady’s, his
minus two-thirds theoretical prediction appears to be a very good approximation
for the present one-dimensional test.

Figure 5.9: Evolution of the average slope of the plots in fig.5.8 in the dynamic
regime, with the number of defects.
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5.4 Keys to understand communication between defects

5.4.1 Qualitative understanding

Being able to predict how crack interactions affect fragmentation is challenging.
In this chapter, we take advantage from the simplicity of the expanding ring test to
develop a comprehensive measure of crack interactions. When the ring fragments,
some defects are initiated, they open and release stress waves that propagate and
protect the encompassed regions. An opening defect interacts with its neighbors
through these waves. If they propagate fast, the waves encompass a large region
which may prevent numerous defects from getting damaged. Hild et al. [Hild 2003]
went further by considering that once a defect is encompassed by a wave, it is
definitively protected and cannot get damaged anymore. In this case, the commu-
nication between defects is then prevailing. We call it the extremely communicative
process. On the contrary, if they propagate slowly, fewer defects are encompassed,
and little interactions take place: the communication is inconsequential. This with-
out communication approach was derived by Grady whose pioneering energy the-
ory [Grady 1982, Grady 1988] does not include any crack interactions. The next
paragraphs are dedicated to compare these two extreme behaviors in order to quan-
tify the degree of communication for any non-extreme case.

5.4.1.1 Characterization of the communication extreme cases

Without communication: The stress waves are propagating slowly, compared to
the crack opening, and do not have time to transmit the information. Consequently,
each fracture site behaves independently from the others. The time associated to
the crack opening t0 is much smaller than the characteristic wave propagation time
Lring/c. In the non communicative fragmentation case, the weakest flaw first is
initiated; then, since they do not interact, the second weakest flaw gets initiated,
then the third. The process continues until all the fracture energy is dissipated.
Only the weakest defects are damaged (fig.5.10). Instantaneous crack opening, ex-
tremely slow wave propagation, fragility, and absence of communication are thus
directly related. Moreover, when a weak defect breaks, it releases a small amount
of energy which is proportional to its associated σc (eq.5.10). Dissipating totally
the input strain energy will thus require the activation of numerous flaws. The non
communicative process may consequently generate “numerous” fragments.

With intense communications: Defects communicate intensively through stress
waves that are propagating fast in comparison to the crack opening. The time asso-
ciated to the crack opening t0 is thus much larger than the characteristic wave prop-
agating time Lring/c. When the stress waves propagate fast enough, they encompass
defects that are associated to any critical failure strength σc. Weakest and strong
defects may either be protected or damaged, depending on whether or not they have
been encompassed by a stress release wave (fig.5.10). Slow crack opening, fast wave
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propagation, ductility, and high communication rate are thus associated. Moreover,
considering that a strong defect breakage releases a large amount of energy, this
intensely communicative process may result in a “small” number of fragments.

Effective wave speed: Hence, the same opening time t0 and the same wave
speed c can lead to two opposite behaviors. One possible way of taking this remark
into account is to define an effective wave speed ceff . It measures the interactions
between defects during any fragmentation process. The following paragraphs are
dedicated to define and quantify it.

Figure 5.10: Schematic of the broken defects, within the same initial distribu-
tion: the extremely communicative, the without communication and one possibly
real cases. Note: σc,min = σinit

c,min = σbroken
c,min and σinit

c,max 6= σbroken
c,max .

5.4.1.2 Definition of relevant parameters

Figure 5.10 illustrates an initial probability density function f init, the two extreme
cases previously detailed, and an intermediate possibly real one ( the hatched curves
do not represent p.d.f. because their area is smaller than one) . The hatched areas
represent the proportion of the broken defects, and are related to the number of
defects Ndef and the number of fragments Nfrag. We denote these areas by α:

α =
Nfrag

Ndef
(5.12)

Contrary to the weakest link which is always activated, the communication affects
the average and the maximum failure strengths of the broken defects, respectively
denoted µbroken and σbroken

c,max . A small σbroken
c,max expresses a low communication rate,

while a large one underscores that interactions are prevailing. The two extreme
cases follow therefore the properties:
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Without communication process:





σbroken
c,min = σinit

c,min = σc,min

µbroken < µinit

σbroken
c,max < σinit

c,max

f broken =

{
f init

α if σc < σbroken
c,max

0 otherwise

α =
∫ σbroken

c,max
σc,min

f init

Extremely communicative process:





σbroken
c,min = σinit

c,min = σc,min

µbroken ' µinit

σbroken
c,max ' σinit

c,max

f broken ' f init

(5.13)
In the following section, we will therefore focus on α, σc,min , µinit and µbroken

by studying the evolution of the function Ψ defined by:

Ψ : [0 , 1] → [0 , 1]

α → µbroken − σc,min

µinit − σc,min

(5.14)

The variation of the parameter α can be achieved either by changing the number
of initial defects Ndef , or by changing the strain rate ε̇ which affects the number
of fragments Nfrag. We have also studied the evolution of the maximum and the
standard deviation of the broken distribution, and have drawn similar conclusions
than the ones detailed in the following.

5.4.2 Quantitative measure of the communication between defects

5.4.2.1 Studied distributions

We now vary the initial p.d.f. and compare the degree of communication they
result in. For each of initial p.d.f. f init, we expect the numerical simulations to lead
to a p.d.f. of the broken defects f broken with a communication rate between the two
previously described extreme cases. The results obtained for three different initial
p.d.f. f init (figure 5.2) are presented here:

• A uniform distribution with a large standard deviation υinit = 140 MPa and
a mean µinit = 345 MPa. It corresponds to the case Uniform1 in table 5.1.
The slope of the p.d.f. is zero everywhere, except at the minimum and the
maximum values σinit

c,min and σinit
c,max where it is infinite. This high slope at

σinit
c,min = 102.5 MPa should lead to the activation of many defects at the
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same instant, so that they may not have time to communicate. This large
activation rate should thus result in a low communication rate.

• A Gaussian distribution with a standard deviation υinit = 23.2 MPa and
a mean µinit = 345 MPa. It corresponds to the case Gauss2 in table 5.1.
Since the slope at σinit

c,min ' 245 MPa is nearly zero, it tends to smooth the
fragmentation process, and the interactions should have time to establish. This
low activation rate of defects should thus result in a large communication rate.

• A Weibull distribution with a standard deviation υinit = 23.2 MPa and a
mean µinit = 345 MPa. It corresponds to the case Weibull2-1 in table 5.1.
This p.d.f. should lead to an intermediate behavior since the slope at σinit

c,min =
300 MPa is comprised between zero and infinity.

Besides, in order to justify more rigorously the influence of the slope of f init at
σinit

c,min, we have also tested the distributions represented in figure 5.11. Although
they do not probably correspond to any real distribution of defects, these p.d.f.
highlight the qualitative trend which relates the communication behavior to the
rate of insertion of cohesive elements, and to the slope of f init at σinit

c,min. We set
σinit

c,min = 307 MPa, σinit
c,max = 381 MPa and vary the intermediate σinit

c,intermediate

such that:

σinit
c,intermediate = σc,min + β

(
σinit

c,max − σc,min

)
where β ∈ [0 , 1] (5.15)

Figure 5.11: Schematic of the initial distributions of defects generated to control
the influence of the slope at σc,min on the communication behavior.

5.4.2.2 Definition and determination of the communication parameter

Our main concern is the study of the monotonously increasing function Ψ (eq.
5.14) with the aim at determining a relevant communication parameter. Evidently,
Ψ(0) = 0 and Ψ(1) = 1. Figure 5.12 underlines that, depending on the communi-
cation rate, several curves may link these two points. In the case of intense com-
munication, we have shown that σbroken

c,max ' σinit
c,max, which corresponds to a Heaviside
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step function . Reversely, the case without communication links directly the value
of α with the p.d.f. f init (eq.5.13). For instance, a uniform p.d.f. f init theoretically
coincides with the bisector function (fig. 5.12).

Figure 5.12: Schematic of the theoretical effect of the communication rate on the
function Ψ for a uniform initial distribution of defects f init.

From a mathematical point of view, monotonically decreasing p.d.f. can lead to
convex curve. However, such p.d.f. seem to have no physical meaning: a mono-
tonically decreasing p.d.f f init refers to a material which has more weakest links
than strong ones. Since brittle materials usually exhibit more macroscopic than
microscopic defects, we have limited our study to p.d.f leading to concave curves,
as shown in figure 5.12.

Intermediate behaviors are situated between these two extreme cases. In order
to characterize the function Ψ, several tests are carried out for the same initial
distribution f init and several values of α. In figure 5.13, the initial distribution is
Gaussian with mean µinit = 345 MPa and standard deviation υinit = 23.2 MPa

(Gauss2 in table 5.1). α = 1 represents the initial distribution f init, and the three
other values (α = 0.1, α = 0.05, α = 0.02 ) result from a change in the strain rate
and hence, in the number of fragments Nfrag.

Figure 5.14 plots the functions Ψ associated to the four distributions Uniform1,
Weibull2-1, Gauss2 (table 5.1) and β = 0.4 (eq.5.15). Each numerical test results
in one point, the dotted lines are the fitting functions. Power laws appear to be
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Figure 5.13: Influence of α = Nfrag

Ndef
on the broken p.d.f., for an initial Gaussian

p.d.f..

adequate approximations and lead to:

∀ f init, ∃ a ∈ [0, 1], ∀ α ∈ [0, 1], Ψ(α) = αa

where a =





0.20 for Gauss2
0.30 for β = 0.4

0.65 for Weibull2-1
0.75 for Uniform1

(5.16)

The distribution Gauss2 leads thus to a more communicative process than the
Weibull2-1 and the Uniform1 distributions. Since the values of the Gauss2 weakest
links vary regularly, their activation is not instantaneous, the stress waves have
time to propagate and influence the neighboring defects. The slope of the p.d.f.
f init appears to be essential in the communication process. This is confirmed by
the β = 0.4 distribution (eq.5.15) which slope at σc,min is comprised between the
Gauss2 ’s and the Weibull2-1 ’s slopes.

In conclusion, the p.d.f. strongly influences the fragmentation process. The slope
at σc,min plays a prevailing role in the activation of weak cohesive elements and a
fortiori in the communication process. It can be quantified by the communication
parameter a which low values represent highly interactive processes.

5.5 Scaling of the average fragment size

In this section, we focus on heterogeneous materials with a high density of de-
fects, such that the number of defects and the number of fragments are independent
(plateau region described in section 5.3.2). We look at the influence of the distribu-
tion of defects and the strain rate on the average fragment size. Figure 5.15 plots
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Figure 5.14: Numerical evaluation of the communication parameter a for four dis-
tinct initial p.d.f..

the average fragment size for different initial distributions and for several strain
rates. The scattering of the points underlines that defects play a prevailing role in
the fragmentation process.

Figure 5.15: Dispersion in the average fragment size when the strain rate and the
microstructure vary.

The idea of normalizing the axes to gather all these points into a single curve
arises. In the normalization proposed by Zhou et al. for homogeneous materials,
the normalization parameters were expressed in terms of σc and Gc. Now, since
the material is heterogeneous, σc and Gc are defined through their distributions
instead of being a single value. The homogeneous normalization is not adequate
anymore. With the aim at understanding separately the effect of the initial p.d.f.
and the communication parameter a, we propose two normalizations. The first one
only depends on the initial p.d.f. and not on the communication, while the second
accounts for both. Thus, we define new semi-empirical normalization parameters:
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ε̇0,new =
µinit

E t0
(5.17)

s0,new = ceff t0 (5.18)

where ceff =




c

(
σc,min

µinit

)1/5
first normalization

c
√

2
a+1

(
σc,min

µinit

)1/5
second normalization

(5.19)

µinit is the average of the initial distribution of defects, σc,min is the cohesive
strength associated to the weakest link, t0 is the characteristic opening time of the
cohesive elements, and a is the communication factor defined in section 5.4.

Multiplying the wave speed c by a function depending on the communication
factor a is necessary to include the influence of the interactions between cracks, on
the average fragment size. For a homogeneous material, the p.d.f. tends to be a Dirac
function, for which the function Ψ is not defined anymore. If one considers that the
Dirac function, associated to uniform distribution, yields no communication, then
a → 1. It directly leads to ceff → c. When the material is heterogeneous, the
communication time affects the number of fragments. A low value of a is associated
to a process during which cracks strongly interact. Stress waves propagate fast
compared to the crack opening time t0, which justifies that the effective wave speed
is a decreasing function of a. Note that the exponent 1/5 in equation 5.19 was
obtained to fit best our results.

In the figures 5.16 and 5.17, the x-axis and y-axis are respectively ¯̇εnew = ε̇
ε̇0,new

and s̄new = saverage

s0,new
. The effect of the first normalization is illustrated in figure 5.16.

It brings the curves into three distinct groups: the Gaussian, the Weibull, and the
Uniform. The shape of the p.d.f. appears to affect the gathering and needs thus to
be included. Therefore, we propose to use the communication parameter a defined
in section 5.4, which is directly linked to this shape and to the rate of insertion
of cohesive elements. Figure 5.17 compares the final normalization to Grady’s and
Zhou et al.’s laws for homogeneous materials. The log-log plot underscores that
our results exhibit a characteristic exponent which is much close to Grady’s minus
two-thirds exponent, and that we predict approximately the same non-dimensional
number of fragments that Zhou et al. obtained for homogeneous materials.

Although empirical, our second normalization successfully merges the initially
scattered points into a single curve. Following the shape of the function proposed
by Zhou et al. (section 5.2), the present curve can be fitted by:

s̄new =
3

1 + 4.5(¯̇εnew)2/3
(5.20)
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Figure 5.16: Effect of the first normalization which only includes the minimum
cohesive strength σc,min and the average of the initial distribution of defects µinit.

Figure 5.17: Effect of the second normalization which includes σc,min, µinit and the
communication parameter a, and comparison to Grady’s and Zhou et al.’s laws.
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Its developed form is:

s = t0 ceff
3

1 + 4.5
(

E t0
µinit

)2/3
ε̇2/3

where ceff = c

(
2

a+ 1

)1/2 (
σc,min

µinit

)1/5
(5.21)

The parameters used in the simulations are:

• Young’s modulus E = 275 GPa

• Wave speed c = 104 m.s−1

• Reference opening time t0 = 300 µs

along with defect distribution dependent parameters:

• Average of the initial distribution of defects µinit

• Weakest link σc,min

• Communication parameter: a =





0.20 for Gaussian distribution
0.65 for Weibull distribution
0.75 for Uniform distribution

The resulting effective wave speeds are: ceff = c .





1.21 for Gauss2
1.07 for Weibull2-1
0.94 for Weibull2-2
1.08 for Weibull10
1.09 for Weibull20
0.84 for Uniform1
1.06 for Uniform20

The proposed scaling law matches the initially scattered points, but highlights
differences to prior analytical and numerical models. For rather defect-free materi-
als (such as Uniform20 in table 5.1), we predict slightly more fragments than the
one-dimensional numerical model of Zhou et al. (e.g. our average fragment size
is about 22% smaller). It may stem from the specific implementation of the two-
dimensional contact algorithm. Our computed average fragment size is also smaller
by a factor of 10 than Grady’s energy predictions in which the process is energy-
equilibrium. While valid for ductile materials, this assumption appears incomplete
for the presently tested brittle solids. Indeed, in his first papers [Grady 1982,
Grady 1988], Grady considers that the local kinetic and the elastic strain ener-
gies are converted into fracture energy at the onset of failure. In more recent
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work [Grady 2008], Grady underlines that brittle solids undergo a non-equilibrium
fragmentation. Indeed, since the onset of the fragmentation process is a nearly in-
stantaneous, the damaged and the non-damaged regions barely communicate; at
first, damage stays local. Hence, the non-damaged parts of the structure continue
accumulating elastic strain energy, which is eventually converted into fracture en-
ergy, generating more fragments. Our simulations confirm Grady’s second hypoth-
esis [Grady 2008]. We have quantified that at high strain rates, most fragments
result from the conversion of the potential energy accumulated in the damaged
structure. In other words, kinetic energy is being converted into strain energy for a
“long” period after peak strength. Since Grady’s initial energy equilibrium law does
not include this excess of strain energy, it predicts less fragments than our explicit
numerical calculations.

Despite these dissimilarities, both the reference models and the present fitting
curve exhibit a similar trend. Dynamic fragmentation tends asymptotically to a
power-law with exponent equal to the inverse two-thirds. Ultimately, this sug-
gests that the energetic criterion governs the dynamic regime. Indeed, statistical
predictions would have inferred a dependence of the power exponent to the ini-
tial distribution of defects [Hild 2003], and an impulse criterion would have lead to
an inverse one-third exponent [Grady 2006a, Tuler 1984]. Our results confirm that,
even though dynamic brittle fragmentation is not energy-equilibrium, its asymptotic
behavior is energy controlled.

5.6 Summary

In this chapter, we have modeled the fragmentation of a heterogeneous brittle ring
submitted to radial expansion. Numerical simulations underscore the prevailing role
of defects in the fragmentation physical process and in the resulting fragment sizes.
They also emphasize the importance of accounting for stress release waves, which
propagate away from crack initiation sites and may prevent damage nucleation at
other defects.

We have investigated crack initiation through the degree of interactions between
defects. It has led us to define a new communication parameter, which depends
on the left tail of the initial probability density function of defects, and which ac-
counts for the rate of insertion of cohesive elements. This communication parameter
has been used to construct scaling laws of both the average fragment size and the
strain rate. They successfully unify the initially scattered fragment size data into a
unique curve. By efficiently scaling the behavior of homogeneous and heterogeneous
materials, it highlights that dynamic fragmentation is characterized by a unique
asymptotic behavior. The power-law with exponent minus two-thirds, predicted by
Grady’s energy-equilibrium theory, adequately fits our results. This indicates that
the asymptotic limit of dynamic fragmentation is dominated by an energy criterion.



Chapter 6

Predictable mass distribution in
one-dimension

Similarly as in chapter 5, we simulate the fragmentation of an expanding ring
and focus our study on the distribution of fragment masses and on the heaviest
fragments. The computational framework is similar as in chapter 5: it employs
a finite element procedure to simulate the elastic bulk response, and the cohesive
methodology to model material decohesion. Here, we vary material heterogeneity,
fracture energy, loading rate and ring circumference in order to quantify their in-
fluence on the generation of fragments. The computed fragment mass distributions
are best summarized by generalized gamma density functions with shape parameter
two, regardless of the model parameters. Contrary to the mean of the distribution
that is determined by the average fragment mass, its shape appears to be unique.
The heaviest fragments, however, do manifest a dependence upon these physical pa-
rameters. Extreme value statistics reveal that toughness, size, and dynamic effects
play an important role1.

6.1 Fragment mass distribution: power or exponential
form?

Due to its violent nature, fragmentation has first been described through its re-
sulting state: the number and mass of the fragments. Historically, two plausible
forms for the fragment mass distribution have been used: the exponential and the
power functions.

