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AbstractFa
ial expression re
ognition by human observers is a�e
ted bysubje
tive 
omponents. Indeed there is no ground truth. We havedevelopped Dis
rete Choi
e Models to 
apture the human per
eptionof fa
ial expressions. In a �rst step, the stati
 
ase is treated, thatis modelling per
eption of fa
ial images. Image information is ex-tra
ted using a 
omputer vision tool 
alled A
tive Appearan
e model(AAM). DCMs attributes are based on the Fa
ial A
tion Coding Sys-tem (FACS), Expressions Des
riptive Units (EDU) and outputs ofAAM. Some behavioral data have been 
olle
ted using an internetsurvey, where respondents are asked to label fa
ial images from theCohn-Kanade database with expressions. Di�erent models were esti-mated by likelihood maximization using the obtained data. In a se
-ond step, the proposed stati
 dis
rete 
hoi
e framework is extended tothe dynami
 
ase, whi
h 
onsiders fa
ial video instead of images. Themodel theory is des
ribed and another internet survey is 
urrently
ondu
ted in order to obtain expressions labels on videos. In thisse
ond internet survey, videos 
ome from the Cohn-Kanade databaseand the Fa
ial Expressions and Emotions Database (FEED).
1 IntroductionFa
ial expressions are one of the most visual method to 
onvey emotionsand one of the most powerful means used by human beings to relate to ea
hother. In order to move towards real intera
ting human-
omputer systems,where algorithms written by humans should be able to 
apture, mimi
 andreprodu
e human per
eptions, fa
ial expressions play surely a 
entral role.One of the key issues to 
onsider in building su
h systems is the de�ni-tion of fa
ial expression measurements to study and quantify fa
ial be-haviour. The two major approa
hes in psy
hologi
al resear
h are messageand sign judgement (Cohn, 2006). The task of message judgement isthe inferen
e of the displayed fa
ial behaviour, in terms of inferred emo-tion. As indi
ated by Cohn, 2006, among the di�erent des
riptors those ofEkman, 1992 have been largely used in the re
ent past. Ekman proposedthe use of the 6 basi
 emotions (happiness, surprise, fear, disgust, sadnessand anger) that are universally displayed and re
ognized from fa
ial expres-sions (Keltner, 2000). In sign judgement approa
hes the displayed fa
ial be-haviour is des
ribed by fa
ial movements. Among the various methods the2



Fa
ial A
tion Coding Systems (FACS) (Ekman and Friesen, 1978, Ekmanet al., 2002) is the most 
omprehensive and widely used. The FACS is ahuman-observed based system designed to dete
t subtle 
hanges in fa
ialfeatures and asso
iates fa
ial expression 
hanges with a
tions of the mus-
les that produ
e them. Thus, a nasolabial furrow, running down from thenostrils outward beyond the 
orners of the lips, 
an be judged as \sadness"in a message-judgement and as a fa
ial movement that raises the 
heeks ina sign-judgement approa
h. In other terms, while message judgement is allabout interpretation, sign judgement attempts to be obje
tive.In this work we fo
us and propose an automati
 approa
h belonging to thethe family of message judgement based system. The dominant 
hallengein building su
h an automati
 system, even if narrowed down to the fa
ialexpression per
eption task of message judgement, arises from the fa
t thatsu
h a per
eption (performed by human beings in the real world) is sub-je
tive and strongly related to 
ontextual information.A typi
al automati
 fa
ial expressions re
ognition system (Tian et al., 2003,M. and Bartlett, 2007, Fasel and Luettin, 2003) is based on a representationof ea
h expression, learned from a training set of pre-sele
ted meaningfulfeatures. In the learning pro
ess, an expert is asked to asso
iate labels totraining samples. An expert should be someone having a strong knowledgeof the problem, in order to ensure the 
orre
tness of what we are trying toreprodu
e.Three important questions arise from this fundamental hypothesis of \learn-ing by examples" te
hnique:� Can one expert be representative of humans'per
eption?� How to get and use the experts'strong knowledge?� How to represent the visual information used by the experts?The outstanding human ability to identify individual human fa
es has longbeen of major interest to 
ognitive s
ientists, neuropsy
hologists, and neu-ros
ientists (Diamond and Carey, 1986, Carey, 1992, Moses et al., 1996).Whereas the human me
hanisms for fa
e dete
tion are very robust, thesame is not the 
ase for interpretation of fa
ial expressions. It is often verydiÆ
ult to determine the exa
t nature of the expression on a person's fa
e.A

ording to Bassili, 1978, a trained observer 
an 
orre
tly 
lassify fa
esshowing six basi
 emotions with an average of 87 per
ent. This ratio varies3



depending on several fa
tors: the familiarity with the fa
e, the familiaritywith the personality of the observed person, the general experien
e withdi�erent types of expressions, the attention given to the fa
e and the non-visual 
ues (e.g., the 
ontext in whi
h an expression appears).Whereas sign judgement systems are 
ompletely insensitive to 
ontext andfamiliarity with the fa
e, the message based ones are strongly in
uen
edby them. This 
onsideration leads to the answer to the �rst question: ina message based framework the judgement of one human is not enough toreprodu
e and 
apture the di�erent behaviours of humans. In support ofthis last statement and in order to answer to the se
ond question, the data
olle
ted by a web-based stati
 fa
ial expression evaluation survey, devel-oped by the authors (Sor
i et al., 2007) and des
ribed in Se
tion 3, showsthe need for a model 
apable of taking into a

ount the heterogeneity inhuman's per
eption of fa
ial expressions. Figure 1 shows two images ofthe survey and the histograms of the 33 parti
ipants that have annotatedthem. These are two typi
al examples of how heterogeneity (Figures 1(a)-1(b)) and homogeneity (Figures 1(
)-1(d)) 
an both be present in human'sjudgement. Con
erning the last question, most re
ent attempts in the rep-resentation of visual information for fa
ial expression have fo
used on re-produ
ing the set of rule des
riptors suggested by the FACS system. Basedon this system, a fa
ial expression 
an be linguisti
ally des
ribed in termsof measures that 
an be extra
ted from the fa
e. These measures 
an be
onsidered as the mathemati
al representations of lo
al fa
ial features. Inthe last de
ade, works on psy
hophysi
s and 
ognitive psy
hology (Farahet al., 1998, S
hwaninger et al., 2002, Cabeza and Kato, 2000, Meulderset al., 2005) have shown that fa
e re
ognition and per
eption of emotionsrely on featural1 and 
on�gural2 information. Human's visual per
eptionof a fa
e involves the pro
essing of both lo
al fa
ial measures and theirholisti
 spatial layout. The impli
ation of these �ndings is that an auto-mati
 system, aiming at interpreting fa
es, needs to extra
t and make useof these two sour
es of information as well.The obje
tive of this work is to propose novel models to des
ribe and repro-du
e the evaluation of humans, 
onsidered as an heterogeneous population,fa
ing the task of labelling stati
 fa
ial expressions. The labelling pro
essis a de
ision making pro
ess where individuals 
hoose a 
ategorized expres-1fa
ial featural features represent lo
al measures of fa
ial 
omponents2fa
ial 
on�gural features represent the holisti
 spatial layout of fa
ial 
omponents4



(a) (b)
(
) (d)Figure 1: Examples of heterogeneous and homogeneous judgements in thedata 
olle
ted by the survey.a-b)Image of an ambiguous expression andhistogram of parti
ipants annotations;
-d)Image of a happiness expression,unanimously per
eived by the parti
ipants.sion among a set of 9 di�erent options: happiness, surprise, fear, disgust,sadness, anger, neutral, other and I don't know.Dis
rete Choi
e Models (DCM) (Ben-Akiva and Lerman, 1985, Manski,1977, Manski and M
Fadden, 1981) well �t our needs and they representa reasonable and theoreti
ally grounded modelling framework. DCMs aree
onometri
 models designed to fore
ast the behaviour of individuals in
hoi
e situations, when the set of available alternatives is �nite and dis-
rete. Our idea is to approa
h the de
ision making pro
ess through therational behaviour paradigm, representing the logi
 behind the DCMsand well mat
hing the evaluation pro
ess of the human observer. Threemain fa
tors will lead us in the development of a good model: 1)a strong apriori knowledge of the problem; 2)realisti
 annotations from an heteroge-neous population of humans; 3)a reliable set of features. The 
ontributionsof this work 
an be summarized as follows:5



