000152860 001__ 152860
000152860 005__ 20181203022031.0
000152860 0247_ $$2doi$$a10.1063/1.3272058
000152860 022__ $$a0021-8979
000152860 02470 $$2ISI$$a000273216500093
000152860 037__ $$aARTICLE
000152860 245__ $$aAnalysis of degradation mechanisms in lattice-matched InAlN/GaN high-electron-mobility transistors
000152860 260__ $$c2009
000152860 269__ $$a2009
000152860 336__ $$aJournal Articles
000152860 520__ $$aWe address degradation aspects of lattice-matched unpassivated InAlN/GaN high-electron-mobility transistors (HEMTs). Stress conditions include an off-state stress, a semi-on stress (with a partially opened channel), and a negative gate bias stress (with source and drain contacts grounded). Degradation is analyzed by measuring the drain current, a threshold voltage, a Schottky contact barrier height, a gate leakage and an ideality factor, an access, and an intrinsic channel resistance, respectively. For the drain-gate bias < 38 V parameters are only reversibly degraded due to charging of the pre-existing surface states. This is in a clear contrast to reported AlGaN/GaN HEMTs where an irreversible damage and a lattice relaxation have been found for similar conditions. For drain-gate biases over 38 V InAlN/GaN HEMTs show again only temporal changes for the negative gate bias stresses; however, irreversible damage was found for the off-state and for the semi-on stresses. Most severe changes, an increase in the intrinsic channel resistance by one order of magnitude and a decrease in the drain current by similar to 70%, are found after the off-state similar to 50 V drain-gate bias stresses. We conclude that in the off-state condition hot electrons may create defects or ionize deep states in the GaN buffer or at the InAlN/GaN interface. If an InAlN/GaN HEMT channel is opened during the stress, lack of the strain in the barrier layer is beneficial for enhancing the device stability.
000152860 6531_ $$aaluminium compounds
000152860 6531_ $$agallium compounds
000152860 6531_ $$ahigh electron mobility
000152860 6531_ $$atransistors
000152860 6531_ $$ahot carriers
000152860 6531_ $$aIII-V semiconductors
000152860 6531_ $$aindium compounds
000152860 6531_ $$aSchottky barriers
000152860 6531_ $$asurface states
000152860 6531_ $$awide band gap semiconductors
000152860 6531_ $$aCURRENT COLLAPSE
000152860 6531_ $$aINALN/ALN/GAN HEMTS
000152860 6531_ $$aALGAN/GAN HEMTS
000152860 6531_ $$aFIELD
000152860 6531_ $$aGATE
000152860 6531_ $$aHETEROSTRUCTURE
000152860 6531_ $$aVOLTAGE
000152860 6531_ $$aRELIABILITY
000152860 700__ $$aKuzmik, J.
000152860 700__ $$aPozzovivo, G.
000152860 700__ $$aOstermaier, C.
000152860 700__ $$aStrasser, G.
000152860 700__ $$aPogany, D.
000152860 700__ $$aGornik, E.
000152860 700__ $$0240056$$aCarlin, J. F.$$g104706
000152860 700__ $$aGonschorek, M.
000152860 700__ $$aFeltin, E.
000152860 700__ $$0244550$$aGrandjean, N.$$g161577
000152860 773__ $$j106$$k12$$q4503$$tJournal of Applied Physics
000152860 909C0 $$0252312$$pLASPE$$xU10946
000152860 909CO $$ooai:infoscience.tind.io:152860$$pSB$$particle
000152860 937__ $$aEPFL-ARTICLE-152860
000152860 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000152860 980__ $$aARTICLE