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Airlines = Complexity

International / Intercontinental

Network of flights

Aircraft types (heterogeneous fleet)

Airport capacities (gates, slots)

Air traffic control

Security/Environmental regulations

Strict safety requirements
(maintenance)

Infinite workforce rules

Complicated cost structure/pricing

High competition/Uncertain demand

This is a nightmare for practitioners and fun for researchers.
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AEA Financial Report 2000-2008

Low margins (around 2-3%)
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Airline planning process
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Need for robustness

Disruptions are unpredicted events which
significantly modify the assumptions (data)
used for decision making.

For example, in 2007, 21.1% of departures and 22.3% of arrivals in
Europe were delayed by more than 15 minutes. The average cancellation
rate is about 1.5% for short haul and 0.6% for long haul.

Robust decision making accounts for noise in the data to obtain a more
stable system.
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The most robust plan

No service is not acceptable!
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Recovery strategies

When the system is in a disrupted state (data is revealed or a disruption
happens), we refer to a recovery strategy as the sequence of actions to
restore an operational state of the system.

Often used as an alternative to robust planning to cope with noisy data.

Recovery algorithms tend to minimize the total cost of additional
operations to restore operational state. Different baseline solutions may
incur in different recovery costs given the same disruption.
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Aircraft recovery problem (ARP)

Restore an operational state minimizing recovery time and costs.

The problem:

Given a baseline schedule.

Recover within a given time horizon an airline schedule in a
disrupted state minimizing the recovery costs

Known: ACs’ position, ACs’ expected position, airports, passengers
itineraries

Recovery cost structure used by a major european airline: linear
combination of flight and itinerary cancellation and delay, swapping,
up-down grading,. . .
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Data

After data preprocessing, the relevant informations are:

F : a set of scheduled flights, together with an estimation of cancellation cost cf

P: a set of aircrafts

R: a set of passengers (itineraries)

Ip , Ir : a set of initial positions for both aircrafts and passengers

Sp ,Sr : a set of required final positions for both aircrafts and passengers

T : a time horizon

L: a set of airport slots

qDep
l ,qArr

l : slot capacities for take off and landings
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Master problem

We model the recovery problem for aircrafts as:

minzMP = ∑
r∈Ω

crxr + ∑
f ∈F

cf yf (1)

∑
r∈Ω

bf
r xr +yf = 1 ∀f ∈ F (2)

∑
r∈Ω

bs
r xr = 1 ∀s ∈ Sp (3)

∑
r∈Ω

bp
r xr ≤ 1 ∀p ∈ P (4)

∑
r∈Ω

bDep,l
r xr ≤ qDep

l ∀l ∈ L (5)

∑
r∈Ω

bArr ,l
r xr ≤ qArr

l ∀l ∈ L (6)

xr ∈ {0,1} ∀r ∈Ω, yf ∈ {0,1} ∀f ∈ F (7)

Solved by an optimization based heuristic (Column Generation + Dynamic Programming) on a
constraint specific recovery network. Eggenberg, S. And Bierlaire (2008a).
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Recovery Network

Given T , Ip and Sp the R.N. encodes all possible recovery schemes for
plane p.

Scheduled flights, acyclic, polynomial size
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Recovery Network

Given T , Ip and Sp the R.N. encodes all possible recovery schemes for
plane p.

Delay modeling, acyclic network but no more acyclic in terms of flights,
exponential size
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Recovery Network

Given T , Ip and Sp the R.N. encodes all possible recovery schemes for
plane p.

Time band discretization pseudo-polynomial size but unfeasible
recovery schemes are encoded
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Generating recovery schemes

Given Ω′, (x∗r ,y∗f ), (λ∗f ,η
∗
s ,µ

∗
p,ν

∗
l ,ρ

∗
l ) , new profitable schemes for plane p

are computed by solving an ERCSPP on the Recovery Network,
minimizing:

c̃p
r = cp

r − ∑
f ∈F

bf
r λ

∗
f − ∑

s∈S

bs
r η

∗
s −µ∗p −∑

l∈L

(bDep,l
r ν

∗
l +bArr ,l

r ρ
∗
l ) ∀p ∈ P

Bi-directional bounded dynamic programming with DSSR. Righini and S.
(2008).
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Implementation issues

The algorithm is implemented with BCP framework by COIN-OR.