Distributions for the fragment mass distribution are often expressed in terms of the
inverse cumulative distribution or survivor function [Grady 1985] (c.f. chapter 2):

N(m) = exp
{
−

∫ m

0
h(m) dm

}
= exp{−H(m)}, m > 0, (6.1)

wherem is the fragment mass, h(m) is a hazard function and H(m) is the associated
cumulative hazard function. The constant hazard function h(m) = 1/µ, where

1This chapter has given rise to an article submitted in Physics Reviews E, by S.Levy,
J.F.Molinari, I.Vicari, A.Davison, and entitled Dynamic fragmentation of a ring: predictable
fragment mass distribution
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µ is a relevant characteristic mass (such as the average mass), is associated to a
Poisson point process and yields the exponential fragment mass distribution, whose
applicability has been discussed at length by Grady and Kipp [Grady 2006b]. Note
that the units of h are kg−1 and that H is dimensionless. Mott and Linfoot also
assumed a constant hazard function [Mott 1943b], but believed that this assumption
was only valid for one-dimensional problems. Hence, since the fragment mass and
the fragment size are proportional in one-dimension, h(s) = ρ h(m) = ρ/µ and
H(s) = ρ s/µ, where ρ is the volumetric mass. In order to generalize this form to
two-dimensional and shell geometries, Mott remarked that s ∝ (m/ρ)1/2 and wrote
H(m) ∝ (m/µ)1/2. More generally, one can extend this power law dependence to
the general form H(m) ∝ (m/µ)β , which corresponds to the Weibull distribution:

N(m) = exp
{
−(m/µ)β

}
, m > 0, µ, β > 0, (6.2)

where β is the Weibull modulus. Note that β = 1 corresponds to the distribution
suggested by Grady and Kipp [Grady 1985], while β = 1/2 refers to that of Mott
and Linfoot [Mott 1943b].

In addition to the Weibull modulus, both authors defined a physical characteristic
length scale, that one can relate to µ using the volumetric mass ρ. Mott considered
a perfectly plastic material with yield stress Y and defined the typical size s0 ∼(
Y/ρε̇2γ

)1/2 adequate to fit his experimental results on steel [Mott 1947]. There, γ
is the Mott statistical fracture activation parameter, ε̇ is the strain rate, and ρ is the
volumetric mass. Instead of considering specific materials, Grady derived a general
theory based on energy balance [Grady 1982]. The toughness Gc and the volumetric
mass ρ are the key parameters of his length scale, s0 ∼

(
Gc/ρε̇

2
)1/3 (chapter 2).

In these two approaches, the input energy is totally invested into fracture; this
behavior is typically ductile. In ductile failure, the opening of cracks is a slow and
energy consuming process, so most of the input energy is converted into fracture
energy. Energy arguments can thus legitimately be associated to ductile behaviors
and incorporated into the Weibull distribution. Nonetheless, since this theoretical
framework does not include statistical variability, its validity may still be questioned
for real fragment distributions, resulting from the fragmentation of complex load-
ings, geometries, and material heterogeneities. There is, however, some empirical
evidence for the accuracy of the Weibull distribution, which has been widely used in
fitting data from experimental and numerical tests [Gilvarry 1961a, Gilvarry 1961b,
Rosin 1933, Zhou 2006b]. Exponential forms have thus proved their validity; they
indicate the existence of a characteristic length and suggest ductile-like behaviors.

In contrast, a wide variety of experimental investigations, theoretical derivations,
and numerical simulations have revealed that power laws more accurately describe
brittle processes, during which the energy supplied is not entirely converted into
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fracture energy [Capaccioni 1986, Schuhmann 1941, Turcotte 1986b, Wittel 2005].
While the fragmentation process evolves, failure does not dissipate enough strain
energy (thus, the body continues accumulating it), leading to a self-similar be-
havior: each fragment successively splits into smaller fragments. Schuhmann’s
law, which is the limiting form of the Weibull distribution for small fragments,
gives [Schuhmann 1941]:

N(m) = 1− (m/µ)β , 0 < m < µ, µ, β > 0 (6.3)

where µ and β are characteristic of the experiment. Turcotte [Turcotte 1986b] has
listed objects whose fragment sizes behave according to equation (6.3), with β falling
in the range 1.5 to 3.5. Hence, power laws indicate self-organized criticality and are
usually associated to fragile behaviors.

However, several authors have pointed out that these two general frameworks may
not fit experimental data. For instance, Englman [Englman 1991] suggested that
power laws predict the behavior of small fragments while the exponential decay
includes finite-size effects, which are related to heavier fragments. The idea of
mixing exponential and power laws to decouple the behavior of heavy and small
fragments thus arises. Grady [Grady 2008] proposed a Cauchy-like distribution that
is equivalent to a power law for small fragments, and has a slower decay in the heavy
fragment range:

N(m) =
{

1 + (m/µ)β
}−1

, m > 0, µ, β > 0. (6.4)

Similarly, based on the theory of percolation [Stauffer 1985], Aström et al. studied
the explosion of a two-dimensional structure [Åström 2000], and used the empirical
fragment mass distribution for which:

N(m) = (m/µ)−β exp{−m/µ}, m > 0, µ, β > 0. (6.5)

Finally, a one-dimensional Voronoi tessellation argument yields cells whose masses
follow a survivor function [Grady 1985] of the form:

N(m) = (1 +m/µ) exp{−m/µ}, m > 0, µ, β > 0, (6.6)

corresponding to the gamma distribution with shape parameter two. In order to
enable comparisons, its representative curve is plotted in figure 6.1, along with other
fragment mass distributions associated to previously described theories.

Despite this large body of work, the governing physical laws are not yet been
clearly understood (see chapter 3 for more details). In this chapter, we use a finite
element framework, coupled to cohesive elements [Camacho 1996], to simulate the
fragmentation of an expanding ring. The loading, material properties and size of
the ring characterize the experiment. The framework is detailed in chapter 3.
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Figure 6.1: Survivor functions of fragment masses proposed in earlier works. The
slope at the origin and the decrease in the right tail are essential for comparison of
the distributions. The exponential distribution and the gamma distribution with
shape parameter two rely on one-dimensional theoretical proofs.

The contribution of the present chapter lies in establishing the usefulness of an-
other distribution, namely the generalized gamma distribution with shape parameter
two, through numerical calculations. The formulation follows Mott’s argument for
the exponential distribution (equation (6.2)), in which the proportionality between
fragment mass and fragment size depends on spatial dimension (s ∝ mβ).

6.2 Brief overview of the model and useful results

6.2.1 Expanding ring test and implementation

Similarly as in chapter 5, we study the motion of a ring submitted to a radial
outward velocity. We use a finite-element framework along with an explicit time
integration scheme to simulate the elastic evolution of the body (see chapter 3).
The mesh is composed of quadratic triangles. In order to recover one-dimensional
response with a two-dimensional mesh, we impose the thickness of the ring to be
constituted of a single element (of dimension 2µm). NFE denotes the number of
radial edges of the finite-element mesh (e.g. about half of the total number of
elements).

The imposed strain rate ε̇ varies from 104s−1 to 106s−1. The ring is originally of
length L = 0.05m and is composed of an elastic material (Young’s modulus E =
275GPa and longitudinal wave speed c =

√
E/ρ = 104m.s−1) in which material

defects are randomly distributed. These defects are weak sites where cracks may
initiate.The expansion is first purely elastic, and the stress increases linearly until it
reaches a critical threshold, corresponding to the value of the weakest link’s failure
strength, or cohesive strength σc. Then, a cohesive element [Camacho 1996] is
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inserted dynamically into the mesh, at the location of the weak link. It relates
linearly the local stress σ to the opening displacement δ, and controls the evolution
of damage. When it is completely broken (e.g. when δ = δc), the cohesive element
has consumed the energy Gc = σc δc

2 , called toughness. While the weakest link is
getting damaged, the stress continues increasing in the rest of the structure. Other
defects nucleate and possibly break. The process ends when no more defects are
initiated.

The microstructure is defined by the cohesive strength (σc) and toughness (Gc)
distributions. We choose a number of defects Ndef large enough (Ndef = 0.8 NFE)
so that there is no influence of the number of possible crack nucleation sites on the
numerical results (chapter 5 and [Levy 2010]). Generally, we set the distribution of
σc to follow a Weibull function [Weibull 1939] defined by:

F (σc) = 1− exp
{
−

(
σc − σc,min

λ

)mw
}
, σc > σc,min, σc,min, λ,mw > 0, (6.7)

where λ is the scale parameter, mw is the Weibull modulus, and σc,min is the mini-
mum value of the cohesive strengths. Concerning the toughness, there is no exper-
imental evidence of the existence of a representative distribution. The quasi-static
macroscopic toughness Gc can be measured, but an arbitrary choice must be made
to assign the full toughness distribution. We have selected two cases: Gc is either a
Dirac centered at values {1, 50, 100, 500} (Condition 1, named C1), or it is deduced
from the relation Gc = c t0 σ

2
c/E, that guarantees that all the defects have the same

crack opening duration t0 (Condition 2, named C2) [Camacho 1996]. If Condition
1 is selected, all the defects release the same amount of energy during failure, while
with Condition 2, weaker defects dissipate fewer energy.

Gc ∈ {1, 50, 100, 500} N.m−1 → C1 (6.8)

Gc =
c t0
E

σ2
c → C2 (6.9)

We chose t0 = 30ns and t0 = 7.6ns. In the following, we analyze the results of
a series of parametric studies. Tables 6.1 and 6.2 detail the parameter values. In
order to get reliable statistics, we conducted several simulations for each case. To
give a quantitative characterization of the ring fragmentation, we study the average
fragment mass, the survivor function of fragment masses and the heaviest fragments.

6.2.2 Convergence and material properties

We first verified that numerical parameters have no influence on the distribution
of fragment masses. Table 6.1 shows that the number of fragments is mesh inde-
pendent. The mass distribution invariance was also verified, but is not shown here.
Then, we varied the physical parameters, keeping the number of elements constant
(NFE = 3.104). Several distributions of cohesive strengths σc, values of strain rates,
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ring lengths and toughnesses were tested in order to quantify material heterogeneity,
dynamic, and size effects, and to compare brittle and ductile behaviors (table 6.2).

Test Cohesive strength Toughness mean ε̇ NFE Nexp Nfrag

distribution (MPa) value (N.m−1) (s−1)
1 σc ∼W (2, 50, 150) C2:Gc ' 35 105 3.104 15 630± 6
2 σc ∼W (2, 50, 150) C2:Gc ' 35 105 6.104 3 637± 5
3 σc ∼W (2, 50, 150) C2:Gc ' 35 105 9.104 3 640± 5
4 σc ∼W (2, 50, 150) C2:Gc ' 35 105 12.104 2 642± 1

Table 6.1: Parameters chosen to verify the mesh independence. NFE is the number
of triangles. Nexp is the number of numerical experiences. Nfrag is the number
of fragments. C2 refers to the condition detailed in equation (6.9). W (2, 50, 150)
stands for the Weibull distribution with Weibull modulus 2, scale parameter 50MPa,
and minimum value 150MPa. The convergence in terms of number of fragments is
verified in the last column.

6.2.3 Average fragment size

In the ring configuration, the average fragment size, saver, strongly depends on
the strain rate and the material properties. Figure 6.2 underscores this scattering,
in the case of uniform, normal and Weibull distributions of defects, whose standard
deviations are distinct. The defect distribution has a key role in the fragmentation
process. In [Levy 2010] and chapter 5, we established the following equation, which
predicts the average fragment size as a function of the strain rate and the material
properties:

saver

scharac
=

3
1 + 4.5( ε̇

ε̇0
)2/3

, (6.10)

where

{
scharac = c t0 f(defects),

ε̇0 = σc,mean

E t0
.

(6.11)

where sch = c t0 f(defects) and ε̇ch = σc,aver/(E t0). Here sch and ε̇ch are respec-
tively a characteristic length scale and a characteristic strain rate. They can be fully
determined by material properties: σc,aver is the average value of the defect cohesive
strengths, E is the Young’s modulus, t0 is the defect opening time, and c is the
wave speed. The function f(defects) is a semi-empirical function, expressed as the
product of two independent functions f1 and f2 (see chapter 5 and in [Levy 2010]).

The first function f1 is associated to the shape of the cohesive strength distribu-
tion. It quantifies the effect of stress wave interactions. For instance, when the left
tail has an infinite slope (such as the uniform distribution), numerous cracks initi-
ate simultaneously when the stress reaches the weakest link’s strength σc,min. This
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Test Cohesive strength Toughness mean Strain rate Number of Length of

number distribution (MPa) value (N.m−1) ε̇ (s−1) experiments the ring

5 σc ∼W (2, 200, 300) C2:Gc ' 100 104 298 L
6 σc ∼W (2, 200, 300) C2:Gc ' 100 105 299 L
7 σc ∼W (2, 200, 300) C2:Gc ' 100 106 299 L
8 σc ∼W (2, 50, 150) C2:Gc ' 100 105 277 L
9 σc ∼W (10, 200, 300) C2:Gc ' 100 105 299 L
10 σc ∼W (20, 200, 300) C2:Gc ' 100 105 322 L
11 σc ∼W (2, 50, 150) C2:Gc ' 1 105 249 L
12 σc ∼W (2, 50, 150) C1:Gc = 1 105 112 L
13 σc ∼W (2, 50, 150) C1:Gc = 50 105 83 L
14 σc ∼W (2, 50, 150) C1:Gc = 100 105 52 L
15 σc ∼W (2, 50, 150) C1:Gc = 500 105 117 L
16 σc ∼W (2, 50, 150) C2:Gc ' 100 105 295 0.5 L
17 σc ∼W (2, 50, 150) C2:Gc ' 100 105 296 1.5 L
18 σc ∼ U(345, 3) C2:Gc ' 100 105 1 L
19 σc ∼ U(345, 140) C2:Gc ' 100 105 1 L
20 σc ∼ G(345, 23) C2:Gc ' 100 105 1 L

Table 6.2: Physical sets of parameters used in the simulations. C1 and C2 refer
to the conditions detailed in equations (6.8) and (6.9). W (2, 50, 150) stands for
the Weibull distribution with Weibull modulus 2, scale parameter 50MPa, and
minimum value 150MPa. U(345, 3) and G(345, 3) respectively stand for uniform
and normal distributions with mean 345MPa and standard deviation 3MPa.
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leads to a rapid response during which stress waves do not have time to establish;
many fragments are generated independently. On the contrary, when the left tail
has a null slope (such as the normal distribution), cracks are initiated smoothly,
one after the other. Stress waves have time to interact and to release the structure;
fewer fragments are generated. Therefore, similarly as the fragment size sch, which
is inverse proportional to the number of fragments, f1 is a decreasing function of
the left tail’s slope of the cohesive strength distribution. Empirical arguments have
shown that f1 is comprised between 1 and

√
2 [Levy 2010]. The second function

f2 is a decreasing function of the ratio between σc,aver − σc,min and σc,aver, and is
comprised between 0 and 1. It quantifies the amount of breakable defects. Given
the peak stress (which depends on the strain rate and distribution of defects), the
maximum number of defects that may break is the probability of finding a cohesive
strength smaller than peak stress times the number of defects. For instance, while
peak stress remains lower than σc,aver, two distributions with the same σc,aver may
not result in the same number of fragments. Distributions with large standard de-
viation may generate many small fragments because they contain more breakable
defects. Hence, f2, and a fortiori sch, are decreasing with σc,aver − σc,min. To sum-
marize, the function f(defects) conveys the idea that variations of the tail of the left
slope of the distribution of cohesive strengths yield distinct fragmentation behavior,
and that the minimum and the average cohesive strengths constrain the maximum
number of breakable defects.

Figure 6.2: Scattering of the average fragment size, due to microstructural prop-
erties. Test numbers 7 and 8 refer to Weibull distributions, numbers 18 and 19 to
uniform distributions, and number 20 to a normal distribution (table 6.2). saver is
expressed in meters and the strain rate units are s−1. For this figure, the strain rate
parameter of table 6.2 has been expanded to cover the range 103 s−1 to 106 s−1.
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6.3 Predictable distribution of fragment sizes

Apart from the number of fragments, which only quantifies the process on aver-
age, the distribution of masses has a meaningful additional representation. Several
simulations were conducted in order to get reliable parameters characteristic of this
distribution. Figure 6.3 displays the survivor functions of fragment masses obtained
for a set of parameters reflecting extreme values of strain rate ε̇, toughness Gc, and
ring length Lring (table 6.2). Although clearly distinct, the distributions shown have
identical shapes. Astonishingly, a simple normalization of the x-axis by the average
fragment mass gathers all the initially scattered data into a single curve (figure 6.4).
It is noteworthy that all tests listed in table 6.2 (including those not represented in
figure 6.4) lie on this single curve, though for clarity most tests are not shown on
the figure.

Figure 6.3: Survivor functions of fragment masses obtained for a set of parame-
ters reflecting extreme values of strain rate ε̇, toughness Gc, and ring length Lring

(table 6.2). The masses m are in kilograms.

We propose to fit this curve with the generalized gamma distribution with shape
parameter two [Johnson 2005]:

N(m) =
(
1 + (m/µ)β

)
exp{− (m/µ)β}, m > 0, µ, β > 0, (6.12)

where β (representative exponent) and µ (representative mass) are determined by
fitting to the data. Our best fit is obtained for β ' 2.2 and µ ' 0.77maver (we recall
that maver is the average fragment mass). These values are remarkably precise: the
mean of the β parameters among the thirteen tests detailed in table 6.2 is 2.195
with standard deviation 0.0113, and the mean of the µ parameters is 0.768maver

with standard deviation 0.0113maver. Figure 6.5 is a box plot generated for 50
intervals and combines the 299 experiments associated to test5. It also shows the
survivor function of test5 and the proposed fitting curve.
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Figure 6.4: Survivor functions of normalized fragment masses obtained for a set of
parameters reflecting extreme values of strain rate ε̇, toughness Gc, and ring length
Lring (table 6.2). Note that the fragment masses are now normalized by the average
fragment mass obtained from equation (6.10) (maver = ρ saver).

Figure 6.5: Survivor function associated to test5 (dashed red curve) (table 6.2),
along with that of the inverse of the generalized gamma distribution with shape
parameter 2 (thin dark curve). Box plots of the survivor functions underline the
scattering of the distributions calculated independently over the 299 experiments.
The x-axis involves normalized masses.
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Generalized gamma distributions are a group of widely used functions. In its
original form, the generalized gamma distributions conveys two shape parameters d
and p. The probability density function of the generalized gamma distribution is:

f(m) =
β

µΓ( d
β )

(m/µ)d−1 exp{− (m/µ)β}, m > 0, µ, d, β > 0, (6.13)

where Γ is the gamma function. The shape parameter d reflects the physical process;
it infers details about the occurrence of an event. The second shape parameter β
has secondary importance [Lienhard 1967]; in fragmentation, it is usually associated
to finite size effects of the structure [Åström 2000]. Depending on the values of
the shape parameters, the distribution can take the form of the Weibull (d = β,
equation 6.2), the exponential (d = β = 1) , the gamma (β = 1), the Rayleigh
(d = β = 2) distributions, among others. We propose here to use d = 2β and we fit
β ' 2.2.

Figure 6.6 compares our fit to the exponential (Poisson process) and the gamma
(Voronoi tessellation) distributions. Since the exponential distribution has a neg-
ative slope at the origin, and since the gamma distribution does not have enough
parameters, they cannot fit accurately our data. As shown by figure 6.6, the gener-
alized gamma distribution is an appropriate candidate to fit the survivor function
obtained for test no.17. Because they are so similar, the other survivor functions
may also be well-approximated by the generalized gamma distribution. Figure 6.6
also displays experimental data obtained from expanding ring tests [Grady 1983,
Grady 2003, Zhang 1999] that closely fit our numerical results.

Figure 6.6: Numerical and experimental distributions of fragment masses, proposed
generalized gamma distribution with shape parameter two, and comparison to ana-
lytical models derived in one dimension ( Poisson process and Voronoi tessellation).

