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Abstract. In this paper we present a novel geometric framework called geodesic active fields for general image registration. In
image registration, one looks for the underlying deformation field that best maps one image onto another. This is a classic ill-
posed inverse problem, which is usually solved by adding a regularization term. Here, we propose to embed the deformation
field in a weighted minimal surface problem. The energy of the deformation field is measured with the Polyakov energy
weighted by a suitable image distance, borrowed from standard registration models. Minimizing this weighted Polyakov
energy drives the deformation field toward a minimal surface, while being attracted by the solution of the registration problem.
Our geometric framework involves two important contributions. Firstly, our general formulation for registration works on any
parametrizable, smooth and differentiable surface, including non-flat and multiscale images. Secondly, to the best of our
knowledge, this method is the first re-parametrization invariant registration method introduced in the literature.
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INTRODUCTION

Image registration is the concept of mapping homologous points of different images, representing a same object. In
practice, however, it is often difficult to establish homology in images based on this definition. For automatic image
registration, it is commonplace to substitute homology by a measurable criterion of image dissimilarity, which is to
be minimized by an unknown deformation field u. The determination of this deformation field is an ill-posed inverse
problem, requiring regularization. Here we propose to use a weighted version of the Beltrami framework to perform
regularized registration.

The Beltrami Framework

In their seminal work, Sochen, Kimmel and Malladi introduced in [1] and [2] a general geometrical framework for
low-level vision, based on an energy functional defined by Polyakov in [3]. In this framework, images are seen as
surfaces or hypersurfaces embedded in higher dimensional spaces.

An n-dimensional manifold Σ with coordinates σ1...n is embedded in an m-dimensional manifold M with coordinates
X1...m, with m > n. The embedding map X : Σ 7→M is given by m functions of n variables. For example, a 2D grey-level
image can be seen as a surface embedded in 3D: X : (x,y)→ (x,y, I). A Riemannian structure can be introduced: the
metric gµν locally measures the distances on Σ, whereas on M distances are measured using hi j.

To measure the weight of the mapping X : Σ 7→ M, Sochen et al. [2] use the Polyakov energy, known from high
energy physics [3]:

S[X i,gµν,hi j] =
Z √

ggµν
∂µX i

∂νX jhi jdn
σ, (1)

where the Einstein summation convention is used, g is the determinant of the image metric, and gµν is its inverse, such
that gµνgνγ = δ

µ
γ (δµ

γ is the Kronecker delta). Naturally, the metric g is chosen as the induced metric, obtained by the



pullback-relation: gµν = hi j∂µX i∂νX j. Under such a metric, the Polyakov energy shortens to:

S =
Z √

gdn
σ, (2)

which represents the area of the embedded image surface. Assuming the embedding is in a Euclidean space with
Cartesian coordinates, the corresponding gradient descent equation is

∂tX i =− 1
√

g
δS
δX i =

1
√

g
∂µ(
√

ggµν
∂νX i)≡ H i, (3)

known as the Beltrami flow, where H i denotes the i-th component of the mean curvature vector of the manifold.
With geodesic active fields (GAF), we propose to regularize a deformation field using a weighted Beltrami embed-

ding, where the weighting attracts the deformation field toward a solution of the registration problem.

GEODESIC ACTIVE FIELDS

In this section we define the GAF framework for image registration. Now, the deformation field is embedded as a
mapping between the n-dimensional image domain and a m-dimensional space, where m > n. This is achieved by
letting the components of the deformation field become additional dimensions of the embedding space. The embedded
manifold then evolves toward a weighted minimal surface, while being attracted by a deformation field that brings the
two images into registration. The main strengths of this framework are twofold: The freedom to register images on
any Riemannian manifold, i.e., on any smooth and parametrized surface, and its invariance under re-parametrization
of the proposed energy, like the GAC energy [4] for the segmentation problem.

The General Case

In the general form, we register a pair of n-dimensional images defined on a Riemannian domain Ω with coordinates
x = (x1, . . . ,xn). The deformation field acts along p≤ n dimensions, i.e., u : Ω 7→Rp,u(x) = (u1(x), . . . ,up(x)). At the
very core of GAF, the deformation field is seen as a surface or hypersurface embedded in a higher dimensional space,
much like images embedded with the Beltrami framework [2]. On these embeddings, a Riemannian structure can be
introduced: the metric gµν locally measures the distances on the embedded deformation field, whereas in the higher
dimensional embedding space distances are measured using hi j.

The embedding X and the metric tensors hi j and gµν are chosen as follows: X : (x1, . . . ,xn)→ (x1, . . . ,xn,u1, . . . ,up)
hi j is arbitrary
gµν = ∂µX i∂νX jhi j,

(4)

where x1, . . . ,xn denote the spatial components of the image and u1, . . . ,up are the components of the dense deformation
field.

