
Branch and Price for the Vehicle Routing
Problem with Discrete Split Deliveries and

Time Windows

Matteo Salani ∗ Ilaria Vacca ∗

December 24, 2009

Report TRANSP-OR 091224

Transport and Mobility Laboratory

Ecole Polytechnique Fédérale de Lausanne

transp-or.epfl.ch

∗Transp-OR, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzer-

land, { matteo.salani , ilaria.vacca } @epfl.ch

1



Abstract

The Discrete Split Delivery Vehicle Routing Problem with Time Win-

dows (DSDVRPTW) consists of designing the optimal set of routes

to serve, at least cost, a given set of customers while respecting con-

straints on vehicles’ capacity and customer time windows. The deliv-

ery request of a customer is discrete since it consists of several items

that cannot be split further. The problem belongs to the class of split

delivery problems since each customer’s demand can be split in orders,

i.e. feasible combinations of items, and each customer can be visited

by more than one vehicle. In this work, we model the DSDVRPTW

assuming that all feasible orders are known in advance and that each

vehicle can serve at most one order per customer. Remarkably, ser-

vice time at customer’s location depends on the serviced combination

of items, which is a modeling feature rarely found in literature. We

present a mixed integer program for the DSDVRPTW based on arc-

flow formulation, we reformulate it via Dantzig-Wolfe and we apply

column generation. We propose a branch-and-price algorithm, imple-

mented using state-of-the-art techniques for the pricing and the mas-

ter problem. Computational results on instances based on Solomon’s

data set are presented and discussed.
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1 Introduction

The capacitated Vehicle Routing Problem (VRP) consists of designing the

optimal routes for a set of vehicles with given capacity in order to serve

a set of customers. Customer’s demand must be delivered by exactly one

vehicle and vehicles’ capacity must cannot be violated (exceeded).

The Split Delivery Vehicle Routing Problem (SDVRP) is a relaxed ver-

sion of the classical capacitated VRP in which the number of visits to

customer locations is no longer constrained to be at most one. In the SD-

VRP each customer can be visited by more than one vehicle which serves

a fraction of its demand. It has been shown that this relaxation could

yield to substantial savings on the total traveled distance, up to 50% in

some instances, as well as on the number of required vehicles (Archetti

et al., 2006a; Archetti et al., 2008a). The problem and some properties

have been introduced by Dror and Trudeau (1989) and Dror and Trudeau

(1990), who solve the problem using heuristic schemes. Next, Dror et al.

(1994) introduce a mathematical formulation based on integer program-

ming, solved through a cutting plane approach. Lower bounds have been

proposed by Belenguer et al. (2000); exact methods (Gueguen, 1999; Jin

et al., 2007) as well as heuristic algorithms (Archetti et al., 2006b; Chen

et al., 2007; Jin et al., 2008; Archetti et al., 2008b) have been proposed.

Gendreau et al. (2006) and Desaulniers (2008) address the problem with

time windows and present exact approaches based on column generation

and branch-and-bound techniques. Lower bounds have been studied by

Ceselli et al. (2009b) and a tabu search algorithm has been proposed by

Ho and Haugland (2004).

In the Discrete Split Delivery Vehicle Routing Problem (DSDVRP) the

demand of a customer consists of several items which cannot be split fur-

ther. The problem belongs to the class of split delivery problems since

each customer’s demand can be fractionated and each customer can be

visited by more than one vehicle. Nakao and Nagamochi (2007) present

the problem and propose a dynamic programming based heuristic. The

algorithm is compared to other existing heuristics for the VRP and compu-

tational results on real-world instances are provided. Ceselli et al. (2009a)
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present an exact approach to a real-world VRP in which customers’ or-

ders can be split among several vehicles in a discrete fashion. The authors

propose a three level order aggregation which end up, at the last level,

in considering any possible combination of items. The VRP with split-

table and discrete demand arises in some practical applications, such as the

routing of helicopters for crew exchanges on off-shore locations (Sierksma

and Tijssen, 1998) and the Field Technician Scheduling Problem (Xu and

Chiu, 2001); however, authors do not specifically relate their problems to

the DSDVRP.