To underline the differences between our fit and prior models, two comparisons
are made. First, many models behave as a generalized gamma distribution and
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the scale parameter d is the statistical relevant parameter. As highlighted in the
introduction, the Weibull distribution with exponent β = d has been widely used. A
theoretical derivation of the expanding ring test leads to β = 1 [Grady 2006b], e.g.
to the exponential distribution. Zhou et al. [Zhou 2006b] computed β = 2, which
amounts to the Rayleigh distribution.

The second comparison concerns the behavior of the smaller (or lighter) frag-
ments, which reflects the governing mechanisms of fragmentation. The light frag-
ment range can be studied through the representative exponent d in equation 6.13
and β in equations 6.4 and 6.12. Oddershede et al. [Oddershede 1993] carried out
impact experiments on gypsum structures of diverse shapes. For the bar geometry,
they found the exponent 1.05. Similarly, Meibom et al. [Meibom 1996] considered
the one-dimensional fragmentation resulting from the impact of dry clay structures
on the ground, and found the exponent 1± 0.1. Åström et al. [Åström 2004b] com-
puted the exponent 0.5 for the explosive fragmentation of two-dimensional struc-
tures. Wittel [Wittel 2006] simulated shell fragmentation and noticed that the ex-
ponent is closed to 1.55. Therefore, many models have been proposed to fit the
fragment mass distributions. The differences in the exponent values are related to
the geometry, the type of loading, and more generally, to the physical mechanisms
underlying fragmentation.

Our fitted value 2.2 is above all the previous fits, which infers that we obtain a
narrower mass distribution. This can be explained by the simple loading test, which
involves pure tensile loading with few contacts. Impact tests include more complex
mechanisms such as bending and shearing, that lead to more disperse fragment
mass distributions. We plan to investigate the issue of impact in future work. The
proposed distribution and its parameters µ and β therefore fully characterize the
fragment masses. Contrary to the average fragment mass, which is determined by
material parameters (equation (6.11)), the shape of the distribution appears to be
a common characteristic of the fragmentation of a uniformly expanding thin ring
(equation 6.12). We stress, however, that the predictable behavior of the fragment
mass distribution is a strong result, which is only known to be valid for the problem
studied here.

We stress however that the universality of the fragment mass distribution is a
strong result which is only known to be valid for the problem studied here. Changing
the geometry of the structure and the boundary conditions may result in different
observations. The expanding ring problem focuses on the initiation of defects rather
than the propagation of cracks. Therefore, if field experiments reveal a relation
between physical parameters and fragment mass distribution (and deviate from our
model), we may conjecture that this is due to crack propagation and coalescence
mechanisms. We expect to observe these deviations in two and three-dimensional
problems, the topic of chapters 7 and 8.
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6.4 Heaviest fragment behavior

Although our proposed function fits the fragment population as a whole, it fails to
accurately characterize the heaviest fragments. The statistics of extremes provide a
suitable framework for studying the heaviest fragments [Beirlant 2004, Coles 2001].
In this section, we do not study the heaviest fragment masses quantitatively, but
simply highlight some relations between the largest fragments and physical param-
eters.

As the experiments are independent (one microstructure and one mesh have been
generated for each test), we can apply the statistics of extremes, and try to find the
distribution type that characterizes the right tail of the fragment mass distribution.
For each experiment, we computed the ratio between the maximum and the average
fragment masses. Then, we studied the cumulative density function of these values
(cdfmax)) and compared it to the generalized extreme value distributions. In the
present case, Gumbel distributions provide the best fit to the numerical results:

cdfmax(m) = exp
[
− exp

{
−(m/maver − a)

b

}]
,

−∞ < m <∞, −∞ < a <∞, b > 0
(6.14)

where a and b are parameters of the distribution. This is coherent with the standard
theory of extremes, which suggests that the largest values of independent samples
drawn from equation (6.12) will follow equation (6.14). Figure 6.7 shows some test
results and the associated Gumbel distributions.

Figure 6.7: Survivor functions of the heaviest fragment mass and their fit with a
Gumbel distribution. For each test, m corresponds to the heaviest fragment mass
and maver refers to the average fragment mass. W(2, 50, 150) stands for the Weibull
distribution with Weibull modulus 2, scale parameter 50MPa, and minimum value
150MPa. L is the reference length of the ring.
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Although all the heaviest fragment masses seem to follow the same type of extreme
distribution, the parameters a and b vary. Their distinct values emphasize that
physical parameters affect the behavior of the heaviest fragments. Figures 6.8 display
the survivor functions of the ‘heaviest‘ masses (note that ‘heavy‘ has here a specific
sense since the x-axis is normalized by the average fragment mass). Unlike the
uniqueness of the mass distribution (equation (6.12)), the extreme fragments depend
on the length of the ring, the brittleness of the material, and the defect distribution.
Figures 6.8 highlight that long bars generate ‘heavier‘ fragments than short bars,
and that brittle materials yield ‘heavy‘ fragments. The dependence on the defect
distribution underscores that the scale parameter of the Weibull distribution exerts
an influence, while changing the Weibull modulus seems to have little impact.

6.5 Summary

The fragmentation of a uniformly expanding ring has been simulated within a
finite element framework, coupled to linear cohesive elements. Statistics on fragment
masses have been analyzed for different configurations. The ring geometry does not
change, whereas its length, the loading rate, the defects, and the toughness vary.
After having verified the numerical convergence, we focused on the effect of these
physical parameters on fragment generation. We showed that they strongly affect
the average fragment mass in a predictable way. The average fragment mass can
be computed following a simple formula (see chapter 5). We also show that the
distribution of fragment masses follows a unique curve, which depends only on the
average fragment mass, and which behaves like the generalized gamma distribution
with shape parameter two. Finally, despite this apparent universality, extreme value
statistics show that physical parameters do affect fragmentation. Although all the
distributions of the heaviest fragments seem to follow a Gumbel law, its parameters
depend upon these physical parameters. Defects, toughness, ring size, and loading
rate influence fragmentation through the heaviest fragments.
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(a)

(b)

(c)

Figure 6.8: Survivor functions of the heaviest fragments. Influence of: (a) the length
of the ring, (b) the toughness, (c) the distribution of defects. For each test, m
corresponds to the heaviest fragment mass and maver refers to the average fragment
mass. W(2, 50, 150) stands for the Weibull distribution with Weibull modulus 2,
scale parameter 50MPa, and minimum value 150MPa. We note that (a) longer bars
generate heavier fragments, and (b) lower toughness generates heavier fragments (in
terms of normalized mass).





Chapter 7

Fragmentation of a plate

In this chapter1, we investigate the fragmentation of a thin plate in biaxial tension
with the aim at understanding and predicting better the physical mechanisms under-
lying fragmentation in multiple dimensions (crack initiation and crack propagation).
We base our interpretations on Grady’s model [Grady 1982, Grady 2009] in which
a characteristic length scale is derived. We enrich Grady’s model by introducing
a distribution of defects, and by including non-linear stress wave interactions. In
order to handle this added complexity, we choose to use parallel numerical tools to
simulate the plate’s response. We are using an original hybrid numerical framework,
which couples the discontinuous Galerkin approach and the cohesive zone fracture
model (see chapter 3). Highly scalable, it allows us to conduct parallel simulations
of very fine meshes. We also vary material parameters and strain rate, and show
that, depending on their values, fragmentation can either be strength or toughness
controlled. Fragmentation at low strain rates is controlled by defects and generate
irregular patterns, whereas fragmentation at high strain rates is governed by energy
arguments and leads to Weibull-type fragment mass distribution.

7.1 Definition of the problem and objectives

7.1.1 Description of the test

We consider a thin square plate of dimension Lplate = 10 cm (figure 7.1(a)) and
thickness 0.15 mm. The value of the thickness can, however, change and be adapted
to the element size to ensure the good quality of the mesh. Since the plate remains
very thin in all the simulations, varying the thickness does not affect the fragmen-
tation pattern. The material is aluminum oxide AD-995 with Young’s modulus
E = 370 GPa, Poisson ratio ν = 0.22, volumetric mass ρ = 3900 kg.m−3, static
failure strength σc = 262 MPa and toughness Gc = 50 N/m. These parameters
will be modified in the following sections in order to understand their influence on
the fragmentation process (c.f. table 7.1). The plate is subjected to biaxial tension
during the entire duration of the test. Initial displacements and velocities are set
so that the plate undergoes uniform expansion with no initial propagating stress
waves. We vary the strain rate from 10 s−1 to 105 s−1.

1The first part of this chapter is about to be submitted in the International Journal of Fracture.
The article by S.Levy, J.F.Molinari, R.Radovitzky will be entitled Dynamic fragmentation of a
brittle plate under biaxial loading: strength or toughness controlled?. The second part dealing with
fragment size statistics will be submitted in a physics journal.
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In any case, fragmentation occurs in two stages: the elastic and the failure stages.
Since we impose initial velocities to avoid spurious wave propagation, kinetic energy
is originally non null. During the first stage, we pull on the boundaries so that
velocities do not evolve. The plate stretches and potential energy is accumulated
(figure 7.1(c)). We assume a linear elastic response before failure onset. At time
tmin, the critical threshold σc,min is reached and the first cohesive element is ac-
tivated. Potential energy continues increasing because both of inertial effects and
material heterogeneity (defects initiate at σ ≥ σc,min). Peak stress is reached
at time tf , corresponding to the transition to the failure phase. During the fail-
ure phase, potential energy is dissipated into fracture energy. First, the amount
of potential energy, which may be used for fracture, is related to the value of the
peak stress. Secondly, since we keep pulling on the boundaries, kinetic energy is
constantly added into the system. This kinetic energy is partially converted into
potential energy, which in turn may be converted into fracture energy. Consequently,
there are two causes of fracture energy: the direct conversion of peak potential en-
ergy and the use of input kinetic energy (see section 4.2). The final fragmented state
(figure 7.1(b)) involves complex physics mostly driven by stress wave interactions,
characterized by the elastic wave speed c =

√
E/ρ. Potential energy has not neces-

sarily a final null value because damage evolution stops as soon as stress is locally
low enough (in comparison to the cohesive strengths σc).

Impulse boundary conditions (initial velocity solely) were tested as well. The
response is close to the uniform expansion (see chapter 4). In the elastic phase,
kinetic energy decreases because it is consumed by potential energy. In the failure
phase, the same mechanisms occur: the direct conversion of peak potential energy,
as well as the indirect conversion of kinetic energy. The difference between impulse
and uniform expansion lies in the amount of each energetic contribution. In the
impulse case, the direct conversion of potential energy significantly dominates, while
it is less obvious in the uniform expansion (it actually depends on strain rate and
material properties). We chose to use uniform expansion conditions because it allows
accessing the quasi-static regime. In dynamics, impulse and uniform expansion lead
to very similar responses [Zhou 2005a].

7.1.2 Modeling of material heterogeneity

Every material is inherently heterogeneous. It may contain pores, inclusions,
grain boundaries, crystal imperfections. Since they have tendency to concentrate
stresses, these entities are favorable locations for fracture initiation, and we name
them defects. Experimental evidence [Weibull 1939] has shown that failure strengths
of most materials follow a Weibull distribution (see chapter 3). We associate the
failure strength of a defect to the cohesive strength of its associated cohesive element.
The distribution of cohesive strengths is thus given by:
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(a) (b)

(c)

Figure 7.1: (a) Plate under biaxial tension. Dashed arrows indicate the extent of
initial velocity amplitudes. Plain arrows indicate boundary conditions in displace-
ments. (b) Fragmented plate from which we can extract the mass of the fragments.
(c) Kinetic, potential and fracture energies evolving with time, for material Mat.1
(see table 7.1) at strain rate ε̇ = 500s−1. tmin corresponds to the time when the first
cohesive element is activated. tf is the time to failure associated to peak potential
energy.
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F (σc) = 1− e
−
“

σc−σc,min
λ

”mw

(7.1)

σc,min is the minimum cohesive strength, which corresponds to the quasi-static
failure strength. mw is a material parameter called Weibull modulus. λ is the scale
parameter, and depends on the material and on the geometry of the structure. In
the present chapter, we have tested the response of several distributions of defects
plotted in figure 7.2.

Figure 7.2: Probability density function of some of the distributions of cohesive
strengths studied (see table 7.1).

7.1.3 Synopsis of the study

Material parameters: Our objective is to vary bulk material parameters and
defect parameters to understand their influence on fragmentation. Table 7.1 details
each set of parameters used in the simulations. A line of the table can be associated
both to a material (Mat. in the first column) or a test campaign (Test in the first
column). Each material (Mat.1 to Mat.12) is defined by seven material parameters.
However, since defects are defined statistically, one material can be associated to
distinct values of cohesive strengths, even though material parameters are kept
constant. This will be useful to study the distribution of fragment masses in the
last section.

As a guideline, here are the useful associations that one should make, to compare
material properties:

• Effect of Young’s modulus is studied through Mat.1, Mat.8, and Test1.

• Effect of volumetric mass is studied through Mat.1, Mat.9, Mat.10, and Test4.

• Effect of toughness is studied through Mat.1, Mat.5, Mat.6, and Test7.



126 Chapter 7. Fragmentation of a plate

• Effect of the minimum cohesive strength is studied through Mat.1, Mat.7,
Mat.11, and Test5.

• Effect of the scale parameter is studied through Mat.1, Mat.4, and Test6.

• Mat.3 and Mat.12 involve higher Weibull modulus, they are nearly homoge-
neous materials.

In test2 (respectively test3), the product E.ρ (respectively E/ρ) is kept constant.
The seven test campaigns are conducted at the strain rate ε̇ = 104s−1. Mat.2
was selected for comparison purpose with the results obtained in one-dimension
(chapter 5).

Computed values: During the simulation, we compute the time evolution of po-
tential energy and fracture energy (e.g. energy dissipated by the cohesive elements),
as well as the mass of each fragment. We deduce some useful parameters:

• the time at which the first cohesive element is activated tmin (see figure 7.1(c)).

• the time at which potential energy reaches a peak tf (which stands for time
to failure) (see figure 7.1(c)).

• the value of the peak stress σpeak, assuming a linear elastic response before
peak stress σpeak = E ε̇ tf . The value of σpeak is approximated analytically,
based on the computed value tf . The elastic assumption is accurate for most
strain rates (if ε̇ ≥ 2.104 s−1, the true peak stress is slightly, but not exactly,
equal to the analytical one).

• the number of fragments, and the average fragment size saver.

• the distribution of fragment masses.

Computing fragment sizes in a parallel code is not direct. Once a processor detects
fragment boundaries, it must communicate them to other processors. That may lead
to heavy and penalizing inter-processor communication. From a technical point of
view, to address this issue, we created a class containing tetrahedra and facets.
Within the body, each tetrahedron (resp. facet) is related to four facets (resp. two
tetrahedra). The lack of neighbor indicates a physical or processor boundary. A
damage number is associated to each facet, which is broken when damage reaches
one. Fragments are detected by looping over the facets, and are constituted of a
list of tetrahedra. In the parallel version of the code, each processor computes its
fragment class, then they are assembled using ghost tetrahedra on the processor
boundaries. The code has been written to minimize inter-processor communication;
a processor exchanges only once with its neighbors (see appendix A).
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Main issues: The chapter shed light on several technical and physical issues:

• Convergence (section 7.2): We reach steady values (e.g. independent from the
mesh) of the number of fragments and the distribution of fragment masses
which guarantees the validity of the following studies. As far as we know, this
is the first proof of numerical convergence in multi-dimensional fragmentation
simulations.

• Energy conversion and characteristic time and length scales (section 7.3): We
first present Grady’s theory of equilibrium and non-equilibrium fragmenta-
tion [Grady 2009]. Then, we enrich Grady’s model by adding new time and
length scales. We show that two cases arise: at high strain rates, Grady’s
equilibrium is verified, while at low strain rates fragmentation occurs in a
non-equilibrium state. These cases infer very distinct physical mechanisms.

• Scaling of average fragment size and strain rate (section 7.4): We apply the
normalization proposed Levy and Molinari [Levy 2010], which has been proved
to be valid in one dimension. We show that this normalizations is mostly valid,
expect for some tests. We also compare the plate results to Grady’s and Glenn
and Chudnovsky’s models. We argue that Grady’s length scale [Grady 1982] is
larger than the computed average fragment size because of wave propagation.

• Distribution of fragment masses (section 7.5): We qualitatively underline the
role of strain rate and material parameters on the scattering of the distribu-
tions.

7.2 Numerical convergence

We first verify the validity of the computed results through a convergence study.
In the case of fragmentation, convergence can either concern the number of frag-
ments or the distribution of fragment sizes. Reaching convergence may, however, be
technically challenging since fine meshes are usually required to capture the small-
est fragments. We benefit from the efficiency of the parallel implementation that
the hybrid formulation provides. Running codes on many processors allows us to
increase the degrees of freedom significantly and obtain converged results at high
strain rates (up to 105s−1). The simulation of fragmentation at higher strain rates
is a simple extension of the work done so far.

A plate made of aluminum oxide AD-995 with nearly no defects (Mat.12 in ta-
ble 7.1) is meshed with 8.000 to 6.000.000 degrees of freedom. We compute the
average fragment size and distribution of fragment masses. Figure 7.3 displays
the evolution of the number of fragments with degrees of freedom, obtained for
ε̇ = 104 s−1, in two cases: with and without dust. We name dust the fragments
composed of one or two tetrahedra. To compare numerical results to experiments,
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this elimination would be necessary, since techniques used to uncover fragment sizes,
have a minimum size that can be resolved. The curves in figure 7.4 first increase,
suggesting that every edge of the mesh is at least damaged. Then, they slightly de-
crease until reaching their final value. Some edges of the mesh are broken, others are
damaged or intact. Convergence in terms of number of fragments is thus achieved
for meshes with at least 200000 degrees of freedom. To the best of our knowledge,
convergence has been reached in one dimension [Molinari 2007], but this is the first
hard evidence of fragment convergence in three dimensions.

Figure 7.3: Evolution of the number of fragments with the degrees of freedom, for
the strain rate ε̇ = 104 s−1.

Besides, distribution of fragment masses can also be independent from the mesh
if dust is neglected. This simplification may have a counterpart: the left tail of the
distribution may not well represent the physics of fragmentation and we may miss
some self-similar behavior. Figure 7.4 plots the inverse of the cumulative density
function of the normalized fragment masses in two cases: accounting for all the
fragments, and neglecting dust. Note that, in figure 7.4, the x-axis involves the
average fragment mass in order to compare only the shape of distribution of fragment
mass (and not the number of fragments, already achieved previously). When dust
is included in statistics, the curves do not superimpose. Coarse meshes generate
heavier fragments than fine meshes. When dust is neglected, the plots are very
close. This observation suggests that the shape of the distribution of fragment
masses is substantially more sensitive to dust than to mesh fineness.

We also investigate convergence in terms of dissipated energy. Comparing fracture
energy computed for two different plates is not straightforward. Indeed, each plate
contains a given amount of surface energy, which may be converted into fracture
energy. This surface energy is the product of the toughness with the surface of
all the facets. Available energies are thus quantities characteristic of the mesh.
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Figure 7.4: Inverse of the cumulative density function of the fragment mass in two
cases: with and without accounting for dust (fragments composed of one or two
tetrahedra). The x-axis is normalized by the average fragment mass. Strain rate is
ε̇ = 104 s−1.