� we propose the use of dis
rete 
hoi
e models for modelling the humanper
eption of stati
 fa
ial expression;� we develop 3 models of in
reased 
omplexity;� we show how measures extrapolated by the FACS 
an be 
ombinedwith two new sets of features to 
omplete the 
hara
terization of ea
hexpression and improve the des
riptiveness of the model;� we have extended the dis
rete 
hoi
e framework for stati
 fa
ial ex-pression per
eption to a dynami
 version, whi
h 
onsists in 
onsider-ing videos instead of images.The remainder of the paper is organized as follows: in the next se
tion,we present an overview of the existing works and identify the limitationsand di�eren
es with ours. In Se
tion 3, we des
ribe the fa
ial expressionsurvey we have developed to provide the data used in this work. Se
tion 4introdu
e the methodologi
al framework, while Se
tion 5 details the featuresets used in our model and the asso
iated methods. In Se
tions 6,7 and 8 wedes
ribe, respe
tively, the model spe
i�
ation, the estimation of the relatedparameters and the extension to dynami
 fa
ial expression re
ognition. Weend in Se
tion 9 with dis
ussions and 
on
lusions.
2 Previous WorkThe 
urrent resear
h on fa
ial expression analysis is mostly oriented in twomain dire
tions: re
ognition of prototypi
 emotional expression and re
og-nition of fa
ial a
tion units. The �rst aims to a 
ategori
al representationof the six universal basi
 emotions. The se
ond does not attempt to give aninterpretation of the expression, but it fo
uses on the dete
tion of atomi
fa
ial signals. The interpretation 
an be delegated to higher order de
isionmaking.The two approa
hes are stri
tly related to the two main streams in psy-
hologi
al resear
h: message and sign judgement. Most of the availableliterature on both approa
hes proposes a three step pro
edure in order tomake the problem operational: fa
e dete
tion, fa
ial features extra
tionand fa
ial 
hanges re
ognition (prototypi
 emotions or a
tion units).Fa
e dete
tion is a problem studied sin
e the very begining times of 
om-puter vision. It 
onsists of determining all the regions of the s
ene under6



analysis that 
ontain a fa
e. In order to a
hieve that, a wide variety of works
an be found on the literature (Pentland et al., 1994, Rowley et al., 1998,Sung and Poggio, 1998, S
hneiderman and Kanade, 2000) but probably themost 
ommonly used nowadays is tha fa
e dete
tor introdu
ed by Viola andJones, 2004. This dete
tor is based on a 
as
ade of 
lassi�ers trained withthe AdaBoost algorithm (Freund and S
hapire, 1997) and the use of theintegral image, whi
h makes the method able to run in real-time. A surveyon the topi
 
an be found in (Yang et al., 2002) or in Chapter 8 of Medioniand Kang, 2004.On
e fa
es are dete
ted, features from these fa
es need to be extra
ted.These features 
an be divided into geometri
 features and appearan
e fea-tures. Geometri
 features are featural des
riptors of the fa
e that representit in terms of shape and lo
ations of the main fa
ial 
omponents (mouth,eyes, nose, et
.). Some re
ent examples of geometri
 features extra
tion
an be found in Hu et al., 2004, Panti
 and Patras, 2006 or Valstar andPanti
, 2007. With respe
t to appearan
e features, they are 
on�gural orfeatural des
riptors of the fa
e that represent it in terms of fa
ial texture,in
luding wrinkles, bulges and furrows. Some re
ent examples of thesete
hniques 
an be found in Ye et al., 2004, Chang et al., 2004 or Bartlettet al., 2006. Hybrid te
hniques 
an also be found in the literature, as for ex-ample the approa
h of Zhang and Ji, 2005, that uses 26 landmarks aroundthe main fa
ial 
omponents as well as the transient features, like wrinklesand furrows.Finally, in the third step, all the information extra
ted from the fa
e hasto be asso
iated with a fa
ial expression, or an a
tion unit, by means of ade
ision or 
lassi�
ation rule. A wide variety of approa
hes 
an be foundon the literature using a broad range of ma
hine learning te
hniques: Neu-ral Networks (NN) (Zhang et al., 1998, Padgett and Cottrell, 1998, li Tianet al., 2001, li Tian et al., 2002), Bayesian 
lassi�ers (Cohen et al., 2003),Linear Dis
riminant Analysis (LDA) (Abboud and Davoine, 2004), HiddenMarkov Models (HMM) (Cohen et al., 2003) or Support Ve
tor Ma
hines(SVM) (Valstar and Panti
, 2007), for mentioning some of them. Re
ently,the authors introdu
ed in Antonini et al., 2006 the use of Dis
rete Choi
eModels (DCM) for stati
 fa
ial expression 
lassi�
ation.
7



2.1 Limitations of Previous ApproachesCurrent works on fa
ial expression understanding, in our view, su�er fromthe following short
omings:1. The main paradigm of standard 
lassi�
ation approa
hes, in the 
on-text of message judgement frameworks, 
onsists in asso
iating anytwo examples having the same features to the same 
orresponding
lass. One of the main assumptions is that fa
ial expression labels,reported in the training set, represent the true expressions. As un-derlined by the example in Figure 1, this assumption does not hold inmodelling human's per
eption stati
 fa
ial expression. Indeed, fa
ialexpressions are ambiguous and di�erent people might per
eive di�er-ently the same expression. This fa
t is even more a

entuated in astati
 
ontext, where the la
k of transitions between following expres-sions deprives the observer of an important sour
e of information. Aprobabilisti
 approa
h is more suitable in this 
ase.2. Another limitation of most previous approa
hes, 
on
erns the inabil-ity to interpret knowledge a
quired by the systems. In other words,their bla
k-box nature prevent any interpretation about the relationsbetween the inputs and outputs of the model. For the same reason, itis also impossible to gain any understanding of the problem at handor to in
orporate human expertise to simplify, a

elerate and improvethe modelling pro
ess.3. The integration of featural and 
on�gural fa
ial features provides 
ru-
ial 
ues in the human interpretation of an expression. Besides thework of Zhang and Ji, 2005, more 
omplex hybrid system have notbeen investigated rigorously by the existing works.To over
ome the above limitations, we propose the use of DCMs and theintrodu
tion of new sets of features. The proposed probabilisti
 approa
hallows to:� model the possible ambiguities in human per
eption of stati
 fa
ialexpressions;� enable the analyst to exploit her knowledge of the problem;8



� improve the des
riptiveness of a fa
e by introdu
ing a more 
ompleteset of featural and 
on�gural features.
3 Data collectionConstru
tion of a good database of fa
ial expressions requires time andtraining of subje
ts. Only a few of su
h databases are available, su
h as theCohn-Kanade Database (Kanade et al., 2000), JAFFE (Lyons et al., 1998)and most re
ently the MMI database (Panti
 et al., 2005). The images usedin the survey 
ome from the Cohn-Kanade Database.
3.1 Cohn-Kanade database

Figure 2: Examples of fa
es in the Cohn-Kanade Database.The Cohn-Kanade Database 
onsists of image sequen
es of expressions,starting from a neutral expression and ending most of the time in the peakof the fa
ial expression. The 104 subje
ts of the database are university stu-dents enrolled in introdu
tory psy
hology 
lasses. They ranged in age from18 to 30 years. 65 per
ent were female, 15 per
ent were Afri
an-Ameri
an,and three per
ent were Asian or Latino. Subje
ts were instru
ted by anexperimenter to perform a series of 23 fa
ial displays. Six of the displayswere based on des
riptions of prototypi
 emotions (i.e, happiness, anger,9



fear, disgust, sadness and surprise). Before performing ea
h display, anexperimenter des
ribed and modelled the desired display.
3.2 Facial expressions evaluation surveyIn August 2006, Sor
i et al., 2007 published the internet fa
ial expressionsevaluation survey in order to �nd a way to dire
tly get humans' per
ep-tion of fa
ial expressions (http://lts5www.epfl.ch/face). The aim of thesurvey is to 
olle
t a dataset 
reated by a sample of real human observers,from all around the world, doing di�erent jobs, having di�erent 
ulturalba
kgrounds, ages and gender, belonging to di�erent ethni
 groups, doingthe survey from di�erent pla
es (work, home, on travel, et
.). The imagesused in the survey 
omes from the Cohn-Kanade Database.Over the 104subje
ts in the database, only 11 of them gave the 
onsent for publi
ation.The subset of the Cohn-Kanade Database used in this survey 
onsists ofthe 1271 images of these 11 subje
ts (9 women and 2 men). The annotation