In the reminder of the paper we study the Discrete Split Delivery Ve-

hicle Routing Problem with Time Windows (DSDVRPTW). We assume

that demand can be split in orders, i.e. feasible combinations of items,

that each vehicle can serve at most one order per customer and that ser-

vice time at customer’s location depends on the delivered combination of

items. Remarkably, this is a modeling feature rarely found in literature,

where service times are usually assumed to be independent of the delivered

quantities. We refer e.g. to Gendreau et al. (2006) and Desaulniers (2008),

who make the simplifying assumption of constant service times: this is in-

deed the case in applications where the unloading time is negligible, but

it is not an appropriate modeling assumption for applications where the

unloading time is largely affected by the size of the delivery. In Section 2

we recall some known properties of split deliveries. Section 3 provides an

arc-flow formulation for the DSDVRPTW. In Section 4 we reformulate the

problem using Dantzig-Wolfe decomposition and we illustrate the column

generation scheme. The branch-and-price implementation is presented in

Section 5 and computational results are discussed in Section 6. Section 7

concludes the paper.

2 Properties

In this section we recall some known properties of the VRP with Split

Deliveries, firstly introduced by Dror and Trudeau (1990), extended to the

variant with time windows by Gendreau et al. (2006). In particular, we

discuss the implications of the new modeling feature introduced in this
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Figure 1: Dror and Trudeau’s example.

paper, the quantity-dependant service time.

Property 1 The SDVRP(TW) is a relaxation of the corresponding

VRP(TW).

Let z∗s be the value of the optimal solution for the SDVRP(TW) and let

z∗f be the value of the optimal solution for the corresponding VRP(TW).

Property 1 states that z∗s ≤ z∗f. Clearly, z∗s ≯ z∗f for any problem instance

since any VRP(TW) solution (and in particular, the optimal one) is a

feasible solution for the corresponding SDVRP(TW). Furthrmore, there

exists instances such that z∗s < z∗f, as for the following example.

Dror and Trudeau’s example We consider three demand points with

d1 = 3, d2 = 4 and d3 = 3; the distances between the points including the

depot (node 0) are c0i = 2M for i = 1, 2, 3; c12 = c23 = ǫ and c13 = 2ǫ. All

vehicles have a capacity of five units. The VRP solution has a total cost of

12M and requires 3 vehicles, whereas the SDVRP solution has a total cost

of 8M + 2ǫ and requires only 2 vehicles (cf. Fig. 1).
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Figure 2: Dror and Trudeau’s two-route two-split example.

Property 2 The SDVRPTW is NP-Hard in the strong sense.

The NP-Hardness has been proven by reducing the Traveling Salesman

Problem to the SDVRPTW using a polynomial transformation.

Property 3 When the cost matrix satisfies the triangular inequality,

there exists an optimal solution of the SDVRP in which no two routes

have more than one split demand in common.

Consider an optimal SDVRP solution where two customers p and q are

serviced by the same two routes k and w with split deliveries dk
p, dw

p , dk
q

and dw
q (cf. Fig. 2). Without loss of generality, we assume that dk

p =

min{dk
p, dw

p , dk
q, dw

q }. It is always possible to modify the quantities delivered

by k and w to drop out customer p from route k, such that demands are

still fulfilled, vehicles’ capacity is not violated and the objective function

does not increase its value. In particular, the new quantities are dk
p

′

=

0, dw
p

′ = dw
p + dk

p, dk
q

′

= dk
q + dk

p and dw
q

′ = dw
q − dk

p.

Property 3 can be extended to the SDVRP with Time Windows only

under the assumption of constant service times. In particular, since route

w still visits customers p and q, service times are unchanged and time

windows are not affected. With respect to route k, since customer p is not

visited anymore, the vehicle may reach some subsequent customer earlier

that allowed; in this case, the vehicle will just wait at customer’s location
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until it is allowed to start the delivery.

It can be easily shown that properties 1 and 2 also hold for the DS-

DVRPTW, whereas property 3 does not apply to the DSDVRPTW with

quantity-dependant service times. In this case, the increased quantity deliv-

ered by route w to customer p implies an increased service time at location

p. As a consequence, the arrival and the delivery to the next customers

may not comply with the time windows constraints anymore.

3 Arc-flow formulation

In this section we present a mixed integer linear program for the DSD-

VRPTW based on arc-flow formulation.

Let G(V, E) be a complete graph with V = {0} ∪ N, where vertex {0}

represents the depot and N = {1, ..., n} is the set of customers to be served.