Figure 7.5 displays the available energies of the specimens. Wide variations can be
observed because the thickness of the plate is not fixed, it changes from one specimen
to the other such that mesh has a good quality and the number of tetrahedra is
minimal. Among this available energy, a part is consumed by fully broken facets
(broken in figures 7.5 and 7.6), another part is dissipated in the partially damaged
facets (damaged in figures 7.5 and 7.6), the rest is not used. Figure 7.6 shows the
proportion of the available energy that is dissipated. For small meshes, nearly all the
available energy is used, which suggests that all the faces are broken. Then, as the
number of degrees of freedom increases, the proportion decreases, first abruptly, than
more slowly. More and more facets are either damaged or intact. The proportion
does not evolve drastically for fine enough meshes. Figure 7.5 also underlines that
the dissipated energy has little dependence upon the degrees of freedom, irrespective
to the available energy, for fine enough meshes. This is, however, not a proof of
convergence in energy; we can only claim that steady values of the dissipated energy
are observed for fine enough meshes.

In summary, for fine enough meshes, the number of fragments and the shape of the
fragment mass distribution are independent from the number of degrees of freedom.
We also computed the energy dissipated into failure and observed that fine meshes
are associated to dissipative features independent from the number of degrees of
freedom. The issue of dissipated energy is less obvious, but it seems that a steady
state can be reached.
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Figure 7.5: Evolution of fracture energy with degrees of freedom, for the strain rate
ε̇ = 104 s−1. Energies invested into complete and partial failure are distinguished.
The maximum energy that the mesh can provide is also plotted.

Figure 7.6: Proportion of the available energy dissipated by the fully broken and
partially damaged faces, as function of the degrees of freedom. Strain rate is ε̇ =
104 s−1.
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7.3 Analysis of Grady’s model and its application to het-
erogeneous materials

7.3.1 Fundamental concepts

7.3.1.1 Grady’s theory of fragmentation: a question of energy balance

Based on energy principles, Grady’s theory of fragmentation predicts the behavior
of materials subjected to dynamic fragmentation. Its fundamental contribution lies
in the derivation of local equilibrium (at the fragment scale), rather than global
equilibrium (at the structure scale). Indeed, in his key paper [Grady 1982], by
deriving the equality between local kinetic energy and fracture energy, he proposed a
general expression of the characteristic length scale (the coefficient of proportionality
depends on the dimension of the problem):

sGr ∝
(
Gc

ρ ε̇2

)1/3

(7.2)

where ρ is the volumetric mass, Gc is the toughness and ε̇ is the strain rate.

Grady went deeper into the physical understanding of fragmentation [Grady 1988,
Grady 2009]. He considered the symmetric expansion of a spherical shell, subjected
to an initial outward impulse. The imposed kinetic energy is converted into strain
energy, which is, in turn, converted into fracture energy. The volumetric potential
energy for an elastic response evolves with time according to:

epot =
1
2
ρ c2 ε̇2 t2 =

σ(t)2

2 E
(7.3)

where c is the elastic wave speed. Besides, assuming that the fragments constitute
a square lattice, the fragment size satisfies the inequality:

s ≤ 2 c t (7.4)

Equality occurs when cracks evolve independently and are regularly distributed
among the body. Strict inequality favorably occurs, because of both stress release
waves and the irregular location of defects. Note that the same time t is used in
the expressions of the volumetric potential energy epot and the fragment size s. We
comment this assumption at the end of the subsection.

Finally, we denote eΓ the fracture energy per unit volume, required to generate a
rectangular fragment of size s. If we assume that all the fragments have the same
size and considering that the problem is two-dimensional, the volumetric fracture
energy is:

eΓ =
2 Gc

s
=
Gc

c t
(7.5)
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Fragmentation occurs in equilibrium when epot = eΓ. Equating eq. 7.3 and
eq. 7.5 directly provides the characteristic time:

tGr =
(

2 Gc

ρ c3 ε̇2

)1/3

(7.6)

When fracture is in equilibrium, it occurs at the junction of the potential and frac-
ture energy curves, and is, therefore, fully characterized by the time tGr (figure 7.7).
However, Grady explained in [Grady 2009] that some materials subjected to dy-
namic fragmentation accumulate more potential energy than required. This excess
of energy is invested into fracture and leads to smaller fragments than predicted.

Besides, to fully understand Grady’s theory, one should note that fracture is
assumed to occur since process onset. Indeed, potential energy increases from zero
to a value depending on time t (eq. 7.3). The same time t is used to express the
length s (eq. 7.4). By assimilating both times, Grady suggests that a stress release
wave propagates as soon as potential energy has a non null value, which amounts
to considering that fracture occurs since the onset of the process. However, we will
show that this assumption may only be valid at high strain rates. In nature, failure
does not occur at process onset, but after some time, which is fully determined by
failure strength. At high strain rates, the time required to reach failure strength is
negligible, whereas at low strain rates, it can be significant. Therefore, we expect
Grady’s prediction to be accurate at high strain rates, and imprecise at low strain
rates. In the following, we adapt Grady’s theory to our problem by defining other
characteristic times.

7.3.1.2 Adaptation to the plate problem and definition of relevant char-
acteristic times

First, as pointed out by Grady in [Grady 2009], characteristic times and scales
are proportional if equality in equation 7.4 is verified. Working with time scales is
thus equivalent to working with length scales. In the following, we assume equality
in equation 7.4, and we choose to work with time scales.

In addition to the equilibrium time tGr (equation 7.6), we focus on tmin and tf .
tmin corresponds to the time when the global stress equals the minimum cohesive
strength σc,min. tf corresponds to the time when global potential energy (or equiv-
alently stress) reaches a maximum. In our model, since failure is activated when
stress reaches the given threshold σc,min, tf is necessarily larger than tmin:

tf ≥ tmin where tmin =
σc,min

E ε̇
(7.7)
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Note that tmin, depending on σc,min, can be larger or smaller than tGr. We will
see in the following that these two possibilities result in very distinct fragmentation
mechanisms. Assuming that the response is elastic until peak stress, equation 7.7 is
equivalent to:

σpeak ≥ σc,min where σpeak = E ε̇ tf (7.8)

After reaching its peak at tf , potential energy decreases. It is converted into
fracture energy, generating fragments. The most efficient process would convert
entirely peak potential energy into fracture energy. This leads to the definition of
the characteristic size s0 and equivalently to the fourth characteristic time ts,0:

ts,0 =
s0
2 c

=
2 Gc E

c σ2
peak

(7.9)

However, peak potential energy may not be fully converted into fracture. Because
of the cohesive element approach, failure occurs if the stress is high enough (σ ≥ σc).
In fact, failure stops as soon as stress is low enough everywhere, in comparison to the
cohesive strengths. Consequently, the average fragment size saver is not necessarily
equal to 2 c ts,0. This leads to the definition of the time ts, which is associated to
the actual computed average fragment size:

ts =
saver

2 c
(7.10)

In summary, we have identified five characteristic times tGr, tmin, tf , ts,0, and ts.
tGr, tmin, and tf are physical times, whereas ts,0, and ts are associated to the physical
length scales s0 and saver (eq. 7.9 and 7.10). In figure 7.7 , we update Grady’s
schematic [Grady 2009], which represents energy conversion and equilibrium state,
by adding the other characteristic times and scales.

7.3.2 Toughness or strength controlled?

In this section, we evaluate some of the characteristic times defined previously.
Let us first recall them:

• tGr is the Grady’s equilibrium time. Its expression is given by equation 7.6.

• tf is the computed time at which potential energy reaches a peak. tf is not
necessarily equal to tGr because of the distribution of cohesive strengths and
the time needed by the cracks to propagate through the structure.

• ts,0 is the theoretical time associated to the size of a fragment s0(eq. 7.9), if
peak potential energy is fully converted into fracture energy.

• ts is the time associated to the computed average fragment size saver. ts is not
necessarily equal to ts,0 because potential energy may not be fully converted
into fracture energy.
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Figure 7.7: Evolution of the volumetric potential energy and fracture energy per
unit volume, and display of the characteristic times and sizes in the case tmin ≥
tGr[Grady 2009]. The volumetric potential energy increases with time, following
equation 7.3. The evolution of the dissipated energy per unit volume (eq. 7.5)
decreases with fragment size, or equivalently time. Their intersection corresponds
to the equilibrium process, which occurs at time tGr. However, since tmin ≥ tGr, an
excess of potential energy is accumulated. Peak potential energy is reached at tf . If
it is fully converted into fracture energy, the resulting fragment size is s0 = 2 c ts,0.
Since peak potential energy may not be entirely used to create new fracture surfaces,
the effective fragment size saver = 2 c ts is not necessarily equal to s0.
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In this section, we evaluate four of the characteristic times defined previously (tGr,
tf , ts,0, and ts), leaving tmin aside. We have focused on the response of material
Mat.1 (c.f. table 7.1) and have conducted simulations at strain rates ranging from
ε̇ = 10 s−1 to ε̇ = 105 s−1. Figure 7.8 illustrates the evolution of these times with
strain rate. It underlines that the two theoretical curves associated to tGr and ts,0,
as well as the computed curve associated to tf , cross at the same point ε̇cross:

ε̇cross =
ε̇0
2

where




ε̇0 = σpeak

E t0

t0 = Gc E
c σ2

peak

(7.11)

Figure 7.8: Evolution of the four characteristic times with the strain rate, in log-log
axes.

This cross point is fundamental in the understanding of the physics of fragmen-
tation. It is the limit between two distinct regimes. Note that ε̇cross is a function of
material parameters and measured peak stress. Its value is half the value of ε̇0 which
is a parameter first defined by Camacho and Ortiz in [Camacho 1996] and reused
several times [Drugan 2001, Zhou 2006c, Levy 2010]. ε̇0 is a characteristic loading
rate which scales the fragmentation behavior. A cohesive element, characterized by
the toughness Gc and the cohesive strength σpeak, which is subjected to ε̇0 will break
in the amount of time t0. During the same t0, stress waves propagate, from the frac-
ture place to the surrounding areas. The encompassed regions are characterized by
the length scale is s0 = 2 c t0. Note the similitude between t0 and ts,0 defined
in equation 7.9. The time required to generate a fragment of size s0 (derived from
energy equilibrium) is twice the time required to open a cohesive element (derived
from dimensional analysis). We also emphasize that the time and length scales de-
rived by Camacho and Ortiz [Camacho 1996] were originally material parameters.
Here, they are function of the peak stress, which depends on strain rate.
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Let us now detail the two regimes, ε̇ ≤ ε̇cross and ε̇ ≥ ε̇cross, by focusing both
on the quantity of potential energy stored in the body and the quantity of energy
dissipated into failure.

Case ε̇ ≤ ε̇cross: As pointed out by figure 7.8, time to failure tf is larger than
equilibrium time tGr. This case corresponds to figure 7.7. The governing mecha-
nisms of this regime are:

• Stored energy: Potential energy stored in the body is larger than the Grady’s
equilibrium energy, and fragmentation occurs at a level of energy which over-
passes equilibrium.

• Most efficient release of energy: In the most efficient scenario, potential energy
is fully converted into fracture energy and generate fragments of size s0 (which
corresponds to time ts,0).

• Effective release of energy: In the actual scenario, stored energy is only re-
leased partly into fracture. The conversion is indeed not complete because the
fracture process stops when the structure is sufficiently released (e.g. when
the stress is low enough everywhere in comparison to the cohesive strengths,
see section 7.3).

• Consequence on saver: At small strain rates, the average size saver is larger
than the theoretical size s0 (and equivalently ts ≥ ts,0). Moreover, as schemat-
ically explained by figure 7.7, the average size saver is smaller than the equi-
librium size sGr (and equivalently ts ≤ tGr).

In summary, the range ε̇ ≤ ε̇cross is associated to non-equilibrium fragmentation,
and is mainly controlled by the value of the cohesive strengths. Low enough strain
rate behaviors are thus strength controlled (and consequently probabilistic), and are
associated to non-equilibrium processes.

Case ε̇ ≥ ε̇cross: As pointed out by figure 7.8, time to failure tf is a bit smaller
than equilibrium time tGr. The governing mechanisms of this regime are:

• Stored energy: Contrary to the previous case, peak potential energy is insuf-
ficient to lead to such a fine breakage of the structure. The reason for this
limitation lies in the finite values of the cohesive strengths. Within the cohe-
sive elements, stresses cannot exceed the cohesive stress. As a result, global
potential energy is also constrained, and peak potential energy cannot reach
Grady’s equilibrium energy. Failure time tf is thus lower than tGr. A natural
question that may arise is: if peak potential energy is not high enough, how
can the structure fragment? This is made possible by the duration of the
fragmentation process. Indeed, since it is not instantaneous, energy conver-
sion has time to establish and to supply more potential energy than initial
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peak. In dynamics, kinetic energy is accumulated in large excess within the
structure. In parallel to the direct conversion of potential energy into failure
energy, an additional transfer takes place. Kinetic energy is converted into
potential energy, which is in turn used in failure. Therefore, the sum of the
two contributions (peak potential and converted kinetic energies) over time
can reach Grady’s prediction. This mechanism is also described in section 4.2.
The process is in equilibrium.

• Post-peak stress behavior: After peak stress, two mechanisms cohabit. On
the one hand, we keep pulling on the plate boundaries and potential energy
keeps increasing. On the other hand, fracture is initiated at many places and
dissipate energy. Both mechanisms are evolving ‘independently‘. This state
can occur because of the ’low’ velocity at which stress waves are propagating.
Indeed, information that fracture happens is broadcast at the elastic wave
speed c, while we are pulling on the plate boundary at the velocity ε̇.Lplate/2.
In this regime, failure information is not broadcast fast enough in comparison
to the applied velocity (c ¿ ε̇.Lplate). Note that this competition also occurs
in the other regime, but it is not significant since wave speed is much larger
than boundary velocity.

• Consequence on saver: Since potential energy is stored both before and after
peak stress, the total stored potential energy reaches Grady’s equilibrium en-
ergy. This regime evolves in quasi-equilibrium and the average fragment size
tends to Grady’s prediction.

Therefore high enough strain rates lead to fragmentation processes which are not
instantaneous, smoother, less random, and in equilibrium. Highly dynamic frag-
mentation is toughness controlled.

These two cases can be distinguished easily in figure 7.8 : ts is collinear to tGr is
the toughness controlled regime, whereas ts behaves similarly as ts,0 in the strength
controlled regime.

7.3.3 A measure of the equilibrium

What naturally comes to mind is whether there exists a way of quantifying how
balanced fragmentation is. In the previous section, we have shown that quasi-static
fragmentation is probabilistic (e.g. controlled by defect failure strengths) and does
not behave in equilibrium, while dynamic fragmentation is controlled by toughness
and occurs in a more equilibrium state. Updating the idea of Grady in [Grady 2009],
we use the non-dimensional number F in order to characterize more accurately
energy conversion of fragmentation:

F = max

(
tf
ts

; 1
)

(7.12)



138 Chapter 7. Fragmentation of a plate

Large values of F are associated to strength controlled fragmentation. F = 1 is the
equilibrium case.

If peak potential energy is fully converted into fracture energy, then ts = ts,0. The
use of eq. 7.8 and eq. 7.9 leads to the analytical form of the ratio F:

Ftheo = max

(
c σ3

peak

2 E2 Gc ε̇
; 1

)
(7.13)

where σpeak is a function of the distribution of defects, the strain rate, and the
Young’s modulus. Its value is here deduced from the time to failure and equation 7.8.

Figure 7.9 displays the evolution of the numerical and analytical ratios Fnum and
Ftheo with strain rate. For ε̇¿ ε̇cross, both ratios are decreasing as power laws. The
theoretical expression predicts values of F slightly larger than the computed ones
because the assumption that potential energy is fully converted into fracture is not
exact (c.f. paragraph 7.3.2). Large values of F are associated to non-equilibrium
processes during which an excess of potential energy is accumulated (large value of
the time to failure tf ). On the contrary, F gets close to one when strain rate is larger
than ε̇cross, which suggests that exceeding potential energy is inconsequential. In
this case, fragmentation process behaves in a quasi-equilibrium state. The value of
F is thus a representative ratio of how energetically balanced is fragmentation.

Figure 7.9: Numerical and theoretical ratio F in log-log axes for Mat.1.

7.4 Normalization of average fragment size and strain
rate

We are here interested in verifying whether the scaling defined in chapter 5 in one
dimension is valid in multiple dimensions. In Levy and Molinari [Levy 2010] and
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chapter 5, we defined the normalization:

¯̇εLM =
ε̇

ε̇0
and s̄LM =

saver

c t0 f(defects)
(7.14)

ε̇0 is expressed in terms of the average cohesive strength, rather than peak stress.
f(defects) is a function of the left tail of the cohesive strength distribution, as well
as the minimum and average cohesive strengths (σc,min and µinit):

f(defects) =

√
2

a+ 1

(
σc,min

µinit

)1/5

(7.15)

a is a number that quantifies the rate of failure initiation and is comprised between
0 and 1. a = 0 suggests that no defect activation occurs, while a = 1 indicates that
all the defects are initiated simultaneously.

This unique empirical law describes the evolution of the normalized average frag-
ment size with normalized strain rate for one-dimensional fragmentation:

s̄ =
3

1 + 4.5 ¯̇ε
(7.16)

This expression results in a representative curve that is close to Glenn and Chud-
novsky’s model. Glenn and Chudnovsky [Glenn 1986a] derived an analytical expres-
sion of the average fragment size, using balance energy. Contrary to Grady, they
took into account failure strength and they explained that potential energy is pre-
vailing in quasi-static, whereas kinetic effects are dominant in dynamics. Figure 7.10
displays these two models, along with Grady’s prediction and numerical results for
the plate under biaxial tension.

As highlighted in figure 7.10, at high strain rates, all points fall into a reasonably
narrow range. Average fragment size values are all smaller than Grady’s prediction.
This is due to dynamics effects. Indeed, at high strain rates, the velocity at which
plate boundaries are pulled is high compared to elastic wave speed. Broadcasting
information from failure location to plate boundaries thus required some time during
which potential energy continues to be accumulated. This excess of potential energy
explains why we compute more fragments than Grady’s prediction. Although high
strain rates are associated to equilibrium processes, the resulting fragment size is
smaller than the predicted one because of dynamic effects. Moreover, still in the high
strain rate range, the -2/3 power law exponent predicted by Grady (equation 7.2)
seems to be valid. In summary, in the toughness controlled regime, we predict
smaller fragments than Grady because of dynamics effects, and we observe the same
-2/3 exponent than Grady.
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Figure 7.10: Normalized average fragment size function of normalized strain rate
in log-log axes. Comparison of the present results to Grady’s, Levy and Molinari’s,
and Glenn and Chudnovsky’s models.

By contrast, in the strength controlled regime, normalization seems not adequate
in every case. Indeed, while for most materials the one-dimensional normalization is
still valid, for Mat.5, Mat.6, it looks inaccurate. In quasi-static, their representative
curves are below the predicted ones because of size effects. Mat.5 and Mat.6 are
both ductile and generate a few fragments in quasi-statics. For instance, let us
consider Mat.5. At strain rate ε̇ = 10 s−1, e.g. ¯̇ε ' 0.01, we compute 3 fragments.
To fall close to Levy et al.’s models, we should have computed 0.2 fragments, which
is obviously impossible. At low strain rate, the specimen size strongly influences
the normalization efficiency. If we had considered a larger specimen, the normalized
average fragment size would have followed the global trend and could have been
predicted by equation 7.16. Glenn and Chudnovsky’s law, which is based on energy
arguments is neither adequate since the regime is not governed by energy balance
but defect strength. It is thus more complex to predict the number of fragments at
low strain rates than at high strain rates.