(a) (b) .Figure 3: On-line survey interfa
e: a)So
io-e
onomi
 form;b)Image anno-tation interfa
epro
ess 
onsists in asso
iating an expression label (among a set of availablehuman expressions) to ea
h image that is presented to the survey's par-ti
ipant. A simple and intuitive interfa
e has been designed in order tofa
ilitate the annotation pro
ess 3. For ea
h image in the group the parti
-10



ipant has to 
hoose one of the following options: happiness, surprise, fear,anger, disgust, sadness, \I don't know" and \Other". The last two optionshave been introdu
ed in order to deal with images parti
ularly ambiguousto the parti
ipant. In addition, these two options make the set exhaustive,in the sense that they permit to 
over the whole range of human expres-sions. We should remind that in this work we deal with stati
 per
eptionof human expressions and with frames randomly 
hosen from small videosequen
es displaying the whole dynami
 of the performed expression. Thela
k of temporal fa
tor, in the labelling pro
ess, makes the annotation taskdiÆ
ult and subje
tive in some 
ases.
4 Discrete choice analysis: a behavioural mod-

elling frameworkDis
rete 
hoi
e models are known in e
onometri
s sin
e the late 50's. Theyare designed to des
ribe the behavior of people in 
hoi
e situations, whenthe set of available alternatives is �nite and dis
rete (
hoi
e set). Theyare based on the 
on
ept of utility maximization in e
onomi
s, where thede
ision maker is assumed to be rational, performing a 
hoi
e in order tomaximize the utilities she per
eives from the alternatives. The alternativesare supposed to be mutually ex
lusive and 
olle
tively exhaustive, whilethe rationality of the de
ision maker implies transitive and 
oherent pref-eren
es. The utility is a latent 
onstru
t, whi
h is not dire
tly observedby the modeler, and is treated as a random variable. The dis
rete 
hoi
eparadigm mat
hes well the labelling assignment pro
ess of the parti
ipantsin the survey. This approa
h 
an be interpreted as an attempt to modelthe de
ision pro
ess performed by an hypotheti
al human observer duringthe labelling pro
edure for the fa
ial expressions. Given a population of
N individuals, the (random) utility fun
tion Uin per
eived by individual nfrom alternative i, given a 
hoi
e set Cn, is de�ned as follows:

Uin = Vin + εin (1)It is 
omposed by the sum of a deterministi
 term Vin, 
apturing the sys-temati
 behaviour (features extra
ted from a fa
e), and a random term
εin, 
apturing the un
ertainty. This random term 
aptures unobservedattributes, unobserved individual 
hara
teristi
s, measurement errors and11



instrumental variables. We a
tually do not observe the real values of theutilities as per
eived by the parti
ipant. Under the utility maximizationassumption, the output of the model is represented by the 
hoi
e probabil-ity that individual n will 
hoose alternative i, given the 
hoi
e set Cn. Itis given by:
Pn(i|Cn) = Pn(Uin ≥ Ujn, ∀j ∈ Cn) =∫

εn

I(εn < Vin − Vjn, ∀j ∈ Cn, j 6= i)f(εn)dεn (2)where εn = εjn − εin and I(.) is an indi
ator fun
tion whi
h is equal to1 when its argument is satis�ed, zero otherwise. In this paper we use aMultinomial Logit Model (MNL), whi
h is largely the simplest and mostused dis
rete 
hoi
e model in literature. The MNL 
hoi
e probability isgiven by the following expression
Pn(i|Cn) =

eµVin∑
j∈Cn

eµVjn
(3)In this work the 
hoi
e set Cn is represented by the 9 survey alternatives(\happiness", \surprise", \fear", \disgust", \sadness", \anger", \neutral",\other" and \I don't know").

5 Explanatory variablesThe survey provides the raw data 
apturing the parti
ipants per
eption offa
ial expressions. This raw data 
onsists on a set of fa
ial expressions im-ages (the Cohn-Kanade images) and the set of parti
ipants 
hoi
es. In orderto exploit the information 
oming from both sour
es we need to identify andrepresent the fa
ial visual 
ues des
ribing an expression. The Fa
ial A
tionCoding Systems (FACS) (Ekman and Friesen, 1978) represents the leadingstandard for measuring fa
ial expressions in behavioural s
ien
e. The mainmeasures suggested by this human observer system represent a valid start-ing point in the quest of variables 
hara
terizing the di�erent expressions.In the rest of the paragraph we detail the set of explanatory variables in-du
ed by the FACS and we introdu
e two new and 
omplementary sets ofvisual measures aiming at improving the des
riptiveness of ea
h expression.Figure 4 s
hemati
ally shows the image pre-pro
essing steps ne
essary to12



Figure 4: S
hema of the image pro
essing steps that lead to the extra
tionof the 3 sets of explanatory variables.
ompute these 3 sets of explanatory variables. For that purpose, the AAMrepresentation of the fa
e, des
ribed in Se
tion 5.1, is applied to the avail-able 1271 images. The shape des
ription of the fa
e (Figure 5(a)) is used for
omputing both measures 
oming from the FACS (detailed in Se
tion 5.2)and the new set of 
on�gural measures(Se
tion 5.3), 
alled Expression De-s
riptive Unit(EDU), 
omplementing Ekman's ones. Sin
e both holisti
features and lo
al features are important from the human per
eptual pointof view (S
hwaninger, 2003, Cabeza and Kato, 2000, Wallraven et al., 2005,Bi
ego et al., 2007), a third set of measures representing the appearan
e ofthe fa
e has been introdu
ed(Se
tion 5.4).
5.1 Active Appearance modelThe A
tive Appearan
e Model (AAM) is a statisti
al method for mat
hinga 
ombined model of shape and texture to unseen fa
es. The 
ombinationof a model of shape variation with a model of texture variation generatesa statisti
al appearan
e model. The model relies on a set of annotated im-ages. A training set of images is annotated by putting a group of landmark13



(a) (b) (
)Figure 5: a) Fa
ial landmarks (55 points); b) the geometri
al relationship offa
ial feature points, where the re
tangles represent the regions of furrowsand wrinkles; 
) Featural des
riptors used in the de�nition of the EDUs;Emotional Primary Visual Cues Auxiliary Visual CuesCategory AU AU AU AU AU AU AU AU AU AU Transient Feature(s)Happiness 6 12 25 26 16 Wrinkles on outer eye
anthi, presen
e of na-solabial furrowSadness 1 15 17 4 7 25 26Disgust 9 10 17 25 26 Presen
e of nasolabialfurrowSurprise 5 26 27 1+2 Furrows on the fore-headAnger 2 4 7 23 24 17 25 26 16 Verti
al furrows be-tween browsFear 20 1+5 5+7 4 5 7 25 26Table 1: The asso
iation of six emotional expressions to AUs, AU 
ombi-nations, and Transient Featurespoints around the main fa
ial features, marked in ea
h example. The shapeis represented by a ve
tor s brought into a 
ommon normalized frame -w.r.t.position, s
ale and rotation- to whi
h all shapes are aligned. After having
omputed the mean shape s̄ and aligned all the shapes from the trainingset by means of a Pro
rustes transformation (I.L. and K.V., 1998), it ispossible to warp textures from the training set onto the mean shape �s, inorder to obtain shape-free pat
hes. Similarly to the shape, after 
omputingthe mean shape-free texture �g, all the textures in the training set 
an benormalized with respe
t to it by s
aling and o�set of luminan
e values.PCA is applied to build the statisti
al shape and textures models:
si = s̄ + Φsbsi and gi = ḡ + Φtbti (4)14



FACS Measures Measures on mask 5(a) Explanatory Variables

JJ′ Dist(P5,P6) EVF

1

JF Dist(P6,P19) EVF

2

J′F′ Dist(P5,P15) EVF

3

KG≡ l8 Dist(P8,P25) EVF

4

K′G′ Dist(P3,P17) EVF

5

GI ≡ l6 Dist(P25,P21) EVF

6

G′I′ Dist(P13,P17) EVF

7

PF Dist(P19,P42) EVF

8

P′F′ Dist(P15,P37) EVF

9

FC Dist(P19,P31) EVF

10

F′C′ Dist(P15,P27) EVF

11

FD≡ l4 Dist(P25,P29) EVF

12

F′D Dist(P17,P29) EVF

13

OD Dist(
“

P39+P40
2

”

,P29) EVF

14

OB Dist(
“

39+40
2

”