Each arc (i, j) ∈ E has a cost cij and a travel time tij. The set of available

vehicles with identical capacity Q is denoted by K. The set of items R is

defined as R =
⋃

i∈N Ri, where Ri represents the set of items to be delivered

to customer i ∈ N. Furthermore, Ri∩Rj = ∅ ∀i 6= j, i, j ∈ N, meaning that

any item r ∈ R is univocally associated to a customer i ∈ N. Each item

r ∈ R has a size qr and a service time tr. Items are delivered in orders, i.e.

combinations of items. The set of orders C is defined as C =
⋃

i∈NCi, where

Ci represents the set of feasible orders for customer i ∈ N. Furthermore,

Ci ∩ Cj = ∅ ∀i 6= j, i, j ∈ N, meaning that any order c ∈ C is univocally

associated to a customer i ∈ N. Each order c ∈ C has a size qc =
∑

r∈R er
cq

r

and a service time tc such that maxr∈R er
ct

r ≤ tc ≤
∑

r∈R er
ct

r, where er
c is

a binary parameter equal 1 if item r ∈ R is delivered in order c ∈ C and 0

otherwise. Interval [ai, bi] denotes the time window for customer i ∈ N.

We define the following decision variables:

xk
ij binary, equal to 1 if arc (i, j) ∈ E is used by vehicle k ∈ K;

yk
c binary, equal to 1 if vehicle k ∈ K delivers order c ∈ C;

Tk
i ≥ 0, represents the arrival time of vehicle k ∈ K at customer i ∈ N.

The discrete split delivery vehicle routing problem with time windows

can be formulated as follows:
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z∗IP = min
∑

k∈K

∑

(i,j)∈E

cijx
k
ij (1)

∑

j∈V

xk
0j = 1 ∀k ∈ K, (2)

∑

j∈V

xk
ij −

∑

j∈V

xk
ji = 0 ∀k ∈ K, ∀i ∈ V, (3)

∑

j∈V

xk
ij =

∑

c∈Ci

yk
c ∀k ∈ K, ∀i ∈ N, (4)

∑

k∈K

∑

c∈C

er
cy

k
c = 1 ∀r ∈ R, (5)

∑

c∈Ci

yk
c ≤ 1 ∀k ∈ K, ∀i ∈ N, (6)

Tk
i +

∑

c∈Ci

tcy
k
c + tij − Tk

j ≤ (1 − xk
ij)M ∀k ∈ K, ∀i ∈ N, ∀j ∈ V, (7)

Tk
i − t0i ≥ (1 − xk

0i)M ∀k ∈ K, ∀i ∈ N, (8)

Tk
i ≥ ai

∑

j∈V

xk
ij ∀k ∈ K, ∀i ∈ N, (9)

Tk
i +

∑

c∈Ci

tcy
k
c ≤ bi

∑

j∈V

xk
ij ∀k ∈ K, ∀i ∈ N, (10)

∑

c∈C

qcy
k
c ≤ Q ∀k ∈ K, (11)

xk
ij ∈ {0, 1} ∀k ∈ K, ∀(i, j) ∈ E, (12)

yk
c ∈ {0, 1} ∀k ∈ K, ∀c ∈ C, (13)

Tk
i ≥ 0 ∀k ∈ K, ∀i ∈ N. (14)

where M is a sufficiently large constant. The objective function (1)

minimizes the total traveling costs. Flow conservation is ensured by con-

straints (2)–(4), which also link x and y variables. Demand satisfaction is

ensured by constraints (5): all items must be delivered (but not all com-

binations). Constraints (6) ensure that every vehicle delivers at most one

order per customer. Precedence, time windows and capacity constraints

are ensured by constraints (7)–(8), (9)–(10) and (11). Finally, the domain

of variables is defined by (12), (13) and (14).

6



The service time at customer location depends on the selected order.

This feature is modeled by the term
∑

c∈Ci
tcy

k
c in constraints (7): it in-

creases the complexity of the model, with respect to the same type of

precedence constraints in classical VRP formulations with time windows.

4 Column generation

In this section we reformulate the DSDVRPTW model (1)–(14) via Dantzig-

Wolfe decomposition (Dantzig and Wolfe, 1960) and provide the formula-

tions of the master problem and pricing subproblem. The master problem

is solved by means of column generation.