Speed up, to comply with restricted time limitations:

Network size is reduced by some parameters: permitted delay,
permitted plane swaps

Pricing problem is solved heuristically with relaxed domination
criteria and label elimination

Heuristic search tree exploration

Primal heuristics
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Real world instances

Mid-size airline (500 flights/week) - synthetic instances (delays, cancellations, apt
closures and maintenance disruptions)

+ 5% + 10% + 20% Heur Opt
# canceled flts 5 4.7 5.5 2.7 1.5
# delayed flts 52.7 46.7 33.2 2.2 2
# uncovered final states 1.2 0.7 0.3 0.1 0.1
total delay [min] 851.3 635.7 712.5 89.6 52.3
max delay [min] 271.3 251.5 218.2 37.7 37.1

Eggenberg, S. And Bierlaire (2008a).
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Passenger recovery

An integer solution to zMP gives the aircraft assignment and the flight
re-timing or cancellation.
From that solution we build a unique connection network which comply
with connectivity constraints:

Arc capacities represent available seats

Passenger itineraries are sorted according to dele-
tion cost and for each itinerary:

Dummy source and sink connections are
the only updated

Cost of arcs connecting the sink represent
the delay cost

A min-cost flow is solved and
decomposed into paths

Each path is a new itinerary
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Results for passenger recovery

Instance A01 A02 A03 A04

Algorithm FlowPRP PRP FlowPRP PRP FlowPRP PRP FlowPRP PRP
# canceled psg 41 33 196 79 499 293 196 116
# rerouted psg 235 2848 587 2468 900 3092 1875 6431
# delayed psg 8664 7852 10430 9969 8798 8569 15612 14365

total delay [min] 280312 259133 581312 557593 511026 523042 1004023 841422
average delay [min] 32.3 33.0 55.7 55.9 58.1 61.0 64.3 58.6

recovery costs 89477 111351 342267 219789 703928 451378 289384 185004
run time [s] 0.66 3155 0.95 1806 1.17 2425 1.84 3755

Instance A06 A07 A08 A09

Algorithm FlowPRP PRP FlowPRP PRP FlowPRP PRP FlowPRP PRP
# canceled psg 44 10 441 148 954 579 1161 334
# rerouted psg 243 2779 445 2462 843 3167 1206 7427
# delayed psg 11293 10469 13007 12997 10898 11323 18892 19367

total delay [min] 350257 332786 700504 715910 653078 678746 1154229 1171478
average delay [min] 31.0 31.8 53.9 55.1 59.9 59.9 61.1 60.5

recovery costs 99893 64859 632736 268534 1363047 775285 1459473 330232
run time [s] 0.47 3781 0.72 2562 0.97 3363 1.20 3973

Table: Results for the PRP - ROADEF dataset.
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Approaches toward robustness

(Airline) schedule disruptions occur because of unpredicted events (noise
in the nominal data) which are of stochastic nature.
Reactive and proactive approaches

Online optimization (Albers (2003))

Stochastic optimization (with recourse) (Kall and Wallace (1994))

Worst-case (robust) optimization (Bertsimas and Sim (2004))

Risk-management/Light robustness (Kall and Mayer (2005),
Fischetti and Monaci (2008))
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Uncertainty set

Often uncertainty sets are difficult to estimate.
Wrong estimation of uncertainty set may lead to even more unstable
solutions.

Example on cargo loading value maximisation (multi-dimension
knapsack), simulation over 16200 scenarios.

max cT x (8)

s.t. (Ai + εi )x ≤ bi ∀i ∈ I (9)

x ∈ {0,1} (10)

Robust solutions has an average opti-
mality gap of 10%.
When simulated coefficient realization
deviates significantly (50-70%) from
estimated we obtain more unfeasible
solution for the robust approach than
the deterministic.
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An alternative approach

We aim to design an optimization framework which:

simple, has the same complexity as the deterministic problem

provides solutions with guaranteed deviation from optimum

does not need for probabilistic uncertainty sets

accounts for reactive strategies

We search a robust recoverable solution.
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Robustness features