,33) EVF

15

DB Dist(P29,P33) EVF

16

C′C Dist(P27,P31) EVF

17

∡FHJ ∡P19P23P6 EVF

18

∡F′H′J′ ∡P15P11P5 EVF

19

∡HFI ∡P23P19P21 EVF

20

∡H′F′I′ ∡P11P15P13 EVF

21

∡HGF ∡P23P25P19 EVF

22

∡H′G′F′ ∡P15P17P11 EVF

23Nose Wrinkles 6(a) Presen
e Dete
tion EVF

24Eyes Wrinkles 6(b) Presen
e Dete
tion EVF

25Forehead Wrinkles 6(
) Presen
e Dete
tion EVF

26Nasolabial Fold 6(d) Presen
e Dete
tion EVF

27Table 2: Corresponden
es between measures on masks 5(b) and 5(a)where si and gi are, respe
tively, the synthesized shape and shape-free tex-ture, Φs and Φt are the matri
es des
ribing the modes of variation derivedfrom the training set, bsi and bti the ve
tors 
ontrolling the synthesizedshape and shape-free texture. The uni�
ation of the presented shape andtexture models into one 
omplete appearan
e model is obtained by 
on-
atenating the ve
tors bsi and bti by means of normalizing matrix Ws:
bi =

(

Wsbsi

bti

) (5)
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and learning the 
orrelations between them by means of a further PCA.
bi = Φcci (6)where Φc are the eigenve
tors and ci is a ve
tor of appearan
e parametersallowing to simultaneously 
ontrol both shape and texture.The statisti
al model is then given by:

si = s̄ + Qsci and gi = ḡ + Qtci (7)where Qs and Qt are the matri
es des
ribing the prin
ipal modes of the
ombined variations in the training set. Fixing the parameters ci we derivethe shape and the shape-free texture ve
tors using equations (7). A fullre
onstru
tion is given by warping the generated texture into the generatedshape. In order to allow pose displa
ement of the model, other parametersmust be added to the appearan
e parameters ci: the pose parameters pi.The mat
hing of the appearan
e model to a target fa
e 
an be treated as anoptimization problem, minimizing the di�eren
e between the synthesizedmodel image and the target fa
e (Stegmann, 2000, Cootes et al., 2001,Cootes and Taylor, 2004, Matthews and Baker, 2004).
5.2 Measures from the FACSFa
ial expressions represent a visible 
onsequen
e of fa
ial mus
le and au-tonomi
 nervous system a
tions. Ekman and Friesen, 1978 propose theFa
ial A
tion Coding System (FACS) in order to measure all visible move-ments. Ideally, FACS would di�erentiate every 
hange in mus
ular a
tion,but it is limited to what a user 
an reliably dis
riminate. A 
omprehensivesystem was obtained by dis
overing how ea
h mus
le of the fa
e a
ts to
hange visible appearan
es. With this knowledge it is possible to analyseany fa
ial movement into anatomi
ally based, minimal a
tion units. FACSmeasurement units are 
alled A
tion Units(AUs) and represent the mus-
ular a
tivity that produ
es momentary 
hanges in fa
ial appearan
e. Afa
ial expression is indeed the 
ombination of AUs. In parti
ular, thereare six basi
 emotions (happiness, anger, disgust, fear, surprise and sad-ness) that Keltner, 2000 postulated as having a distin
tive 
ontent togetherwith a unique fa
ial expression. Based on the EMFACS (Friesen and Ek-man, 1983) the 6 basi
 expressions 
an be des
ribed linguisti
ally using16



Ekman's AUs. Likewise, we adapt the AU-
oded des
riptions of fa
ial ex-pressions in the EMFACS in order to des
ribe these 6 expressions. Table 1,whi
h is dire
tly adapted from Friesen and Ekman, 1983 and Friesen andEkman, 1984, illustrates the fa
ial AUs pertaining to the di�erent expres-sions. By drawing on the work of Zhang and Ji, 2005, we group AUs offa
ial expressions as primary AUs and auxiliary AUs. The primary AUsrefer to those AUs or 
ombinations of AUs that univo
ally des
ribe oneof the 6 expressions. The auxiliary AUs provide an additional support tothe expression 
hara
terization. This additional support 
an 
ome fromtransient features, su
h as wrinkles and furrows, or from nontransient fea-tures, su
h as measures among fa
ial 
omponents. In order to transformthe AUs in a set of quantitatively measures Zhang and Ji translate theseappearan
e 
hanges des
riptors in a set of geometri
al relationships of somefa
ial feature points, showed in Figure 5(b), and linguisti
ally reported byZhang and Ji, 2005. We use the shape mask, provided by the AAM, tomeasure the set of angles and distan
es detailed in Table 2. In the 
om-putation of these measures we need to take into a

ount that there existsa large varian
e in the morphology of human fa
es. In order to deal withthese di�eren
es a shape normalization is required. The AAM frameworkestablishes a 
oordinate referen
e to whi
h all the shapes are aligned by�ltering out lo
ation, s
ale and rotational e�e
ts. The use of the alignmentpro
edure on the dete
ted masks ensures the 
omputation of 
onsistentmeasures.On 
ompletion of the FACS system visual 
ues, we des
ribe here the tran-sient features and the measures used to quantify them. Transient wrinklesand furrows are the result of fa
ial mus
les movements. These movementsprodu
e small ridges in 
ertain fa
e regions. The regions of fa
ial wrinklesand furrows are indi
ated by re
tangles in Figure 5(b) and by the 
urvesstarting from P and P' for the nasolabial furrows. The 
hange of wrinklesin the region X is dire
tly related to AU9 (Nose Wrinkler). The furrows inthe regions Z, Y, V, U provide diagnosti
 information for the identi�
ationof AU1 (Inner Brow Raiser), AU2 (Outer Brow Raiser), AU4 (Brow Low-erer), AU6 (Cheek Raiser), and AU17 (Chin Raiser), respe
tively. In orderto dete
t these features, the edge dete
tion with embedded 
on�den
e, pro-posed by Meer, De
 2001, is used. The dete
tion is su

essively re�ned byanalysing the dire
tion of the extra
ted edge. Referring to Figure 5(b),wrinkles in regions Z and X should be mostly horizontal while those in17



(a) (b)
(
) (d)Figure 6: Transient feature dete
tion: (a) verti
al furrows between brows,(b) horizontal wrinkles between eyes, (
) horizontal wrinkles on the fore-head, and (d) nasolabial fold.region Y mostly verti
al. Figure 6 shows examples of transient feature de-te
tion. The ratio between edge pixels (wrinkles) and ba
kground pixels(skin) is used to measure and dete
t the presen
e of wrinkles in regions X,

Y and Z.For the nasolabial furrows, the areas of interest are those reported in Fig-ure 7(a). These regions, as well as all the other transient areas, are auto-mati
ally dete
ted using the AAM landmarks. Figure 7 shows the 4 pos-sible 
on�gurations for the nasolabial region: nasolabial furrow absen
e,nasolabial furrow due to 
heek raising Figures 7(b)-7(
) (AU6), nasolabialfurrow due to nose wrinkling or upper lip raising Figure 7(d) (AU9,AU10).If the analysis of the longest 
onne
ted edge in the 2 nasolabial regions(Figure 7(a)) reveals the presen
e of furrows, then the extra
ted 
urve isapproximated by a quadrati
 equation: y = ax2 + bx + c. The approxi-mated 
urve is obtained by �tting the set of nasolabial furrow's pixels to
y using the least-square method, similarly to Zhang and Ji, 2005. The a
oeÆ
ient represents the 
urvature of the nasolabial fold. A

ording to itsvalue we 
an dete
t and en
ode the presen
e of the nasolabial furrows asfollows: a > 0, as shown in Figure 7(b), whi
h 
ontributes to AU6 and tohappiness-like expressions; a < 0 and the vertex x = −b/2a is a pixel be-longing to the dete
ted furrow, as indi
ated by the red 
urve in Figure 7(
).18



This instan
e is again 
onne
ted to AU6; a < 0 and it has no vertex, asshown in Figure 7(d). This 
ase is a support eviden
e to AU 9 and AU10 and so to disgust-like expressions. The measures 
on
erning regions Vand U are dis
arded for two main reasons : 1)the related wrinkles are notalways dete
table in subje
ts; 2)they are redundant, sin
e stri
tly linkedto wrinkles and furrows in the retained regions.
(a) (b)
(
) (d)Figure 7: Nasolabial furrows possible s
enarios: (a) nasolabial furrows ab-sen
e and the two monitored regions around landmarks 37 and 42; (b)nasolabial furrows 
urve paramterized by a = 0 and asso
iated to AU6; (
)nasolabial furrows 
urve 
hara
terized by a < 0 and x = −b/2a,asso
iatedto AU6; (d) nasolabial furrows 
urve 
hara
terized by a < 0 and x /∈ thevisible 
urve, asso
iated to AU9 and AU10.