4.1 Master problem

Let (2)-(4) and (6)-(14) be the constraints that define the subproblem and

let Dk = conv{(xk, yk, Tk) | (xk, yk, Tk) satisfies (2) − (4); (6) − (14) for k}

be the feasible bounded domain of the subproblem associated to vehicle

k ∈ K. Let Pk be the set of extreme points of Dk. Each extreme point

dp = (xk
p, yk

p, T
k
p), p ∈ Pk represents a feasible route for vehicle k with

respect to vehicle’s capacity and customers’ time windows, delivering a

unique order to every customer visited by the tour.

Since vehicles k ∈ K present identical restrictions (in this case, the same

capacity), all subproblems are identical and can therefore be aggregated

into a single subproblem. We denote as D = conv{(x, y, T) | (x, y, T) satisfies (2)−

(4); (6) − (14)} the feasible domain of the subproblem and P the set of ex-

treme points of D. Each extreme point dp = (xp, yp, Tp), p ∈ P represents

now a feasible route that can be covered by any vehicle among the |K|

available.

The definition of the master problem requires the following additional

notation: we denote cp the cost of path p ∈ P, defined as cp =
∑

(i,j)∈p cij,

while αr
p denotes a binary parameter equal to 1 if path p ∈ P delivers

item r ∈ R. After some standard adjustments and aggregation, the master
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problem can be formulated as follows:

min
∑

p∈P

cpλp (15)

∑

p∈P

αr
pλp = 1 ∀r ∈ R (πr) (16)

∑

p∈P

λp ≤ |K| (π0) (17)

λp ≥ 0 ∀p ∈ P. (18)

where λp are the decision variables associated to paths p ∈ P. The dual

variables associated to constraints (16) are denoted as πr while π0 is the

dual variable associated to constraint (17).

The objective function (15) minimizes the total traveling costs. Con-

straints (16) ensure that all items are delivered to customers, while con-

straint (17) ensures that the number of chosen routes does not exceed the

number of available vehicles.

We remark that constraints (16) need to be modeled as partitioning

constraints in the DSDVRPTW, unlike common reformulations for routing

problems that generally make use of covering constraints. This is due to the

fact that, for every customer i ∈ N, the set of orders Ci does not necessarily

contain all subsets of items r ∈ Ri, but only the subsets that are considered

feasible with respect to the problem definition (incompatibilities between

specific items, restrictions on the order size, etc.). As a consequence, a

partitioning solution equivalent to the optimal covering solution may not

exist.

4.2 Pricing subproblem

We denote c̃p := cp−
∑

r∈R πrα
r
p−π0 the reduced cost of a route p ∈ P. In a

column generation scheme, given a dual solution of the (restricted) master

problem, the pricing subproblem identifies the route p∗ with the minimum

reduced cost:

p∗ = arg min
p∈P

{c̃p} = arg min
p∈P

{cp −
∑

r∈R

πrα
r
p − π0} (19)
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The subproblem formulation relies on variables x, y and T defined in

Section 3 (without index k, since we have aggregated the subproblems) and

can be written as follows:

min
∑

(i,j)∈E

cijxij −
∑

r∈R

πr(
∑

c∈C

yce
r
c) − π0 (20)

∑

j∈V

x0j = 1 (21)

∑

j∈V

xij −
∑

j∈V

xji = 0 ∀i ∈ V, (22)

∑

j∈V

xij =
∑

c∈Ci

yc ∀i ∈ N, (23)

∑

c∈Ci

yc ≤ 1 ∀i ∈ N, (24)

Ti +
∑

c∈Ci

tcyc + tij − Tj ≤ (1 − xij)M ∀i ∈ N, ∀j ∈ V, (25)

Ti − t0i ≥ (1 − x0i)M ∀i ∈ N, (26)

Ti ≥ ai

∑

j∈V

xij ∀i ∈ N, (27)

Ti +
∑

c∈Ci

tcyc ≤ bi

∑

j∈V

xij ∀i ∈ N, (28)

∑

c∈C

qcyc ≤ Q (29)

xij ∈ {0, 1} ∀(i, j) ∈ E, (30)

yc ∈ {0, 1} ∀c ∈ C, (31)

Ti ≥ 0 ∀i ∈ N. (32)

Analyzing the objective function, we can observe that two major deci-

sions are made in the subproblem:

a) the sequence of customers i ∈ N visited in the route (cost component

cij);

b) for each customer in the route, the order c ∈ C to be delivered,

and therefore the subset of items r ∈ R delivered by the route (cost

component er
c).
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The pricing problem (20)–(32) is an Elementary Shortest Path Problem

with Resource Constraints (ESPPRC) defined on a network which has one

node for every order c ∈ C and whose arcs have transit time equals to

(tij + tc). In particular, the choice on the orders to be delivered by the

route has impact on the complexity to the subproblem.