7.5 Distribution of fragment masses

In sections 7.3 and 7.4, we assumed that all the fragments have the same size
saver, which is naturally not true. Fragments have distinct sizes and shapes. In
this section, we are interested in the effect of strain rate and material parameters
on the distribution of fragment masses. In order to focus solely on the shape of the
distribution (its average is related to saver and has been studied in section 7.4), we
normalize the fragment masses with the average fragment mass. Dust-like fragments
(one or two tetrahedra) are neglected.
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7.5.1 Influence of strain rate

When fragmentation occurs in perfect equilibrium, each fragment is generated in-
dependently from the others. It corresponds to F = 1 in section 7.3.3. This asymp-
totic case is characterized by the absence of crack interactions and is mainly gov-
erned by energetic arguments, the problem remains local. In such perfect regimes,
theory predicts exponential distribution of fragment masses for one dimension ge-
ometries [Grady 1985, Lienau 1936]. Equilibrated fragmentation may thus lead to
exponential fragment distribution, e.g. Weibull distributions with modulus one
(equation 7.17).

Weibull distribution : cdf = 1− e
−
“

m
λ maver

”mw

with mw > 0 and λ > 0

Exponential distribution : cdf = 1− e
−
“

m
λ maver

”
with λ > 0

(7.17)

Fragmentation without crack interaction is the simplest model. Nonetheless,
in real experiments, fragment size distributions exhibit more complex features.
There exists experimental evidence that fragment mass distribution follows Weibull
distribution (equation 7.17) with Weibull modulus varying typically from 0.5 to
2.5 [Gilvarry 1961a, Grady 1990, Mott 1947]. Other types of distributions, com-
bining power and exponential laws have also been considered [Åström 2004b] (see
chapters 2 and 6). Naturally, since F never reaches unity in our simulations, but
only gets close to it at very high strain rates (see figure 7.9), we expect toughness
controlled fragmentation to generate fragments whose masses tend to follow Weibull
distribution with exponent close to one (e.g. exponential distribution).

Conversely, at low strain rates, crack interactions cannot be neglected. Stress
waves are propagating fast in comparison to the loading, and fragments are not
generated independently. As a result, their masses strongly depends upon both
the stress field, which in turn depends upon the geometry of the structure and the
defects. Thus, we expect strength controlled fragmentation to generate fragments
with more disperse sizes. Figure 7.11 displays the fragmentation patterns of a plate
subjected to the strain rates ε̇ = 2.103s−1 and ε̇ = 2.104s−1. It underscores that
high strain rates induce more fragments than low strain rates. It is, however, not
obvious to draw any conclusion on the fragment size distributions from these visual
representations.

Consequently, in order to verify whether this intuition is true, we plot in fig-
ure 7.12 the inverse of the cumulative distribution function of the fragment masses.
Each curve is the combination of ten Monte Carlo simulations with same mesh, same
material Mat.1 (c.f. table 7.1), and distinct random seeds of cohesive strengths. Fig-
ure 7.12 underlines that small strain rates generate more disperse fragment distribu-
tions than large strain rates (the standard deviation of the masses for ε̇ = 2.103s−1 is



142 Chapter 7. Fragmentation of a plate

(a)

(b)

Figure 7.11: Fragmentation patterns computed for the strain rate (a) ε̇ = 2.103s−1,
(b) ε̇ = 2.104s−1. High strain rates lead to more fragments and more regular
patterns than low strain rates.
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2.38, while it is 0.98 for ε̇ = 2.104s−1). Figure 7.12 also represents the best Weibull
fits for ε̇ = 2.103s−1 and ε̇ = 2.104s−1. As it is obvious from figure 7.12, low
strain rates cannot be represented by Weibull distributions, whereas higher strain
rates may be. At strain rate ε̇ = 2.103s−1, the Weibull fit resolves the behavior
of the lighter fragments, but clearly not the heavier. By contrast, at strain rate
ε̇ = 2.104s−1, a single Weibull distribution fits accurately both the light and heavy
fragments. Besides, the associated Weibull modulus is one, e.g. fragment mass
distribution tends to be exponential.

In summary, the exponential function, which has been proved to be associated to
Poisson process (no interaction between cracks), appropriately reflects distribution
of fragment masses for high strain rates. At low strain rate, Weibull fit is not
relevant. These observations convey the idea that high strain rates are associated
to regular processes, while low strain rates generate more chaotic response.

Figure 7.12: Inverse of the cumulative density function of the normalized fragment
mass in log-log axis. Influence of the strain rate and best Weibull fits for ε̇ =
2.103s−1 and ε̇ = 2.104s−1 (dashed curves), for Mat.1. The x-axis is normalized by
the average fragment size.

7.5.2 Influence of material parameters

We first focus on bulk parameters (Young’s modulus and volumetric mass). Fig-
ures 7.5.2, 7.5.2, 7.5.2 underline the role of the Young’s modulus on the fragment size
distribution for test1, test2, and test3. Small Young’s moduli lead to more scattered
distributions than large moduli. Note that the shape of the distributions look differ-
ent from figure 7.12 because the axes are not logarithmic. To quantify the scattering
of the distribution, we compute their standard deviations. Figure 7.17 displays the
curves associated to test1(volumetric mass ρ constant), test2 (E.ρ constant), test3
(wave speed constant), and test4 (Young’s modulus constant). Standard deviation
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of the masses is decreasing with Young’s modulus, and is almost independent from
volumetric mass. Contrary to volumetric mass, Young’s modulus is thus a governing
parameter of the fragment masses.

Figure 7.13: Effect of bulk properties on fragment mass distributions for Test1: ρ is
constant. See table 7.1 for more details about the tests.

Figure 7.14: Effect of bulk properties on fragment mass distributions for Test2: ρ.E
is constant. See table 7.1 for more details about the tests.

Then, effects of defect parameters are investigated via test5 (minimum cohesive
strength varies), test6 (scale parameter varies), and test7 (toughness varies). In test5
(figure 7.5.2), we study the response of six distinct minimum cohesive strengths. For
each simulation, we computed the distribution fragment masses and their standard
deviation. To verify whether minimum cohesive strength affects fragment masses, we
verify that all the standard deviations are very close (average value of the standards
deviation = 1.44 and standard deviation of the standard deviations = 0.068, which
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Figure 7.15: Effect of bulk properties on fragment mass distributions for Test3: E/ρ
is constant. See table 7.1 for more details about the tests.

Figure 7.16: Effect of bulk properties on fragment mass distributions for Test4: E
is constant. See table 7.1 for more details about the tests.
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Figure 7.17: Standard deviations of the fragment masses, normalized by the average
fragment mass. Small Young’s modulus E generates scattered distributions. Vol-
umetric mass ρ has little impact on the fragment masses. Tests are referenced in
table 7.1.

is very low). It suggests that, for the cases chosen here, the minimum cohesive
strength has little influence on the shape on the distribution. We proceed similarly
with test6 and test7 (figures 7.5.2 and 7.5.2). Toughness also has negligible effect
(average=1.254 and standard deviation=0.146). By contrast, the scale parameter
of the Weibull distribution has a significant role (standard deviation increases from
1.18 for λ = 50MPa to 4.01 for λ = 500MPa). Distributions of defects with a
large scale parameter (which corresponds to highly heterogeneous materials) lead to
scattered fragment mass distributions. In other words, the more homogeneous the
material is, the more equally-sized the fragments are. When the material is nearly
homogeneous, all the defects tend to be nucleated simultaneously. Since the defects
are randomly distributed in space, fragments should have about the same size. On
the contrary, when the material is heterogeneous, defect activations are distributed
in time and are more sensitive to stress wave healing effects. There is thus less
chance to obtain regular fragmentation patterns.

7.6 Conclusion

We simulated the fragmentation of a thin plate subjected to biaxial tension, for a
wide range of strain rates. A hybrid numerical framework, coupling discontinuous
Galerkin and cohesive approaches, has been used. In the context of fragmentation,
the main advantage of the discontinuous Galerkin framework is its ability to handle
naturally discontinuities like fracture lines, and to be easily parallelized. Cohesive
elements are activated dynamically, as soon as local stress reaches the cohesive
strength. By defining Weibull distributions of cohesive strengths, we modeled the
micro-structural heterogeneity of the material. Varying the parameters used in
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Figure 7.18: Effect of defect properties on fragment mass distributions for Test5:
only σc,min varies. See table 7.1 for more details about the tests.

Figure 7.19: Effect of defect properties on fragment mass distributions for Test6:
only λ varies. See table 7.1 for more details about the tests.
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Figure 7.20: Effect of defect properties on fragment mass distributions for Test6:
only λ varies. See table 7.1 for more details about the tests.

the Weibull distribution (minimum cohesive strength, scale parameter, and Weibull
modulus), as well as material parameters (Young’s modulus, volumetric mass, and
toughness) allowed us to quantify their influence on fragmentation. We tackled
the issue of convergence and showed that, for fine enough meshes, the number of
fragments, and the distribution of fragment masses are independent from the degrees
of freedom.

First, we questioned the meaning of convergence, which may be dependent upon
the evaluation criterion. It can either be dissipated energy, or average fragment size,
or distribution of fragment masses. We show that for fine enough meshes, we reach
steady values for any of these criteria. In the case of the distribution of fragment
masses, we neglected fragments made of one or two tetrahedra. By selecting ade-
quate meshes, we thus guarantee the independence of our results respectively to the
mesh.

We detailed Grady’s model in which he defined equilibrium time and length scales.
Fragmentation occurs in equilibrium when potential energy is locally converted into
fracture energy. Crack interactions and time needed to reach the minimum cohesive
strength are thus neglected in Grady’s theory. In our model, since we included
both effects, we defined new characteristic time and length scales that account for
the distribution of defects and the dynamics of fragmentation. We showed that,
depending on material parameters, two regimes arise: the strength controlled and
the toughness controlled. The strength controlled regime corresponds to low strain
rates. It is mainly governed by the microstructure, and the geometry of the body;
fragmentation occurs in a non-equilibrium state. Reversely, fragmentation at high
strain rate is in equilibrium and thus behaves following energy arguments. The
transition between these two regimes, as well as asymptotic values of the average
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fragment size have been theoretically determined. At high strain rates, we predict
more fragments than Grady because of the dynamics of stress waves by a factor of
three, but we recover the -2/3 slope that his analytical model predicts.

Concerning the distribution of fragment masses, we have underlined that high
strain rates generate distributions tending to be driven by Weibull-like laws. Con-
versely, low strain rates lead to more disperse distributions which are less predictable.
Moreover, besides strain rate, we have identified that only Young’s modulus and
material heterogeneity affect fragment mass distribution. Other parameters studied
(volumetric mass, toughness, minimum failure strength) seem to have no significant
effect.

In summary, for strain rates and material parameters such that fragmentation is
strength controlled, defects and geometry are prevailing; probabilistic and dynamics
effects dominate, which generate irregular fragment patterns. On the contrary,
in the highly dynamic regime, fragmentation is toughness controlled, and energy
arguments govern the physical mechanisms, which generate predictable and more
regular fragmentation patterns.





Chapter 8

From two- to three-dimensional
fragmentation

Since very recently, simulations of dynamic fragmentation have had access to
three-dimensional geometries. The increase in computational power and the devel-
opment of efficient parallel codes are offering new opportunities. As an illustration,
this chapter 1 glances at the fragmentation of a hollow sphere, constituted of a
heterogeneous material. The influence of strain rate effect on fragment mass distri-
butions is studied and compared to the ring and plate tests (see chapters 6 and 7).
The thickness of the sphere ranges extreme values, e.g. from the very thin thick-
ness (which amounts to quasi two-dimensional fragmentation) to the plain sphere.
The fragmentation of six distinct geometries is studied and induces fragments whose
shapes exhibit two- and/or three-dimensional features.

8.1 Description of the numerical simulations

8.1.1 Hollow sphere geometry and mesh

The geometry is a hollow sphere with variable thickness. We selected six geome-
tries, with same external radius Rext = 0.01 meters and variable internal radius
0 ≤ Rint ≤ 0.0099. We classify the spheres depending on Rint:

Geometry
(Geom.) 1 2 3 4 5 6
Internal

radius (Rint) 0 0.00375 0.006 0.0085 0.00925 0.0099
Degrees

of freedom 13.352.787 12.349.098 5.428.845 2.667.972 2.744.544 818.928

Table 8.1: Classification of the studied geometries as function of the internal radius,
and number of degrees of freedom of the associated mesh. Radii are in meters.

In practice, since a sphere is highly symmetric, we only consider 1/8th of a sphere
and adapt boundary conditions to enforce the symmetry. This spatial simplification

1This chapter constitutes the base of an article in preparation, dealing with fragment shapes,
and co-authored by S.Levy, J.F.Molinari, R.Radovitzky.
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allows us conducting simulations on finer meshes, and therefore, to reach higher
strain rates. Meshes are generated with the free software Gmsh [Geuzaine ], and
are constrained so that they all have the same element size. Figure 8.1 displays
three of the six meshes.

8.1.2 Heterogeneous material

The material is an aluminum oxide, named AD-995 or Al2O3 99.5%. The bulk
is elastic and characterized by its Young’s modulus E = 370 GPa, Poisson ratio
ν = 0.22, and volumetric mass ρ = 3900 kg.m−3. Failure parameters are set to
Gc = 50 N.m−1 and σc,min = 264 MPa. In addition, we assume the cohesive
strengths to follow a Weibull distribution with Weibull’s modulus two and scale
parameter 50 MPa.

8.1.3 Loading conditions

The specimens are loaded uniformly via an initial impulse. Strain rate varies from
ε̇ = 103 s−1 to ε̇ = 105 s−1. Since the sphere is centered on the origin, the initial
velocities are:

vx(x, y, z) = ε̇ x (8.1)
vy(x, y, z) = ε̇ y (8.2)

vz(x, y, z) = ε̇ z (8.3)

8.1.4 Objectives

In the next sections, we study the fragmentation of the hollow spheres and focus on
the following issues:

1. Strain rate effect: How does the loading affect the distribution of fragment
masses?

2. Dimensionality effect: Does the average fragment size depend on the inter-
nal radius Rint? To what extent does dimensionality affect the shape of the
fragments?

8.2 Influence of strain rate

8.2.1 Minimum strain rate leading to fragmentation and fragmen-
tation patterns

The values of the strain rate were chosen to respect some energetic and numerical
constraints. The highest value (ε̇ = 105 s−1) is set so that the computed results
display converged features, keeping the same mesh for every strain rate. The small-
est value (ε̇ = 103 s−1) is limited by energy arguments. Indeed, because of the
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(a)

(b)

(c)

Figure 8.1: Three meshes employed in the numerical simulations: (a) Geom.1
(Rint = 0), (b) Geom.4 (Rint = 0.0085), (c) Geom.6 (Rint = 0.0099)



154 Chapter 8. From two- to three-dimensional fragmentation

impulse boundary conditions, the total energy injected into the system is exactly
the impulse energy Ein, which is applied through the velocity conditions detailed
by equations 8.1 to 8.3. As highlighted by figure 8.2(c), the initial kinetic energy
(which equals Ein) is converted into potential energy. The body expands elastically
and the stress reaches the peak value σpeak. If σpeak ≤ σc,min, failure cannot take
place. The condition for failure to initiate is thus:

Ein =
Π
20
ρε̇2

(
R5

ext −R5
int

)
(8.4)

Epot,peak =
Π
12
σ2

p

E

(
R3

ext −R3
int

)
(8.5)

Eint > Epot,peak ⇔ failure (8.6)

Given the distribution of defects, this condition leads to the strain rate ε̇ ' 700 s−1

for the thinnest geometry (Geom.5), and to the strain rate ε̇ ' 880 s−1 for the
thickest geometry (Geom.1) . Figure 8.2 displays the case of the geometry Geom.6
subjected to the strain rate ε̇ = 103 s−1. Figure 8.2(c) represents the evolution of
the kinetic, potential, and cohesive energies with time. Since kinetic energy never
reaches zero, the body accumulates a sufficient amount of energy to fail completely.
Figures 8.2(a) and 8.2(b) show the associated fragmentation pattern: in figure 8.2(a)
one color is associated to one fragment, and in figure 8.2(b) the red (resp. the blue)
color corresponds to the broken (resp. non broken) edges. The comparison of the
two pictures emphasizes that some broken edges delimit two fragments, whereas
others are internal to a fragment and constitute diffuse damage.

Naturally, the number of fragments increases with strain rate. Figure 8.3 focuses
on the geometry Geom.6. For ε̇ = 103 s−1 (figure 8.3(a)), there are 132 only
fragments, which is not enough to get statistics on fragment sizes. On the opposite,
if ε̇ = 105 s−1 (figure 8.3(d)), 7426 fragments are generated and distributions of
fragment masses can be computed.

8.2.2 Evolution of the distribution of fragment masses

The effect of strain rate is studied through the distribution of masses. We selected
Geom.4 and Geom.6, and plotted (figure 8.4) the inverse of the cumulative density
function (cdf) of the dimensionless masses (m/maver), at three strain rates: ε̇ =
104s−1, ε̇ = 2.104s−1 , and ε̇ = 105s−1. Intermediate strain rates generate disperse
distributions, whereas higher strain rates lead to less scattered masses. In other
words, when the strain rate increases, fragments tend to have similar masses. This
trend has already been observed in two dimensions with the plate test (chapter 7),
but has not been observed in one-dimension (chapter 6). This difference between
one- and multi-dimensional fragmentations underlines the role of crack propagation.
Indeed, in one-dimension, crack initiation is the main mechanism, while in multiple
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(a)

(b)

(c)

Figure 8.2: Fragmentation of the geometry Geom.6 at strain rate ε̇ = 103 s−1.
(a) Each color constitutes one fragment. (b) Red (resp. blue) color corresponds to
broken (resp. non broken) edges. (c) Evolution of the kinetic, potential and cohesive
energies.
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Figure 8.3: Fragmentation pattern associated to Geom.6 for several strain rates: (a)
ε̇ = 103 s−1, (b) ε̇ = 2.103 s−1, (c) ε̇ = 104 s−1, (d) ε̇ = 105 s−1. Fragments are
represented by distinct colors. More fragments are generated at high strain rates.
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dimensions, crack propagation also takes place. The observed dependence of mass
distribution upon strain rate seems thus to be the result of crack propagation and
branching mechanisms, which are more dominant at low and intermediate strain
rates.

Moreover, figure 8.4 also displays some thin curves that are the best Weibull fits2

(the absence of fitting curve for ε̇ = 104 s−1 and ε̇ = 2.104 s−1 in figure 8.4(b)
indicates that the Weibull fit was evidently not suitable). At high strain rates, both
Geom.4 and Geom.6 can be approximated by Weibull distributions. Nonetheless,
the fit accuracy is different. On the one hand, Geom.6 leads to fragments exhibiting
Weibull-type distribution. Since Geom.6 is nearly a two-dimensional geometry, it
can be compared to the plate test, conducted in chapter 7. Indeed, in section 7.5, we
showed that at high strain rates, the distribution tends to be exponential (e.g. it is
Weibull with modulus one). In three dimensions, the Weibull modulus is 2.4. This
difference underscores that, although they can be both approximated accurately by
Weibull distributions, the plate and the very thin sphere exhibit some differences.
Three-dimensional mechanisms affect the value of the Weibull modulus rather than
the type of distribution. On the other hand, for Geom.4, the Weibull fit is obviously
imprecise. The heavier fragments are badly resolved. Consequently, when dimen-
sionality increases (e.g. when Rint decreases), Weibull fit is not necessarily adequate
anymore. This observation still requires validation: the issue of mesh convergence
has not been handled yet, and there might exists some mesh dependency in the light
fragment range.