5.3 Expressions Descriptive Units (EDU)In the visual per
eption 
ommunity there is a general agreement on thefa
t that fa
e re
ognition is the result of two main sour
es of information:featural 
oming from individual fa
ial features (mouth, nose, et
.) and 
on-�gural related to the fa
ial layout and 
on�guration of the previous features(Farah et al., 1998, Cabeza and Kato, 2000). The measures extrapolated bythe FACS give information about isolated 
omponents in a fa
e, providing19



a featural 
ontribution to fa
e representation. A

ording to the hypothesisof 
on�gural en
oding, the spatial relationships between fa
ial 
omponentsprovide additional sour
es of information in the analysis of fa
ial expres-sions. In order to exploit the 
ombination of these two useful sour
es wehave de
ided to add a group of measures en
oding the intera
tions amongthe featural des
riptors showed in Figure 5(
). For that purpose we de�neto use the set of measures, 
alled Expression Des
riptive Unit (EDU), re-ported in Table 3 and introdu
ed by the authors in (Antonini et al., 2006).The �rst 5 EDUs represent, respe
tively, the e

entri
ity of eyes, left andright eyebrows, mouth and nose. The EDUs from 7 to 9 represent the eyesintera
tions with mouth and nose, while the 10th EDU is the nose-mouthrelational unit. The last 4 EDUs relate the eyebrows to mouth and nose.The EDUs 
an be intuitively interpreted. For example, in a fa
e displayinga surprise expression, the eyes and the mouth are usually opened and this
an be 
aptured by EDU7 (eyeheight/mouthheight).
EDU Measures Measures definition Explanatory VariablesEDU1 lew+rew

leh+reh
EVE

28EDU2 lbw
lbh

EVE

29EDU3 rbw
rbh

EVE

30EDU4 mw
mh

EVE

31EDU5 nh
nw

EVE

32EDU6 lew
mw

EVE

33EDU7 leh
mh

EVE

34EDU8 leh+reh
lbh+rbh

EVE

35EDU9 lew
nw

EVE

36EDU10 nw
mw

EVE

37EDU11 EDU2
EDU4

EVE

38EDU12 EDU3
EDU4

EVE

39EDU13 EDU2
EDU10

EVE

40EDU14 EDU3
EDU14

EVE

41Table 3: Expressions Des
riptive Units
20



Figure 8: Examples of synthesized fa
es obtained varying the �rst 
 pa-rameter from the mean fa
e (±3std).
5.4 Appearance vector(c)FACS and EDU provide measures of lo
al fa
ial features or areas that areprone to 
hange with fa
ial expressions, but they do not provide a de-s
ription of a fa
e as a global entity. This information 
an be obtained
onsidering the appearan
e ve
tor 
 mat
hing the fa
e in the pro
essedimage. Figure 8 shows the e�e
t of varying the �rst appearan
e modelparameter, showing 
hanges in identity and expression.
6 Models specificationIn this paragraph we fo
us on the deterministi
 part Vi of the randomutility fun
tion (see Eq. (1)). Any alternative i 
an be des
ribed in termsof a 
ombination of a 
ertain number of attributes EVi re
e
ting reasonablehypotheses about the e�e
ts of these variables on the 
orresponding utility.We propose three models of in
reasing 
omplexity.

Vj = ASCj +
∑KF

k=1 IF
kjβ

F
kjEVF

k FACS Model
+

∑KE

h=1 IE
hjβ

E
hjEVE

h FACS + EDU Model
+

∑KC

l=1 IC
klβ

C
ljEVC

l FACS + EDU +C Model (8)where j ∈ {\happiness", \surprise", \fear", \disgust", \sadness", \anger",\neutral", \other", \I don't know"}, fF, E, Cg refer respe
tively to theFACS, EDUs and the appearan
e parameters 
, EV
{F,E,C}

{k,h,l}
refers to fk, h, lg-th explanatory variable of one of the used sets, K{F,E,C} is the total number ofthe explanatory variables for ea
h set, I

{F,E,C}

kj is an indi
ator fun
tion equalto 1 if the k-th explanatory variable is in
luded in the utility for the alter-native j and 0 otherwise, β{F,E,C}

kj is the weight for the k-th EV in alternative
j and ASCj is an alternative spe
i�
 
onstant. The ASCj 
oeÆ
ients repre-sent the average value of the unobserved part of the 
orresponding utility21



and they are added in ea
h utility. For the model to be identi�ed, one ofthe 
onstant must be normalized to zero. In our 
ase the neutral alterna-tive is 
onsidered as the referen
e alternative and its ASC is set to zero.In addition neutral is a \by default expression", it 
orresponds to a fullyrelaxation of the fa
ial mus
les. Indeed features of a neutral fa
e are sup-posed to be at their basi
 level. Consequently in the developed DCMs, thedeterministi
 utility asso
iated to the neutral expression is �xed to zero.Con
erning the \Don't know" alternative, it has been introdu
ed in thesurvey in order to avoid 
olle
ting noise. In the models, its 
orrespondingutility 
ontains only an ASC be
ause no 
lear 
ausal e�e
t 
an be iden-ti�ed. This is not the 
ase for the \Other" alternative, whi
h representsa set of expressions. Prin
ipal features are introdu
ed in its deterministi
utility, a

ording to prin
ipal AUs. Di�erent models utilities spe
i�
ationsare presented in table 6 in Appendix A. The �rst version of the systemati
utility fun
tions (FACS Model, in Eq. (8)), for the proposed MNL model,in
ludes the explanatory variables asso
iated with the lo
al measures de-�ned in the AU. In the se
ond step the lo
al intera
tions between fa
ialfeatures provided by the EDUs are also in
luded, FACS + EDU Model inEq. (8). In the last model the 
 appearan
e parameters, en
oding globalmeasures about the fa
e, are �nally added to the two previous sets of mea-sures, Model FEC in eq.8. The 5 �rst 
 parameters, that 
apture the 75%of the total varian
e in the AAM training set, are introdu
ed in the utilityfun
tions using alternative spe
i�
 parameters.
7 Model estimationThe models introdu
ed in the previous se
tion have been estimated usingthe free Biogeme pa
kage (Bierlaire, 2003) using maximum likelihood esti-mation. In Table 4 we report the �nal 
oeÆ
ients estimates for some β forthe three models. In the �rst half of the table, ea
h row relates ea
h par-ti
ular β for a spe
i�
 model to its estimated 
oeÆ
ient and its asso
iatedt -statisti
 values. The se
ond half of the table shows summary statisti
sfor the entire estimation run for ea
h of the three models.The sign of the parameters are 
onsistent with the 
ommon reading of fa-
ial expressions in terms of fa
ial 
omponent modi�
ations. In Table 4, wereport a subset of βki estimates. A parameter is 
onsidered signi�
ant if22



(a) Expressions de
reasing C5 (b) Neutral
(
) Expressions in
reasing C5Figure 9: Example of the e�e
t of variation of the 
5 value. In
reasing thisparameter (leaving un
hanged the others) we move towards a happiness-likeexpression, whereas an anger-like fa
e 
orresponds to values of 
5 smallerthan the referen
e one.the norm of the t-test against 0 is bigger than 1.96, representing the 95%of signi�
an
e.

βF
17H represents the 
oeÆ
ient of the mouth width measure in the happinessexpression. It is a FACS parameter and it is in
luded in all the spe
i�
a-tions. Its positive value shows a positive impa
t on the respe
tive utility.This means that an in
rease of the mouth width with respe
t to the neutralexpression (the referen
e one in our model) 
orresponds to higher utilitiesfor the happiness alternative. The βF

17H estimate is inline with the FACS ex-pe
tations for the happiness expression. The �rst row in Table 1 des
ribesthe FACS happiness en
oding in terms of the primary a
tion units 6 and12. During an AU12 a stret
hing of the mouth's lip 
orners is expe
ted.This 
orresponds indeed to an in
rease of the measure CC ′ asso
iated tothe estimated parameter βF
17H and representing the mouth width.