5 Branch-and-price implementation

For solving the DSDVRPTW we have implemented a branch-and-price al-

gorithm (Barnhart et al., 1998; Lübbecke and Desrosiers, 2005) with state-

of-the-art solution techniques for the pricing and the master problem.

The pricing problem is solved using bounded bi-directional dynamic

programming (Righini and Salani, 2006) with decremental state space re-

laxation (Righini and Salani, 2008). The algorithm is initialized by a pre-

processing phase, used to identify and remove trivially dominated combi-

nations, and by a simple greedy algorithm used to find a feasible solution to

the problem. Such solution allows to compute an upper bound on the cost

of the solution and on the number of vehicles. The search tree is explored

using a best-first strategy.

5.1 Branching scheme

In the search tree, branching is required when the master problem is solved

at optimality and the corresponding solution of the arc-flow formulation is

not integer. We have implemented a branching scheme consisting of four

hierarchical levels:

1. if the total number of vehicles is fractional (
∑

p∈P λp = K̃), branching

is performed on constraint (17) by enforcing
∑

p∈P λp ≤ ⌊K̃⌋ on the

first child node and
∑

p∈P λp ≥ ⌈K̃⌉ on the second child node.

2. if the number of vehicles visiting a customer i ∈ N is fractional

(
∑

p∈P αi
pλp = K̃i), branching is performed by enforcing

∑
p∈P αi

pλp ≤

⌊K̃i⌋ on the first child node and
∑

p∈P αi
pλp ≥ ⌈K̃i⌉ on the second child

node. This branching requires additional constraints in the master
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problem and associated dual values to be collected in the pricing;

however, the pricing structure is not affected.

3. if there is an arc (i, j) ∈ E visited a fractional number of times

(
∑

k∈Kxk
ij = x̃ij), branching is performed by enforcing xij ≤ ⌊x̃ij⌋

on the first child node and xij ≥ ⌈x̃ij⌉ on the second child node. This

branching requires additional constraints in the master problem and

associated dual values to be collected in the pricing; however, the

pricing structure is not affected.

4. if none of the above conditions holds, then there exist two consec-

utive arcs (i, j) ∈ E and (j, l) ∈ E visited consecutively a fractional

number of times:
∑

p∈Pijl
λp = z̃ijl, where Pijl denotes the set of paths

containing arc (j, l) immediately after arc (i, j). In this case, branch-

ing is performed by enforcing zijl ≤ ⌊z̃ijl⌋ on the first child node and

zijl ≥ ⌈z̃ijl⌉ on the second child node. This branching requires mod-

ifying the pricing structure as well as additional constraints in the

master problem. However, it is rarely needed (<1% of instances in

our tests).

5.2 2-Path Cuts

At the root node we try to identify valid 2-path inequalities that are violated

by the current linear relaxation solution.

The basic idea of k-path inequalities (Kohl et al., 1999) is to identify

a subset of customers that is visited by less than k vehicles in the current

fractional solution, although it requires, in the optimal solution, at least

k vehicles to be serviced. For any subset of customers S ⊆ N, |S| ≥ 1

we define the flow into S, denoted x(S), as x(S) =
∑

i∈S̄

∑
j∈S xij where

S̄ = N \ S. Given the smallest number of vehicles needed to service all the

customers in S, denoted by k(S), a valid k-path inequality is defined by

x(S) ≥ k(S).

Since calculating k(S) is very time consuming, we have limited the

search to the 2-path inequalities. This reduces to identify some set S such

that x(S) < 2 and k(S) > 1. To determine whether k(S) > 1, we solve
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a Traveling Salesman Problem with Time Windows (TSPTW) for S: if a

TSPTW solution cannot be found, then k(S) > 1. Since the number of sets

S grows exponentially, in our search we limited the size of S to twice the

average number of customer per vehicle. All 2-path inequalities that are

violated by more than a predetermined threshold value (0.2 for our tests)

are added to the master problem, defining a new linear relaxation to solve.

6 Computational results

Algorithms are coded in ANSI C and compiled with gcc 4.1.2. Computa-

tional experience is run under a linux operating system on a 2Ghz Intel

processor equipped with 2GB of RAM. All restricted master problems are

solved using CPLEX version 10.2.

