Recent advances in the calibration of travel demand models from traffic counts

Gunnar Flötteröd

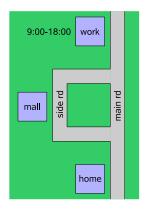
June 24, 2009

Microsimulation-based traffic monitoring

Real world case study - the city of Zurich

Microsimulation-based traffic monitoring

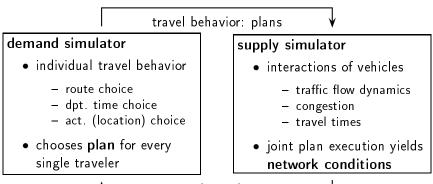
Real world case study - the city of Zurich



Aggregate demand calibration from traffic counts

- typical modeling approaches
 - demand = time-dependent origin/destination matrix + route assignment logic
 - supply = move flows/vehicles along routes, account for congestion
- typical demand calibration techniques
 - OD matrix calibration
 - path flow estimation

- plan A
 - 1. sleep late 🙂
 - 2. 9:00 18:00 work
 - 3. shop afterwards
 - 4. late at home 🔅
- plan B
 - 1. get up early ③
 - 2. shop beforehand
 - 3. 9:00-18:00 work
 - 4. early at home ©



Microsimulation-based traffic monitoring

Real world case study - the city of Zurich

network conditions

Measurements provide additional information

• Bayes theorem combines prior demand model with traffic counts into posterior demand model:

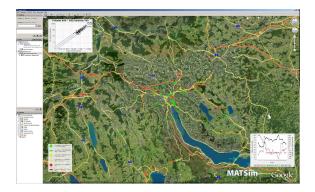
$$\underbrace{\frac{P(\mathsf{plans}|\mathsf{counts})}{(3)} \propto \underbrace{\frac{P(\mathsf{plans})}{(1)} \cdot \underbrace{P(\mathsf{counts}|\mathsf{plans})}_{(2)}}_{(2)}$$

1. **prior:** simulation system draws from this distribution

- 2. likelihood: prob. of traffic counts given simulated plans
- 3. posterior: revised distribution given the measurements
- Calibration objective is to make the the simulator draw from the posterior plan choice distribution.

Realization of calibrated behavior

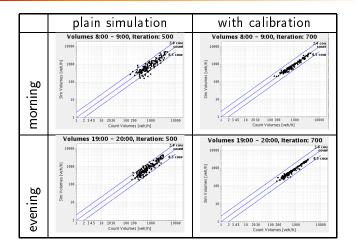
- It is possible to approximately enforce the desired posterior plan choice only by external manipulations of the individual choice behavior of (re)planning travelers.
- Two possible methods:
- 1. Accept the choice of a plan only with a certain probability. Otherwise, ask for another choice.
- 2. Add a correction term to the systematic utility of every plan a traveler considers before making a choice.


Microsimulation-based traffic monitoring

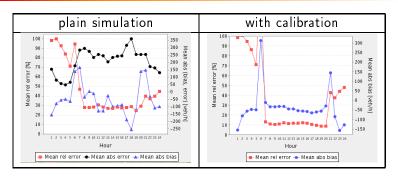
Real world case study - the city of Zurich

Real world case study - the city of Zurich

- network with 60 492 links, synthetic population of size 187 484
- calibrate all-day motorist behavior from 159 inductive loops


Settings

- modeling assumptions (Matsim)
 - fully disaggregate demand representation
 - combined choice of route, departure time, mode
 - disaggregate supply model (queuing simulation)
 - (some kind of) stochastic user equilibrium
- estimator setting
 - utilize 159 flow sensors
 - adjust all choice dimensions at once
 - influence driver behavior by accept/reject procedure
 - quality evaluation only at measurement locations


Results – scatterplots

Results - all day

- measurements available from 7:00 to 20:00
- red curve is mean relative flow error $\left|q^{\mathsf{estim}}-q^{\mathsf{true}}
 ight|/q^{\mathsf{true}}$
- drastic improvement of results in real-world conditions

Microsimulation-based traffic monitoring

Real world case study - the city of Zurich

- broadly applicable disaggregate demand calibration method
 - flexible with respect to workings of DTA simulator
 - consistent with equilibrium and non-equilibrium models
- mathematically consistent
 - adopted formal view on microscopic modeling and simulation
 - Bayesian approach accounts for model and data uncertainties
- computationally efficient
 - is applicable to problems of practically relevant size
 - is applicable in real-time conditions

Summary

- broadly applicable disaggregate demand calibration method
 - flexible with respect to workings of DTA simulator
 - consistent with equilibrium and non-equilibrium models
- mathematically consistent
 - adopted formal view on microscopic modeling and simulation
 - Bayesian approach accounts for model and data uncertainties
- computationally efficient
 - is applicable to problems of practically relevant size
 - is applicable in real-time conditions

Thank you for your attention.