βFE
31SU is the parameter related to EDU4 (Table 3) des
ribing the mouth e
-
entri
ity in the surprise alternative. Its positive sign explains the expe
tedbehaviour of the mouth in subje
ts performing a surprise expression, wherethe mouth movement leads to a lower mouth's height and a higher mouth'swidth, with respe
t to the referen
e alternative.The third parameter βFEC

46A is the 
oeÆ
ient related to the �fth appearan
eparameters 
 for the anger utility. The bigger this 
oeÆ
ient is the morenegative is the impa
t on the anger utility. We 
an visually interpret this23



result by looking at Figure 9. Considering the neutral 
5 value as thereferen
e value, we 
an noti
e how in
reasing this parameter (leaving un-
hanged the others) we move towards a happiness-like expression, whereasan anger-like fa
e 
orresponds to values of 
5 smaller than the referen
eone.The statisti
s 
on
erning the goodness of �t for the three di�erent modelsare reported in the se
ond half of Table 4. It 
an be observed that forthe se
ond model the �tting is better than for the �rst one (higher log-likelihood and ρ2) and the same for the third model with respe
t to these
ond one. The proposed models have been built in a nested way. Thismeans that the �rst model is a restri
ted version of the se
ond one andthe latest a restri
tion of the third one. In this 
ase, a likelihood ratiotest (Ben-Akiva and Lerman, 1985) 
an be used to verify if the additionalvariables of the unrestri
ted model add a signi�
ant explanatory power tothe model and 
ompensate for the degrees of freedom used by the fullerspe
i�
ation. The null hypothesis for this test states that the restri
tedand unrestri
ted models are equivalent. The statisti
 to 
ompute the testis
−2(L(β̂R) − L(β̂U)) ∼ χ2

KU−KR
(9)where Ki is the number of parameters of the model i and χ2

j is a χ2 dis-tribution with j degrees of freedom. Usually, a signi�
an
e level of 95% istaken, and then the null hypothesis is reje
ted if the test value is abovethe threshold provided by the χ2 distribution 
orresponding to the j de-grees of freedom. The results for this test are reported in Table 5. Theperformed tests refer to the two possible (restri
ed,unrestri
ted) models
ouples. The �rst test shows that the in
lusion of new parameters makesthe unrestri
ted FE model signi�
antly di�erent from its restri
ted 
oun-terpart, the F model. This result justi�es the se
ond test 
omparing themost 
omplex model (FEC) with its restri
ted version (FE), showing thatthe model 
onsidering the whole set of 3 di�erent explanatory variables 
anbe 
onsidered and retained as the �nal model that best �t our data.
24



F MODEL FE MODEL FEC MODEL

βF

ki
estimate t test 0 βFE

ki
estimate t test 0 βFEC

ki
estimate t test 0

βF
17H + 103 + 56.81 βFE

17H + 34 + 4.98 βFEC
17H + 105 + 37.67

βFE
31SU + 8.12 + 48.3 βFEC

31SU + 6.89 + 39.59
βFEC

46A
- 9.67 - 11.13

βF
17H

=mouth width Happiness, βFE
31SU

=EDU4 Surprise, βFEC
46A

=C5 AngerSample size = 38110 Sample size = 38110 Sample size = 38110Nb. of estimated parameters = 93 Nb. of estimated parameters = 120 Nb. of estimated parameters = 139Null log-likelihood = - 83736.229 Null log-likelihood = - 83736.229 Null log-likelihood = - 83736.229Final log-likelihood = - 57072.872 Final log-likelihood = - 55027.381 Final log-likelihood = - 53474.271Likelihood ratio test = 53326.712 Likelihood ratio test = 57417.695 Likelihood ratio test = 60523.915�ρ2 = 0.317 �ρ2 = 0.341 �ρ2 = 0.360Table 4: Estimation results for the FACS, FACS+EDU, FACS+EDU+Cmodels
Performed test Degrees of freedom Test value χ2 Threshold

F vs FE 27 4090.98 40.11

FE vs FEC 19 3106.22 30.14Table 5: Summary of the di�erent performed likelihood ratio tests
8 Extension to dynamic facial expression recog-

nitionThe Dis
rete Choi
e framework used for stati
 fa
ial expression re
og-nition is extended in order to 
onsider fa
e video sequen
es instead ofimages. An internet survey similar to the one des
ribed in se
tion 3.2is 
urrently 
ondu
ted for 
olle
ting expressions labels on fa
e video se-quen
es. It is available at http://transp-or2.ep
.
h/videosurvey/. Twovideo databases are used, the Cohn-Kanade database (Kanade et al., 2000)(also used in the stati
 
ase), and the Fa
ial Expressions and EmotionsDatabase (Wallho�, 2004). The dynami
 model is inspired by 
ar line
hanging models (Choudhury, 2007) and is a dire
t appli
ation of dis
rete
hoi
e model with latent segmentation (Walker, 2001). We hypothesise thatthe respondent expression per
eption evolves when wat
hing the video. Inaddition we 
onsider that the in
uen
e of the video frames on the respon-dent per
eption is varying depending on their dynami
. Considering per-
eption evolving at ea
h frame is not realisti
. Indeed frames transition istoo fast as frame rate is 25 per se
ond, 
onsequently a per
eption evolutiontime step is de�ned equal to one se
ond. The sequen
e is therefore sampled25



sele
ting the �rst frame of ea
h group of 25 frames. Features for ea
h framegroup are then the features of its �rst frame. By extension in the followingwe 
all a group of frames, a frame.The dynami
 fa
ial expression re
ognition model 
onsists of a 
ombi-nation of two DCMs. A per
eption state, 
orresponding to the respondentfa
ial expression per
eption, is asso
iated to ea
h time step. A �rst DCM isused to quantify this per
eption, whose 
hoi
e set is 
omposed of the nineexpressions used in the stati
 
ase. This is similar to the stati
 model. These
ond DCM quanti�es the frame in
uen
es on the respondent observedfa
ial expression 
hoi
e. The 
hoi
e set in this 
ase is 
omposed of theframes of the labelled video, whi
h makes that the 
hoi
e set varies fromone video to another. Note that both models are based on latent 
on
epts,indeed the respondent instantaneous per
eption and the frames in
uen
esare not observed. Only the video expression 
hoi
e is observed.The probability for respondent n to 
hoose the expression i when wat
h-ing the frame t of the video sequen
e o is written Pn(i|t, o) (�rst DCM).Then, the probability for the respondent n to make her expression 
hoi
ewhen wat
hing the frame t of the video sequen
e o is Pn(t|o) (se
ond DCM).The two DCMs are linked by the probability for the respondent n to la-bel the video o with the expression i, 
alled Pn(i|o). This relation 
an beexpressed as
Pn(i|o) =

To∑
t=1

Pn(i|t, o)Pn(t|o), (10)
To being the video duration in se
onds.As shown for the stati
 model, Pn(i|t, o) is quite universal, in the sensethat for the moment no 
lear so
io-e
onomi
 
hara
teristi
 seems to intera
twith the expression per
eption. We expe
t that this is not the 
ase for Pnt|owhi
h should strongly depend on the respondent n. Indeed the framedynami
 per
eption depends on the 
urrent respondent attention. Thisleads to take into a

ount the panel data e�e
t. ξn is de�ned as a randomterm spe
i�
 to the respondent n. So equation 10 
an be transformed as

Pn(i|o, ξn) =

To∑
t=1

Pn(i|t, o)Pn(t|o, ξn). (11)26



In order to obtain a 
losed form of Pn(i|o, ξn), we need to integrate on
ξn. By default ξn is supposed to be normally distributed N(0, σ). f(ξ)is the probability density distribution of ξn, and On is the number ofobservations asso
iated to the respondent n. By integration we obtain
Pn(i|o)

On∏
o=1

Pn(i|o) =

∫ On∏
o=1

To∑
t=1

Pn(i|t, o)Pn(t|o, ξn)f(ξ)dξ. (12)Theoreti
ally Pn(i|t, o) 
an be of any DCM type, su
h as multivariateextreme value (MEV), or mixture of logit models. But as mentioned before,the model is designed exa
tly for the same purpose than the stati
 model,so in a �rst time a simple logit model will be used, and the utility spe
i�-
ation will be near from the one proposed in the stati
 model version. In ase
ond step, utilities will take into a

ount the per
eption memory e�e
t.Con
erning Pn(t|o, ξn), it is a mixture of logit models, due to the panel datae�e
t term. We prefer to use a quite simple model form, su
h as mixtureof logit models, and not mixtures of MEV models, be
ause the 
orrelationbetween frames is diÆ
ult to de�ne. Indeed the frames number vary fromone video to another. The utility spe
i�
ation has to 
ontain attributeswhi
h re
e
t the frame dynami
s, su
h as derivatives of the attributes usedin the �rst DCM. The idea to use a simple 
orrelation stru
ture is alsomotivated by the fa
t that both models are estimated jointly by likelihoodmaximization, as a 
lassi
al DCM. Indeed the 
ombination of su
h models
an imply high non linearities in the likelihood fun
tion, and the optimiza-tion algorithm has to deal with su
h diÆ
ulties. If we 
all β the parametersve
tor we want to estimate, the likelihood l(β) has the following form
l(β) =