6.1 Instances

To the best of our knowledge there is no standard dataset used in the

literature for the DSDVRPTW. The most related contribution is that of

Nakao and Nagamochi (2007) for which the instances are not available.

We generated our test bed from the well-known Solomon’s data set

(Solomon, 1983). For all instances of classes R1, C1 and RC1 we consid-

ered the first n = 25, 50 customers and we discretized the demand of each

customer in 12 items (|Ri| = 12 ∀i ∈ N).

For each customer, we generated 7 orders: 1 full order (containing 12

items); 2 complementary orders 50%-50% (containing 6 items each, parti-

tioned); 2 complementary orders 75%-25% (containing 9 and 3 items re-

spectively, partitioned); 2 complementary 90%-10% orders (containing 11

and 1 items respectively, partitioned).

We considered 3 possible scenarios:

A: full order + 50-50% orders (|Ci| = 3);

B: full order + 50-50% orders + 75-25% orders (|Ci| = 5);

C: full order + 50-50% orders + 75-25% orders + 90-10% orders (|Ci| = 7).

The full order has been always included in order to allow the com-

parison of the DSDVRPTW with the classical VRP with Time Windows

12



(VRPTW). The unsplittable case, which is trivially composed of the full

order only (|Ci| = 1), is denoted as scenario O.

In order to enhance splitting, we considered more restrictive capacities

than Solomon’s, as already suggested by Gendreau et al. (2006). Instances

have been tested with Q = 30, 50 and 100.

From the 29 original Solomon’s instances (12 for class R1, 9 for class

C1 and 8 for class RC1), we derived 174 instances: 29 × 2 (customers) ×

3 (capacities). Each instance has been tested under the 4 scenarios A, B,

C and O.

6.2 Results

Table 1 presents a summary of the instances solved by the branch-and-

price within 1 hour of computational time. Instances are grouped by the

number of customers (n) and the capacity (Q). The number of instances

of each class is also provided (nb_inst). For each group, the table provides

the number of instances solved at optimality (nb_solved) and the average

computational time in seconds (t) for each DSDVRPTW scenario.

We were able to solve 88, 67 and 47 out of 174 instances for scenarios

A, B and C, respectively. The difficulty of solving the instances increases

with the size of |C|: 75, 125 and 175 orders with 25 customers and 150, 250,

and 350 orders with 50 customers for scenarios A, B and C, respectively.

This difficulty also increases with the number of customers: we were able

to solve 76% (A), 60% (B) and 48% (C) of instances with n = 25, whereas

only 25% (A), 17% (B) and 6% (C) of instances with n = 50 were solved

at optimality. The average computational time is also affected by the size

of |C| and the number of customers.

For n = 25 customers, instances of class R1 are the easiest to solve.

There are 36 (A), 36 (B) and 32 (C) solved instances out of 36 for class R1;

20 (A), 8 (B) and 2 (C) solved instances out of 27 for class C1; 10 (A), 8

(B) and 8 (C) solved instances out of 24 for class RC1. On average, 96% of

instances were solved in class R1, 37% in class C1 and 36% in class RC1.

For n = 50 customers, class RC1 seems easier to solve than class R1 (on

average, 42% versus 11% of solved instances), while no instances in class
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A B C

n class nb_inst Q nb_solved t nb_solved t nb_solved t

25 R1 12 30 12 7 12 75 8 466

50 12 6 12 60 12 430

100 12 9 12 41 12 113

25 C1 9 30 4 1108 0 x 0 x

50 9 37 4 2137 0 x

100 7 706 4 705 2 1876

25 RC1 8 30 2 1988 0 x 0 x

50 0 x 0 x 0 x

100 8 3 8 11 8 35

50 R1 12 30 1 1010 0 x 0 x

50 3 1572 1 385 0 x

100 3 1035 2 167 2 535

50 RC1 8 30 0 x 0 x 0 x

50 7 54 6 902 0 x

100 8 529 6 809 3 2832

Table 1: Summary of the branch-and-price results.

C1 were solved.

Optimal solutions are detailed in tables 2, 3, 4, 5 and 6. For each

instance, we provide the value of the optimal integer solution (zIP), the

number of vehicles (veh) and the computational time in seconds (t). The

three DSDVRPTW scenarios A, B, C and compared to the unsplittable

VRPTW scenario O: figures highlighted in bold denote savings due to split

deliveries. Instances that are not feasible for the unsplittable case because

of insufficient capacity are denoted by "Q < d". Instances not solved at

optimality within 1 hour of computational time are denoted by "x".