If the image domain is Euclidean, we may choose the metric tensor

hi j = diag(1, . . . ,1︸ ︷︷ ︸
n

,β2, . . . ,β2︸ ︷︷ ︸
p

), (5)

where β defines the aspect ratio between spatial and feature dimensions.
Based on this choice, we define the following general registration energy functional, which is a weighted Polyakov

energy [5, 3], and the corresponding direct minimizing flow for the geodesic active fields (GAF):{
EGAF =

R
f
√

g dx
∂tui = f Hn+i +∂k f gµν∂µXk∂νui− m·n

2 ∂k f hk(n+i), 1≤ i≤ p,
(6)

where the weighting function f = f (x,u) is arbitrary, as detailed below.



Weighting Function

The purpose of the weighting function f is to drive the deformation field toward minimal surfaces that bring the two
images into registration. As such, the flow must stop when the deformed image perfectly matches the target image.
Hence, the weighting function is naturally chosen to be an image distance metric, which approaches zero when the two
images locally match. An intuitive primer for monomodal image registration is the squared error metric [6], leading
to:

f (x,u) = 1+α · (M (x+u)−F (x))2
, (7)

where F and M refer to the fix and moving images, respectively. In other cases, e.g., for stereo vision, the absolute
error norm can be more appropriate:

f (x,u) = 1+α ·
∣∣M (x+u)−F (x)

∣∣ , (8)

For other examples, e.g., suitable for multimodal image registration, or more complicated deformation models, the
reader is referred to [7].

The Stereo Vision Example

Let us consider a case of stereo vision disparity recovery of 2D images. Without loss of generality, this choice
reduces the co-dimension of the deformation field and heavily simplifies the notation. The stereo embedding is defined
as: 

X : (x,y)→ (x,y,u)
hi j = diag(1,1,β2)

gµν =
[

1+β2u2
x β2uxuy

β2uxuy 1+β2u2
y

]
g = 1+β2|∇u|2.

(9)

Put into the general equations we get the following energy functional and minimizing flow:{
EGAF =

R
f
√

1+β2|∇u|2dxdy
∂tu = f Hu +∂k f gµν∂µXk∂νu− 3

β2 fu.
(10)

If β→∞, the 1 in the GAF energy becomes negligible, and the energy approaches the TV-norm, well-known in image
denoising [8, 9]. If, however, β→ 0, then the minimizing flow reproduces the isotropic heat diffusion [2].

A Splitting Scheme

Since we are dealing with discretely sampled images, we may rewrite the GAF energy in terms of a standard
vectorial inner product:

EGAF = 〈F,G〉=
N

∑
i=1

FiGi, F,G ∈ RN , (11)

where Fi and Gi are the N samples of the weighting function and the square root of the metric tensor determinant,
respectively.

Now, instead of a direct implementation of the flow (6) using a simple forward Euler scheme, we suggest to use a
splitting scheme to speed up the optimization process. This scheme minimizes the weighting function term and the
metric tensor term of the GAF energy separately, but tightly coupled through an augmented Lagrangian s.a. [10, 11].
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FIGURE 1. (a) tsukuba test image (b)–(c) Mismatch before/after registration. (d) Ground truth (e) GAF result.

(a) M (b) F (c) M ′ (d) M −F (e) M ′−F

FIGURE 2. (a)–(b) Fix/moving image. (c) Warped moving image. (d)–(e) Mismatch before/after registration.

RESULTS

An example of stereo vision depth recovery problem is shown in Fig. 1. The image pair tsukuba is a well known test
image, taken from the middlebury benchmark set for stereo vision. The registration is set up using the absolute error
weighting function (8).

The second case deals with 2D registration of a highly misaligned monomodal medical image pair. An axial slice
through a T1 MRI volume is heavily deformed by a given 2D deformation field. The images have a resolution of
317×317 pixels. Registration is set up with the squared error weighting function (7). The image pair and initial error
are illustrated along with the registration results in Fig. 2.

CONCLUSIONS

Geodesic Active Fields represent a novel, geometric framework for image registration. It can be considered as a
generalization of the popular demons algorithm [12] in various respects. First, it is directly applicable to non-Euclidean
and multiscale images, and not restricted to Cartesian images only. Also, the GAF energy can be shown to be
parametrization invariant, which is a rare but important feature in image registration. Further, the anisotropy of the
geometric regularization can be tuned between TV-like and Gaussian diffusion. Moreover, there is a wide choice of
weighting functions which measure the image mismatch locally, including well-known metrics such as L1, L2 or local
entropy. Finally, the use of a splitting scheme allows to optimize the GAF energy more efficiently.
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