N∏
n=1

(

On∏
o=1

Pn(i|t, o, β)). (13)By mixing equation 12 and equation 13 we obtain
l(β) =

N∏
n=1

(

∫ On∏
o=1

To∑
t=1

Pn(i/t, o, β)Pn(t/o, ξn, β)f(ξ)dξ). (14)But for numeri
al reasons, the logarithm of the likelihood fun
tion,
L(β) =

N∑
n=1

log(

∫ On∏
o=1

To∑
t=1

Pn(i|t, o, β)Pn(t|o, ξn, β)f(ξ)dξ), (15)27



is used instead of l(β) during the estimation pro
ess. An extension of thebiogeme software (Bierlaire, 2003) will be implemented to estimate su
hmodels, the optimization toolbox remaining the same.We 
on
lude this se
tion by underlying the fa
t that the model spe
i�-
ation will depend on the number of observations provided by the internetvideo survey. Indeed nowadays the data base 
ontains 500 observations.This little number 
onstrains the number of alternative spe
i�
 parametersin the per
eption model to be redu
ed, 
ompared to the stati
 model ver-sion.
9 Conclusion and discussionWe have proposed a new method for fa
ial expressions modelling, basedon dis
rete 
hoi
e analysis. The data of the fa
ial evaluation survey sug-gested that a subje
tive 
omponent biases the labelling pro
ess, requiringa detailed statisti
al analysis on the 
olle
ted data. DCM paradigm wellmat
hes the human observer labelling pro
edure, allowing to 
apture andmodel the subje
tive per
eption of the 
hoi
e makers. In the stati
 
ase,we showed how to improve the des
riptiveness of the model by sequentiallyintrodu
ing 
omplementary set of features. The estimation of the threeproposed models has shown the 
orre
tness of the 
hosen sets of features,revealing the best �tting behaviour of the third and most 
omplex model.This work represents one of the �rst attempts to apply dis
rete 
hoi
eanalysis for modelling fa
ial expressions. Several means of improvementare possible. First, a deeper understanding of the 
hoi
e pro
ess 
an bea
hieved by exploring the personal 
hara
teristi
s of the de
ision-maker.The heterogeneity in the respondent population of the survey will allowthe investigation and the interpretation of these human fa
tors. For thatpurpose, the so
io-e
onomi
 features 
an be analysed and introdu
ed in theutility fun
tions as 
ategori
al variables. This analysis would over
ome an-other short
oming of previous approa
hes where humans are usually mod-elled as invariants and not as individuals. While modelling invariants isfundamental for most ma
hine learning or patterns re
ognition problems,in per
eption it is also important to ask how people are di�erent. A further28



investigation of the parameters involved in the de
ision-maker's 
hoi
e pro-
ess 
an be obtained by applying a segmentation of the population. Thismeans that, instead of introdu
ing a parameter for ea
h so
io-e
onomi
attribute, the population is divided with respe
t to that feature. For ex-ample, the behaviour of men and women 
an be explored by analysing thetwo groups separately.Se
ondly, other families of dis
rete 
hoi
e models 
an be used. As des
ribedin Se
tion 4, the utility of ea
h alternative is a random variable 
ontaininga systemati
 random part. Di�erent assumptions about the random termgive rise to di�erent models. The MNL models assume no 
orrelations be-tween alternatives. This hypothesis 
an be relaxed, by 
onsidering Nested(Daly and Za
hary, 1978) and Cross-Nested (Bierlaire, 2006) models.Finally the stati
 dis
rete 
hoi
e framework has been extended to the dy-nami
 
ase. A model 
omposed of 2 dis
rete 
hoi
e sub-models is proposed,one of them being similar to the model used in the stati
 version, the otherone measuring the in
uen
e of ea
h video frame. The dynami
 model is anadaptation of a DCM with latent segmentation proposed by Walker, 2001.
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Appendices

A Specification table with estimated param-

etersThe values of estimated parameters are presented in the next table. In the�rst and se
ond 
olumns the parameter name and its asso
iated feature arementioned. From 
olumn three to eleven, the asso
iated utility for ea
hparameter is indi
ated. Finally, in 
olumns twelve to fourteen, estimatedvalues and t-tests against zero are shown for the three models. Note thatif the parameter is not present in one of the models, the 
orresponding 
ellis empty.
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BRIEF DESCRIPTION UTILITIES F Model FE Model FEC ModelH SU F D SA A N O DK estimate t test 0 estimate t test 0 estimate t test 0
β1 Constant X −2.22 −6.63 −1.51 −2.86 −5.91 −11.53

β2 Constant X −1.71 −6.73 0.26 0.11 2.65 1.16

β3 Constant X −2.29 −69.24 −2.29 −69.25 −2.29 −69.24

β4 Constant X −3.83 −3.53 −1.01 −0.32 −5.65 −3.85

β5 Constant X 1.15 3.52 25.00 10.87 2.40 2.56

β6 Constant X −1.38 −4.54 −6.05 −3.04 −3.34 −1.67

β7 Constant X −2.69 −5.63 −14.60 −5.21 −9.61 −3.39

β8 Constant X −4.05 −21.01 1.56 2.95 −1.92 −3.83

β9 C1 X 5.66 7.81

β10 C1 X −9.25 −7.83

β11 C1 X 13.60 15.84

β12 C1 X 3.07 4.47

β13 C1 X 10.90 13.61

β14 C1 X 2.75 3.52

β15 C2 X 8.87 10.13

β16 C2 X 18.60 22.87

β17 C2 X 6.56 5.15

β18 C2 X −3.91 −3.88

β19 C2 X 12.80 17.41

β20 C2 X 10.10 11.05

β21 C2 X −4.04 −4.06

β22 C3 X 3.05 3.35

β23 C3 X 18.00 10.40

β24 C3 X −5.74 −7.76

β25 C3 X −11.80 −12.64

β26 C3 X 7.29 7.30

β27 C4 X 9.24 10.36

β28 C4 X 14.50 12.46

β29 C4 X −11.70 −11.77

β30 C4 X 7.79 9.56

β31 C4 X 13.70 14.65

β32 C5 X −9.67 −10.66

β33 C5 X −8.05 −6.82

β34 C5 X 1.96 2.06

β35 C5 X −2.04 −2.59

β36 C5 X −7.71 −8.18
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BRIEF DESCRIPTION UTILITIES F Model FE Model FEC ModelH SU F D SA A N O DK estimate t test 0 estimate t test 0 estimate t test 0
β37 C5 X −12.90 −14.36

β38 EDU10 X 9.62 19.91 12.30 23.43

β39 EDU10 X 13.20 3.75 12.50 3.70

β40 EDU10 X −8.14 −6.38 −6.02 −6.76

β41 EDU10 X 16.00 5.27 12.10 4.03

β42 EDU10 X 15.40 3.96 11.10 2.95

β43 EDU10 X −3.17 −7.17 −2.02 −4.34

β44 EDU5 X X −1.78 −11.68 −3.18 −27.36

β45 EDU5 X 2.45 15.44 2.77 15.35

β46 EDU5 X −1.25 −8.33 −1.15 −7.39

β47 EDU6 X −17.70 −4.15 −19.40 −4.74

β48 EDU6 X −16.70 −6.75

β49 EDU6 X −25.70 −7.16 −22.10 −6.21

β50 EDU6 X −24.30 −5.49 −21.30 −5.08

β51 EDU7 X X 2.31 14.29 2.21 13.30

β52 EDU7 X 1.28 5.58 2.44 11.92

β53 EDU7 X 2.46 5.76 3.13 8.21

β54 EDU7 X 2.06 10.52 2.68 14.13

β55 EDU7 X 2.03 10.60 2.05 10.26

β56 EDU8 X X −2.33 −5.88

β57 EDU8 X −4.29 −12.49 −5.59 −16.68

β58 EDU8 X −6.85 −14.29 −6.42 −13.74

β59 EDU8 X 0.75 2.25 1.13 3.37

β60 EDU8 X 8.39 12.02 6.15 8.89

β61 EDU8 X −5.80 −16.54 −3.94 −11.02

β62 EDU9 X 12.20 4.29 12.00 4.36

β63 EDU9 X −2.97 −2.57 −4.02 −5.71

β64 EDU9 X −6.26 −10.81 −3.12 −4.94

β65 EDU9 X 12.30 5.18 8.08 3.40

β66 EDU9 X 14.80 5.24 11.50 4.16

β67 RAP brow X X −4.78 −7.94 −1.11 −2.07

β68 RAP brow X −10.60 −18.21 −12.20 −21.04

β69 RAP brow X −12.40 −12.63 −5.76 −6.39

β70 RAP brow X 12.50 10.75 7.54 6.78

β71 RAP eye X −3.59 −4.87 −7.17 −11.14

β72 RAP eye X 7.09 3.24
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BRIEF DESCRIPTION UTILITIES F Model FE Model FEC ModelH SU F D SA A N O DK estimate t test 0 estimate t test 0 estimate t test 0
β73 RAP eye X −23.40 −10.03 −4.61 −5.54