Given a deterministic optimization problem:

min f (x)

s.t. x ∈ X

Identify structural properties µ(x) of a solution which are exploited by the reactive
strategy. Solve a multi-objective optimization problem:

min f (x),max µ(x)

s.t. x ∈ X

Relax original objective in a (budget) constraint:

max µ(x)

s.t f (x)≤ (1+ρ)f (x∗)

x ∈ X

Remark: stochastic and robust optimization can be obtained for specific µ(x) and ρ.
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Stochastic optimization, Birge and Louveaux (1997)

Stochastic optimization:

µStoc(x) =−EU(f (x))

zStoc =minEU(f (x))

α(x)≤ b

f (x)≤ (1+ρ)f ∗

x ∈ X

Stochastic optimization with recourse:

µRec(x) =− [f (x)+EU(g(x,ξ))]

zRec =min f (x)+EU(g(x,ξ))

α(x)≤ b

f (x)≤ (1+ρ)f ∗

x ∈ X
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Robust optimization, Bertsimas and Sim (2004)

(F ) z∗F = minx∈X {f (x)}
= minx∈X {maxi=1,...,n (fi (x))}
= minx∈X

{
maxi=1,...,n

(
∑

m
j=1 aijxj +βi (x,Ji )−bi

)}
ρ = max

i=1,...,n

{
ρi fi (x∗)

z∗F
−1

}
,

where ρi is defined as the ratio:

ρi =

{
βi (x,Γi )
fi (x∗)

if fi (x∗) > 0

0 otherwise.

µRob(x) =−cTx
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Robust recoverable aircraft scheduling

Tactical planning: Re-timing of flights is permitted in the definition of r ∈Ω within a
range of 60 minutes.

maxzRF =µ(x) (11)

(14)− (15) (12)

(17)− (21) (13)

∑
r∈Ω

crxr + cf yf ≤ (1+ρ)z∗D (14)

xr ∈ {0,1} ∀r ∈Ω (15)

yf ∈ {0,1} ∀f ∈ F (16)
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Robust recoverable aircraft scheduling

Tactical planning: Re-timing of flights is permitted in the definition of r ∈Ω within a
range of 60 minutes.

maxzRF =µ(x) (11)

(14)− (15) (12)

(17)− (21) (13)

∑
r∈Ω

drxr ≤ C (14)

xr ∈ {0,1} ∀r ∈Ω (15)
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Robust recoverable aircraft scheduling

The recovery algorithm perform better in presence of slack time between flights and
effective possibilities of swapping planes.

Increase the minimal idle time of schedule r

µIT (x) = ∑
r∈Ω

δ
min
r xr

Quadratic formulation

µCROSS (x) = ∑
r∈Ω

∑
p∈Ω

brpxrxp
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Robust recoverable aircraft scheduling

The recovery algorithm perform better in presence of slack time between flights and
effective possibilities of swapping planes.

Increase the minimal idle time of schedule r

µIT (x) = ∑
r∈Ω

δ
min
r xr

We define meeting points m

∑
r∈Ω

bm
r xr −ym ≥ 0 ∀m ∈M

µCROSS (x) = ∑
m∈M

(ym−1)
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Robust results

Results on ROADEF09 set A instances (average)

Original CROSS CROSS IT IT
BUDGET [min] 0 5000 10000 5000 10000
RECOVERY COST 788775.1 633395.6 555400.3 488701.9 493521.8
# Canceled Flts 6.9 6.9 5.3 5.8 5.9
Total Delay [min] 2142.9 2083.0 2421.8 2214.9 1895.6
Avg Delay[min] 41.0 37.9 42.0 36.9 36.5
# Cancelled Psg 582.8 499.3 420.0 384.5 385.3
# Delayed Psg 553.5 511.1 454.1 501.1 448.1
Avg Psg Delay [min] 34.6 38.7 24.6 29.5 29.8

Eggenberg And S. (2009).
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Conclusions

Noisy data and primary objectives can lead to unstable solutions.

Computational tractability of hard combinatorial problems represent an issue for
stochastic or robust optimization.

In several cases, uncertainty set is hardly identifiable.

Knowledge of reactive strategies can help.

Robustness features are structural properties of a solution which are computationally
tractable.

Simultaneous robustness and recoverability is a promising approach for reliable
operations planning.

Outlook:

Under final validation on airline scheduling (robust passenger connections).

To be validated on container terminal optimization.

Applications to network planning with restoring to be explored.

Comparison with stochastic optimization with recourse is still weak.
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Thanks

Thanks for your attention

Any question?
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