The comparison of these observations to prior models is not straightforward; only
few experimental and numerical studies have been performed in three dimensions.
Moreover, as far as we know, they concern impact rather than expansion loadings.
Oddershede et al. [Oddershede 1993] were interested in the effect of dimensionality
in impact fragmentation of brittle materials. They observed that, in the small range,
the mass distribution follows a power law whose exponent increases with dimension-
ality and ranges from 1.0 to 1.55. Similarly, Meibom and Balslev [Meibom 1996]
carried out impact experiments on dry clay at relatively low strain rates. They
observed the same trend: the power exponent increases from 1.5 to 2.0 when di-
mensionality goes from 1 to 3. In three dimensions, they show (experimentally and
theoretically) that mass distributions exhibit two characteristic exponents: small
fragments are governed by three-dimensional mechanisms, while large fragments
follow two-dimensional laws. The transition mass between the two regimes is 0.44-
0.76 times the plate thickness.

2Fits are computed using the Levenberg-Marquardt algorithm. It constitutes an interpolation
between the Gauss-Newton algorithm and the method of gradient descent. It is slower than the
Gauss-Newton algorithm, but it provides a solution, even if the starting point is far from the final
point.
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(a)

(b)

Figure 8.4: Influence of the strain rate on the inverse of the cumulative density
functions of the normalized fragment masses: (a) for Geom.6 and (b) for Geom.4.
Thin curves represent best Weibull fits.



8.2. Influence of strain rate 159

These experimental results have been confirmed by theoretical and numerical
models. The Gilvarry’s theory [Gilvarry 1961a] concerns expansion loadings and
integrates three-dimensional effects (see section 2.4.2). It distinguishes between
one-, two-, and three-dimensional flaws, and affects a Poisson process to each of
them. Fragment size distributions are shown to exhibit exponential distribution.
Besides, based on Gilvarry’s proof, Åström et al. [Åström 2004b] derived another
representative fragment mass distribution, which decouples small and large fragment
behaviors. Crack branching and merging mechanisms produce power law in the
small size range, whereas Poisson process controls the large size range and leads to
exponential cutoff at a system-dependent length scale (see section 2.4.3). Similarly,
Carmona et al. [Carmona 2008, Wittel 2008] decoupled the behavior of small and
large fragments. They simulated the fragmentation of a plain sphere submitted
to impact loading and observed that, for large enough velocities, mass distributions
follow a power law in the small fragment range, while large fragments are represented
by an exponential cutoff of the power law.

Although impact and explosive loadings involve distinct mechanisms, the distri-
bution of fragment masses that they result in, has been shown to exhibit the same
shape [Åström 2000]. For impact loadings, fragmentation is located close to the
impact boundary and energy is used locally in compression. By contrast, for explo-
sive loadings, fragments are distributed over the entire body and energy is used in
tension. In both cases, Åström emphasizes that the distribution of fragment sizes
combine a power law for the small fragments and a finite cut-off generally repre-
sented by an exponential. The difference between the two loadings lies in the value
of the constants, among which the exponent of the power law. Impacts should lead
to higher values than explosions.

In order to verify whether our numerical simulations also lead to scale-invariant
distribution for small fragments and exponential distribution for large fragments,
we focus on the numerical experiment conducted for the geometry Geom.4 at strain
rate ε̇ = 105s−1. As highlighted by figure 8.4(b), the Weibull fit does not repre-
sent accurately the whole distribution. Light and heavy fragment ranges are thus
decoupled. Figure 8.5 displays power and Weibull fits calculated independently for
each range. Apparently, in both ranges, the Weibull approximation is better. The
idea of decoupling the fit depending on fragment ranges is thus valid, but we do not
recover any scale-invariant mechanism in three dimensions, for uniform expansion.
This lack of criticality in the small range is probably due to the mesh element size.
The precision of the lighter fragments can be improved by considering finer meshes.
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Figure 8.5: Inverse of the cumulative distribution of the normalized masses com-
puted at strain rate ε̇ = 105s−1 for the geometry Geom.4. Best fits of type power-law
and Weibull are displayed; heavy and light fragment ranges are decoupled.

8.3 Influence of the hollow sphere thickness

8.3.1 Evolution of the average fragment size

We now focus on the effect of dimensionality on fragmentation. We compute the
number of fragmentsNfrag and deduce the average fragment size saver assuming that
fragments exhibit cubic shapes. Writing that the total volume of the sphere equals
Nfrag times the average volume of the fragments leads to the average fragment size:

saver =
(

Π.(R3
ext −R3

int)
6.Nfrag

)1/3

(8.7)

Figure 8.6 represents the evolution of the average fragment size with internal ra-
dius Rint for various strain rates. Note that for the strain rate ε̇ = 105s−1 some
points associated to the small Rint are missing due to lack of convergence. Surpris-
ingly, the curves are not monotonous. Very thin spheres (Geom.6) lead to many
fragments, or to an equivalently small average fragment size. Then, as dimension-
ality increases (e.g. Rint decreases), saver first increases until a peak, after which it
slowly decreases. Therefore, we define three stages:

• Fully 2D: (Geom.6): There is no propagation in the thickness, all the energy
is used for 2D-fragmentation (see figure 8.7(a)).

• Transition from 2D to 3D (Geom.5 and Geom.4): Propagation through the
thickness takes place, but the thickness is not large enough to allow crack
merging, and a fortiori the nucleation of several fragments. Part of the input
energy is consequently lost into crack propagation (see figure 8.7(b)).
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• Fully 3D (Geom.3, Geom.2 and Geom.1): The thickness is sufficiently large to
induce multiple fragments through it. Energy is dissipated into crack propa-
gation and crack branching, which results in more fragments (see figures 8.7(c)
and 8.7(d)).

Figure 8.6: Evolution of the average fragment size distribution with internal radius
of the sphere Rint at various strain rates.

Figure 8.7 displays the fragmentation patterns associated to Geom.1, Geom.3,
Geom.5, and Geom.6 at strain rate ε̇ = 104s−1. It highlights that the shape of
the fragments depends on the internal radius Rint. In 2D, fragments are very thin.
During the transition 2D-3D, crack merging cannot take place and fragments are
elongated in the radial direction. In 3D, cracks are able to propagate through the
thickness, which is large enough to allow fragment nucleation. Nonetheless, there
exists a difference in the shape of fragments formed close to the boundaries and
within the body: fragments are more elongated when crack propagation interacts
with boundary, and are more equally shaped within the bulk. Consequently, three-
dimensional fragmentation results in failure patterns that exhibit both bulk and
boundary features.

The idea that fragments need a minimum thickness to be generated can be un-
derstood schematically. In figure 8.8, fragments are represented by circles whose
size is set by strain rate. In 2D, there is no crack propagation through the thick-
ness and, fragments are quasi two-dimensional. By contrast, in 3D, there is crack
propagation and several fragments can be generated through the thickness. During
the transition between 2D and 3D, crack propagation also occurs, but since they are
too large, several fragments cannot fit through the thickness.
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(a) (b)

(c) (d)

Figure 8.7: Fragmentation patterns computed for (a) Geom.6, (b) Geom.5, (c)
Geom.3, and (a) Geom.1 at strain rate ε̇ = 104s−1. (a) No crack propagation
through the thickness. (b) Crack propagation and slight branching through the
thickness, but no fragment generation. (c) and (d) Crack propagation and fully
developed branching, with fragment generation through the thickness. Fragments
close to the boundaries are more elongated than the ones within the body.

End of 2D Transition

 2D-3D

End of 2D Fully 3DFully 2D

Increasing thickness, same fragment size

Figure 8.8: Schematic of the transition between 2D and 3D fragmentations. Frag-
ments are represented by blue spheres (the view is a cut through the thickness).
Thickness of the body (in green) increases from left to right. In 2D, the thickness
is not large enough to allow the generation of several fragments through it. By
contrast, in 3D, multiple fragments fit easily through the thickness.
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8.3.2 Evolution of the shape of the fragments

To confirm whether three-dimensional fragmentation leads both to 2D- and 3D-
like fragments, we study the shape of the fragments. One way of addressing this
issue consists in computing the fragments’ momenta of inertia. To handle this, we
first determine the center of mass (CM) and the inertial tensor of each fragment in
the reference basis at the center of mass ICM :

ICM =



Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz


 ∼



I0 0 0
0 I1 0
0 0 I2


 (8.8)

If the center of mass of the fragment has the coordinates (xCM , yCM , zCM ), then
the component of the matrix of inertia are:

Ixx = ρ

∫

volume

(
(y − yCM )2 + (z − zCM )2

)
dV (8.9)

Iyy = ρ

∫

volume

(
(x− xCM )2 + (z − zCM )2

)
dV (8.10)

Izz = ρ

∫

volume

(
(x− xCM )2 + (y − yCM )2

)
dV (8.11)

Ixy = ρ

∫

volume
(x− xCM )(y − yCM )dV (8.12)

Ixz = ρ

∫

volume
(x− xCM )(z − zCM )dV (8.13)

Iyz = ρ

∫

volume
(y − yCM )(z − zCM )dV (8.14)

Since the inertia tensor is symmetric positive, it has necessarily three eigenvalues.
We compute them by equalizing the characteristic polynomial to zero. This leads to
an equation of order three that we solve using the Cardan technique. The eigenvalues
I0, I1, and I2 are the momenta of inertia (equation 8.8), and are ordered so that
I0 ≤ I1 ≤ I2. They are defined in a local basis attached to a given fragment. Large
momentum of inertia in a given direction represents a fragment with large dimension
in that direction. As a result:

I0
I2
' I1

I2
' 1 ⇒ The fragment is 3D and has a spherical or cubic shape (equiaxed)

I0
I2
¿ I1

I2
' 1 ⇒ The fragment is 2D and has a circular or square shape

I0
I2
¿ 1 and I1

I2
¿ 1 ⇒ The fragment is 1D and has a bar shape if I0 ' I1
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For each fragment, we compute the ratios I0
I2

and I1
I2
, and we plot the points of

coordinates ( I0
I2
, I1I2 ) in figure 8.9, for the geometries Geom.2, Geom.5, and Geom.6.

Naturally, these ratios are positive, smaller than one, and since I0 ≤ I1, all the points
are in the upper quadrant. Red crosses are associated to Geom.6 and are mainly on
the left size of the figure. It expresses that the largest dimension is large compared
to the two others. Fragments of type A and B (see figure 8.9) are susceptible to be
generated. By contrast, Geom.2 (dark points) leads to fragments characterized by
inertial ratios that are mostly located on the right side of the figure, which suggests
that they tend to be equally sized. Fragments of type C are more likely to be
encountered, especially near the boundary. Finally, Geom.5 (green points), which
corresponds to the transition 2D-3D, displays ratios ranging from 2D (red crosses
of Geom.6) to 3D (black points of Geom.2). Consequently, during the transition,
fragment shapes combine 2D and 3D types of fragments. In 3D, both types are also
present, but the 2D fragments are not easily visible, hidden by the numerous 3D
fragments.

Figure 8.9: Ratios I0/I2 and I1/I2 computed for each fragment, resulting from the
fragmentation of the geometries Geom.2 (thin dark points), Geom.5 (green points),
and Geom.6 (red crosses), at strain rate ε̇ = 2.104 s−1.

This trend can also be highlighted by considering the cumulative density function
associated to the ratios I0

I2
and I1

I2
. Figure 8.10(a) (respectively figure 8.10(b)) plots

the distribution of the ratio I0
I2

(respectively I1
I2
) associated to the fragmentation of

the geometries Geom.3, Geom.4, Geom.5, Geom.6 at strain rate ε̇ = 2.104s−1. As
dimensionality increases (e.g. Rint decreases) the curves are shifted to the right and
are thus getting nearer to one. It indicates that the largest and the two smaller
dimensions of the fragments become closer when dimensionality increases. In other
words, fragments exhibiting three equal dimensions may be encountered as dimen-
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sionality increases (this observation is only a trend since most fragments remain
characterized by I0

I2
' 0.5 and I0

I2
' 0.8 and are thus not equally sized).

(a)

(b)

Figure 8.10: Inverse of the cumulative distributions of the ratios (a) I0/I2 and (b)
I1/I2. The curves are getting closer to one another when dimensionality increases.

In summary, in three dimensions, most fragments have 3D-type shape (e.g. the
three dimensions are approximately equal). Naturally, the smaller the internal radius
Rint is, the more 3D-fragments are generated. However, 2D fragments (e.g. one or
two dimensions are small compared to the largest) can be encountered.

8.4 Summary

The fragmentation of 1/8th of a hollow sphere has been simulated for various
strain rates and sphere thicknesses. The impulse boundary conditions require a
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minimum strain rate to initiate failure. Once this limit passed, we have computed
fragment mass distributions as well as fragments’ momenta of inertia, in order to
study strain rate and dimensionality effects.

When the thickness of the sphere membrane is small enough (2D fragmentation),
mass distributions can be approximated by a Weibull distributions. Small strain
rates lead to disperse distributions. These observations confirm the ones proposed in
chapter 7 for the plate test. By contrast, when the plate is thick, Weibull distribution
cannot resolve both light and heavy fragments. These two ranges have thus been
decoupled and fitted independently using the Levenberg-Marquardt algorithm. In
three dimensions, small and large fragments appears to be governed by distinct
mechanisms.

In order to understand better the reasons for this decoupling, a geometrical jus-
tification of the transition between two- and three-dimensional fragmentation has
been proposed. If the thickness of the hollow sphere is large enough, multiple frag-
ments can be generated through it (3D fragmentation). On the contrary, if it is
very thin, at most one fragment can be encountered (2D fragmentation). During
the transition 2D-3D, cracks propagate through the thickness but do not merge.

Finally, the shapes of the fragments have been analyzed. For each fragment,
momenta of inertia were computed to quantify the three principal dimensions of the
fragment. As the hollow sphere thickness increases, the number of fragments that
are nearly equally-shaped (e.g. the three dimensions are very closed to each other)
increases. We named them ’3D fragments’. Naturally the proportion of ’1D’ or
’2D fragments’ (e.g. one or two dimensions are very small compared to the largest
one) decreases with the sphere thickness, although they remain present in every
simulation. These 1D or 2D fragments are mainly formed closed to the internal and
external sphere boundaries where crack propagation interferes.

As far as we know, apart from the ones presented here, few simulations of three-
dimensional fragmentation involving complex physics have been run [Carmona 2008].
This computational capability allows us accessing features that have been little de-
scribed. The study of fragment shapes in three dimensions through inertia momenta
certainly constitutes a new topic of research. Despite the novelty of these results,
more simulations should be run with different mesh size in order to quantify the role
of the mesh on the fragment shape, and to go deeper in the understanding of the
mechanisms underlying three-dimensional fragmentation.
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Conclusion

9.1 Summary

This thesis has been dedicated to improving the physical understanding and the
predictability of the fragmentation of brittle materials using advanced numerical
tools. Each chapter attempted to shed light on some difficulties that we might
recall, along with the main conclusions reached in each chapter.

9.1.1 Chapter 2: A collection of fragmentation models in dynamics

Compiling prior models of fragmentation into a state of the art chapter was chal-
lenging. Indeed, since fragmentation is a transverse subject, it has attracted sci-
entists from many domains. Gathering and ordering their contributions was not a
simple process. In the thirties, mining engineers were the first to become interested
in fragment mass distributions [Rosin 1933]. They were followed by mathematicians
with statistical tools [Lienau 1936]. During World War II, since military research
was intensively concentrated on the area of explosions, a large amount of experimen-
tal data on ductile materials was produced [Mott 1943b]. Besides experiments, Mott
put the emphasis on understanding the physics underlying fragmentation. Propos-
ing empirical laws of fragment mass distributions did not satisfy him; he produced a
complex statistical theory. Mott understood that fracture originates at defects and
that failure is accompanied by propagating stress waves that protect the structure
from further damage [Mott 1947]. These advanced developments have modified the
perception of fragmentation. Since then, defect and stress wave effects have been
the driving forces in this research.

The first statistical theories accounting for defects were proposed in the six-
ties [Gilvarry 1961a]. With the emergence of computers in the seventies, various
numerical frameworks were formulated (element-based and particle-based) and were
used to simulate fragmentation. In the early nineties, models of failure were inte-
grated into numerical codes, making them an efficient, safe, and cheap tool to study
fragmentation. They naturally handle stress wave effects that theoretical models
could not account for, because of their high non-linearity. They can also include an
explicit description of defects. Compared to experiments, which involve high tech-
nology devices to investigate the time evolution of the fragmentation process, and
which require a certain precaution to control high velocity impacts and explosions,
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numerical simulations are undoubtedly safer and cheaper. However, statistical mod-
els have the advantage of being simple and therefore convenient, and experiments
are the only possible way to reproduce reality exactly.

Finally, the invaluable publications of Grady [Grady 1990] based on energy argu-
ments, the self-similarity concept developed by Turcotte and others [Turcotte 1986b],
have provided complementary points of view. Seminal contributions based on en-
ergy equilibrium, entropy maximization, cascade processes, etc., have led to elegant
principles that represent quite accurately reality. One aim of this thesis has been
to bridge those arguments through numerical simulations in order to understand
better the physics of fragmentation.

9.1.2 Chapter 3: Modeling and implementing

The numerical framework used in this thesis is based on Galerkin methods and
cohesive zone approach. The novelty lies in the parallelism of the code, based on the
discontinuous Galerkin method, as well as in its ability to represent accurately the
physics of fragmentation. Originally, we investigated expanding ring fragmentation.
This test did not require very fine meshes, and serial computation was sufficient.
Consequently, we simply used the finite element method that provides an approxima-
tion of the displacement at the nodes of a continuous mesh. However, since it cannot
capture fracture evolution, coupling with other concepts is necessary. Among them,
the cohesive zone model has widely spread during the past decades. Developed in
the seventies, it has been adapted to numerical frameworks via both the implicit and
the explicit approaches. In the implicit approach, cohesive elements are inserted at
every edge of the mesh where failure is expected to occur. In the explicit approach,
cohesive elements are inserted dynamically as soon as a failure criterion is satisfied.
The major advantage of the former is its rather simple implementation. However,
adding cohesive elements from the onset adds an artificial compliance which alters
elastic wave speed. To limit this effect, the time step must be reduced as much
as possible; a compromise between physical accuracy and numerical efficiency must
thus be made. Therefore, to counter this difficulty, dynamic insertion (or explicit
approach) was developed by Ortiz and coworkers [Camacho 1996, Ortiz 1999]. This
dynamic insertion and Ortiz’s linear irreversible law have been used during this
thesis for serial simulations of the ring fragmentation.

Nonetheless, the explicit cohesive approach has a major drawback that makes it
hardly parallelizable. Changing the mesh topology repeatedly is costly and quite
difficult to implement. Parallelizing the initial numerical framework would have
required significantly impairing operations, and would have consequently rendered
the framework inefficient. Nonetheless, parallelization appeared to be mandatory
to handle large meshes and to reach high dimensionality (because of the limited
memory of a processor). Another technique ought to be found.
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First developed in the Massachusetts Institute of Technology, Boston, USA by
Pr. Raul Radovitzky and coworkers, the discontinuous Galerkin method (DGM)
can naturally be parallelized and be coupled to cohesive elements. We thus initiated
a close collaboration with this research group. In particular, we carried out fruitful
investigations with Pr. Raul Radovitzky during his sabbatical in the LSMS labo-
ratory of EPFL, that tested and improved the initial parallel code. We also added
new functions specific to the problem of fragmentation. Besides this code, we have
had access to efficient machines available at EPFL (the LSMS cluster, Pleiades2,
Callisto, and BlueGene). Combining these two capabilities has allowed us to con-
duct massively parallel simulations, and to reach convergence in multi-dimensional
problems.