β74 RAP eye X −8.79 −16.77 −10.30 −19.03

β75 RAP eye X −14.30 −14.53 −11.20 −11.07

β76 RAP eye X 2.00 3.45

β77 RAP mouth X −14 −15.12 −17.40 −17.85

β78 RAP mouth X −3.13 −2.48

β79 RAP mouth X 9.23 33.58 7.75 28.30

β80 RAP mouth X 6.28 5.09 8.38 8.25

β81 RAP mouth X 3.88 9.99 4.29 11.50

β82 RAP mouth X −7.30 −4.56 −9.98 −5.63

β83 RAP mouth X 8.12 39.06 6.89 33.38

β84 brow dist X −9.25 −4.71 −21.70 −9.67 −24.90 −11.46

β85 brow dist X −32.90 −8.91 −14.40 −4.54 −9.28 −3.02

β86 brow dist X −23.10 −11.56 −47.60 −18.46 −43.50 −17.07

β87 broweye l2 X −34.40 −7.33 −25.10 −4.60

β88 broweye l2 X 24.50 5.86 40.80 10.03 50.00 11.15

β89 broweye l2 X −4.41 −0.79 −15.30 −3.96 22.00 5.03

β90 broweye l2 X 6.48 1.59 33.60 11.30 48.80 14.48

β91 broweye l3 X −27.50 −7.72 −28.10 −6.37 −32.80 −8.95

β92 broweye l3 X 9.99 2.92

β93 broweye r2 X −71.00 −16.26 −75.60 −16.21 −74.20 −19.54

β94 broweye r2 X −55.80 −21.12 −50.10 −15.38 −31.20 −10.15

β95 broweye r2 X −19.10 −2.02

β96 broweye r2 X −59.20 −9.18 −91.30 −10.28 −80.80 −8.71

β97 broweye r2 X −4.40 −0.72

β98 browwr X 4.26 2.55

β99 browwr X 11.90 7.04 10.40 6.15 4.64 2.59

β100 browwr X 6.31 4.48 4.28 2.97 4.33 2.95

β101 browwr X 3.15 1.88

β102 eye angle below l X −1.46 −6.07

β103 eye angle below r X 0.26 0.88 2.36 6.44 1.96 11.50

β104 eye angle below r X 0.61 4.75

β105 eye angle l X −0.76 −2.36 1.54 3.96 2.47 6.37

β106 eye angle l X 5.86 12.69 5.06 10.02 5.13 12.25

β107 eye angle l X 4.21 14.89 1.97 5.00 1.09 2.68

β108 eye angle r X 3.37 9.89 2.03 4.84 2.72 6.15
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BRIEF DESCRIPTION UTILITIES F Model FE Model FEC ModelH SU F D SA A N O DK estimate t test 0 estimate t test 0 estimate t test 0
β109 eye angle r X 0.83 2.11 −3.12 −5.34

β110 eye angle r X −4.71 −17.21 −1.70 −3.93 −1.76 −4.15

β111 eye brow angle l X 7.05 13.98 4.32 9.91 4.42 10.15

β112 eye brow angle l X −2.73 −7.99 −3.93 −11.11 −3.42 −9.72

β113 eye brow angle l X −1.13 −2.63

β114 eye brow angle r X −1.46 −2.14 −2.10 −6.49 −1.54 −5.86

β115 eye brow angle r X −1.75 −8.49 −0.84 −4.18 −0.95 −4.24

β116 eye brow angle r X 5.31 12.84 7.96 12.43 5.81 9.10

β117 eye brow angle r X −1.22 −3.69 −2.75 −12.37 −2.93 −13.69

β118 eye mouth dist l2 X −41.10 −14.79 −16.00 −4.13

β119 eye mouth dist l2 X −8.29 −3.51

β120 eye mouth dist l X 33.30 5.07 54.00 8.57 66.30 10.12

β121 eye mouth dist l X −12.30 −3.23 −55.70 −10.09 −59.70 −10.66

β122 eye mouth dist l X −29.60 −7.74

β123 eye mouth dist l X −30.70 −6.44 20.70 3.84 21.10 3.96

β124 eye mouth dist r2 X 27.70 11.86 31.60 11.19 26.70 12.72

β125 eye mouth dist r2 X 7.52 3.02 −4.50 −3.99 −4.40 −3.74

β126 eye mouth dist r X −30.90 −4.81 −42.40 −6.84 −46.90 −7.22

β127 eye mouth dist r X −79.80 −20.78 −63.40 −12.59 −58.60 −11.17

β128 eye mouth dist r X 29.70 8.33

β129 eye mouth dist r X 62.20 14.47 28.80 6.39 36.50 8.12

β130 eye nose dist l X 5.15 0.84 70.10 9.72 67.30 9.23

β131 eye nose dist l X 90.00 15.96 96.50 13.80 49.50 8.26

β132 eye nose dist l X 64.10 8.10 42.00 4.84 −19.70 −5.77

β133 eye nose dist l X 90.40 16.86 78.20 15.42 54.90 10.47

β134 eye nose dist l X 113.00 19.33 105.00 15.34 79.40 11.23

β135 eye nose dist r X 50.20 6.72 −31.50 −3.63 −25.00 −2.87

β136 eye nose dist r X −94.90 −14.68 −136.00 −19.01 −96.20 −12.88

β137 eye nose dist r X −74.70 −7.34 −62.00 −6.09

β138 eye nose dist r X −108.00 −17.09 −77.00 −12.79 −38.90 −6.05

β139 eye nose dist r X −135.00 −20.26 −117.00 −14.77 −95.30 −12.18

β140 fore X 0.13 1.62

β141 fore X 0.87 11.21 0.67 9.09 0.74 9.39

β142 fore X 0.29 4.82 0.16 2.67 0.20 3.21

β143 fore X 0.56 9.29 0.54 9.03 0.47 7.56

β144 leye h X −81.20 −8.11 −86.70 −4.40 −32.00 −3.55
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β145 leye h X −27.60 −4.51 204.00 12.31 41.70 4.09

β146 leye h X −61.20 −9.21 −20.90 −2.91 −26.70 −3.63

β147 mouth h X −27.60 −9.90 111.00 18.17 134.00 21.23

β148 mouth h X −5.46 −3.54 43.00 5.40 28.20 8.66

β149 mouth h X 42.90 29.23

β150 mouth h X −4.07 −1.62

β151 mouth h X −8.45 −3.91 73.20 6.00 72.50 5.38

β152 mouth h X 55.10 43.15

β153 mouth nose dist2 X 8.17 3.46 5.39 2.18

β154 mouth nose dist2 X −14.20 −7.03 −20.10 −9.69 −5.15 −2.25

β155 mouth nose dist X 15.70 4.89 −11.80 −3.38 −19.40 −6.12

β156 mouth nose dist X 31.20 14.28 37.90 11.87 59.10 18.56

β157 mouth w X 23.30 11.41

β158 mouth w X 31.30 17.91

β159 mouth w X 19.80 9.43 23.10 4.07 18.60 5.09

β160 mouth w X 103.00 41.72 34.40 4.19 105.00 37.67

β161 mouth w X 19.30 10.54

β162 mouth w X −3.07 −1.56 −44.90 −7.42 −49.90 −8.38

β163 naslab X 0.76 14.52 0.57 11.09 0.68 12.66

β164 naswr X 18.80 30.31 16.70 24.11 15.70 22.63

β165 naswr X 4.73 6.68 6.35 9.16 5.94 8.22

β166 reye h X −33.20 −2.61

β167 reye h X 44.70 9.35 190.00 11.03 36.00 3.95

β168 reye h X 30.30 7.01 38.00 5.60 44.90 9.14Table 6: Details of models spe
i�
ations
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