We can observe that split deliveries are more frequent for instances with

small Q values, although they also occur for certain instances with Q = 100.
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In a few cases, split deliveries not only decrease the total traveling costs

but also allow to save one vehicle.

7 Conclusions

Analyzing the results, we can conclude that obtaining optimal solutions is

difficult, even with a small number of orders per customer. Furthermore,

only a limited number of instances with 50 customers could be solved.

We guess that the bottleneck is in the pricing problem. Indeed, the

underlying ESPPRC network is huge, since, in the worst case scenario, for

every customer i ∈ N we have that set Ci corresponds to the set of all

subsets of Ri and therefore its size grows exponentially with the number

of items. Computational results show that solving the ESPPRC on such a

network may be impractical. Therefore, more efficient solution techniques

need to be investigated.
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O A B C

Q id zIP veh t zIP veh t zIP veh t zIP veh t

30 r101 795.6 13 0 795.1 13 1 782.5 13 3 782.5 13 11

r102 789.1 13 0 772.3 13 4 765.9 12 161 761.2 12 291

r103 759.6 12 0 759.6 12 19 751.7 12 176 745.3 12 70

r104 759.6 12 0 759.6 12 33 747.0 12 32 745.3 12 140

r105 775.7 12 0 775.3 12 3 773.2 12 47 773.2 12 558

r106 772.6 13 0 763.7 12 4 756.6 12 50 753.4 12 115

r107 748.5 12 0 748.5 12 3 744.1 12 57 x

r108 748.5 12 0 748.5 12 4 744.1 12 100 x

r109 754.6 12 0 754.6 12 1 750.2 12 20 750.2 12 1041

r110 748.5 12 0 748.5 12 4 744.1 12 37 744.1 12 1498

r111 754.6 12 0 754.6 12 2 750.2 12 102 x

r112 748.5 12 0 748.5 12 5 744.1 12 118 x

50 r101 635.0 9 0 631.5 8 0 631.5 8 1 631.5 8 1

r102 580.7 8 0 580.7 8 7 580.7 8 35 580.7 8 221

r103 534.3 7 0 534.3 7 3 534.3 7 65 534.3 7 333

r104 527.3 7 0 527.3 7 7 527.3 7 76 527.3 7 437

r105 596.1 8 0 588.9 8 1 585.4 8 4 585.4 8 13

r106 543.3 7 0 542.5 7 4 542.3 7 52 542.3 7 233

r107 527.7 7 0 527.7 7 14 527.7 7 187 527.7 7 1309

r108 521.6 7 0 521.6 7 16 521.6 7 185 521.6 7 2175

r109 524.6 7 0 524.6 7 1 524.6 7 5 524.6 7 11

r110 536.7 7 0 529.1 7 3 526.0 7 17 526.0 7 119

r111 521.6 7 0 521.6 7 7 521.6 7 45 521.6 7 178

r112 515.8 7 0 515.8 7 8 515.8 7 46 515.8 7 135

100 r101 617.1 8 0 617.1 8 0 617.1 8 1 617.1 8 1

r102 547.1 7 0 547.1 7 1 547.1 7 7 547.1 7 15

r103 454.6 5 0 454.6 5 2 454.6 5 8 454.6 5 14

r104 416.9 4 0 416.9 4 5 416.9 4 14 416.9 4 58

r105 530.5 6 0 530.5 6 1 530.5 6 3 530.5 6 5

r106 465.4 5 0 465.4 5 7 465.4 5 55 465.4 5 201

r107 428.4 4 0 428.4 4 7 428.4 4 32 428.4 4 87

r108 403.2 4 0 403.2 4 10 403.2 4 28 403.2 4 111

r109 441.3 5 0 441.3 5 2 441.3 5 7 441.3 5 12

r110 444.1 5 0 444.1 5 13 444.1 5 96 444.1 5 229

r111 428.8 4 0 428.8 4 6 428.8 4 30 428.8 4 101

r112 401.7 4 1 401.3 4 59 401.3 4 209 401.3 4 519

Table 2: Optimal solutions for class R1, n = 25 customers.
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O A B C

