A Recovery Algorithm for a Disrupted Airline Schedule

Niklaus Eggenberg
Matteo Salani and Prof. M. Bierlaire

In collaboration with *APM Technologies*
Index

- Airline Scheduling in general
- The Disrupted Schedule Recovery Problem (DSRP)
- The Column Generation (CG) approach
- Column Description
- The pricing algorithm with the Recovery Network
- Some preliminary results
- Future Work and Conclusions
Airline Scheduling Approach

- Route Choice
- Fleet Assignment
- Tail Assignment
- Crew Pairing
- Crew Roistering
- Passenger Routing (Catering)
Disrupted Schedule Recovery

\[t_0 + T \]

Schedule \(S_0 \)

Disruption

Recovery Decision

\[t_0 \]
Definitions

• *Disruption*
 event making a schedule unrealizable

• *Recovery*
 action to get back to initial schedule

• *Recovery Period (T)*
 time needed to recover initial schedule
Definitions

• **Recovery Plan**
 set of actions to recover disrupted schedule

• **Recovery Scheme \((r)\)**
 set of actions for a resource (plane)
Hypothesis

- consider only fleet and tail assignment
- no repositioning flights
- no early departure for flights
- work with universal time (UMT)
- initial state of resources are known
- no irregularity until end of recovery period
- maintenance forced by resource consumption
Column Generation

- column = recovery scheme (schedule for a plane)
- recovery scheme \(r \) = way to link Initial State to Final State with succession of flights and maintenances
- suppose set of all possible schemes \(R \) known
- find optimal combination of schemes
Master Problem (IMP)

\[
\begin{align*}
\min \quad z_{MP} &= \sum_{r \in R} c_r x_r + \sum_{f \in F} c_f y_f \\
\text{s. c.} \quad \sum_{r \in R} b^f_r x_r + y_f &= 1 \quad \forall f \in F \\
\sum_{r \in R} b^s_r x_r &= 1 \quad \forall s \in S \\
\sum_{r \in R} b^p_r x_r &\leq 1 \quad \forall p \in P \\
\end{align*}
\]

\[
\begin{align*}
x_r &\in \{0,1\} \quad \forall r \in R \\
y_f &\in \{0,1\} \quad \forall f \in F
\end{align*}
\]
What is a column?

- vector \(b_r = (b_r^f, b_r^s, b_r^p)^T \)

Where

- \(b_r^f = 1 \) if flight \(f \) is covered by column \(r \)
- \(b_r^s = 1 \) if final state \(s \) is covered by \(r \)
- \(b_r^p = 1 \) if column \(r \) is affected to plane \(p \)
Example

\[f_1 \text{ GVA to AMS} \]
\[f_2 \text{ AMS to BCN} \]
\[f_3 \text{ BCN to GVA} \]
\[f_4 \text{ MIL to BUD} \]
\[f_5 \text{ BUD to MIL} \]
\[f_6 \text{ BCN to MIL} \]
Example

- flights: \(F = \{f_1, f_2, f_3, f_4, f_5, f_6\} \)
- final states: \(S = \{S^{GVA}, S^{MIL}\} \)
- planes: \(P = \{p_1, p_2\} \)
- \(p_1 \) starts in GVA, \(p_2 \) starts in MIL
Column examples

\[b_1 = (0,0,0,0,0,0,1,0,1,0)^T \]

\[b_2 = (1,1,1,0,0,0,1,0,1,0)^T \]

\[b_3 = (0,0,0,1,1,0,0,1,0,1)^T \]
Column Generation

Feasible Solution

[Map of Europe with marked routes]
Solving the Master Problem

I. Solve IMP with **Branch and Bound**

II. Solve linear relaxation LP at each node:

- Restrict LP to sub-set \(R' \subseteq R \)
- Solve RLP
- Find \(b_r \in R \setminus R' \) minimizing reduced cost
- Insert column if \(r.c. < 0 \) and resolve RLP
The Pricing Problem

Find column \(b_r \in R \setminus R' \) minimizing reduced cost \(\tilde{c}_r^p \)

\[
\min_{r \in R} \tilde{c}_r^p = c_p^r - \sum_{f \in F} b_r^f \lambda_f - \sum_{s \in S} b_r^s \eta_s - b_r^p \mu_p \quad \forall \ p \in P
\]

Recovery Network Model

Solve Resource Constrained Elementary Shortest Path Problem (RCESPP)
The Recovery Network (Argüello et al. 97)

- Time-space network
- One network for every plane
- Source node corresponding to initial state
- Sinks corresponding to expected final states
- 3 arc types (NEVER horizontal):
 1. Flight arcs
 2. Maintenance arcs
 3. Termination arcs (vertical)
Source and Sink Nodes

Plane p_1, initial state = [GVA, 0800]
Expected States : [GVA, 1800] and [MIL, 1500]
Flight and Maintenance Arcs

flight F1: GVA to NY at 1200
Arc Costs

- Flight arcs:
 \[c = c^f - \lambda_f \]

- Maintenance arcs:
 \[c = c^f + c^M - \lambda_f \]

- Termination arcs:
 \[c = -\eta_s \]
Recovery Network Properties

• No horizontal arcs
• No vertical arcs except termination arcs
• Node only at earliest availability time
• Grounding time included in arc length (3 types)
• Maintenances are integrated before flight if possible
Preliminary Results

• implementation using COIN-OR BCP

• solve three problems of various sizes:
 1. 48 flights, 9 airports, 3 planes
 2. 84 flights, 15 airports, 11 planes
 3. 36 flights, 17 airports, 10 planes

• solved 1. to optimality (root node)

• promising results for instances 2. and 3.
Future Work

• Work on implementation

• Test more real instances

• Explore more widely RCESPP and CG algorithms

• Compare solutions to real recovery decisions

• Include Algorithm in APM Framework
Conclusions

• Column Generation to solve DSRP

• Adapted model to solve pricing problem

• Get quick solutions for decision aid

• Still need real-instance validation
THANKS for your attention!

Any Questions?