The basic idea of the DGM is as follows: parallelizing a code naturally gener-
ates communication between processors. In fragmentation problems, since failure
occurs at many locations, mesh topology changes constantly. This results in heavy
communications, which drastically limit the efficiency of the calculations. The main
goal is thus to find a method in which mesh topology does not evolve. The DGM,
which is mostly used in fluid mechanics and transport equations, appeared to be an
adequate response. It deals with discontinuities by relaxing the compatibility equa-
tions between elements. Every face of the mesh is weakly in equilibrium (whereas
it was strongly in equilibrium in the finite element method), which provides addi-
tional degrees of freedom at the nodes. The displacements of the nodes of a face
now have the possibility to be different at each adjacent element. This amounts to
having interface elements between two adjacent elements with a condition on their
equilibrium. By inserting interface elements everywhere, at each face of the mesh,
cracks can nucleate everywhere and the mesh topology does not change.

In the implementation, before the dynamic loop begins, the mesh is split (nodes
are decoupled and interface elements are inserted everywhere). Each face is con-
trolled either by the DG framework (elastic response), or by the cohesive law (failure
response). The switch between the two laws occurs as soon as the failure criterion
is verified. This failure criterion concerns the local value of the stress: when it goes
beyond the cohesive strength threshold, the switch is effective and definitive.

However, this switch is accompanied by a local discontinuity in stress (that de-
pends on the difference between the cohesive strength and the stress before the
switch occurs). To limit its effect, the time step is chosen small enough, and the
Gauss points are treated independently. An other drawback of the numerical scheme
stems from the mass matrix lumping. It may filter high frequency modes, and sud-
den variations (such as a propagating wave front) may not well be represented.
Although they may generate some instabilities in some sensitive cases, these limi-
tations have secondary effect and do not affect the quality of the results. Besides,
the major drawback of the DG framework lies in the multiplication of the degrees
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of freedom. The multiplication of nodes and the insertion of interface elements at
each edge of the mesh require significant memory increase.

Finally, in order to model material heterogeneity, we selected distributions of co-
hesive strengths. The issue here was to choose representative distributions. Based
on the weakest link principle and the probability of failure in quasi static, we showed
that the Weibull distribution is the most appropriate for brittle materials. Extreme
value statistics confirmed this result. In the other chapters, we thus mostly con-
sidered Weibull distributions of defects. Besides, the cohesive parameters (cohesive
strength and toughness) are only representative of the defects, their values do not
involve rate dependency. As long as the mesh is fine enough, microcracks are ex-
plicitly represented and rate dependency is a natural consequence of this exhaustive
description.

Consequently, the advantages of this method are numerous:

• The DGM is a consistent, accurate and converging method.

• Large scale simulations can be run.

• Fracture is not instantaneous and dissipates energy.

• Energy balance is verified.

• Young’s modulus is not altered by the presence of interface elements, and
stress waves are accurately represented.

• Weibull distribution of defects can be naturally included.

9.1.3 Chapter 4: General physical concepts

This chapter constituted a transition between the technical issues raised in chapter
2 and the main contributions of the thesis of the following chapters. It was devoted to
explaining to capital mechanisms that arise in fragmentation: crack interactions and
energy transfer. Crack interactions occur through stress waves, which are released
because of the discontinuity in the stress field that the crack opening generates.
When numerous defects nucleate, they induce multiple stress waves that propagate
and interact. Wave interaction can be constructive or destructive. When it is
constructive, the amplitude of the resulting wave is higher than the initial ones. This
scenario requires restricting conditions that makes it relatively rare. By contrast,
destructive interactions create waves with lower amplitude. The resulting waves
propagate along the structure and interact again. Defects are thus encompassed
several times by stress waves, which gradually damage them. The final state of a
defect (e.g. intact, damage, or fully broken) strongly depend upon this multiple
passing waves. The network of secondary waves is shown to be negligible if the
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material is homogeneous, as well as if the strain rate is very high. On the contrary,
it is significant for heterogeneous materials, and its effect increases with material
ductility.

Besides stress wave dynamics, energy arguments underline the energy conversions
occurring during the process. In explosive fragmentation, the structure stretches,
accumulates potential energy until it reaches a peak. After this peak, whose value
is determined by material parameter and strain rate, potential energy is mostly
converted into failure. This direct conversion takes place in the first stage. If it is
not sufficient, kinetic energy that is in excess in the body, is converted into failure
energy, which is in turn used in failure. This indirect conversion is slower and gen-
erally occurs at high strain rates as well as for ductile and heterogeneous materials.
Therefore, material properties, defects, and loading are key parameters influencing
the dynamics and the energy transfers underlying fragmentation. Energy conver-
sions are time dependent processes. Writing solely the energy balance equation,
which relates kinetic, potential, and failure energies, does not give access to their
dynamic evolutions. In order to understand fully energy transfers and the effect of
the key parameters, an exhaustive temporal description must thus be achieved.

9.1.4 Chapter 5: Signature of defects in one-dimensional fragmen-
tation

The main objective of this chapter was to understand and quantify the role of
defects in failure initiation. In order to avoid crack propagation, we selected a
one-dimensional geometry and loaded it in tension (Mott’s expanding ring test).
The ring has the advantage of limiting contacts between fragments and avoiding
boundary difficulties. We thus pursued numerical simulations on Mott’s test. As
Mott predicted, when failure occurs at a defect, stress waves propagate in both
directions around the defect. Since each defect is able to be initiated, several waves
propagate and interact. We showed that the rate of failure initiation depends on
the left tail of the distribution of cohesive strengths. The extreme cases are uniform
and normal distributions. Indeed, the left tail of the normal distribution is flat
(slope tends to be null), while it is infinitely steep in the uniform distribution. This
difference results in very distinct behaviors.

When the weakest link is activated, the ring is in a state of uniform tensile stress.
For a normal distribution, scarcely any weakest links are present along the ring.
The stress continues increasing everywhere but at the weakest link, until the second
weakest link nucleates. Then, the stress increases everywhere except around the
two weakest links. The process continues smoothly. On the contrary, for uniform
distributions, there are numerous weakest links and they nucleate simultaneously.
This results in many propagating and interacting stress waves. The response is
more disordered and generates more fragments. We quantified the amount of stress



172 Chapter 9. Conclusion

wave interactions with a new parameter, which only depends upon the shape of
the left tail of the cohesive strength distribution. The value of this parameter was
determined empirically through a series of tests.

We also generalized the scaling that Zhou et al. [Zhou 2006c] proposed and had
verified for homogeneous materials in one-dimensional. They defined material de-
pendent characteristic length scale and strain rate, which efficiently scaled their
results. However, when materials are heterogeneous, material parameters are de-
fined through distributions instead of single values. Zhou et al.’s scaling is no longer
up to date; we thus enriched it using our newly defined parameter. By normalizing
the average fragment size and the strain rate with the updated characteristic param-
eters, we managed to gather all the initially scattered results into a single curve. In
quasi static, the average fragment size exhibited independent response from strain
rate, whereas in dynamics, it followed a power law with exponent -2/3, which was
predicted by Grady’s energy-balance theory.

9.1.5 Chapter 6: Predictable mass distribution in one dimension

The numerical results of the expanding ring test also provided fragment mass
distributions. We studied them and compared them to prior models. Statistics,
physics and experiments have given rise to a wide range of predictions of fragment
mass distributions. On the one hand, the derivation of Poisson point statistics and
hazard functions lead to exponential forms. On the other hand, physical arguments
indicated that fragment masses have a self-similar behavior and that power laws
should describe them better. Other arguments have been employed, but in the end,
most distributions combine exponential and power laws.

In order to focus solely on the shape of the fragment mass distribution, we nor-
malized masses by the average fragment mass. This efficient scaling resulted in a
unique law irrespective of material parameters and strain rate. We proposed to fit
the unique distribution with the generalized gamma distribution with shape param-
eter two. This uniqueness is a very strong result that we emphasize is only valid for
one-dimensional geometries, in which crack propagation is negligible.

We also focused on the behavior of the heaviest fragments. Extreme value statis-
tics predicted that the heaviest fragments follow Gumbel distributions. We verified
it numerically. By contrast to the prior unique behavior, heaviest fragments exhibit
a dependence upon strain rate, defect parameters and length of the ring. In one-
dimension, the fragment mass distribution is thus unique, but the heaviest fragment
distribution depends upon input parameters.
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9.1.6 Chapter 7: Fragmentation of a plate

One-dimensional geometries have the advantage of being simple and of giving
access to interesting physics of crack initiation. However, they do not provide in-
formation about crack propagation. As a result, we considered a thin plate loaded
in biaxial tension. Since it involves large meshes, we used parallel computations
to simulate the plate fragmentation response. The numerical framework is the dis-
continuous Galerkin method coupled to cohesive zone model. Post processing gives
access to fragment masses. We first verified numerical convergence in terms of
number of fragments and distribution of fragment masses. Once convergence was
reached, results were analyzed.

Few computational results dealing with multi-dimensional fragmentation are avail-
able. Our objective was to provide a better understanding of the role of material
parameters, defect distribution and strain rate. Because of the complexity of the
process, we decided to think in terms of energy and we enriched ’Grady’s model’
of equilibrium fragmentation. It assumes that energy equilibrium is verified at the
fragment scale. The derivation of the balance between input energy and fracture en-
ergy yields characteristic time and length scales. Nonetheless, Grady acknowledged
that equilibrium fragmentation is generally not representative of brittle fragmenta-
tion, in which an excess of potential energy is accumulated in the body and leads
to more fragments. By defining additional characteristic times in Grady’s model,
we showed that two regimes exist. The limit between these two regimes has been
derived theoretically and is highly dependent upon material parameters.

In quasi static, fragmentation is governed by the value of the failure strengths.
We call it the strength controlled regime. Before failure onset, the body ’slowly’ ac-
cumulates energy in excess (the minimum cohesive strength is higher than the peak
stress associated to Grady’s equilibrium theory). This results in more fragments
than Grady’s prediction. When the cohesive strengths are reached, failure initiates.
Since stress waves propagate fast (the relative velocity between stress waves and
material points is high), the fragmentation process occurs very ’rapidly’ in compari-
son to the loading phase and involves extensive stress wave interactions. Therefore,
quasi-static loadings lead to highly dynamic fragmentation processes.

By contrast, in dynamics, fragmentation is governed by energy equilibrium. We
call it the toughness controlled regime. Little input energy is accumulated in excess
and the response occurs almost in Grady’s equilibrium. Moreover, since the elastic
wave speed is close to the velocity at which the plate is pulled, stress waves barely
propagate and interact. The information that failure has occurred does not have
time to broadcast and reach the body boundaries. A non-negligible amount of time
is thus necessary for the stress waves to establish steadily. During this time, we keep
pulling on the plate, which accumulates energy. As a result, slightly more fragments
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than Grady’s prediction are computed. In this regime, the loading phase is ’rapid’,
whereas fragmentation is a ’slow’ process involving few stress wave interactions.
Dynamic loadings are thus associated to smooth fragmentation processes.

We also investigated whether the scaling defined in one-dimension was still valid
in multiple dimensions. For all the material studied, the normalization is rather
efficient. It gathers all the computed points around the one-dimensional predic-
tion. Therefore, it seems that crack propagation does not significantly affect the
efficiency of the scaling. Besides, in the high strain rate regime, we compute more
fragments than Grady (by a factor of three), but we recover its -2/3 characteristic
exponent. Therefore, Grady’s concept of equilibrium constitutes of good and simple
approximation. However, it does not include all the physical mechanisms occurring
during fragmentation. Benefiting from the accuracy of the numerical framework,
we have been able to underline Grady’s model limitations and have quantified the
error made, when the dynamics of stress waves and energy transfers are not taken
into account.

Finally, we also studied fragment mass distributions and showed that strain rate,
material parameters, and microstructural parameters do affect the shape of the
distribution. In the toughness controlled regime, the fragment mass distribution
exhibits a regular behavior which can be fitted with a Weibull distribution, with
modulus close to one (suggesting that interactions are limited). In the strength
controlled regime, fragment mass distributions are more disordered and no adequate
fitting was found. Contrary to one dimensional observation, there is no unique
distribution of fragment masses in the plate test.

9.1.7 Chapter 8: From two- to three-dimensional fragmentation

Three-dimensional fragmentation involves mechanisms that could not be investi-
gated with the ring nor the plate geometries. The fragmentation of a hollow sphere
has thus been simulated, and fragment mass distributions and fragment shapes have
been analyzed. The breakage of a very thin sphere induces fragments whose masses
follow a Weibull distribution. When it becomes thicker, a single fitting function can-
not resolve precisely the behavior of all the fragments. Light and heavy fragments
were thus considered independently, and we showed that in both ranges, Weibull dis-
tributions approximate accurately the computed results. This decoupling highlights
that distinct mechanisms control three-dimensional fragmentation.

In order to understand this observation better, we focused on fragment shapes.
In two dimensions, fragments are mostly flat, whereas in three dimensions, the ma-
jority tends to exhibit equal dimensions in the three directions. When the sphere is
thick, cracks interfere with boundaries and fragments that are generated close to the
boundaries are more elongated. The transition between two- and three-dimensional
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fragmentation has been explained schematically. If the thickness is very small, no
crack propagation occurs in the third dimension (2D fragmentation). Conversely, if
it is large, the cracks can propagate, branch, and merge (3D fragmentation). Dur-
ing the transition, cracks propagate through the thickness but do not have space to
merge; fragment nucleation through the thickness is improbable.

9.1.8 Ideas that need to be emphasized

Among these results, here are the seven major contributions of this thesis for the
understanding of fragmentation:

1. The use of High Performance Computing in fragmentation simulations based
on cohesive elements is necessary to simulate accurately fragmentation mech-
anisms.

2. Both the dynamics of stress waves and energy arguments govern fragmenta-
tion.

3. The left tail of the cohesive strength distribution (e.g. the largest defects or
equivalently the weakest defects) determines the rate of failure initiation, and
the level of interaction between stress waves.

4. Depending on material properties and strain rate, fragmentation can either
be strength controlled (low strain rates, dynamic fragmentation process, ex-
tensive stress wave interactions, probabilistic) or toughness controlled (high
strain rates, smooth fragmentation process, few stress wave interactions, de-
terministic).

5. The -2/3 exponent in Grady’s model seems always valid, but we predict more
fragments by a factor of three than Grady, because of the time dependence of
energy transfers and stress wave interactions.

6. The distribution of fragment masses is dependent upon strain rate and material
parameters. Crack propagation mechanisms are the origin of this dependence.

The originality of this thesis lies in the alliance of high performance computing
and physical interpretation. In the past, the topic of fragmentation has mostly
been tackled separately by engineers, physicists, statisticians, experimentalists, or
computer scientists. Few investigations have attempted to relate these different
disciplines. Future advances in fragmentation will have to keep combining them to
provide a deeper understanding of fragmentation.

9.2 Perspectives ...

Understanding the physics underlying fragmentation is a great challenge; many
years of hard work and collaboration between scientific fields will probably be nec-
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essary to become truly predictive. Here are some interesting possible developments,
in the field of numerical simulation of fragmentation.

9.2.1 ... in line with the present thesis

In order to extend the work done so far, a few topics could be explored:

• Explosion in three dimensions: To continue the work achieved with the
sphere, other three-dimensional geometries should be considered to answer the
questions: Are the strength and toughness controlled regimes still observable?
What is the average fragment size behavior? Can it be predicted?

• Size effects: Does the size of the geometries affect our conclusions? Must a
critical behavior be emphasized while changing the dimensions of the geome-
tries? Is it related to the distribution of defects?

• Fragment velocity: What is the distribution of fragment velocities and ki-
netic energies [Grady 2001]? This is a matter of security since kinetic energy
is the characteristic value that determines whether the flying fragments are
harmful to their surroundings (including of course human beings).

• Influence of the loading on fragment shapes: How does the loading af-
fect fragment shapes? Instead of considering a plate in biaxial tension, it could
be loaded differently along the two axes. Investigating the effect of confine-
ment on the fragment shapes would also be interesting. More detailed studies
in three dimensions induce a deeper understanding of the three-dimensional
mechanisms. Can a scaling of fragment shape be defined? [Kun 2006].

All these studies could immediately be carried out immediately. The code is
available to compute fully three-dimensional response on multiple processors. Post
processing for fragmentation is also ready: it counts the number of fragments, de-
termines the fragment masses, as well as the three momenta of inertia (to study
fragment shape).

9.2.2 ... broader impact

In this thesis, we have studied fragmentation through explosions, we considered a
simple elastic response before fracture onset, materials were mostly brittle, and we
have represented defects statistically. These hypotheses can be enriched:

• Impacts: In daily life, fragmentation generally results from impact load-
ings, rather than explosions. At first, we chose explosions because simula-
tions are easier to perform. Indeed, in impacts, the loading is compressive
at first, tension occurs after some wave reflections, and contact issues may
arise. In explosions, the structure is directly loaded in tension which limits
contacts. However, the DG framework seems to handle compression efficiently:
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Radovitzky and coworkers are currently able to run simulations of compres-
sive responses at high strain rate. New simulations may thus be performed to
study impact fragmentation. Then, a comparison of exploding and impacting
behaviors would be fair [Åström 2000]. Relating angle of impact to physical
mechanisms would also be worthwhile [Grady 2001]. It is our belief that simu-
lations of impact fragmentation is a promising field, and efforts should mainly
be focused on the issues it raises.

• Fundamental concepts: A crack branching criterion, based on microstruc-
tural properties rather than energy arguments, could be proposed. Crack tip
velocity in diverse materials and crack configurations, could be measured. The
failure of a three-dimensional structure generates free surfaces, whose shapes
could be characterized using fractal theory for instance.

• Explicit microstructure: Instead of modeling microstructure statistically
at the mesoscale, an explicit representation at the microscale is a possible
direction. The scalability of the DG framework would be used to go to small
scales, rather than high strain rates. Diverse microstructures could be tested
(concrete, composites, etc) and compared. Non-local approaches might also
be used. Fragmentation would then be a multiscale problem. Definition of a
representative volume element of the microstructure and its homogenization
could give rise to the definition of a damage parameter and a new multiscale
continuum formulation [Denoual 2002, Kun 1999].

• Transition from brittle to ductile: It is well known that materials sub-
jected to fragmentation will behave differently, depending on whether they are
brittle or ductile. These concepts could be investigated by simply changing the
coefficients in the cohesive law (large toughness for ductile materials). Bulk
plasticity could also be included in the modeling of ductile fragmentation.

• Multiphysics: Inserting heat transfer would give access to a wider range of
applications such as electronics (semi-conductors), space science (re-entrance
of objects or asteroid entrance into the Earth’s atmosphere), industrial appli-
cations involving heating and rapid cooling, etc.

• Damage evolution in composite materials: In many industrial applica-
tions in which weight and strength are optimized, composite materials are
selected. Slender structures (airplane fuselage, helicopter rotor blades, sub-
marine vessels, ...) are typically made of composites and designed to resist
dynamic loadings. A physical-based modeling of the damage in large scale
structures can be accurately achieved using the framework presented in the
thesis.

