Recent advances in the calibration of travel demand models from traffic counts

Gunnar Flötteröd

June 24, 2009
Outline

Introduction and motivation

Microsimulation-based traffic monitoring

Real world case study – the city of Zurich

Summary
Outline

Introduction and motivation

Microsimulation-based traffic monitoring

Real world case study – the city of Zurich

Summary
Aggregate demand calibration from traffic counts

• typical modeling approaches
 – demand = time-dependent origin/destination matrix + route assignment logic
 – supply = move flows/vehicles along routes, account for congestion

• typical demand calibration techniques
 – OD matrix calibration
 – path flow estimation
Why not calibrate the *causation* of traffic?

- **plan A**
 1. sleep late 😊
 2. 9:00 – 18:00 work
 3. shop afterwards
 4. late at home 😞

- **plan B**
 1. get up early 😞
 2. shop beforehand
 3. 9:00-18:00 work
 4. early at home 😊
Outline

Introduction and motivation

Microsimulation-based traffic monitoring

Real world case study – the city of Zurich

Summary
Microsimulation-based DTA

- **demand simulator**
 - individual travel behavior
 - route choice
 - dpt. time choice
 - act. (location) choice
 - chooses **plan** for every single traveler

- **supply simulator**
 - interactions of vehicles
 - traffic flow dynamics
 - congestion
 - travel times
 - joint plan execution yields **network conditions**

network conditions

- **travel behavior: plans**
Measurements provide additional information

- Bayes theorem combines prior demand model with traffic counts into posterior demand model:

\[
P(\text{plans}|\text{counts}) \propto P(\text{plans}) \cdot P(\text{counts}|\text{plans})
\]

1. **prior**: simulation system draws from this distribution
2. **likelihood**: prob. of traffic counts given simulated plans
3. **posterior**: revised distribution given the measurements

- Calibration objective is to make the simulator draw from the posterior plan choice distribution.
Realization of calibrated behavior

- It is possible to approximately enforce the desired posterior plan choice – only by external manipulations of the individual choice behavior of (re)planning travelers.

- Two possible methods:
 1. Accept the choice of a plan only with a certain probability. Otherwise, ask for another choice.
 2. Add a correction term to the systematic utility of every plan a traveler considers before making a choice.
Outline

Introduction and motivation

Microsimulation-based traffic monitoring

Real world case study – the city of Zurich

Summary
Real world case study – the city of Zurich

- network with 60,492 links, synthetic population of size 187,484
- calibrate all-day motorist behavior from 159 inductive loops
Settings

• modeling assumptions (Matsim)
 – fully disaggregate demand representation
 – combined choice of route, departure time, mode
 – disaggregate supply model (queuing simulation)
 – (some kind of) stochastic user equilibrium

• estimator setting
 – utilize 159 flow sensors
 – adjust all choice dimensions at once
 – influence driver behavior by accept/reject procedure
 – quality evaluation only at measurement locations
Results – scatterplots

<table>
<thead>
<tr>
<th>Time</th>
<th>Plain Simulation</th>
<th>With Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evening</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results – all day

- Measurements available from 7:00 to 20:00
- Red curve is mean relative flow error $\frac{|q_{\text{estim}} - q_{\text{true}}|}{q_{\text{true}}}$
- Drastic improvement of results in real-world conditions
Outline

Introduction and motivation

Microsimulation-based traffic monitoring

Real world case study – the city of Zurich

Summary
Summary

- broadly applicable disaggregate demand calibration method
 - flexible with respect to workings of DTA simulator
 - consistent with equilibrium and non-equilibrium models
- mathematically consistent
 - adopted formal view on microscopic modeling and simulation
 - Bayesian approach accounts for model and data uncertainties
- computationally efficient
 - is applicable to problems of practically relevant size
 - is applicable in real-time conditions
Summary

- broadly applicable disaggregate demand calibration method
 - flexible with respect to workings of DTA simulator
 - consistent with equilibrium and non-equilibrium models
- mathematically consistent
 - adopted formal view on microscopic modeling and simulation
 - Bayesian approach accounts for model and data uncertainties
- computationally efficient
 - is applicable to problems of practically relevant size
 - is applicable in real-time conditions

Thank you for your attention.