Q id zIP veh t zIP veh t zIP veh t zIP veh t

30 c101 Q < d 825.3 16 532 x x

c105 Q < d 825.7 16 985 x x

c106 Q < d 826.4 16 630 x x

c107 Q < d 825.7 16 2285 x x

50 c101 516.9 10 0 516.8 10 5 516.8 10 1242 x

c102 516.6 10 0 516.5 10 29 x x

c103 516.6 10 0 516.5 10 56 x x

c104 516.6 10 0 516.4 10 142 x x

c105 516.9 10 0 516.8 10 9 516.8 10 2030 x

c106 516.9 10 0 516.8 10 7 516.8 10 1721 x

c107 516.9 10 0 516.8 10 17 516.8 10 3555 x

c108 516.8 10 0 516.7 10 29 x x

c109 516.8 10 0 515.9 10 42 x x

100 c101 291.9 5 0 291.9 5 17 291.9 5 175 291.9 5 1858

c102 291.9 5 10 291.9 5 1010 x x

c105 291.9 5 1 291.9 5 47 291.9 5 687 x

c106 291.9 5 1 291.9 5 24 291.9 5 231 291.9 5 1894

c107 291.9 5 1 291.9 5 86 291.9 5 1726 x

c108 291.9 5 2 291.9 5 530 x x

c109 289.5 5 15 289.5 5 3226 x x

Table 3: Optimal solutions for class C1, n = 25 customers.
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O A B C

Q id zIP veh t zIP veh t zIP veh t zIP veh t

30 rc101 Q < d 1438.0 18 453 x x

rc106 Q < d 1438.0 18 3523 x x

100 rc101 534.3 6 0 534.3 6 1 534.3 6 6 534.3 6 19

rc102 523.7 6 0 523.7 6 2 523.7 6 11 523.7 6 34

rc103 514.7 6 0 513.7 6 3 513.7 6 11 513.7 6 54

rc104 506.7 6 0 506.7 6 3 506.7 6 18 506.7 6 34

rc105 527.5 6 0 527.5 6 3 527.5 6 6 527.5 6 32

rc106 515.6 6 0 515.6 6 1 515.6 6 4 515.6 6 12

rc107 505.7 6 0 505.7 6 3 505.7 6 13 505.7 6 39

rc108 505.7 6 0 505.7 6 4 505.7 6 16 505.7 6 56

Table 4: Optimal solutions for class RC1, n = 25 customers.

O A B C

Q id zIP veh t zIP veh t zIP veh t zIP veh t

30 r101 Q < d 1664.6 26 1010 x x

50 r101 1222.0 16 1 1211.1 16 127 1198.7 15 385 x

r102 1134.9 16 2 1125.1 16 3404 x x

r105 1166.3 16 17 1148.5 16 1185 x x

100 r101 1044.0 12 0 1044.0 12 9 1040.6 12 22 1040.6 12 54

r102 913.2 11 1 913.2 11 58 911.9 11 311 911.9 11 1016

r105 918.2 9 7 918.2 9 3038 x x

Table 5: Optimal solutions for class R1, n = 50 customers.
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O A B C

Q id zIP veh t zIP veh t zIP veh t zIP veh t

50 rc101 1713.2 20 0 1708.9 20 13 1708.3 20 594 x

rc102 1704.3 20 0 1700.5 20 62 1700.5 20 1938 x

rc103 1703.4 20 1 1696.8 20 37 1696.8 20 427 x

rc104 1702.2 20 1 1696.7 20 54 1696.7 20 677 x

rc105 1703.9 20 0 1700.1 20 73 1700.1 20 1132 x

rc107 1704.1 20 1 1698.6 20 58 x x

rc108 1702.2 20 2 1696.7 20 83 1696.7 20 645 x

100 rc101 994.6 10 2 993.8 10 257 984.4 10 524 x

rc102 961.0 10 1 960.2 10 2657 x x

rc103 936.2 10 4 936.2 10 837 x x

rc104 915.9 10 4 915.9 10 198 915.9 10 2140 x

rc105 957.4 10 2 957.4 10 82 957.4 10 536 957.4 10 2940

rc106 937.0 10 1 937.0 10 58 937.0 10 742 x

rc107 915.1 10 1 915.1 10 33 915.1 10 515 915.1 10 2064

rc108 911.9 10 3 911.9 10 110 911.9 10 398 911.9 10 3491

Table 6: Optimal solutions for class RC1, n = 50 customers.
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