• Design of new materials: Microstructure may be adapted, depending on
whether the material should dissipate a lot of energy (bullet proof) or be resis-
tant (car windshield). The size of the defects, as well as their spatial location
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and density are design parameters that lead to very distinct fragmentation
responses. Playing with them could induce new materials that would enforce
fragmentation to occur at a given strength and a given place.

All of the aforementioned research topics might intertwine the three scientific fields
of fundamental mechanics, high performance computing, and experimental science.
Taking advantage of these three cores of modern mechanical sciences would broaden
our understanding, provide relevant characteristic models and, more practically,
would guide the design of innovative materials and structures.
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Parallel code for fragmentation

This appendix is dedicated to those willing to use the functions developed for
the fragmentation post-processing. The serial version is rather simple whereas the
parallel algorithms are more subtle. The objective consists in indicating, for each
node or tetrahedron of the mesh, the fragment that they belong to. The methodology
used to delimit the fragments’ boundaries is composed of two steps:

1. Construction of the facet and the element lists, which are fully related to the
mesh topology and independent from the damage variables. It occurs when
the function CreateLists(char*) is called (can be done at any time after mesh
split).

2. Construction of the fragment list, which needs the facet and the element lists,
as well as the damage variables computed during the dynamic loop. It is
achieved during the function FragmentProcedure(char*) (should be called each
time information on the fragments is required, usually at the end of the sim-
ulation).

A.1 Useful linked lists

Three linked lists are constructed: FacetElemList (for the facets corresponding
to interface elements composed of 12 nodes), TetraElemList (for the tetrahedra
corresponding to bulk elements composed of 10 nodes), and FragmentList (for the
fragments). We briefly detail these lists’ components.

A.1.1 The Facet

int el : number of the corresponding interface element in the mesh
double damage: value of the damage at the interface
int N[12] : connectivity
Pointers which link to the two adjacent elements

A.1.2 The Tetrahedron

int el : number of the corresponding bulk element in the mesh
int proc : name of the processor that contains the tetrahedron
int N[10] : connectivity
Pointers which link to the four adjacent facets
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A.1.3 The Fragment structure

int namelocal : name of the fragment in the processor numbering
int nameglobal : name of the fragment in the global numbering
int NbulkElem : number of tetrahedra in the fragment
int *BuklElem : array of the tetrahedra in the fragment
int Ngluedelem : number of tetrahedra that will be used to glue the fragment
(non null if it is distributed among several processors)
int *TobegluedElem : array containing the tetrahedra that will be glued

A.2 Construction of the facet and element lists

If the code is run in serial, step 1 is called. When it is executed in parallel, the
four steps are called.

A.2.1 Step1

Each processor constructs its own lists. The FacetElemList is first built by looping
over all the interface elements. Then, the TetraElemList is constructed by looping
over the bulk elements. At this stage, Tetra→ proc = myPId. A tetrahedron has
at most four neighboring facets. There exist two cases which lead to the absence of
a facet:

1. The tetrahedron is on a physical boundary.

2. The tetrahedron is on a processor boundary and the identity of the neighbor
has a lower value. Indeed, during the construction of the interface elements, a
choice was taken: at inter-processor boundaries, the interface elements belong
to the processor with lower identity.

For each tetrahedron, the adjacent facets are searched. When they are found, the
structure tetrahedron is updated. Similarly, each of the (at most) four structures
associated to the adjacent facets are completed.

A.2.2 Step2

This step is called in the parallel execution. Each processor works independently
from the others. The communication map is read via the file pcom-myPId, where
myPId is the processor identity.

Figure A.1 gives an example of a mesh distributed among three processors. The
associated files pcom-myPId display the arrays:

pcom-0: [2, 1, 2, a, b, 2, 4, c, d, e, f ]

pcom-1: [2, 0, 2, f, e, 2, 4, a, b, c, d]

pcom-2: [2, 0, 4, d, c, b, a, 1, 4, g, e, f, d]

(A.1)
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The first number corresponds to the number of neighboring processors. The sec-
ond number is the name of one of the neighbor, the third is the number of shared
nodes, followed by their names. The sequence ’name of the processor, number of
shared nodes, name of the shared nodes’ continues until the end of the file. Note
that the ordering of the processors is not important, while the ordering of the nodes
is.
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Figure A.1: (color online) Scheme of a mesh distributed among the three processors
Proc0 (colored in gray), Proc1 (colored in green), and Proc2 (colored in orange).
The elements’ numbers and the nodes’ names refer to the processor numberings.
Interface elements are not represented for clarity.

Then, the integers nbofMaps, *MapOffset, *MapNode, *MapProc are filled in.
Let us consider Proc1 in figure A.1. It contains:

nbofMaps = 2

MapOffset = [0, 2, 6]

MapProc = [0, 2]

MapNode = [f, e, a, b, c, d]

(A.2)

Proc2 contains:
nbofMaps = 2

MapOffset = [0, 4, 8]

MapProc = [0, 1]

MapNode = [d, c, b, a, g, e, f, d]

(A.3)
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A.2.3 Step3

Each processor builds the pointer **TBS (standing for To Be Sent). Its size is
equal to the number of processors, and it contains the number of shared nodes and
their line number. To construct TBS, the processor loops over its interface elements
(FacetElemList). If the facet has only one neighbor, it is on an inter-processor
boundary, and the neighboring processor has a higher identity (see section A.2.1).

In our example, Proc1 contains the array:

(*TBS)[0] = NULL because Proc1 has no interface elements in relation
with Proc0 (1>0)
(*TBS)[1] = NULL because Proc1 will not send to itself any node to share

TBS[2] = [0, 2, 1, 3] because Proc1 does have interface elements in relation (2>1)
(A.4)

The nodes in TBS[2] are ordered two by two in the example (because two nodes
define one edge); in the code they are ordered six by six (because simulations are
three-dimensional with quadratic elements). Besides, the couple (0,2) that corre-
sponds to the nodes (a,c) is associated to the tetrahedron 4 in Proc1. After, the
couple (1,3) is associated to the tetrahedron 3 in Proc1. The reason for tetrahedron
4 to be called before tetrahedron 3 lies in the construction of the FacetElemList.

A.2.4 Step4

It is the communication step. One after the other, each processor (processor
I) scatters its TBS array. The other processors (processors J) receive it. Then,
they read their MapOffset, MapProc, and MapNode arrays to find the name of the
corresponding nodes in their own numbering. They search for the corresponding
elements within their TetraElemList and send it back to processor I. Processor I
constructs new tetrahedra such that Tetra→ proc = J (and not Tetra→ proc = I

like in the initial TetraElemList). Therefore, the new TetraElemList of processor
I contains tetrahedra belonging to itself, as well as tetrahedra belonging to other
processors. The latter are often called ghost tetrahedra.

Let us go back to the example. Here is the corresponding sequence of actions:

• Proc2 receives from Proc1 the array [0,2,1,3].

• Proc2 reads in MapProc that he communicates with Proc1 after Proc0.

• Proc2 reads the second term in MapOffset, which is 4.
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• Proc2 reads MapNode[4+0]=g, MapNode[4+2]=f, MapNode[4+1]=e, MapN-
ode[4+3]=d. We recover that the nodes a, c, b, d in Proc1 are called g, f, e,
d in Proc2.

• Proc2 finds that f and g (resp. d and e) are part of element 6 (resp.1).

• Proc2 sends to Proc1 the array [6,1].

• Proc1 receives the array [6,1] and constructs two new tetrahedra.

In the end, Proc1 has 8 tetrahedra in its TetraElemList, as highlighted by figure A.2.
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Figure A.2: Tetrahedra associated to the processor Proc1 without ghost elements
(right) and with ghost elements (left).The numbers contained in the elements consist
of two figures: before the coma, it is the number of the element in the local num-
bering, whereas after the coma, it is the name of the processor that the elements
physically belong to.

A.3 Construction of the fragment list

Similarly as in the previous section, the serial execution calls step 1, while the
parallel version executed steps 1 to 4.

A.3.1 Step1

Each processor constructs its FragmentList. The array visited-elem has the size
of the number of bulk elements and is initialized at 0. When the tetrahedron I is
visited, visit-elem[I-1] is incremented. At the end, we verify that all the tetrahedra
have been visited only once.
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To construct the FragmentList, the processor loops over its TetraElemList. If the
tetrahedron has not been visited yet and if it belongs to itself (Tetra → proc =
myPId), a new fragment is constructed. Then, if the neighboring facets are not
broken, the adjacent tetrahedra are added into the fragment. The process continues
until the fragment is fully surrounded by broken facets, processor boundaries, or
physical boundaries. If a tetrahedron does belong to the fragment but not to the
processor (Tetra→ proc 6= myPId), it is also added into the tobegluedElem array.

A.3.2 Step2

From now, the functions are specific to the parallel version. Each processor has
its own FragmentList and its own number of fragments. First, fragments are renum-
bered in the global numbering. For instance in figure A.3, Proc0 has 4 fragments,
Proc1 has 3 fragments, Proc2 has 3 fragments. The local numbers are crossed out,
while the global ones are not. The maximum number of fragments is 10.
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Figure A.3: Fragments distributed among three processors with their local (crossed
out numbers) and global numbers. Ghosts elements are named e1 to e10, in the
local numbering.

A.3.3 Step3

Each processor constructs its **TBS pointer (standing for To Be Sent). It con-
sists of a series of ’global fragment number - element number’. In the example of
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figure A.3, this leads to:

• Proc0:
(*TBS)[0] = NULL

TBS[1] = [3, 1, 3, 2, 3, 3, 2, 4]

TBS[2] = [2, 5, 2, 6, 1, 7, 1, 8, 1, 9, 1, 10]

(A.5)

• Proc1:
(*TBS)[0] = NULL
(*TBS)[1] = NULL

TBS[2] = [5, 1, 5, 2, 6, 3, 6, 4]

(A.6)

• Proc2:
(*TBS)[0] = NULL
(*TBS)[1] = NULL
(*TBS)[2] = NULL

(A.7)

A.3.4 Step4

This is the communication step. Each processor has a MapFragment array, ini-
tialized by MapFragment[i]=i, for i smaller than the maximum number of fragments
computed in step 2 (10 in the example). Then, one after the other, each processor
I sends its TBS array to the other processors J. Processor J searches within its
TetraElemList the tetrahedron corresponding to the sent one. When it finds it, it
also has access to the fragment that it belongs to.

For instance, Proc1 receives from Proc0: [3,1,3,2,3,3,2,4]. Proc1 finds that ele-
ment1 belongs to fragment 4, as well as elements 2 and 3 (see figure A.3). Similarly,
Proc1 finds that element4 is in fragment6. It signifies that fragments 3 and 4, as
well as 2 and 6, are the same. Proc1 updates its MapFragment which becomes:

MapFragment = [0, 1, 2, 3, 3, 5, 2, 7, 8, 9]

Each processor does so and sends its MapFragment to the master, which updates
its own MapFragment by keeping the smallest fragment values. In the example
Proc0 is the master and finds:

MapFragment = [0, 1, 2, 3, 3, 5, 2, 5, 2, 1]

The master sends this final MapFragment to all the processors that can now
update the effective fragment number.





Appendix B

Additional study on the plate
fragmentation

In this appendix, we present additional results concerning the plate study in
chapter 7. We first describe qualitatively how material parameters influence the
average fragment size. Then, an empirical expression of the peak stress is derived.

B.1 Qualitative description of material effects on the av-
erage fragment size

Fragmentation terminates when no more cohesive energy is dissipated, and the
number of fragments Nfrag does not evolve anymore. We compute the average frag-
ment size saver = Lplate√

Nfrag
in order to quantify the role of material parameters on

the fragmentation of the plate. We analyze the role of bulk parameters, microstruc-
ture and loading rate. Figures B.1 and B.2 illustrate the dependence of the average
fragment size saver on these parameters. No unique obvious law seems to describe
accurately the evolution of saver. However, some general comments may be drawn:

• Naturally, higher loading rates generate more fragments. saver is a decreasing
function of the strain rate ε̇ (figure B.1).

• Figure B.2(a) highlights that materials with high volumetric mass generate
small fragments. This is due to the stress wave healing effect. Indeed, when
ρ increases, elastic waves propagate slower, encompassing less defects. More
cracks are initiated which results in more fragments. The fragmentation pat-
terns of two different materials with distinct volumetric mass are displayed in
figure B.3. Figure B.3(a) illustrates the fragmentation pattern for a material
with the volumetric mass ρ = 1054 kg/m3 (material Mat.10 in table 7.1),
submitted to the strain rate ε̇ = 104 s−1. Figure B.3(b) is associated to
material Mat.9 with volumetric mass ρ = 6327 kg/m3 and displays a finer
fragmentation pattern.

• Concerning the Young’s modulus E, the argument used for the volumetric
mass is not sufficient. Indeed, increasing E amounts to increasing c; the av-
erage fragment size should then be an increasing function of E. However,
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figure B.2(b) underlines the reverse trend. Two mechanisms are here com-
peting: the stress wave healing effect and the storable elastic energy (which
increases with E). Our results show that strain energy effect is prevailing.

• During the failure process, when a crack opens, tougher materials release more
fracture energy. saver is thus an increasing function of the toughness Gc (fig-
ure B.2(c)).

Zhou et al. [Zhou 2004], who studied the one-dimensional fragmentation of ho-
mogeneous materials, observed numerically the same trends: at high enough strain
rate, the average fragment size decreases with Young’s modulus at constant vol-
umetric mass (equivalent to test1), and it increases with wave speed at constant
Young’s modulus (equivalent to test4) and toughness (equivalent to test7). One-
dimensional trends are consequently valid in two dimensions. By contrast, Grady’s
energy-balance model does not convey all the trends. Its prediction (eq. 7.2) is
indeed independent from the Young’s modulus.

Figure B.1: Evolution of the average fragment size with strain rate. Twelve materials
fragmented over the range ε̇ = 103s−1 to ε̇ = 105s−1, while only three materials are
fragmented over the range ε̇ = 10s−1 to ε̇ = 105s−1. The materials are detailed in
table 7.1.

B.2 Numerical identification of the time to failure and
peak stress

In this section, we establish empirical expressions of the peak strength σpeak and
the time to failure tf , which corresponds to the time at which potential energy is
maximum. Their analytical determination is not obvious. Indeed, failure initiates
when the stress reaches the cohesive strength of the weakest defect σc,min. A non
null time is necessary to complete fracture of this weakest link, during which the
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(a)

(b)

(c)

Figure B.2: Evolution of the average fragment size with (a) volumetric mass, (b)
Young’s modulus, (c) toughness. The tests are detailed in table 7.1.
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(a) (b)

Figure B.3: Fragmentation patterns computed for different materials with volumet-
ric mass (a) ρ = 1054 kg/m3 and (b) ρ = 6327 kg/m3 , at strain rate ε̇ = 104 s−1

(Mat.9 and Mat.11 in table 7.1). Small volumetric mass generates less fragments.

stress continues increasing. Other cracks initiate and need time to break during
which stress still increases. The stress waves released by crack opening may have
a healing effect, preventing other defects from further damage. As a result, some
defects are fully broken, other are partially damage, and the rest is intact. Because
of the high non-linearity of the process, the prediction of the peak stress, which is
related to the distribution of cohesive strengths, can hardly be achieved analytically.
Moreover, besides the distribution of cohesive strengths, other parameters may affect
σpeak and tf . Therefore, we conduct several tests, detailed in table 7.1, in order to
quantify the effect of bulk properties (Young’s modulus E and volumetric mass ρ),
defect properties (distribution of cohesive strengths, toughness GC), and strain rate
ε̇.

First, we set the strain rate to be ε̇ = 104s−1 and we investigate the evolution of
time to failure with respect to the Young’s modulus in four test campaigns. In test
1, the volumetric mass ρ is constant, and the Young’s modulus E varies. In test 2,
we set ρ.E constant, while in test 3, E/ρ is constant (which is equivalent to insuring
a constant wave speed). Finally, in test 4, the Young’s modulus E is constant, and
the volumetric mass ρ changes. Strain rate and microstructure are identical for each
test. Figure B.4 displays the difference between time to failure tf and minimum time
tmin (eq. 7.7) in a log-log plot. All the curves nearly superimpose. We fit the curves
with power laws, whose exponents are slightly equal. In test 4, the variations of tf
are negligible in comparison to the others. As a result, we conclude that the time to
failure tf displays a small dependence on the volumetric mass ρ which can thus be
neglected without severe loss of accuracy. On the contrary, tf−tmin depends strongly
on the Young’s modulus, which can be traced back its dominant role in potential
energy. We fit the numerical results with the function tf = tmin + 1143/E0.90.



B.2. Numerical identification of the time to failure and peak stress 191

Figure B.4: Evolution of the difference between time to failure and minimum time
with the Young’s modulus, for the strain rate ε̇ = 104 s−1. The tests are detailed
in table 7.1.

Secondly, we keep the strain rate to be ε̇ = 104s−1 and we analyze the influence
of the microstructure. In test 5 and test 6, the toughness Gc is constant and the
distribution of cohesive strength changes through respectively, the smallest cohesive
strength σc,min and the scale parameter λ (eq. 7.1). In test 7, the toughness varies
and the distribution of cohesive strengths is kept identical. Figure B.5 plots the
time to failure with respect to the average failure strength σc,aver. It illustrates
that toughness has negligible effect, in comparison to σc,min and λ, and that the
average cohesive strength is a relevant characteristic strength. Figure B.5 indicates
that the evolution of the difference between time to failure and minimum time
(tf − tmin) is exponential with respect to σc,aver. We fit the numerical results with
tf = tmin + 1.566 10−8 . exp

(
σc,aver / 320.106

)
. Although there is no analytical

proof, intuition relates the exponential shape and the value of the fitted parameters
to the distribution of defects, namely a Weibull distribution with Weibull modulus
two. The value 320.106 may be associated to an average failure strength, while
1.566 10−8 may be linked to a weakest link. Changing the distribution of defects
may thus alter the validity of this expression.

Finally, we consider several materials detailed in table 7.1 and study the effect of
the strain rate on tf−tmin. Figure B.6 underlines that, in any of the twelve material
tested, the dependence follows a power law characterized by the common exponent
0.92.

In conclusion, time to failure only depends upon strain rate ε̇, Young’s modulus
E, minimum and average cohesive strengths (σc,min and σc,aver). Combining the
previous fittings yields to the general empirical formula:
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Figure B.5: Evolution of the difference between time to failure and minimum time
with the average cohesive strength, for the strain rate ε̇ = 104 s−1. The tests are
detailed in table 7.1.

tf,emp = tmin +
2.4.106 exp

( σc,aver

320.106

)

ε̇0.92 E0.90
(B.1)

Since the quantification of the damage before peak stress is not obvious, we pre-
fer to simplify the formulation by keeping a linear reversible response: σpeak =
E ε̇ tf,emp. Softening before failure onset is therefore not included (this assumption
will be questioned further). The effective peak strength is:

σpeak = σc,min + 2.4.106 exp
( σc,aver

320.106

)
ε̇0.08 E0.10 (B.2)
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(a)

(b)

Figure B.6: Evolution of the difference between time to failure and minimum time
with the strain rate for: (a) several materials in the range ε̇ = 103s−1 to ε̇ = 105s−1

, (b) only Mat.1 in the range ε̇ = 10s−1 to ε̇ = 105s−1. Fitting law is only displayed
in (b). Materials are referenced in table 7.1.
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